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DISCONTINUITY INDUCED BIFURCATIONS OF NON-HYPERBOLIC CYC LES
IN NONSMOOTH SYSTEMS

ALESSANDRO COLOMBO†‡ AND FABIO DERCOLE†

Abstract. We analyse three codimension-two bifurcations occurring in nonsmooth systems, when a non-
hyperbolic cycle (fold, flip, and Neimark-Sacker cases, both in continuous- and discrete-time) interacts with one
of the discontinuity boundaries characterising the system’s dynamics. Rather than aiming at a complete unfolding of
the three cases, which would require specific assumptions onboth the class of nonsmooth system and the geometry
of the involved boundary, we concentrate on the geometric features that are common to all scenarios. We show that,
at a generic intersection between the smooth and discontinuity induced bifurcation curves, a third curve generically
emanates tangentially to the former. This is the discontinuity induced bifurcation curve of the secondary invariant
set (the other cycle, the double-period cycle, or the torus,respectively) involved in the smooth bifurcation. The result
can be explained intuitively, but its validity is proved here rigorously under very general conditions. Three examples
from different fields of science and engineering are also reported.
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1. Introduction. This article deals with the analysis of three particular codimension-
two bifurcations in nonsmooth systems. Broadly speaking, nonsmooth systems are continuous-
or discrete-time dynamical systems featuring some kind of discontinuity in the right-hand side
of their governing equations whenever the system’s state reaches adiscontinuity boundary.
More specifically, nonsmooth systems include several classes, e.g., piecewise smooth [9; 11],
impacting [2], and hybrid [1; 17] systems, which have been largely used in the last decades
as models in various fields of science and engineering (see references above and therein).

While methods of numerical continuation allow to easily detect and trace bifurcation
curves in two-parameter planes, understanding the geometry of bifurcation curves around
codimension-two points is a key to the construction of complex bifurcation diagrams. In the
domain of smooth dynamical systems, the unfolding of the most common codimension-two
points is well known (see, e.g., [15]), and this knowledge isexploited in continuation software
for the automatic switching among bifurcation branches at these points (see, e.g., [8; 19]).
The same cannot be said for nonsmooth systems, where, thoughefficient numerical tools for
bifurcation analysis are finally starting to appear [6; 23],results are still mostly limited to
codimension-one cases. A reason for this shortcoming can befound in the fact that nons-
mooth systems exhibit, along with the standard bifurcations of smooth systems, a great num-
ber of completely new bifurcations, calleddiscontinuity induced bifurcations, that involve the
interaction of the system’s invariant sets with the discontinuity boundaries. Since the char-
acteristics of these bifurcations depend critically on both the class of nonsmooth system and
the geometry of the involved boundaries, the number of possible scenarios is huge and, at the
moment, truly general results are scarce. It goes without saying that codimension-two cases
involving simultaneous smooth and discontinuity induced bifurcations, named “type II” in
[14], are even more numerous, and less understood.

In this article we analyse type II bifurcations of periodic orbits (limit cycles), that is,
bifurcations involving a periodic orbit (from now on calledthe bifurcating cycle) that col-
lides with a discontinuity boundary while being at the same time non-hyperbolic. Rather than
aiming at a complete unfolding with reference to a particular class of nonsmooth systems,
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we concentrate on finding those geometric features that are common to all classes: this is
accomplished by abstracting our analysis from the nature ofthe involved boundary. As a
consequence, our results are incomplete, because they onlyfocus on the geometry of bifurca-
tion curves around the codimension-two point; on the other hand, they apply more in general
— a feature that should be welcome in a field where peculiarityseems to be the rule.

In particular, we show that three codimension-one bifurcation curves generically emanate
from a type II point in a two-parameter plane. One is the smooth bifurcation curve (fold, flip,
or Neimark-Sacker), while the other two are the discontinuity induced bifurcations of the bi-
furcating cycle and of the secondary invariant set involvedin the smooth bifurcation (the other
cycle, the double-period cycle, or the torus, respectively). Then we show that, depending on
the bifurcation, one or both of these curves are tangent to the smooth bifurcation curve. In-
deed, in the flip and Neimark-Sacker cases, the bifurcating cycle departs from the image of the
nonhyperbolic cycle, left frozen in state space, at a linearrate with respect to the bifurcation
parameter, whereas the distance between the period-two cycle or the torus from such an image
goes as the square root of the parameter perturbation from the bifurcation. As a consequence,
locally to the codimension-two point, the perturbation required by the secondary invariant
set to collide with the discontinuity boundary is quadraticwith respect to that required by the
bifurcating cycle. Similarly, in the fold case, the rate at which both cycles approach the image
of the nonhyperbolic cycle is proportional to the square root of the parameter perturbation,
so that the discontinuity induced bifurcation curves are both quadratically tangent to the fold
curve. These rather intuitive results have been observed inmany examples, and proved for
some specific classes of discontinuous systems (e.g., in [5;14; 20; 21; 22; 24; 26]). The aim
of this paper is to provide formal support to the above geometric arguments and to prove their
validity once and for all under very general conditions.

The ensuing exposition is set into the framework ofgrazingbifurcations in continuous-
time, where the discontinuity boundary is smooth, locally to the point of contact with the
bifurcating cycle, and the contact occurs tangentially. This allows us to keep the terminology
as coherent as possible, especially in the lack of a uniform terminology across all classes of
nonsmooth systems. Nonetheless, the reader will realise that our exposition is general and
applies to any discontinuity induced bifurcation involving a non-hyperbolic cycle in contin-
uous time or a non-hyperbolic fixed point in discrete time. Infact, our analysis is based on
the reduction of the nonsmooth flow to a map which is defined andsmooth on one side of
a boundary, while we do not describe the behaviour of the map on the other side. The rest
of the analysis is based on the obtained map, as if the problemwas originally set in discrete
time. Thus, in practise, we do not make any assumption on the class of nonsmooth systems
and on the geometry of the discontinuity boundary.

We begin by stating the problem, introducing the basic notation, and outlining the steps
that we follow in the main proofs (Sect. 2); then we proceed with the detailed analysis of the
three generic grazing bifurcations of non-hyperbolic cycles: the grazing-fold, the grazing-
flip, and the grazing-Neimark-Sacker (Sects. 3–5 and Appendices). Once casted in discrete
time, grazing bifurcations are more appropriately calledborder collisions, and this is the
name we use in this part of the paper. Then we presents three specific applications (Sect. 6)
and conclude with some future directions.

