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Abstract

This paper concerns the reconstruction of the absorption and scattering

parameters in a time-dependent linear transport equation from full knowledge

of the albedo operator at the boundary of a bounded domain of interest. We

present optimal stability results on the reconstruction of the absorption and

scattering parameters for a given error in the measured albedo operator.

1 Introduction

Inverse transport theory has many applications in e.g. medical and geophysical
imaging. It consists of reconstructing optical parameters in a domain of interest from
measurements of the transport solution at the boundary of that domain. The optical
parameters are the total absorption (extinction) parameter σ(x) and the scattering
parameter k(x, v′, v), which measures the probability of a particle at position x to
scatter from direction v′ to direction v.

The domain of interest is probed as follows. A known flux of particles enters
the domain and the flux of outgoing particles is measured at the domain’s boundary.
Several inverse theories may then be envisioned based on available data. The least
favorable situation is when the density of outgoing particles is angularly averaged,
which means that only the spatial density of particles may be estimated and not the
phase space (space and direction) density. Angular averaging may be necessitated
by equipment cost, time of acquisition of the measurements, or low particle counts.
For uniqueness and stability results in this setting, we refer the reader e.g. to Bal
and Jollivet [BJ2], Bal et al. [BLM], and Langmore [L].

A much more favorable situation is when the density of outgoing particles is
angularly resolved. We may then be able to sample the outgoing distribution of
particles as a function of time if sufficiently accurate equipment is available. In
many setting however, only time independent measurements are feasible.

The uniqueness of the reconstruction of the optical parameters from knowl-
edge of angularly resolved measurements both in the time-dependent and time-
independent settings was proved in Choulli and Stefanov [CS1, CS2]. We also refer
the reader to Stefanov [S] for a review of uniqueness results in inverse transport the-
ory. Stability in the time-independent case has been analyzed in dimension d = 2, 3
under smallness assumptions for both optical parameters by Romanov [R1, R2] and
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in dimension d = 2 under smallness assumption for the scattering parameter by Ste-
fanov and Uhlmann [SU]. Partial results on the stability of the reconstruction in the
time-independent setting in dimension d = 3 were obtained in Wang [W] without
smallness assumptions. Complete stability results in the time-independent case in
dimension d ≥ 3 were obtained by the authors in [BJ1]. The present paper proves
stability results for the time-dependent inverse transport problem. We restrict our-
selves to the case of elastic scattering, where the velocity space may be modeled by
the unit sphere Sd−1. Optimal results on the stability of the optical parameters are
obtained in all dimensions d ≥ 2.

The rest of the paper is structured as follows. Section 2 recalls useful results
on the time-dependent linear transport equation. The main stability results of this
paper are stated in section 3. They are based on a decomposition of the albedo
operator used in [CS1] and recalled in section 3.2. Useful regularity results on the
decomposition are stated in Proposition 3.2 and proved in section 4. Our first
stability result is stated in Theorem 3.1. It shows how the Radon transform of
the absorption parameter and a weighted L1 norm of the scattering coefficient may
be stably reconstructed from knowledge of the albedo operator. Under additional
regularity assumptions, Theorem 3.2 shows the stability of the reconstruction of
both optical parameters. Both stability results are proved in section 5.

2 The forward problem

In this section we introduce some notation and recall known facts about the well-
posedness of the forward transport problem.

2.1 The linear Boltzmann transport equation

Let X be a bounded open subset of Rd, d ≥ 2, with a C1 boundary ∂X . We
denote the diameter of X by diam(X) (diam(X) := sup(x,y)∈X2 |x − y|). Let ν(x)
denote the outward normal unit vector to ∂X at x ∈ ∂X . Let Γ± = {(x, v) ∈
∂X × Sd−1 | ± ν(x)v > 0}. For (x, v) ∈ X̄ × Sd−1 we define τ±(x, v) and τ(x, v) by
τ±(x, v) := inf{s ∈ (0,+∞) | x± sv 6∈ X} and τ(x, v) := τ−(x, v) + τ+(x, v).

Consider σ : X × Sd−1 → R and k : X × Sd−1 × Sd−1 → R two nonnegative
measurable functions. We assume that (σ, k) is admissible when

0 ≤ σ ∈ L∞(X × Sd−1),
0 ≤ k(x, v′, .) ∈ L1(Sd−1) a.e. (x, v′) ∈ X × Sd−1

σp(x, v
′) =

∫

Sd−1

k(x, v′, v)dv belongs to L∞(X × S
d−1).

(2.1)

Let T > η > 0. We consider the following linear Boltzmann transport equation
with boundary conditions

∂u

∂t
(t, x, v)+v∇xu(t, x, v)+σ(x, v)u(t, x, v) =

∫

Sd−1

k(x, v′, v)u(t, x, v′)dv′, (t, x, v) ∈ (0, T )×X×S
d−1,

(2.2)

u|(0,T )×Γ−
(t, x, v) = φ(t, x, v),

u(0, x, v) = 0, (x, v) ∈ X × S
d−1,
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where φ ∈ L1((0, T ), L1(Γ−, dξ)) and suppφ ⊆ [0, η].
We assume here that scattering is elastic, which implies that the speed of the

particles is preserved by scattering while only the direction of propagation may
change. Elastic scattering is a good approximation in many applications in medical
and geophysical imaging. Our results are stated for a (normalized) velocity space
equal to the unit sphere Sd−1. Generalizations to other velocity spaces may be
obtained as in e.g. [BJ2] and [CS1, CS2].

2.2 Semigroups and unbounded operators

We introduce the following space

Z := {f ∈ L1(X × S
d−1) | v∇xf ∈ L1(X × S

d−1)}, (2.3)

‖f‖Z := ‖f‖L1(X×Sd−1) + ‖v∇xf‖L1(X×Sd−1); (2.4)

where v∇x is understood in the distributional sense.
It is known [C1, C2] that the trace map β− from C1(X̄×Sd−1) to C(Γ−) defined

by
β−(f) = f|Γ− (2.5)

extends to a continuous operator from Z onto L1(Γ−, τ+(x, v)dξ(x, v)) and admits a
continuous lifting. Note that L1(Γ−, dξ) is a subset of the space L

1(Γ−, τ+(x, v)dξ(x, v)).

We introduce the following notation

A1f = −σf, A2f =

∫

Sd−1

k(x, v′, v)f(x, v′)dv′. (2.6)

As (σ, k) is admissible, the operators A1 and A2 are bounded operators in L1(X ×
S
d−1).

Consider the following unbounded operators

T1f = −v∇xf + A1f, D(T1) = {f ∈ Z | f|Γ− = 0}, (2.7)

Tf = T1f + A2f, D(T ) = D(T1). (2.8)

The unbounded operators T1 and T are generators of strongly continuous semigroups
U1(t) and U(t), respectively, in L

1(X × S
d−1) (see e.g. [DL, Proposition 2 p.226]).

In addition, U1(t) and U(t) preserve the cone of positive functions and U1(t) is given
explicitly by the following formula

U1(t)f = e−
R t
0
σ(x−sv,v)dsf(x− tv, v)θ(x− tv, x), for a.e. (x, v) ∈ X × S

d−1, (2.9)

for f ∈ L1(X × Sd−1), where

θ(x, y) =

{

1 if x+ p(y − x) ∈ X for all p ∈ [0, 1],
0 otherwise,

(2.10)

for (x, y) ∈ Rd × Rd.
We will use the Duhamel formula

U(r′) = U1(r
′) +

∫ r′

0

U1(r
′ − s′)A2U(s

′)ds′, for r′ ≥ 0. (2.11)
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2.3 Trace results

We introduce the following space

W :=
{

u ∈ L1((0, T )×X × S
d−1) |

(

∂

∂t
+ v∇x

)

u ∈ L1((0, T )×X × S
d−1)

}

, (2.12)

‖u‖W := ‖u‖L1((0,T )×X×Sd−1) +

∥

∥

∥

∥

(

∂

∂t
+ v∇x

)

u

∥

∥

∥

∥

L1((0,T )×X×Sd−1)

; (2.13)

where ∂
∂t

and v∇x are understood in the distributional sense.
It is known [C1, C2] that the trace map γ− (respectively γ+) from C1([0, T ]×

X̄×Sd−1) to C(X×Sd−1)×C((0, T )×Γ−) (respectively C(X×Sd−1)×C((0, T )×Γ+))
defined by

γ−(ψ) = (ψ(0, .), ψ|(0,T )×Γ−
) (respectively γ+(ψ) = (ψ(T, .), ψ|(0,T )×Γ+

)) (2.14)

extends to a continuous operator fromW onto L1(X×Sd−1, τ+(x, v)dxdv)×L1((0, T )×
Γ−,min(T−t, τ+(x.v))dtdξ(x, v)) (respectively L1(X×S

d−1, τ−(x, v)dxdv)×L1((0, T )×
Γ+,

min(t, τ−(x, v))dtdξ(x, v))). In addition γ± admits a continuous lifting. Note that
L1(X × Sd−1) is a subset of L1(X × Sd−1, τ+(x, v)dxdv). Note also that L1((0, T )×
Γ−, dtdξ) (respectively L

1((0, T )×Γ+, dtdξ)) is a subset of L1((0, T )× Γ−,min(T −
t, τ+(x.v))dtdξ(x, v)) (respectively L

1((0, T )× Γ+,min(t, τ−(x, v))dtdξ(x, v))).

We now introduce the space

W := {u ∈ W | γ−(u) ∈ L1(X × S
d−1)× L1((0, T )× Γ−, dtdξ)}. (2.15)

We recall the following trace results (see [C1, C2] in a more general setting).

Lemma 2.1. The following equality is valid

W = {u ∈ W | γ+(u) ∈ L1(X × S
d−1)× L1((0, T )× Γ+, dtdξ)}. (2.16)

In addition the trace maps

γ± : W → L1(X × S
d−1)× L1((0, T )× Γ±, dtdξ)

are continuous, onto, and admit continuous liftings. (2.17)

2.4 Solution to equation (2.2)

For any r > 0, we identify the space L1((0, r), L1(Γ±, dξ)) with the space L1((0, r)×
Γ±, dtdξ), and we extend any function φ ∈ L1((0, r), L1(Γ−, dξ)) by 0 on R(

¯
0, r) (the

extension is still denoted by φ).

Let φ ∈ L1((0, η), L1(Γ−, dξ)). We extend φ by 0 outside (0, η). Then we
consider the lifting G−(t)φ ∈ W of (0, φ) defined by

G−(t)φ(x, v) := e−
R τ−(x,v)

0 σ(x−sv,v)dsφ−(t− τ−(x, v), x− τ−(x, v)v, v), (2.18)
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for (t, x, v) ∈ (0, T )×X × S
d−1. Note that G−(.)φ is a solution in the distributional

sense of the equation ( ∂
∂t
+ v∇x)u+ σu = 0 in (0, T )×X × Sd−1 and

‖G−(.)φ‖W ≤ (1+‖σ‖∞)‖G−(.)φ‖L1((0,T )×X×Sd−1) ≤ (1+‖σ‖∞)T‖φ−‖L1((0,η)×Γ− ,dtdξ).

(2.19)
To prove the latter statements, one can use the change of variables given by Lemma
4.1. From (2.19) we obtain that the map i : L1((0, η), L1(Γ−, dξ)) → W defined by

i(φ) = G−(.)φ, φ ∈ L1((0, η), L1(Γ−, dξ)), (2.20)

is continuous.

The following result holds (see [DL, Theorem 3 p. 229]).

Lemma 2.2. The equation (2.2) admits a unique solution u in W which is

given by

u(t) = G−(t)φ+

∫ t

0

U(t− s)A2G−(s)φds. (2.21)

where U(t) is the strongly continuous semigroup in L1(X × S
d−1) introduced in sec-

tion 2.2.

From (2.20), Lemma 2.2 and (2.17), we obtain the existence of the albedo
operator.

Lemma 2.3. The albedo operator A given by the formula

Aφ = u|(0,T )×Γ+
, for φ ∈ L1((0, η), L1(Γ−, dξ)) where u is given by (2.21), (2.22)

is well-defined and is a bounded operator from L1((0, η), L1(Γ−, dξ)) to L
1((0, T ), L1(Γ+, dξ)).

3 Stability results for the inverse problem

3.1 Recall of uniqueness results

Choulli-Stefanov [CS1] studied the uniqueness of the reconstruction of (σ, k) from
the albedo operator by analyzing the distributional kernel of that operator. They
considered the following problem

∂u

∂t
(t, x, v)+v∇xu(t, x, v)+σ(x, v)u(t, x, v) =

∫

Sd−1

k(x, v′, v)u(t, x, v′)dv′, (t, x, v) ∈ R×X×V,
(3.1)

u|R×Γ−(t, x, v) = φ(t, x, v),

u|t≪0 = 0,

for φ ∈ L1
comp(R, L

1(Γ−, dξ)), where V is an open subset of Rd, d ≥ 2. The albedo
operator is defined as an operator from L1

comp(R, L
1(Γ−, dξ)) to L

1
loc(R, L

1(Γ+, dξ)).
They proved, in particular, that the albedo operator uniquely determines the ab-
sorption and scattering coefficient (σ, k) provided that σ is a function of x and |v|
only. It is straightforward from the proof of this result (see [CS1, Theorem 5.1,
Propositions 5.1 and 5.2]) that the following result holds.
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Proposition 3.1. Assume that (σ, k) are admissible and σ(x, v) = f(x, |v|) for
some real function f . Let T > η > 0. Then the following statements are valid:

i if T > diam(X) then the albedo operator

A : L1((0, η), L1(Γ−, dξ)) → L1((0, T ), L1(Γ+, dξ)) uniquely determines σ,

ii if T > 2diam(X) then the albedo operator

A : L1((0, η), L1(Γ−, dξ)) → L1((0, T ), L1(Γ+, dξ)) uniquely determines (σ, k),

In this paper we analyze the stability of the reconstruction of (σ, k) from the
albedo operator. Our study is also based on the distributional kernel of the albedo
operator. In a first stage, we do not assume that σ(x, v) = f(x, |v|) for some real
function f .

3.2 Decomposition of the albedo operator

Consider the distributional kernels

α1(τ, x, v, x
′, v′) = e−

R τ−(x,v)

0 σ(x−sv,v)dsδv(v
′)δx−τ−(x,v)v(x

′)δ(τ − τ−(x, v)), (3.2)

α2(τ, x, v, x
′, v′) =

∫ τ−(x,v)

0

e−
R s
0
σ(x−pv,v)ds−

R τ−(x−sv,v′)

0 σ(x−tv−pv′ ,v′)dp (3.3)

×k(x− sv, v′, v)δx−sv−τ−(x−sv,v′)v′(x
′)δ(τ − s− τ−(x− sv, v′))ds,

for a.e. (τ, x, v, x′, v′) ∈ R×Γ+×Γ− and where we have defined
∫

Sd−1 f1(v
′)δv(v

′)dv′ =
f1(v),

∫

∂X
δx′

0
(x′)f2(x

′)dµ(x′) = f2(x
′
0) and

∫

R
δ(τ−s)f3(τ)dτ = f3(s) for (v, x

′
0, s) ∈

Sd−1 × ∂X × R and for (f1, f2, f3) ∈ C(Sd−1)× C(∂X)× C(R).