2. The framework of analysis. We consider a nonsmooth autonomous flowx(t) =
Φ(x(0), t, α) ∈ R

n+1 depending on parametersα ∈ R
2. Namely, the right-hand side of the

system’s ODEs

ẋ(t) =
∂

∂τ
Φ(x(t), τ, α)

∣∣∣∣
τ=0

= Φt(x(t), 0, α)(2.1)
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Fig. 2.1: A generic (hyperbolic) limit cycleγ of the nonsmooth flowΦ. For someα near
α = 0, the cycle passes close to, but does not touch, the discontinuity boundaryD, so that
the resulting Poincaré map onP is defined, locally tōz, only on one side of the discontinuity
boundaryH. The boundaryH dividesP into two regions, respectively composed of pointsz
from which the orbit ofΦ does and does not touchD.

(here and in the following variables and parameters as subscripts denote differentiation) is
generically smooth, but characterised by zero- or higher-order discontinuities across some
discontinuity boundariesDi, defined as the zero set of suitable smooth functionsDi(x, α). In
particular, we can distinguish three types of discontinuity boundaries (see Fig. 2.1): boundaries
across which the right-hand side of (2.1) is nonsmooth but continuous, so that orbits always
cross the boundary (DC in the figure); boundaries across which the right-hand side of (2.1)
is discontinuous, so that sliding motions are possible (DS); boundaries where the right-hand
side of (2.1) is formally characterised by impulsive components, which define an instanta-
neous state transition (or jump) whenever orbits reach the boundary (DI ).

Forward solutions of system (2.1) are composed of smooth segments, each corresponding
to a smooth orbit terminating at a discontinuity boundary, or to a sliding motion. Smooth
segments are directly connected at crossing and sliding boundaries, while they are connected
through state jumps at impacting boundaries. Letγ be a periodic orbit of system (2.1). In
Fig. 2.1,γ is composed of four segments, three smooth (solid) orbits and one sliding motion
(thick orbit), and is characterised by a single state jump (thick dashed connection).

Suppose that, whenα = 0, the cycleγ grazes (touches tangentially) a discontinuity
boundaryD, and no other degeneracies occur onDC , DI , andDS . At the same time, suppose
thatγ is non-hyperbolic atα = 0 (more precisely, the multipliers are not defined atα = 0,
but the smooth bifurcation curve is a path toα = 0 on which one real or two complex
conjugate simple multipliers lie on the unit circle). Introduce a Poincaré sectionP along one
of the segments ofγ, say, e.g., the segment touchingD so that the flow reachesD afterP for
α = 0. Also introduce a coordinatez ∈ R

n onP such that the intersection̄z of γ with P lies
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at z = 0 for α = 0. Then, locally to(z, α) = (0, 0), the flowΦ induces a Poincaré map

z 7→ F (z, α)(2.2)

(note that the map may not be invertible, e.g., in the presence of sliding motions). Since we
do not discuss the type of boundaryD, we limit the definition ofF to the values of(z, α) in a
neighbourhood of(0, 0) for which the orbit originating atz does not touchD. This introduces
an(n − 1)-dimensional discontinuity boundaryH on the Poincaré sectionP such thatF is
defined and smooth on one side ofH. In particular, let

D = {x : D(x, α) = 0}, H = {z : H(z, α) = 0},

and assume, without loss of generality, that the flowΦ touchesD tangentially while locally
remaining on the sideD(x, α) < 0, and thatF (z, α) is defined forH(z, α) < 0. Then,
the functionH can be constructed as follows (see again Fig. 2.1). Define then-dimensional
smooth manifoldT of the points where the flow is tangent to the level sets of functionD:

T = {x : T (x, α) := 〈Φt(x, 0, α), Dx(x, α)〉 = 0}

(vectorDx(x, α) ∈ R
n+1 is orthogonal to the level sets ofD at(x, α) and〈·, ·〉 is the standard

scalar product inRn+1). As shown in Fig. 2.1, the(n− 1)-dimensional intersection between
D andT is transformed, backward in time by the flow, into the discontinuity boundaryH.
Thus,H(z, α) can be defined as the valueD(x, α) at the pointx at which the flow first
reachesT (forward in time) from the initial condition correspondingto z onP .

We can now abandon the continuous-time framework, and focuson map (2.2). For some
α in a neighbourhood ofα = 0, the map is characterised by a fixed pointz̄, with H(z̄, α) < 0
and, forα = 0, the fixed point is non-hyperbolic and lies at the originz = 0 and on the
discontinuity boundaryH. We investigate the bifurcation curves rooted atα = 0 in the
parameter plane(α1, α2), by considering separately the three generic cases, namely(I) fold
(one simple eigenvalue equal to1, Sect. 3), (II) flip (one simple eigenvalue equal to−1,
Sect. 4), and (III) Neimark-Sacker (two simple complex conjugate eigenvalues on the unit
circle, Sect. 5).

In each case, we proceed as follows. Locally to(z, α) = (0, 0), we consider the re-
striction of map (2.2) to a parameter-dependent centre manifold Zc. Let u ∈ R

nc represent
coordinates onZc, nc = 1 in the fold and flip cases,nc = 2 in the Neimark-Sacker case,
with u = u(z, α) for eachz ∈ Zc andα in a neighbourhood of(z, α) = (0, 0), u(0, 0) = 0,
and letz = z(u, α) denote the inverse transformation. Restricted to the centre manifold, map
(2.2) reads

u 7→ f(u, α) := u(F (z(u, α), α), α).(2.3)

and the discontinuity boundaryH is given by the zero-set of the function

h(u, α) := H(z(u, α), α).(2.4)

We assume that the three following conditions hold:
(i) Map (2.3) satisfies, atα = 0, all genericity conditions of the corresponding smooth

bifurcation (see, e.g., [15]).
(ii) At α = 0, the centre manifoldZc transversely intersects the discontinuity bound-

ary H at z = 0 (by continuity the transversality persists near(z, α) = (0, 0), see
Fig. 2.1). Under this condition, the dynamics of map (2.2) near (z, α) = (0, 0) is
captured by that on the centre manifold. In the coordinateu along the centre mani-
fold the condition becomeshu(0, 0) 6= 0.
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(iii) Changingα along the smooth bifurcation curve, the non-hyperbolic fixed point
crosses the discontinuity boundary transversely. This condition ensures that the
smooth bifurcation curve intersects the border collision curves in a generic way.

As a first step, we reduce map (2.3) to a normal form (NF) (the fold, flip, and Neimark-Sacker
normal forms) through a locally invertible change of variable and parameter, say,v = v(u, α),
β = β(α), wherev(0, 0) = 0, β(0) = 0, andu = u(v, β), α = α(β) denote the inverse
transformation. Then, second step, we find the expression ofthe discontinuity boundary (2.4)
in the new variables and parameters, i.e.,

{v : hNF(v, β) := h(u(v, β), α(β)) = 0}.(2.5)

Finally, third step, we analyse the interaction of the normal form map

v 7→ fNF(v, β) := v(f(u(v, β), α(β)), α(β))

with the discontinuity boundary (2.5), and we find local asymptotics for the bifurcation curves
emanating fromα = 0 in terms of(α1, α2)-expansions.