We consider the usual decomposition of the albedo operator as a sum of three
terms: the ballistic part (whose distributional kernel is given by α1), the single scat-
tering part (whose distributional kernel is given by α2) and the multiple scattering
(whose distributional kernel is denoted by α3). Using [CS1, Theorem 5.1], we know
that |ν(x′)v′|−1α3 ∈ L∞(Γ−, L

1
loc(R, L

1(Γ+, dξ))). The following Proposition 3.2 im-
proves on the latter statement provided that k ∈ L∞(X × Sd−1 × Sd−1). The result
will be used in the proof of Theorem 3.1.

Proposition 3.2. Assume d ≥ 2 and (σ, k) admissible. Assume that k ∈ L∞(X ×
Sd−1 × Sd−1). Then

A(φ)(t, x, v) :=

∫

(0,η)×Γ−

(α1 + α2 + α3)(t− t′, x, v, x′, v′)φ(t′, x′, v′)dt′dµ(x′)dv′, (3.4)

for a.e. (t, x, v) ∈ (0, T ) × Γ+ and for any continuous and compactly supported

function φ on (0, η)× Γ−, where

|ν(x′)v′|−1α3 ∈ L∞(Γ−, L
p((−η, T ), Lp(Γ+, dξ))), for any 1 ≤ p <

d+ 1

d
. (3.5)

Proposition 3.2 is proved in section 4.
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3.3 First stability result

Now we assume that X is a bounded open convex subset of Rd, d ≥ 2, with C1

boundary and that

the function 0 ≤ σ is continuous and bounded on X × Sd−1,

the function 0 ≤ k is continuous and bounded on X × S
d−1 × S

d−1.
(3.6)

Let (σ̃, k̃) be a pair of absorption and scattering coefficients that also satisfy
(3.6). Let Ã be the albedo operator from L1((0, η), L1(Γ−, dξ)) to L

1((0, T ), L1(Γ+, dξ))
related to (σ̃, k̃).

For (x, v, s, w) ∈ Γ± × R × Sd−1, 0 < s < τ∓(x, v), let E∓(x, v, s, w) ≥ 0 be
defined by

E∓(x, v, s, w) = exp
(

−
∫ s

0

σ(x∓ pv, v)ds−
∫ τ∓(x∓sv,w)

0

σ(x∓ sv ∓ pw, w)dp
)

.

(3.7)
Replacing σ by σ̃ in (3.7) we define Ẽ∓(x, v, s, w) similarly for (x, v, s, w) ∈ Γ± ×
R× Sd−1, 0 < s < τ∓(x, v).

Let (x′0, v
′
0) ∈ Γ−. For ε1 > 0 and ε2 > 0, let fε1 ∈ C1(Γ−) and gε2 ∈ C∞(R) be

such that

fε1 ≥ 0, suppfε1 ⊆ {(x′, v′) ∈ Γ− | |x− x′0|+ |v′ − v′0| ≤ ε1}, (3.8)
∫

Γ−

fε1(x
′, v′)dξ(x′, v′) = 1,

gε2 ≥ 0, suppgε2 ⊆ (0,min(η, ε2)),

∫ +∞

0

gε2(t)dt = 1. (3.9)

Consider the function φε1,ε2 ∈ C1(R× Γ−) defined by

φε1,ε2(t
′, x′, v′) = gε2(t

′)fε1(x
′, v′), (3.10)

for t′ ∈ (0,+∞) and (x′, v′) ∈ Γ−. Note that suppφε1,ε2 ⊆ (0, η) × Γ− (see (3.9)).
From (3.8) and (3.9) it follows that |ν(x′)v′|φε1,ε2 is a smooth approximation of the
delta function on R× Γ− at (0, x′0, v

′
0) as ε1 → 0+ and ε2 → 0+.

Let ψ be any compactly supported continuous function on (0, T )×Γ+ such that
‖ψ‖∞ ≤ 1. First we note that upon using the estimate ‖ψ‖∞ ≤ 1 and the equality
∫

(0,η)×Γ−
φε1,ε2(t, x, v)dtdξ(x, v) = 1 we obtain that

∣

∣

∣

∣

∫

(0,T )×Γ+

ψ(t, x, v)
(

A− Ã
)

φε1,ε2(t, x, v)dtdξ(x, v)

∣

∣

∣

∣

≤ ‖(A− Ã)φε1,ε1‖L1((0,T ),L1(Γ+,dξ))

≤ ‖A− Ã‖η,T , (3.11)

where ‖.‖η,T := ‖.‖L(L1((0,η),L1(Γ−,dξ)),L1((0,T ),L1(Γ+,dξ))).
In addition, it follows from (3.4)–(3.5) that for any compactly supported con-

tinuous function ψ on (0, T )× Γ+, we have

∫

(0,T )×Γ+

ψ(t, x, v)
(

A− Ã
)

φε1,ε2(t, x, v)dtdξ(x, v) = I1(ψ, ε1, ε2)+I2(ψ, ε1, ε2)+I3(ψ, ε1, ε2),

(3.12)
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where

I1(ψ, ε1, ε2) =

∫ T

0

∫

Γ+

(

e−
R τ−(x,v)

0 σ(x−sv,v)ds − e−
R τ−(x,v)

0 σ̃(x−sv,v)ds
)

×ψ(t, x, v)φε1,ε2(t− τ−(x, v), x− τ−(x, v)v, v)dξ(x, v)dt (3.13)

I2(ψ, ε1, ε2) =

∫ T

0

∫

Γ+

ψ(t, x, v)

∫

Sd−1

∫ τ−(x,v)

0

(

E−(x, v, s, v
′)k(x− sv, v′, v)

−Ẽ−(x, v, s, v
′)k̃(x− sv, v′, v)

)

ψε1,ε2(t− s− τ−(x− sv, v′),

x− sv − τ−(x− sv, v′)v′, v′)dsdv′dξ(x, v)dt (3.14)

|I3(ψ, ε1, ε2)| ≤ C

(
∫ T

0

∫

Γ−

|ψ(t, x, v)|p′dξ(x, v)dt
)

1
p′

, (3.15)

where C is a constant that does not depend on ε1, ε2 (for (3.15) we also used Hölder
inequality and the equality ‖φε1,ε2‖L1((0,η),L1(Γ−,dξ)) = 1).

Using (3.8)–(3.10), (3.6), we obtain the following preparatory Lemma 3.1.

Lemma 3.1. Assume that X is convex and that (σ, k) and (σ̃, k̃) both satisfy (3.6).
Then the following statements are valid:

i. if T > diam(X) then

lim
ε2→0+

lim
ε1→0+

I1(ψ, ε1, ε2) = ψ(τ+(x
′
0, v

′
0), x

′
0 + τ+(x

′
0, v

′
0)v

′
0, v

′
0) (3.16)

×
(

e−
R τ+(x′0,v

′
0)

0 σ(x′
0+sv′0,v

′
0)ds − e−

R τ+(x′0,v
′
0)

0 σ̃(x′
0+sv′0,v

′
0)ds

)

,

for any compactly supported and continuous function ψ on (0, T )× Γ+;

ii. if T > 2diam(X) then

lim
ε2→0+

lim
ε1→0+

I2(ψ, ε1, ε2) = I12 (ψ) + I22 (ψ), (3.17)

for any compactly supported and continuous function ψ on (0, T )× Γ+, where

I12 (ψ) =

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

ψ(s + τ+(x
′
0 + sv′0, v), x

′
0 + sv′0 + τ+(x

′
0 + sv′0, v)v, v)

(k − k̃)(x′0 + sv′0, v
′
0, v)E+(x

′
0, v

′
0, s, v)dsdv, (3.18)

I22 (ψ) =

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

ψ(s + τ+(x
′
0 + sv′0, v), x

′
0 + sv′0 + τ+(x

′
0 + sv′0, v)v, v)

k̃(x′0 + sv′0, v
′
0, v)(E+ − Ẽ+)(x

′
0, v

′
0, s, v)dsdv, (3.19)

where E+ and Ẽ+ are defined by (3.7).