The details of the normal form reduction are reported in appendices A.1, B.1, and C.1,
while the technicalities on step two are reported in Appendices A.2, B.2, and C.2. The spe-
cific analytical form taken by condition (iii) in the fold, flip, and NS cases is respectively
derived in Appendices A.3, B.3, and C.3 in terms of both the original coordinatesz and in
the coordinatesu in the centre manifold. Finally, some details on step three for the Neimark-
Sacker case are relegated to Appendix C.4. For simplicity ofnotation, in the following the 0
superscript stands for evaluation at(u, α) = (0, 0) or (v, β) = (0, 0).

3. Case I: Border-fold bifurcation. Let the dynamics in the centre manifoldZc be
described by the one-dimensional system

u 7→ f(u, α), u ∈ R
1,(3.1)

with f0 = 0 (fixed point condition) andf0
u = 1 (fold condition). Under condition (i), map

(3.1) can be reduced to normal form (first step, see Appendix A.1) with invertible changes of
variable and parameterv = v(u, α), β = β(α), becoming

v 7→ β1 + v + sv2 +O(v3),(3.2)

wheres = sign(f0
uu). In these variables, the fold curve has equationβ1 = 0 in the plane

(β1, β2), and the corresponding non-hyperbolic fixed point is located atv = 0.
We now turn our attention to the discontinuity boundary (2.5) (second step, see Appendix

A.2). Condition (ii), ensuring transversal intersection of the centre manifoldZc and the
discontinuity boundaryH, implies local existence and uniqueness of a smooth function

σ(β) = σ0
β1
β1 + σ0

β2
β2 +O(‖β‖2),

such that the intersection ofH with Zc is located atv = σ(β). Then by condition (iii) (see
Appendix A.3 for the analytical expression) we know that moving along the fold curve, that
is, along theβ2-axis, the fixed point atv = 0 crossesH at β2 = 0. As a consequence, we
haveσ0

β2
6= 0.

We are now ready to find the equation of the border collisions in the plane(β1, β2)
(third step). The two fixed points of the normal form map (3.2)are located at̄v±(β) =
±√−sβ1+O(‖β‖2) (v̄− being stable and̄v+ unstable fors = 1, and viceversa fors = −1),
and lie on the discontinuity boundary (2.5) along the curves

±
√
−sβ1 = σ0

β1
β1 + σ0

β2
β2 +O(‖β‖2).(3.3)
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s = 1

h0

u > 0

σ0

β2
> 0

h0

u > 0
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Fig. 3.1: Border-fold bifurcation. Bifurcation curves: LP, fold (limit point, red); BCs, border
collision of the stable fixed point (v̄−, left; v̄+, right) of map (3.2) (green), BCu, border
collision of the unstable fixed point (v̄+, left; v̄−, right) of map (3.2) (blue). Region labels:
0, no fixed point inV −(β) := {v : hNF(v, β) < 0}; 1, v̄− is the only fixed point inV −(β);
2, both fixed points̄v± lie in V −(β).

Sinceσ0
β2

6= 0, equation (3.3) for small‖β‖ becomes

±
√
−sβ1 ≃ σ0

β2
β2,(3.4)

and gives the asymptotics, locally toβ = 0, of the two border-collision bifurcation curves
involving the fixed points̄v±. The invertible parameter changeβ = β(α) easily provides the
asymptotics in the originalα parameters.

Depending upon the sign ofs in the normal form map (3.2), ofσ0
β2

in (3.4), and ofh0
u

in (ii), there are eight generic cases, two of which are reported in Fig. 3.1. The other six can
be reduced to these two by suitable parameter changes. In fact, the four cases withσ0

β2
< 0

are symmetric with respect to theβ1-axis to the corresponding cases withσ0
β2

> 0, while the
four cases withh0

u < 0 can be reduced to cases withh0
u > 0 by changing the sign ofs and

rotating the figure. Note that only half of theβ2-axis can be said to belong to the fold curve
(LP), since along the other half the two fixed pointsv̄± collide atv = 0 on the undescribed
side of the discontinuity boundary (2.5), i.e.,hNF(0, β) > 0.

4. Case II: Border-flip bifurcation. Let the dynamics in the centre manifoldZc be
described by the one-dimensional system

u 7→ f(u, α), u ∈ R
1,(4.1)

with f0 = 0 (fixed point condition) andf0
u = −1 (flip condition). Through a parameter-

dependent translation, we can ensure thatf(0, α) = 0, i.e., thatu = 0 is a fixed point for all
α in a neighbourhood ofα = 0. Under condition (i), map (4.1) can be reduced to normal form
(first step, see Appendix B.1) with invertible changes of variable and parameterv = v(u, α),
β = β(α), becoming

v 7→ −(1 + β1)v + sv3 +O(v4),(4.2)
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with s = sign((1/4)(f0
uu)

2 + (1/6)f0
uuu). In these variables, the flip curve has equation

β1 = 0 in the plane(β1, β2), and the corresponding non-hyperbolic fixed point is located at
v = 0. Moreover, parameters can be chosen so that the border collision of the fixed point in
the origin has equationβ2 = 0.

We now turn our attention to the discontinuity boundary (2.5) (second step, see Appendix
B.2). Condition (ii), ensuring transversal intersection of the centre manifoldZc and the
discontinuity boundaryH, implies local existence and uniqueness of a smooth function

σ(β) = σ0
β1
β1 + σ0

β2
β2 +O(‖β‖2),

such that the intersection ofH with Zc is located atv = σ(β). Moreover, thanks to the
parameter choice in (4.2),σ0

β1
= 0, since the fixed pointv = 0 lies onH whenβ2 = 0. Then

by condition (iii) (see Appendix B.3 for the analytical expression) we know that moving along
the flip curve, that is, along theβ2-axis, the fixed point atv = 0 crossesH at β2 = 0. As a
consequence, we haveσ0

β2
6= 0.

We are now ready to find the equation of the border collisions in the plane(β1, β2) (third
step). Near(v, β1) = (0, 0) the normal form map (4.2) iterated twice has one fixed point in
v = 0 (which is also a fixed point of map (4.2)) and two others inv̄±(β) = ±

√
sβ1+O(‖β‖2)

(period-two cycle). In particular,̄v± lie on discontinuity boundary (2.5) along the curves

±
√
sβ1 = σ0

β2
β2 +O(‖β‖2).(4.3)

Sinceσ0
β2

6= 0, equation (4.3) for small‖β‖ becomes

±
√
sβ1 ≃ σ0

β2
β2,(4.4)

and gives the asymptotics, locally toβ = 0, of the border-collision bifurcation curves involv-
ing the two points̄v± of the period-two cycle. The invertible parameter changeβ = β(α)
provides the asymptotics in the originalα parameters.

Depending upon the sign ofs in the normal form map (4.2), ofσ0
β2

in (4.4), and ofh0
u in

(ii), there are eight generic cases. However, again, only two cases are relevant (see Fig. 4.1),
because all others can be reduced to these two by suitable parameter changes. Here, both the
four cases withσ0

β2
< 0 and those withh0

u < 0, are symmetric with respect to theβ1-axis to
the corresponding cases withσ0

β2
> 0 or h0

u > 0. Also note that only half of theβ2-axis can
be said to belong to the flip curve (PD), since along the other half the fixed pointv = 0 lies on
the undescribed side of the discontinuity boundary (2.5), i.e.,hNF(0, β) > 0. Similarly, only
one of the two branches in (4.4) constitutes the border-collision curve involving the period-
two cycle (stable, BCs2; unstable, BCu2 ), since along the other branchhNF(v̄±, β) ≥ 0.

5. Case III: Border-Neimark-Sacker bifurcation. Let the dynamics in the centre man-
ifold Zc be described by the two-dimensional system

u 7→ f(u, α), u ∈ R
2,(5.1)

with f0 = 0 (fixed point condition) and with eigenvaluesλ0 andλ̄0 (the overbar stands for
complex conjugation) of the2× 2 Jacobianf0

u given by

λ(α) = (1 + g(α))eiθ(α),

with g0 = 0 (Neimark-Sacker, NS, condition). As in the flip case, assumethatf(0, α) = 0
for all α in a neighbourhood ofα = 0. Under condition (i), map (5.1) can be reduced to
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s = 1

h0

u > 0

σ0

β2
> 0

β2 β2

β1 β1
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BCs
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2
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h0
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σ0

β2
> 0
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00

1

22

Fig. 4.1: Border-flip bifurcation. Bifurcation curves: PD,flip (period doubling, red); BCs,u1 ,
border collision of the fixed pointv = 0 (stable and unstable branches, blue); BCs,u

2 , border
collision of the stable or unstable period-two cycle. Region labels:0, no fixed point or period-
two cycle inV −(β) := {v : hNF(v, β) < 0}; 1, v = 0 is a fixed point inV −(β) and there is
no period-two cycle, or it does not lie entirely inV −(β); 2, the fixed pointv = 0 coexists in
V −(β) with the period-two cycle.

normal form in polar coordinates (first step, see Appendix C.1) with invertible changes of
variable and parameterρ = ρ(u, α), ϕ = ϕ(u, α), β = β(α), becoming

ρ 7→ ρ(1 + β1 + a(β)ρ2) + ρ4R(ρ, ϕ, β),(5.2a)

ϕ 7→ ϕ+ θ(α(β)) + ρ2Q(ρ, ϕ, β),(5.2b)

wherea0 6= 0. In these variables, the NS curve has equationβ1 = 0 in the plane(β1, β2),
and the corresponding non-hyperbolic fixed point is locatedat v = 0 (with v1 = Re(ρeiϕ)
andv2 = Im(ρeiϕ)). Moreover, parameters can be chosen so that the border collision of the
fixed point in the origin has equationβ2 = 0.

We now turn our attention to the discontinuity boundary (2.5) (second step, see Appendix
C.2). Condition (ii), ensuring transversal intersection of the centre manifoldZc and the
discontinuity boundaryH, implies local existence and uniqueness of a smooth function

σ(β) = σ0
β1
β1 + σ0

β2
β2 +O(‖β‖2),

measuring the distance between the origin and the boundary,with positive/negative values
if hNF(0, β) is negative/positive, in order to makeσ(β) differentiable atβ = 0. Moreover,
thanks to the parameter choice in (5.2),σ0

β1
= 0, since the fixed pointv = 0 lies onH when

β2 = 0. Then by condition (iii) (see Appendix C.3 for the analytical expression) we know
that moving along the NS curve, that is, along theβ2-axis, the fixed point atv = 0 crossesH
transversely atβ2 = 0. As a consequence, we haveσ0

β2
6= 0.

We are now ready to find the equation of the border collisions in the plane(β1, β2) (third
step). Nearβ = 0, the normal form map (5.2) has an fixed point inρ = 0 and a closed
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β2
> 0

a0 > 0
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22

Fig. 5.1: Border-NS bifurcation. Bifurcation curves: NS, Neimark-Sacker (red); BCs,u, bor-
der collision of the fixed pointv = 0 (stable and unstable branches, blue); GRs,u, grazing
of the stable or unstable torus (green). Region labels:0, no fixed point or invariant curve in
V −(β) := {v : hNF(v, β) < 0}; 1, v = 0 is a fixed point inV −(β) and there is no invariant
curve, or it does not lie entirely inV −(β); 2, both the fixed pointv = 0 and the invariant
curve lie inV −(β).

invariant curve that is contained in the annular region

{
(ρ, ϕ) :

√
− β1

a(β)
(1− β

γ−1/2
1 ) ≤ ρ ≤

√
− β1

a(β)
(1 + β

γ−1/2
1 ), ϕ ∈ [0, 2π]

}
,

1

2
< γ < 1

(5.3)
(see Appendix C.4). The two circles delimiting the annular region (5.3) touch the discontinu-
ity boundary along the curves

√
− β1

a(β)
(1± β

γ−1/2
1 ) = σ0

β2
β2 +O(‖β‖2).(5.4)

Sinceσ0
β2

6= 0, equation (5.4) for small‖β‖ becomes

√
−β1

a0
≃ σ0

β2
β2,(5.5)

and gives a unique asymptotic, locally toβ = 0, for the grazing bifurcation curves of both
circles. The same asymptotic therefore holds for the grazing bifurcation involving the invari-
ant curve (the uniqueness of the bifurcation curve is granted by the elliptical shape of the
invariant curve nearβ = 0). Again, the invertible parameter changeβ = β(α) provides the
asymptotics in the originalα parameters.

Depending upon the sign ofa0 in the normal form map (5.2) and ofσ0
β2

in (5.5), there
are four generic cases. However, again, only two cases are relevant (see Fig. 5.1), because
those withσ0

β2
< 0 are symmetric with respect to theβ1-axis to the cases withσ0

β2
> 0.

Also note that only half of theβ2-axis can be said to belong to the NS curve, since along the
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other half the fixed pointv = 0 lies on the undescribed side of the discontinuity boundary
(2.5), i.e.,hNF(0, β) > 0. Similarly, only half of the parabola in (5.5) constitutes the grazing
bifurcation curve involving the invariant curve (stable, GRs; unstable, GRu), since along the
other half the invariant curve is composed of pointsv with hNF(v, β) ≥ 0.

6. Examples. We now present three specific examples, one for each of the three codimension-
two bifurcations analysed in the previous sections. The three examples deal with different
classes of nonsmooth systems (an impacting, a hybrid, and a piecewise smooth system) and
describe interesting applications in different fields of science and engineering (ecology, social
sciences, and mechanics).