Lemma 3.1 is proved in section 5.

Taking account of Lemma 3.1 and (3.11), and choosing an appropriate sequence
of functions “ψ”, we obtain the main result of this paper:

Theorem 3.1. Let T > η > 0. Assume that d ≥ 2 and X is convex and (σ, k) and
(σ̃, k̃) both satisfy condition (3.6). Then the following statements are valid:
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i. if T > diam(X), then
∣

∣

∣

∣

∣

exp
(

−
∫ τ+(x′

0,v
′
0)

0

σ(x′0 + sv′0, v
′
0)ds

)

− exp
(

−
∫ τ+(x′

0,v
′
0)

0

σ̃(x′0 + sv′0, v
′
0)ds

)

∣

∣

∣

∣

∣

≤ ‖A−Ã‖η,T ;

(3.20)

ii. if T > 2diam(X), then

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

∣

∣

∣
k − k̃

∣

∣

∣
(x′0 + sv′0, v

′
0, v)E+(x

′
0, v

′
0, s, v)dsdv

≤ τ+(x
′
0, v

′
0) sup

s∈(0,τ+(x′
0,v

′
0))

σ̃p(x
′
0 + sv′0, v

′
0) sup

s∈(0,τ+(x′
0
,v′

0
))

v∈Sd−1

∣

∣

∣
E+ − Ẽ+

∣

∣

∣
(x′0, v

′
0, s, v)

+‖A− Ã‖η,T , (3.21)

where ‖.‖η,T := ‖.‖L(L1((0,η),L1(Γ−,dξ)),L1((0,T ),L1(Γ+,dξ))) and where E+ and Ẽ+ are de-

fined by (3.7).

The proof of Theorem 3.1 is given in section 5.

Remark 3.1. One can prove that estimate (3.20) still holds a.e. (x′0, v
′
0) ∈ Γ−

provided that T > diam(X) and k ∈ L∞(X × Sd−1 × Sd−1) and without assuming
(3.6) nor that X is convex.

3.4 Second stability result

We now impose that the absorption coefficient σ does not depend on the velocity
variable, i.e. σ(x, v) = σ(x), x ∈ X . Then let

M :=
{

(σ(x), k(x, v′, v)) ∈ L∞(X)× L∞(X × S
d−1 × S

d−1) | (σ, k) satisfies (3.6),
and σ ∈ H

d
2
+r̃(X), ‖σ‖

H
d
2+r̃(X)

≤ M, ‖σp‖∞ ≤M
}

, (3.22)

for some r̃ > 0 and M > 0. Using Theorem 3.1 for any (x′0, v
′
0) ∈ Γ− we obtain the

following Theorem 3.2.

Theorem 3.2. Assume that d ≥ 2 and X is convex. Let T > η > 0. For any

(σ, k) ∈ M and (σ̃, k̃) ∈ M the following stability estimates are valid:

i. if T > diam(X) then

‖σ − σ̃‖Hs(X) ≤ C1‖A− Ã‖κη,T , (3.23)

where −1
2
≤ s < d

2
+ r̃, κ = d+2(r̃−s)

d+1+2r̃
, and C1 = C1(X,M, s, r̃);

ii. if T > 2diam(X) then

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

∣

∣

∣
k(x′0 + s′v′0, v

′
0, v)− k̃(x′0 + s′v′0, v

′
0, v)

∣

∣

∣
ds′dv

≤ C2‖A− Ã‖κη,T
(

1 + ‖A− Ã‖1−κ
η,T

)

, (3.24)

for (x′0, v
′
0) ∈ Γ−, and where κ = 2(r̃−r)

d+1+2r̃
, 0 < r < r̃, and C2 = C2(X,M, r, r̃);
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iii. in addition, if T > 2diam(X) then

‖k − k̃‖L1(X×Sd−1×Sd−1) ≤ C3‖A− Ã‖κη,T
(

1 + ‖A− Ã‖1−κ
η,T

)

, (3.25)

where κ = 2(r̃−r)
d+1+2r̃

, 0 < r < r̃, and C3 = C3(X,M, r, r̃).

Theorem 3.2 is proved in section 5.

Remark 3.2. Stability estimates similar to (3.23) were given by Cipolatti-
Motta-Roberty [CMR, Theorem 1.1]. They proved (3.23) for s = −1

2
under the as-

sumptions k, k̃ ∈ L∞(X,L2(Sd−1×Sd−1)), max(‖σ‖∞, ‖σ̃‖∞) ≤M (and max(‖σp‖∞, ‖σ̃p‖∞) <
∞). They also proved (3.23) for 0 < s < r̃ under the assumptions k, k̃ ∈
L∞(X,L2(Sd−1 × Sd−1)), σ, σ̃ ∈ H

d
2
+r̃(X) and max(‖σ‖

H
d
2+r̃ , ‖σ̃‖

H
d
2+r̃) ≤M .

4 Proof of Proposition 3.2

Before giving the proof of Proposition 3.2, we need Lemmas 4.1, 4.2, 4.3.

Lemma 4.1. For f ∈ L1(X × Sd−1) we have

∫

X×Sd−1

f(x, v)dxdv =

∫

Γ±

∫ τ∓(x,v)

0

f(x∓ sv, v)dsdξ(x, v). (4.1)

For the proof of Lemma 4.1, see [CS2, Lemma 2.1].

Let m ≥ 1. For U a subset of Rm, we denote by χU the function from R
m to R

defined by

χU(x) =

{

1 if x ∈ U,

0 otherwise.
(4.2)

Lemma 4.2. Let T > 0 and let 1 < p < d+1
d
. Consider the nonnegative measurable

function β : X → R defined by

β(x′) =

∫

Γ+

∫ T+diam(X)

|x−x′|

(s− (x− x′)v)p(d−3)

|x− x′ − sv|p(2d−4)
dsdξ(x, v) (4.3)

for a.e. x′ ∈ X. Then

β ∈ L∞(X). (4.4)

Proof of Lemma 4.2. We first consider the case d = 2.
We have

β(x′) ≤
∫

∂X

∫ +∞

|x−x′|

∫

S1

1

(s− (x− x′)v)p
dvdsdµ(x)

≤
∫

∂X

∫ 2π

0

∫ +∞

|x−x′|

−1

p− 1

d

ds

1

(s− |x− x′| cosω)p−1
dωdsdµ(x)

=
1

p− 1

∫

∂X

1

|x− x′|p−1
dx

∫ 2π

0

1

(1− cosω)p−1
dω,
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for a.e. x′ ∈ X . Hence using the estimate p < 1 + 1
2
, we obtain

‖β‖L∞(X) ≤
1

p− 1

∫ 2π

0

1

(1− cosω)p−1
dω sup

z∈X

∫

∂X

1

|x− z|p−1
dµ(x) <∞. (4.5)

Now assume d = 3. Using (4.3), spherical coordinates and performing the
change of variables “s” = |x− x′|s, we obtain

β(x′) ≤
∫

∂X

∫

S2

∫ +∞

|x−x′|

1

|sv − (x− x′)|2pdsdvdµ(x)

= 2π

∫

∂X

1

|x− x′|2p−1
dµ(x)

∫ ∞

1

1

2s(p− 1)

∫ π
2

−π
2

d

dω

1

(s2 + 1− 2s sinω)p−1
dωds

≤ 2π

∫

∂X

1

|x− x′|2p−1
dµ(x)

∫ ∞

1

1

2(p− 1)s(s− 1)2p−2
ds.

Therefore using the estimate 1 < p < 1 + 1
3
, we obtain

‖β‖L∞(X) ≤ 2π sup
z∈X

∫

∂X

1

|x− z|2p−1
dµ(x)

∫ ∞

1

1

2(p− 1)s(s− 1)2p−2
ds <∞. (4.6)

Finally assume d ≥ 4. Note that |s−v(x−x′)| = |(sv−(x−x′))v| ≤ |sv−(x−x′)|
for s ∈ R and x, x′ ∈ Rd. Using in particular the latter estimate and (4.3), we obtain

β(x′) ≤
∫

∂X

∫

Sd−1

∫ +∞

|x−x′|

(s− v(x− x′))

|sv − (x− x′)|p(d−1)+1
dsdvdµ(x)

=
1

(p(d− 1)− 1)

∫

∂X

∫

Sd−1

1

(||x− x′|v − (x− x′)|)p(d−1)−1
dvdµ(x)

= Vol(Sd−2)

∫

∂X

1

(p(d− 1)− 1)(|x− x′|
√
2)p(d−1)−1

dµ(x)

∫ π
2

−π
2

cosωd−2

(1− sinω)
p(d−1)−1

2

dω,

for a.e. x′ ∈ X . Hence using the estimate p < 1 + 1
d
, we obtain

‖β‖L∞(X) ≤ Vol(Sd−2)
1

(p(d− 1)− 1)2
p(d−1)−1

2

sup
z∈X

∫

∂X

1

|x− z|p(d−1)−1
dµ(x)

×
∫ π

2

−π
2

cosωd−2

(1− sinω)
p(d−1)−1

2

dω < ∞. (4.7)

Finally, we need the following Lemma 4.3.

Lemma 4.3. Consider the nonnegative measurable function γ : (0, T )×X×Sd−1×
X × Sd−1 → R defined by

γ(t, x, v, x′, v′) = 2d−2χ(0,t)(|x− x′|)
[

e−
R s1
0 σ(x−sv,v)ds−

R t−s1
0 σ(x−s1v−pv1,v1)dpθ(x, x− s1v)

× θ(x− s1v, x
′)k(x− s1v, v1, v)k(x

′, v′, v1)]s1= t2−(x−x′)2

2(t−(x−x′)v)

(t− (x− x′)v)d−3

|tv − x− x′|2d−4
, (4.8)

where θ is defined by (2.10). Then
(
∫ t

0

U1(t− s1)A2U1(s1)A2fds1

)

(x, v) =

∫

X×Sd−1

γ(t, x, v, x′, v′)f(x′, v′)dx′dv′

(4.9)
for t ∈ (0, T ) and for a.e. (x, v) ∈ X × Sd−1 and for f ∈ L1(X × Sd−1).
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Proof of Lemma 4.3. Let t ∈ (0, T ) and let f ∈ L1(X×S
d−1). From (2.9) and (2.6),

it follows that
∫ t

0

U1(t− s1)A2U1(s1)A2fds1 =

∫ t

0

∫

Sd−1×Sd−1

e−
R t−s1
0 σ(x−pv,v)dp−

R s1
0 σ(x−(t−s1)v−pv1,v1)dp

×k(x− (t− s1)v, v1, v)k(x− (t− s1)v − s1v1, v
′, v1)

×θ(x− (t− s1)v, x)θ(x− (t− s1)v − s1v1, x− (t− s1)v)

×f(x− (t− s1)v − s1v1, v
′)dv′dv1ds1. (4.10)

Performing the change of variables “s1 = t − s1” and then performing the change

of variables “x′ = x− (t− s1)v1 − s1v” (2d−2 ((tv−(x−x′))v)d−3

|x−x′−tv|2d−4 dx′ = dv1ds1), we obtain

(4.9).

Proof of Proposition 3.2. Let φ ∈ L1((0, η), L1(Γ−, dξ)). Let u be the solution of
(2.2). Using twice Duhamel’s formula (2.11) and using (2.21) we obtain

u(t) = R1(t) +R2(t) +R1
3(t) +R2

3(t), (4.11)

for t ∈ (0, T ) where

R1(t) = G−(t)φ, (4.12)

R2(t) =

∫ t

0

U1(t− t′)A2G−(t
′)φdt′, (4.13)

R1
3(t) =

∫ t

0

∫ t−t′

0

U1(t− t′ − s1)A2U1(s1)A2G−(t
′)φds1dt

′, (4.14)

R2
3(t) =

∫ t

0

∫ t−t′

0

∫ t−t′−s2

0

U1(t− t′ − s2 − s1)A2U1(s1)A2 (4.15)

U(s2)A2G−(t
′)φds1ds2dt

′.

From (4.12) and (2.18), it follows that

R1|(0,T )×Γ+
(t, x, v) = e−

R τ−(x,v)

0 σ(x−sv,v)dsφ(t− τ−(x, v), x− τ−(x, v)v, v)

=

∫

(0,η)×Γ−

α1(t− t′, x, v, x′, v′)φ(t′, x′, v′)dt′dξ(x′, v′), (4.16)

where α1 is defined by (3.2).
From (2.9), (2.18) and (4.13), it follows that

R2(t, x, v) =

∫ t

0

θ(x− t′v, x)

∫

Sd−1

k(x− t′v, v′, v)e−
R t′

0
σ(x−pv,v)dp−

R τ−(x−t′v,v′)

0 σ(x−t′v−pv′,v′)dp

×φ(t− t′ − τ−(x− t′v, v′), x− t′v − τ−(x− t′v, v′)v′, v′)dv′dt′.

Hence

R2|(0,T )×Γ−
(t, x, v) =

∫

(0,η)×Γ−

α2(t− t′, x, v, x′, v′)φ(t′, x′, v′)dt′dξ(x′, v′), (4.17)

where α2 is defined by (3.3).
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From (4.14) and (4.9) (with “t”= t− t′), it follows that

R1
3(t) =

∫

(0,+∞)×X×Sd−1

χ(0,+∞)(t− t′)γ(t− t′, x, v, x′, v′)G−(t
′)φ(x′, v′)dt′dx′dv′,

(4.18)
where γ is defined by (4.8). Using (4.18) and (4.8) we obtain

R1
3|(0,T )×Γ+

(t, x, v) =

∫

(0,T )×X×Sd−1

α̃3
1(t− t′, x, v, x′, v′)(G−(t

′)φ)(x′, v′)dt′dx′dv′,

(4.19)
where

α̃3
1(τ, x, v, x′, v′) = χ(0,+∞)(τ − |x− x′|)

[

e−
R s1
0 σ(x−pv,v)dp−

R τ−s1
0 σ(x−s1v−pv1,v1)dp

× k(x− s1v, v1, v)k(x
′, v′, v1)θ(x, x− s1v)θ(x− s1v, x

′)]
s1=

τ2−|x−x′|2

2(τ−(x−x′)v)

v1=
x−x′−s1v

τ−s1

×2d−2 (τ − (x− x′)v)d−3

|x− x′ − τv|2d−4
(4.20)

for a.e. (τ, x, v, x′, v′) ∈ R× Γ+ ×X × Sd−1.
From (4.15) and (4.9) it follows that