An impacting model of forest fires. For an example of border-fold bifurcation, we
consider the forest fire impacting model presented in [7; 18]. The model describes the vege-
tational growth with the following two (smooth) ODEs:

Ḃ = rBB

(
1− B

KB

)
− αBT,

Ṫ = rTT

(
1− T

KT

)
,

one for the surface layer (bush,B) and one for the upper layer (trees,T ). Fire episodes are
represented by instantaneous events (impacts), that occurwhen the biomasses(B, T ) of the
two layers reach one of three specified impacting boundaries: a bush ignition thresholdρBKB

triggering bush-only fires that map the bush biomass toλBρBKB, 0 < λB , ρB < 1; a tree
ignition thresholdρTKT triggering trees-only fires that map the trees biomass toλT ρTKT ,
0 < λT , ρT < 1; and the segment connecting points(σBKB, ρTKT ) and(ρBKB, σTKT ),
0 < σB < ρB, 0 < σT < ρT , triggering mixed fires with post-fire conditions suitably
assigned as a function of pre-fire conditions (see [18] for more details).

For the parameter settingr1 = 0.375, r2 = 0.0625, α = 0.43, KB = KT = 1,
ρB = 0.85, ρT = 0.93, λB = 0.03, λT = 0.01, σB = 0.61, σT = 0.3 (corresponding
to Mediterranean forests), the system is characterised by aglobally stable period-one cycle
composed of a growth orbit and a mixed fire. Numerical continuation (by means of AUTO07P

[10]) of the cycle in the parameter plane(ρB, ρT ) identifies two (codimension-one) bifurca-
tions: a fold (red curve in Fig. 6.1) and a grazing of the growth orbit with the bush ignition
threshold (blue curve). The two curves merge together at theborder-fold bifurcation (black)
point and, as predicted by the analysis carried out in Sect. 3, the grazing bifurcation of the
unstable cycle involved in the fold (green curve) emanates tangentially to the fold curve from
the codimension-two bifurcation point.

A hybrid model of two-party democracies. For an example of border-flip bifurca-
tion, we consider the hybrid model presented in [3] for describing the dynamics of two-party
democracies. The model describes the evolution of the size of two lobbies (of sizesLD and
LR), one associated to each party (partiesD andR, respectively), and assumes that the in-
dividuals belonging to the lobby of the party at the government erode the welfare (W ) at a
rate proportional to the size of the lobby; a lobby can grow only as long as its party is at the
government, and decays otherwise; a small fraction of the lobbyists not at the government
defect and switch to the other lobby; elections are held onceeveryT years, and people vote
for the party that has the less damaging lobby at the time of the elections. Altogether, the
dynamics is captured by two sets of ODEs, namely

Ẇ = r(1 −W − aDLD)W,

L̇D = (eDaDW − dD)LD + kRLR,
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0.9

1

ρB

ρT
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1

2

Fig. 6.1: Example of border-fold bifurcation. Bifurcationcurves: fold (red); border collision
of the period-one stable cycle (blue); border collision of the period-one unstable cycle (green).
Region labels as in Fig. 3.1.

L̇R = (−dR − kR)LR,

when theD-party is at the government, and

Ẇ = r(1 −W − aRLR)W,

L̇D = (−dD − kD)LD,

L̇R = (eRaRW − dR)LR + kDLD,

when theR-party is at the government. Here,r is the intrinsic growth rate of the welfare,a
represents the aggressiveness of a lobby,e is the recruitment coefficient of a lobby, andd and
k are respectively the rate at which individuals abandon the lobbies or defect. In the region
of the state space whereaDLD < aRLR (aDLD > aRLR) theD-lobby (R-lobby) is less
damaging and thus wins the elections. The conditionaDLD = aRLR therefore defines the
discontinuity boundary (see [3] for more details).

In the(aD, T ) plane, with parametersaR = 1, r = 0.2, eD = eR = 6, dD = dR = 1.8,
kD = kR = 0.06, the system has a very complex bifurcation diagram (see for example
Fig. 1 in [3]). In particular, nearaD = 0.38, T = 3.2, a flip (red curve in Fig. 6.2) and a
border collision (blue curve) of a period-2T cycle meet at the border-flip (black) point and,
as predicted by the analysis carried out in Sect. 4, a border collision of the period-4T cycle
(green curve) emanates from the codimension-two point tangentially to the flip curve.

A piecewise smooth model of railway wheelset dynamics.For an example of border-
NS bifurcation, we consider a two degrees of freedom piecewise smooth model of a sus-
pended railway wheelset with dry friction dampers, subjectto a sinusoidal disturbance repre-
senting the deformations of the track. The model is based on that presented in [13; 25], where
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0.27 0.46

2.45

4.45

aD

T

1 2

1
0

Fig. 6.2: Example of border-flip bifurcation. Bifurcation curves: flip (red); border collision
of the period-one cycle (blue); border collision of the period-two cycle (green). Region labels
as in Fig. 4.1.

the track deformation was not taken into account, and its analysis will be published elsewhere.
Since a detailed explanation of the equations and parameters goes beyond the scope of this
paper, here we only report the equations and describe a few key parameters (see [13] and [25]
for the details). The model consists of the following piecewise smooth equations:

ẋ1 = x̃2,

ẋ2 =
1

m
(−2Fx − 2Ksx̃1 − sign(x2)µ),

ẋ3 = x4,

ẋ4 =
1

I
(−2AFy),

where

x̃1 = x1 + a sin(ωt), x̃2 = x2 + aω cos(ωt),
µ = (µd(1 − sech(αx̃2)) + µssech(αx̃2)),

Fx =
ξxFr

Ψξr
, Fy =

ξyFr

Φξr
, Fr =





ξrC

(
1− Cξr

3µt
+

C2ξ2r
27µ2

t

)
if Cξr < 3µt,

µt otherwise,

ξx =
x̃2

V
− x3, ξy =

Ax4

V
+

λx̃1

r0
, ξr =

√(
ξx
Ψ

)2

+

(
ξy
Φ

)2

.

Hereω = 2πV/l, a andl are the amplitude and wavelength of the sinusoidal disturbance,V
is the speed of the wheelset, andλ measures the conicity of the wheels. The system’s state
space is therefore partitioned in four regions, depending on the signs ofx2 and ofCξr − 3µt,
so thatx2 = 0 andCξr = 3µt define two discontinuity boundaries.
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Fig. 6.3: Example of border-NS bifurcation. Bifurcation curves: Neimark-Sacker (red); bor-
der collision of the period-one cycle (blue); border collision of the torus (green). Region
labels as in Fig. 5.1.