R2
3(t) =

∫ t

0

∫ t−t′

0

∫

X×Sd−1

γ(t−t′−s2, x, v, x′, v′)(U(s2)A2G−(t
′)φ)(x′, v′)dx′dv′ds2dt

′,

(4.21)
where γ is defined by (4.8). Hence

R2
3|(0,T )×Γ+

(t, x, v) =

∫ t

0

∫ t−t′

0

∫

X×Sd−1

γ̃(t−t′−s2, x, v, x′, v′)(U(s2)A2G−(t
′)φ)(x′, v′)dx′dv′ds2dt

′,

(4.22)
for a.e. (t, x, v) ∈ (0, T )× Γ+ where

γ̃(r, x, v, x′, v′) = 2d−2χ(0,r)(|x− x′|)
[

e−
R s1
0 σ(x−sv,v)ds−

R r−s1
0 σ(x−s1v−pv1,v1)dpθ(x, x− s1v)

× θ(x− s1v, x
′)k(x− s1v, v1, v)k(x

′, v′, v1)]s1= r2−(x−x′)2

2(r−(x−x′)v)

(r − (x− x′)v)d−3

|rv − x− x′|2d−4
, (4.23)

for a.e. (r, x, v, x′, v′) ∈ (0, T )× Γ+ ×X × Sd−1.
Let ψ ∈ L∞((0, T )× Γ+). Assume that k ∈ L∞(X × Sd−1 × Sd−1). From (4.19)

it follows that
∣

∣

∣

∣

∫ T

0

∫

Γ+

ψ(t, x, v)R1
3|(0,T )×Γ+

(t, x, v)dtdξ(x, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(0,T )×X×Sd−1

(G−(t
′)φ)(x′, v′)

∫ T

0

∫

Γ+

α̃3
1(t− t′, x, v, x′, v′)ψ(t, x, v)dξ(x, v)dtdt′dx′dv′

∣

∣

∣

∣

≤ ‖G−(.)φ‖L1((0,T )×X×Sd−1)

∥

∥

∥

∥

∫ T

0

∫

Γ+

α̃3
1(t− t′, x, v, x′, v′)ψ(t, x, v)dξ(x, v)dtdt′

∥

∥

∥

∥

L∞(Rt′×Xx′×S
d−1
v′

)

.

(4.24)
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From Lemma 4.1 and (2.18), it follows that

‖G−(t
′)φ‖L1(X×Sd−1) ≤ ‖φ‖L1((0,η),L1(Γ−,dξ)), for t

′ ∈ (0, T ). (4.25)

From (4.20), Hölder’s inequality and Lemma 4.2, it follows that

∣

∣

∣

∣

∫ T

0

∫

Γ+

α̃3
1(t− t′, x, v, x′, v′)ψ(t, x, v)dξ(x, v)dt

∣

∣

∣

∣

≤ ‖k‖2∞
∫ T

0

∫

Γ+

χ(0,+∞)(t− t′ − |x− x′|)(t− t′ − (x− x′)v)d−3

22−d|x− x′ − (t− t′)v|2d−4
|ψ|(t, x, v)dξ(x, v)dt

≤ 2d−2‖k‖2∞
(
∫ T

0

∫

Γ+

|ψ(t, x, v)|p′dξ(x, v)dt
)

1
p′

β(x′)
1
p

≤ 2d−2‖k‖2∞‖β‖
1
p

L∞(X)

(
∫ T

0

∫

Γ+

|ψ(t, x, v)|p′dξ(x, v)dt
)

1
p′

, (4.26)

for a.e. (t′, x′, v′) ∈ (0, T )×X × S
d−1.

Using (4.24)–(4.26) we obtain

∣

∣

∣

∣

∫ T

0

∫

Γ+

ψ(t, x, v)R1
3|(0,T )×Γ+

(t, x, v)dtdξ(x, v)

∣

∣

∣

∣

(4.27)

≤ 2d−2T‖k‖2∞‖β‖
1
p

L∞(X)‖φ‖L1((0,η),L1(Γ−,dξ))

(
∫ T

0

∫

Γ+

|ψ(t, x, v)|p′dξ(x, v)dt
)

1
p′

.

In addition from (4.22), Hölder inequality, (4.23) and Lemma 4.2 it follows that

∣

∣

∣

∣

∫ T

0

∫

Γ+

ψ(t, x, v)R2
3|(0,T )×Γ+

(t, x, v)dξ(x, v)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫

Γ+

ψ(t, x, v)

∫ t

0

∫ t−t′

0

∫

X×Sd−1

γ̃(t− t′ − s2, x, v, x
′, v′)

× (U(s2)A2G−(t
′)φ)(x′, v′)dx′dv′ds2dt

′dξ(x, v)dt|

=

∣

∣

∣

∣

∣

∫ T

0

∫ T−t′

0

∫

X×Sd−1

(U(s2)A2G−(t
′)φ)(x′, v′)

∫ T

0

∫

Γ+

χ(t′+s2,T )(t)ψ(t, x, v)

× γ̃(t− t′ − s2, x, v, x
′, v′)dtdξ(x, v)dx′dv′ds2dt

′|

≤
∫ T

0

∫ T−t′

0

∫

X×Sd−1

|U(s2)A2G−(t
′)φ| (x′, v′)

×
(
∫ T

0

∫

Γ+

χ(t′+s2,T )(t)|γ̃|p(t− t′ − s2, x, v, x
′, v′)dtdξ(x, v)

)

1
p

ds2dt
′dx′dv′

×
(
∫

(0,T )×Γ+

|ψ(t, x, v)|p′dtdξ(x, v)
)

1
p′

≤ 2d−2‖k‖2∞‖β‖
1
p
∞

∫ T

0

∫ T−t′

0

∫

X×Sd−1

|U(s2)A2G−(t
′)φ| (x′, v′)dx′dv′ds2dt

(
∫

(0,T )×Γ+

|ψ(t, x, v)|p′dtdξ(x, v)
)

1
p′

. (4.28)
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Moreover using (4.25), the equality ‖A2‖ = ‖σp‖∞ and the estimate ‖U(s2)‖ ≤
es2‖σp‖∞ for s2 ≥ 0 (see Trotter’s formula [T] U(s2) = s − limn→∞

(

U1(
s2
n
)e

s2
n
A2

)n

where U1 and A2 are defined by (2.9) and (2.6) respectively), we obtain
∫ T

0

∫ T−t′

0

∫

X×Sd−1

|U(s2)A2G−(t
′)φ| (x′, v′)dx′dv′ds2dt

≤
∫ T

0

∫ T−t′

0

d

ds2
es2‖σp‖∞ds2dt

′‖φ‖L1((0,η)×Γ− ,dtdξ)

≤ T (eT‖σp‖∞ − 1)‖φ‖L1((0,η),L1(Γ−,dξ)). (4.29)

Combining (4.27)–(4.29), we finally obtain
∣

∣

∣

∣

∫ T

0

∫

Γ+

ψ(t, x, v)(R1
3 +R2

3)|(0,T )×Γ+
(t, x, v)dξ(x, v)dt

∣

∣

∣

∣

≤ 2d−2‖k‖2∞‖β‖
1
p

L∞(X)Te
T‖σp‖∞‖φ‖L1((0,η),L1(Γ−,dξ))

×
(
∫ T

0

∫

Γ+

|ψ(t, x, v)|p′dξ(x, v)dt
)

1
p′

. (4.30)

Proposition 3.2 follows from (4.16), (4.17) and (4.30).

5 Proof of Lemma 3.1, Theorems 3.1, 3.2

Proof of Lemma 3.1. First note that using twice Lemma 4.1 we obtain
∫

Γ+

∫ τ−(x,v)

0

f(x−wv, v)dwdξ(x, v) =
∫

X×Sd−1

f(x, v)dxdv =

∫

Γ−

∫ τ+(x′,v′)

0

f(x′+sv′, v′)dsdξ(x′, v′),

(5.1)
for f ∈ L1(X × Sd−1).

We first prove (3.16). Let T > diam(X). We have, in particular, T > τ−(x, v)
for any (x, v) ∈ X̄ × Sd−1. From (3.13) and (3.10) it follows that

I1(ψ, ε1, ε2) =

∫

Γ+

Φε2(x, v)fε1(x− τ−(x, v)v, v)dξ(x, v), (5.2)

where Φε2 is the continuous function on Γ+ given by

Φε2(x, v) =

∫ T

τ−(x,v)

ψ(t, x, v)gε2(t−τ−(x, v))dt
(

e−
R τ−(x,v)

0 σ(x−sv,v)ds − e−
R τ−(x,v)

0 σ̃(x−sv,v)ds
)

,

(5.3)
for (x, v) ∈ Γ+ (we used also suppgε2 ⊆ (0,+∞)). The continuity of Φε2 follows
from the assumptions (3.6), the continuity of ψ and gε2 and the continuity of τ−
on Γ+ (X is convex with C1 boundary). From (5.1) (“f(x, v) = 1

τ(x,v)
Φε2(x +

τ+(x, v)v, v)fε2(x− τ−(x, v)v, v)”) and (3.8), we obtain
∫

Γ+

Φε2(x, v)fε1(x− τ−(x, v)v, v)dξ(x, v) =

∫

Γ−

Φε2(x
′ + τ+(x

′, v′)v′, v′)fε1(x
′, v′)dξ(x′, v′)

−→
ε1→0+

∫ T

τ+(x′
0,v

′
0)

ψ(t, x′0 + τ+(x
′
0, v

′
0)v

′
0, v

′
0)

(

e−
R τ+(x′0,v

′
0)

0 σ(x′
0+sv′0)ds − e−

R τ+(x′0,v
′
0)

0 σ̃(x′
0+sv′0)ds

)

×gε2(t− τ+(x
′
0, v

′
0))dt. (5.4)
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The limit (3.16) follows from (5.2), (5.4), (3.9) and the continuity of ψ and (3.6).

We prove (3.17). Let T > 2diam(X). We have, in particular, T > s + τ+(x
′ +

sv′, v) for s ∈ (0, τ+(x
′, v′)) and (x′, v′) ∈ Γ−. From (3.14) , it follows that

I2(ψ, ε1, ε2) =

∫

Γ+

∫ τ−(x,v)

0

∫ T

0

ψ(t, x, v) (5.5)

×
∫

Sd−1

(k(x− wv, v′, v)E−(x, v, w, v
′)− k̃(x− wv, v′, v)Ẽ−(x, v, w, v

′))

×gε2(t− w − τ−(x− wv, v′))fε1(x− wv − τ−(x− wv, v′)v′, v′)dv′dtdwdξ(x, v).

Using (5.5) and (5.1), we obtain

I2(ψ, ε1, ε2) =

∫

Γ−

Ψε2(x
′, v′)fε1(x

′, v′)dξ(x′, v′), (5.6)

where

Ψε2(x
′, v′) =

∫

Sd−1

∫ τ+(x′,v′)

0

∫ T

s+τ+(x′+sv′,v)

ψ(t, x′ + sv′ + τ+(x
′ + sv′, v)v, v)

×
(

k(x′ + sv′, v′, v)E+(x
′, v′, s, v)− k̃(x′ + sv′, v′, v)Ẽ+(x

′, v′, s, v)
)

×gε2(t− s− τ+(x
′ + sv′, v))dtdsdv, (5.7)

for (x′, v′) ∈ Γ−. From (3.6), (3.7) and the continuity of ψ and gε2, it follows that
Ψε2 is continuous on Γ−. From (3.8) and (5.7) it follows that

∫

Γ−

Ψε2(x
′, v′)fε1(x

′, v′)dξ(x′, v′)

−→
ε1→0+

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

(

∫ T

s+τ+(x′
0+sv′0,v)

ψ(t, x′0 + sv′0 + τ+(x
′
0 + sv′0, v)v, v)

(E+(x
′
0, v

′
0, s, v)k(x

′
0 + sv′0, v

′
0, v)− Ẽ+(x

′
0, v

′
0, s, v)k̃(x

′
0 + sv′0, v

′
0, v)) (5.8)

× gε2(t− s− τ+(x
′
0 + sv′0, v))dt) dsdv.

The limit (3.17) follows from (5.6), (5.8), (3.9), (3.6), the continuity of ψ and the
Lebesgue dominated convergence theorem.

Proof of Theorem 3.1. We first prove (3.20). Let T > diam(X). Let ε3 > 0 and let
ψε3 be a continuous and compactly supported function on (0, T )× Γ+ that satisfies

0 ≤ ψε3 ≤ 1 and suppψε3 ⊆ {(t, x, v) ∈ (0, T )× Γ+ | |v − v′0| < ε3}, (5.9)

ψε3(t, x, v) = 1 for (t, x, v) ∈ (0, T )× Γ+ such that

|v − v′0| ≤
ε3

2
, |t− τ+(x

′
0, v

′
0)| ≤

T − τ+(x
′
0, v

′
0)

2
.

From (3.16) and (5.9), it follows that

I1(ψε3 , ε1, ε2) = e−
R τ+(x′0,v

′
0)

0 σ(x′
0−sv′0,v

′
0)ds − e−

R τ+(x′0,v
′
0)

0 σ̃(x′
0−sv′0,v

′
0)ds. (5.10)
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Using (3.17), (5.9) and the estimate σ ≥ 0, we obtain

∣

∣

∣

∣

lim
ε2→0+

lim
ε1→0+

I2(ψε3, ε1, ε2)

∣

∣

∣

∣

≤ diam(X)
(

‖k‖∞ + ‖k̃‖∞
)

∫

v∈Sd−1

|v−v′
0
|<ε3

dv.

Hence
lim

ε3→0+
lim

ε2→0+
lim

ε1→0+
I2(ψε3 , ε1, ε2) = 0. (5.11)

From (3.15) and (5.9), it follows that

|I3(ψε3 , ε1, ε2)| ≤ C
(

∫ T

0

∫

∂X

∫

v∈Sd−1

|v−v′
0
|<ε3

dvdµ(x)dt
)

1
p′

≤ C(Vol(∂X)T )
1
p′

(

∫

v∈Sd−1

|v−v′
0
|<ε3

dv
)

1
p′

,

for εi > 0, i = 1 . . . 3. Therefore

lim
ε3→0+

lim sup
ε2→0+

lim sup
ε1→0+

I3(ψε3 , ε1, ε2) = 0. (5.12)

In addition, from (3.11)–(3.12) it follows that

|I1(ψε3 , ε1, ε2)| ≤ ‖A− Ã‖η,T + |I2(ψε3, ε1, ε2) + I3(ψε3 , ε1, ε2)|, (5.13)

for εi > 0, i = 1 . . . 3.
Combining (5.10)–(5.13) we obtain (3.20).