The system’s dynamics was studied, with TC-HAT [23], in the(V, λ) plane, with the
following values of the parameters:m = 1022, Ks = 1e6, I = 678, A = 0.75, a = 0.001,
µd = 1000, α = 50, µs = 1200, Ψ = 0.54219, Φ = 0.60252, C = 6.5630e6, µt = 1e5,
r0 = 0.4572, l = 10. For large values ofV , a grazing of a stable cycle with the boundary
x2 = 0 and a NS take place (blue and red in Fig. 6.3), and meet at the border-NS (black)
point. Then, by systematically evaluating 1000 iterations(after transient) of the Poincaré
map of the torus on a suitable cross-section, and by continuing the line on which the obtained
torus image grazes the discontinuity boundary induced on the cross-section, we were able to
trace an approximation of the grazing curve of the torus (green in Fig. 6.3). More rigorous
methods, based for example on discretisation of the invariant curve (see, e.g., [4; 12]) could
be used to obtain a more precise estimate of the quadratic coefficient. This lies however
beyond of the scope of this paper. As predicted by the analysis carried out in Sect. 5, the
curve emanates from the codimension-two point tangentially to the NS curve.

7. Concluding remarks. We have analysed the geometry of bifurcation curves around
three codimension-two bifurcations in nonsmooth systems,namely the border-fold, the border-
flip, and the border-Neimark-Sacker. Rather than aiming at the complete unfolding of the
dynamics of a particular class of nonsmooth systems (e.g., piecewise smooth, impacting,
or hybrid) dealing with a particular geometry of the involved discontinuity boundary (e.g.,
smooth or corner), we have focused on those results which aregeneral to all scenarios. Our
approach applies to continuous-time as well as discrete-time systems, and basically consists
of the analysis of a discrete-time (Poincaré) map defined only on one side of a boundary in its
state space. Explicit genericity conditions are listed andexplained for each codimension-two
case.

Of course, the weakness of this approach is that it cannot provide the complete unfolding
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of the bifurcation, but its power resides in its generality:as shown in the three examples that
we have reported, it applies to a very broad class of nonsmooth systems and it may be relevant
in various fields of science and engineering.

The natural sequel of this work would certainly aim at more detailed results, and possibly
at the complete unfolding, of the codimension-two bifurcations analysed here, with specific
reference to some smaller class of nonsmooth systems.
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Appendix A. Border-fold bifurcation. In the case of the border-fold bifurcation, con-
ditions (i-iii) in Sec. 2, expressed in the variableu of the centre manifold, are summarised
below:

(i.a) f0
uu 6= 0,

(i.b) f0
α 6= 0,

(ii) h0
u 6= 0,

(iii) f0
uuh

0
α1
f0
α2

− h0
uf

0
uα1

f0
α2

6= f0
uuh

0
α2
f0
α1

− h0
uf

0
uα2

f0
α1

Note that (i.b) is redundant, since it is implied by (iii).

A.1. Step one. To reduce map (3.1) to normal form we follow [15], where however
α ∈ R, while hereα ∈ R

2. The variable changev = v(u, α) is formally the same as in
[15], while parameter change that we use isβ = β(α) = |a(µ(α))|µ(α), µ1(α) = f0

0α1
α1 +

f0
0α2

α2+O(‖α‖2),µ2(α) = −f0
0α2

α1+f0
0α1

α2+O(‖α‖2), a(µ) = f2(α(µ))+O(‖α(µ)‖),
with a(0) = (1/2)f0

uu 6= 0 because of (i.a). The inverse transformations have the following
derivatives:

u0
v =

2

|f0
uu|

, u0
β2

= −δ0αα
0
β2
, δ0α =

f0
uα

f0
uu

, α0
β2

=
2

|f0
uu|‖f0

α‖2
[

−f0
α2

f0
α1

]
.

A.2. Step two. Consider the discontinuity boundary (2.5). The variable and parameter
changev = v(u, α), β = β(α) is invertible near(u, α) = (0, 0), so that condition (ii)
implies thathNF

v (0, 0) = h0
uu

0
v 6= 0, i.e., local existence and uniqueness, by the implicit

function theorem, of a smooth function

σ(β) = σ0
β1
β1 + σ0

β2
β2 +O(‖β‖2),

such thathNF(σβ, β) = 0 for small‖β‖, so that the intersection of the discontinuity boundary
H with the centre manifoldZc is located atv = σ(β).

We now prove, using condition (iii), thatσ0
β2

6= 0. By differentiating both sides of
hNF(σ(β), β) = 0, i.e., ofh(u(σ(β), β), α(β)) = 0, with respect toβ2, taking into account
the derivatives in Appendix A.1, and evaluating atβ = 0 we get

σ0
β2

= −
h0
uu

0
β2

+ h0
αα

0
β2

h0
uu

0
v

=
1

h0
u‖f0

α‖2

((
h0
α1

− h0
uf

0
uα1

f0
uu

)
f0
α2

−
(
h0
α2

− h0
uf

0
uα2

f0
uu

)
f0
α1

)
.

Thanks to (i)–(iii), this ensures thatσβ2
6= 0.

A.3. Genericity conditions (ii) and (iii). In the original coordinatesz of map (2.2),
condition (ii) requiresH0

z ν
0 6= 0, whereν is the unit eigenvector ofFz associated to the

eigenvalue1.
Consider now the fold curve defined by the system

F (z, α)− z = 0,
Fz(z, α)ν − ν = 0,

〈ν, ν〉 − 1 = 0.
(A.1)

In the space(z, ν, α), condition (iii) means that the tangent vector to the fold curve is not
tangent to the surface

H(z, α) = 0(A.2)
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at (z, α) = (0, 0). The tangent vector to the fold curve is the null vector of theJacobian of
(A.1), so that bordering such Jacobian with the linearisation of (A.2) and imposing that the
resulting square matrix is nonsingular at(z, ν, α) = (0, ν0, 0), i.e.,

det




F 0
z − I 0 F 0

α1
F 0
α2

F 0
zzν

0 F 0
z − I F 0

zα1
ν0 F 0

zα2
ν0

0 2(ν0)⊤ 0 0
H0

z 0 H0
α1

H0
α2


 6= 0,

we impose that the fold curve (A.1) intersects the surface (A.2) transversely, i.e., condition
(iii). This is nothing but requiring that the system (A.1), (A.2) be regular at(z, ν, α) =
(0, ν0, 0).

Equation (A.1), restricted to the centre manifold, becomes

f(u, α)− u = 0,
fu(u, α)− 1 = 0,

and by the same reasoning, we obtain the condition

det




f0
u − 1 f0

α1
f0
α2

f0
uu f0

uα1
f0
uα2

h0
u h0

α1
h0
α2


 6= 0,

which is equivalent to (iii) sincef0
u = 1 (fold condition).

Appendix B. Border-flip bifurcation. In the case of the border-flip bifurcation con-
ditions (i-iii) in Sec. 2, expressed in the variableu of the centre manifold, are summarised
below:

(i.a)
1

2
(f0

uu)
2 +

1

3
f0
uuu 6= 0,

(i.b) f0
uα 6= 0,

(ii) h0
u 6= 0,

(iii) f0
uα1

h0
α2

6= f0
uα2

h0
α1

Note that (i.b) is redundant, since it is implied by (iii).

B.1. Step one.Once again, to reduce map (4.1) to normal form, we use the samevari-
able changev = v(u, α) as in [15], while the parameter change isβ1 = β1(α) = g(α1, α2),
β2 = β2(α) = h(0, α), with fu(0, α) = −(1 + g(α)). The inverse transformations have
derivatives

u0
v =

1√
|c0|

, u0
β2

= 0, α0
β2

=
1

f0
uα1

h0
α2

− f0
uα2

h0
α1

[
−f0

uα2

f0
uα1

]

with c0 = (1/4)(f0
uu)

2 + (1/6)f0
uuu 6= 0 because of (i.a).

B.2. Step two. Consider the discontinuity boundary (2.5). As in the border-fold case,
the variable and parameter changev = v(u, α), β = β(α) is invertible near(u, α) = (0, 0),
so that condition (ii) implies thathNF

v (0, 0) 6= 0 and, by the implicit function theorem, that
the intersection of the discontinuity boundaryH with the centre manifoldZc is located at

v = σ(β) = σ0
β1
β1 + σ0

β2
β2 +O(‖β‖2),

for some smooth functionσ.
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The parameter change obviously makesσ0
β1

= 0. We now prove thatσ0
β2

6= 0. By
differentiating both sides ofhNF(σ(β), β) = 0, i.e., ofh(u(σ(β), β), α(β)) = 0, with respect
to β2, taking into account the derivatives in Appendix B.1 and evaluating atβ2 = 0 we get

σ0
β2

= −
h0
uu

0
β2

+ h0
αα

0
β2

h0
uu

0
v

= −
√
|c0|
h0
u

,

where condition (iii) ensures thath0
ααβ2

= 1. Thus (i)–(iii) imply thatσ0
β2

6= 0.

B.3. Genericity conditions (ii) and (iii). In the original coordinatesz of map (2.2),
condition (ii) requiresH0

z ν
0 6= 0, whereν is the unit eigenvector ofFz associated to the

eigenvalue−1.
Consider now the flip curve defined by the system

F (z, α)− z = 0,
Fz(z, α)ν + ν = 0,

〈ν, ν〉 − 1 = 0.
(B.1)

Similarly to the border-fold case, condition (iii) is equivalent to

det




F 0
z − I 0 F 0

α1
F 0
α2

F 0
zzν

0 F 0
z + I F 0

zα1
ν0 F 0

zα2
ν0

0 2ν⊤ 0 0
H0

z 0 H0
α1

H0
α2


 6= 0.

Equation (B.1), restricted to the centre manifold, becomes

f(u, α)− u = 0,
fu(u, α) + 1 = 0.

Proceeding along the same lines we obtain the condition

det




f0
u − 1 f0

α1
f0
α2

f0
uu f0

uα1
f0
uα2

h0
u h0

α1
h0
α2


 6= 0,

which is equivalent to (iii) sincef0
α = 0 (f(0, α) = 0 by assumption) andf0

u = −1 (flip
condition).

Appendix C. Border-Neimark-Sacker bifurcation. In the case of the border-NS bi-
furcation, conditions (i-iii) in Sec. 2, expressed in the variablesu of the centre manifold, are
summarised below:

(i.a) eikθ
0 6= 1 for k = 1, 2, 3, 4,

(i.b) the first Lyapunov coefficient of the NS normal form (a0, see later) is nonzero,
(i.c) g0α 6= 0,
(ii) h0

u 6= 0,
(iii) g0α1

h0
α2

6= g0α2
h0
α1

Note that (i.c) is redundant, since it is implied by (iii).

C.1. Step one.Once again, to reduce map (5.1) to normal form, we use the samevari-
able changew = w(u, α) (with w = v1 + iv2) as in [15], while the parameter change
β = β(α) is formally the same as in B.1. The inverse transformationsu = u(w, w̄, β) and
α = α(β) have derivatives

uw(0, 0, 0) = q0, uw̄(0, 0, 0) = q̄0, uβ2
(0, 0, 0) = 0, α0

β2
=

1

g0α1
h0
α2

− g0α2
h0
α1

[
−g0α2

g0α1

]
.
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ϕh

v2

r

Σ

v2

v1

r

Σ

ϕm

v1

ϕm

(A) (B)

σ(β) > 0

√

−β1/a0

hNF

v (0, 0)

Fig. C.1: A. Local representation of the discontinuity boundaryΣ (thick line) for small‖v‖
and‖β‖ as a straight (dashed) line tangent toΣ in the point of minimum distance ofΣ from
the originv = 0 (case withσ(β) > 0). Since‖β‖ is small, the directionϕm of minimum
distance is close to the directionϕh of vectorhNF

v (0, 0). Forϕ ∈ (ϕ0, ϕ1) (shaded area),
the discontinuity boundaryΣ can be represented in coordinates(r, ϕ). B. The annular region
(5.3) (shaded area) containing the invariant curve (thick closed line) of the normal form map
(5.2) and the (dashed) circle approached by the invariant curve asβ → 0.

C.2. Step two. Denote byΣ the discontinuity boundary (2.5), wherev ∈ R
2. Again,

the variable and parameter changev = v(u, α), β = β(α) that we used is invertible near
(u, α) = (0, 0), so that condition (ii) implies thathNF

v (0, 0) = h0
uu

0
v 6= 0, where now

hNF
v (0, 0) andh0

u are inR2 (row vectors) andu0
v is a2×2 nonsingular matrix. Geometrically,

see Fig. C.1A, this means that for small‖v‖ and‖β‖ we can represent the discontinuity
boundary (2.5) as a straight line almost orthogonal tohNF

v (0, 0) and slightly displaced from
v = 0 in the direction ofhNF

v (0, 0).
Letϕh be the angle of vectorhNF

v (0, 0) with respect to axisv1. Technically,

ϕh = arctan2π(h
NF
v1 (0, 0), hNF

v2 (0, 0)),

wherearctan2π is the four-quadrant inverse tangent in[0, 2π]. For anyϕ in a neighbour-
hood ofϕh, introduce axisr passing from the originv = 0 with directionϕ, so that positive
and negative values ofr measure the distance from the origin along directionsϕ andϕ ± π,
respectively (see Fig. C.1A). Coordinates(r, ϕ) are like polar coordinates, but allow differen-
tiation with respect tor at r = 0. We can therefore express the discontinuity boundary (2.5)
as

Σ = {(r, ϕ) : hNF((r cos(ϕ), r sin(ϕ)), β) = 0},
where

d

dr
hNF((r cos(ϕh), r sin(ϕh)), 0)

∣∣∣∣
r=0

= hNF
v (0, 0)

[
cos(ϕh)
sin(ϕh)

]
6= 0

(recall that, by definition ofϕh, hNF
v (0, 0) is proportional to(cos(ϕh), sin(ϕh))), so that, by

the implicit function theorem, we can representΣ explicitly asr = δ(ϕ, β), δ(ϕ, 0) = 0, for
some smooth functionδ defined forϕ in an open neighbourhood(ϕ0, ϕ1) of ϕh.
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Now, defineϕm(β) := argminϕ∈(ϕ0,ϕ1){|δ(ϕ, β)|} for β 6= 0 and note thatlimβ→0 ϕm(β) =

ϕh, so that we can setϕ0
m = ϕh. Then, the minimum distance ofΣ from the originv = 0 is

given by the absolute value of

σ(β) := δ(ϕm(β), β) = σ0
β1
β1 + σ0

β2
β2 +O(‖β‖2),

while its sign says whether the minimum is realised along thedirectionϕm(β), if positive, or
ϕm(β) ± π, if negative. In the first case (see Fig. C.1A),v = 0 is a fixed point of the normal
form map (5.2), sincehNF(0, β) < 0, while v = 0 lies on the undescribed side ofΣ in the
second case, i.e.,hNF(0, β) > 0.

Similarly to the border-flip case, the parameter change implies thatσ0
β1

= 0. We now
show thatσ0

β2
6= 0. By differentiating both sides ofhNF((δ(ϕ, β) cos(ϕ), δ(ϕ, β) sin(ϕ)), β) =

0, i.e., of

h(u(δ(ϕ, β)eiϕ, δ(ϕ, β)e−iϕ, β), α(β)) = 0,

with respect toβ2, taking into account the derivatives in Appendix C.1, and evaluating at
β2 = 0 we get

δβ2
(ϕ, 0) = −

h0
uuβ2

(0, 0, 0) + h0
αα

0
β2

h0
u(u

0
we

iϕ + u0
w̄e

−iϕ)
= − 1

2h0
uRe(q

0eiϕ)
,

which is well defined forϕ = ϕh thanks to (ii). Indeed,u0
we

iϕh + u0
w̄e

−iϕh is nothing but
d/dr(u(reiϕh , re−iϕh , 0))|r=0 and thus gives the direction ofu-perturbations fromu = 0
corresponding tor-perturbations fromr = 0 along the directionϕh, so that, by definition of
ϕh, Re(q0eiϕh) is proportional toh0

u. Finally, we have

σ0
β2

= δϕ(ϕh, 0)ϕ
0
mβ2

+ δβ2
(ϕh, 0) = δβ2

(ϕh, 0)

(recall thatδ(ϕ, 0) = 0 for all ϕ ∈ (ϕ0, ϕ1)), so thatσβ2
6= 0 thanks to conditions (ii) and

(iii) (which is necessary to show thath0
αα

0
β2

= 1).
Note that, in order to evaluateσ0

β2
, we need an expression forϕh in terms of variablesu.

For this we can writeu as a function of(v, β), i.e.,

u = u(v, β) = u(v1 + iv2, v1 − iv2, β)

(u must be read as a function of(w, w̄, β) in the right-most side), so that

u0
v1 = uw(0, 0, 0) + uw̄(0, 0, 0) = 2Re(q0),

u0
v2 = uw(0, 0, 0)i− uw̄(0, 0, 0)i = −2Im(q0),

and

ϕh = arctan2π
(
h0
uu

0
v1 , h

0
uu

0
v2

)
= arctan2π

(
h0
uRe(q

0),−h0
uIm(q0)

)
.

C.3. Genericity conditions (ii) and (iii). Condition (ii) requiresH0
z

(
Re(nu0), Im(ν0)

)
6=

0, whereν is the complex unit eigenvector ofFz associated to the eigenvalue(1 + g)eiθ.
The NS curve is described by the system

F (z, α)− z = 0,
g(α) = 0

(C.1)
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where, for any givenα, g(α) ∈ R is obtained by solving the system

Fz(0, α)ν − (1 + g)eiθν = 0,
〈ν, ν〉 − 1 = 0,

Re(ν)⊤Im(ν) = 0,

in the variables(g, θ, ν). In the space(z, α) condition (iii) means that the tangent vector to
the NS curve is not tangent to the surface

H(z, α) = 0

at (z, α) = (0, 0). Similarly to the border-fold and -flip cases, condition (iii) is equivalent to

det




F 0
z − I F 0

α1
F 0
α2

g0z g0α1
g0α2

H0
z H0

α1
H0

α2


 6= 0.

Equation (C.1), restricted to the centre manifold, becomes

f(u, α)− u = 0,
g(α) = 0.

By the same reasoning we obtain the condition

det




f0
u − I f0

α1
f0
α2

g0u g0α1
g0α2

h0
u h0

α1
h0
α2


 6= 0

which is equivalent to (iii) sincef0
α = 0 (f(0, α) = 0 by assumption) andf0

u − I is nonsin-
gular (condition (i.a) (k = 1)).

C.4. Step three. In this appendix we show that nearβ = 0 the closed invariant curve of
the normal form map (5.2) is contained in the parameter-dependent annular region (5.3) (we
adapt the material from [16], Chap. 5).

Assume the supercritical case, i.e.,a0 < 0, so that the invariant curve exists forβ1 > 0
and is stable. The annular region shrinks around the circle of equation

ρ =

√
− β1

a(β)
, ϕ ∈ [0, 2π],(C.2)

with O(βγ
1 )-width (see Fig. C.1B) and map (5.2a) mapsρ into ρ + ∆ρ with ∆ρ = ρ(β1 +

a(β)ρ2 + ρ3R(ρ, ϕ, β)) and

∆ρ





≥ ρ(2β
γ+1/2
1 − β2γ

1 +O(β
3/2
1 )) if 0 ≤ ρ ≤

√
− β1

a(β)
(1 − β

γ−1/2
1 ),

≤ ρ(−2β
γ+1/2
1 − β2γ

1 +O(β
3/2
1 )) if ρ ≥

√
− β1

a(β)
(1 + β

γ−1/2
1 ).

Thus the orbits of map (5.2) enter the annular region ifγ < 1 (the termβ
γ+1/2
1 dominates the

others and determines the sign of∆ρ), so that with1/2 < γ < 1 the stable invariant curve
remains in the annular region for small‖β‖. Similarly, in the subcritical case,a0 > 0, the
invariant curve exists forβ1 < 0 and is unstable, and the orbits of map (5.2) exit the annular
region ifγ < 1. Again, with1/2 < γ < 1, the invariant curve remains in the annular region
for small‖β‖.