Now we prove (3.21). Let T > 2diam(X). Let U := {(t′, v) ∈ (0, τ+(x
′
0, v

′
0)) ×

Sd−1 | (k − k̃)(x′0 + t′v′0, v
′
0, v) > 0}. From (3.6) it follows that U is an open subset

of R × Sd−1. Let (Km) be a sequence of compact sets such that
⋃

m∈NKm = U

and Km ⊆ Km+1 for m ∈ N. For m ∈ N let χm ∈ C∞(R × Sd−1,R) such that
χKm ≤ χm ≤ χU (where χKm and χU are defined in (4.2)), and let

ρm = 2χm − 1. (5.14)

Thus we obtain

lim
m→+∞

(k − k̃)(x′0 + t′v′0, v
′
0, v)ρm(t

′, v) = |k − k̃|(x′0 + t′v′0, v
′
0, v), (5.15)

for v ∈ Sd−1 and t′ ∈ (0, τ+(x
′
0, v

′
0)).

Consider

Vδ := {(t, x, v) ∈ (0, T )× Γ+ | |v − (vv′0)v
′
0| > δ,

δ

2
< t < T − δ

2
}, (5.16)

Vδ,l := {(t, x, v) ∈ (0, T )× Γ+ | |v − (vv′0)v
′
0| ≥ δ +

1

l
, δ ≤ t ≤ T − δ}, (5.17)

for 0 < δ <
min(1,T )

2
and l ∈ N, l ≥ 2. For 0 < δ <

min(1,T )
2

and l ∈ N, l ≥ 2, let χδ,l

be a continuous and compactly supported function on (0, T )× Γ+ such that

χVδ,l
≤ χδ,l ≤ χVδ

(5.18)
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(where χVδ,l
and χVδ

are defined in (4.2)). Finally, for 0 < δ <
min(1,T )

2
and m, l ∈ N,

l ≥ 2, let ψδ,m,l,ε3 be the continuous compactly supported function on (0, T ) × Γ+

defined by

ψδ,m,l,ε3(t, x, v) := χδ,l(t, x, v) (ζε3(t− s− s′)ρm(s, v))
s=

(x−x′
0
)(v′

0
−(vv′

0
)v)

1−(vv′
0
)2

s′=
(x−x′0)(v−(vv′0)v

′
0)

1−(vv′
0
)2

, (5.19)

where ζε3 ∈ C∞(R), ζε3(s
′′) = 1 for s′′ ∈ [−ε3, ε3], 0 ≤ ζε3 ≤ 1 and ζε3(s

′′) = 0 for
|s′′| ≥ 2ε3.

From (3.16), (5.19) and the equality χδ,l(t, x
′
0+τ+(x

′
0, v

′
0)v

′
0, v

′
0) = 0 for t ∈ (0, T )

(see (5.16)–(5.18)), it follows that

lim
ε2→0+

lim
ε1→0+

I1(ψδ,m,l,ε3, ε1, ε2) = 0 (5.20)

for 0 < δ <
min(1,T )

2
, m, l ≥ 2, ε3 > 0.

From (3.18)–(3.19) and (5.19), it follows that

I12 (ψδ,m,l,ε3) :=

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

ζε3(0)χδ,l(s+ τ+(x
′
0 + sv′0, v), x

′
0 + sv′0 + τ+(x

′
0 + sv′0, v)v, v)

×ρm(s, v)(k − k̃)(x′0 + sv′0, v
′
0, v)E+(x

′
0, v

′
0, s, v)dsdv. (5.21)

I22 (ψδ,m,l,ε3) :=

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

ζε3(0)χδ,l(s+ τ+(x
′
0 + sv′0, v), x

′
0 + sv′0 + τ+(x

′
0 + sv′0, v)v, v)

×ρm(s, v)k̃(x′0 + sv′0, v
′
0, v)

(

E+ − Ẽ+

)

(x′0, v
′
0, s, v)dsdv, (5.22)

for 0 < δ <
min(1,T )

2
, m, l ≥ 2, ε3 > 0.

Note that using (5.16)–(5.18) we obtain

lim
l→∞

χVδ,l
(t, x, v) = χVδ

(t, x, v), (5.23)

for (t, x, v) ∈ (0, T )× Γ+ and 0 < δ <
min(1,T )

2
.

From equality ζε3(0) = 1, (5.21), (5.23) and the Lebesgue dominated conver-
gence theorem, it follows that

lim
l→+∞

I12 (ψδ,m,l,ε3) =

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

χVδ
(s+ τ+(x

′
0 + sv′0, v), x

′
0 + sv′0 + τ+(x

′
0 + sv′0, v)v, v)

×ρm(s, v)(k − k̃)(x′0 + sv′0, v
′
0, v)E+(x

′
0, v

′
0, s, v)dsdv,

for 0 < δ <
min(1,T )

2
, m ∈ N, l ≥ 2, ε3 > 0. Therefore, using (5.15) and the Lebesgue

dominated convergence theorem, we obtain

lim
m→+∞

lim
l→+∞

I12 (ψδ,m,l,ε3) =

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

χVδ
(s + τ+(x

′
0 + sv′0, v), x

′
0 + sv′0 + τ+(x

′
0 + sv′0, v)v, v)

×E+(x
′
0, v

′
0, s, v)|k − k̃|(x′0 + sv′0, v

′
0, v)dsdv,

for 0 < δ <
min(1,T )

2
, ε3 > 0. Using this latter equality and (5.16), we obtain

lim
δ→0+

lim
ε3→0+

lim
m→+∞

lim
l→+∞

I12 (ψδ,m,l,ε3) =

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

|k−k̃|(x′0+sv′0, v′0, v)E+(x
′
0, v

′
0, s, v)dsdv.

(5.24)

18



From equality ζε3(0) = 1 and (5.22) it follows that

|I22 (ψδ,m,l,ε3)| ≤ diam(X) sup
s∈(0,τ+(x′

0,v
′
0))

σ̃p(x
′
0+sv

′
0, v

′
0) sup

v∈Sd−1

0<s<τ+(x′
0
,v′

0
)

∣

∣

∣
(E+ − Ẽ+)(x

′
0, v

′
0, s, v)

∣

∣

∣
,

(5.25)

for 0 < δ <
min(1,T )

2
, m ∈ N, l ≥ 2, ε3 > 0.

Note that using (5.19) and the estimate 0 ≤ ρm ≤ 1 for all m, we obtain

∫ T

0

∫

Γ+

|ψδ,m,l,ε3(t, x, v)|p
′

dξ(x, v)dt

≤
∫ T

0

∫

Γ+

χδ,l(t, x, v)
p′ζε3(t− s− s′)p

′

s=
(x−x′

0
)(v′

0
−(vv′

0
)v)

1−(vv′
0
)2

s′=
(x−x′0)(v−(vv′0)v

′
0)

1−(vv′
0
)2

dξ(x, v)dt, (5.26)

for 0 < δ <
min(1,T )

2
, m ∈ N, l ≥ 2, ε3 > 0. Therefore using the definition of ζε3 we

obtain

∫ T

0

∫

Γ+

|ψδ,m,l,ε3(t, x, v)|p
′

dξ(x, v)dt ≤
∫ T

0

∫

Γ+
|v−(vv′0)v

′
0|>δ

χ[−2ε3,2ε3](t−s−s′)
s=

(x−x′
0
)(v′

0
−(vv′

0
)v)

1−(vv′0)
2

s′=
(x−x′

0
)(v−(vv′

0
)v′

0
)

1−(vv′
0
)2

dξ(x, v)dt,

(5.27)

for 0 < δ <
min(1,T )

2
, m ∈ N, l ≥ 2, ε3 > 0. Using (5.26)–(5.27) and the Lebesgue

dominated convergence theorem, we obtain

lim
ε3→0+

lim sup
m→+∞

lim sup
l→+∞

∫ T

0

∫

Γ+

|ψδ,m,l,ε3(t, x, v)|p
′

dξ(x, v)dt = 0,

for 0 < δ <
min(1,T )

2
. Using this latter equality and (3.15), we obtain

lim
δ→0+

lim
ε3→0+

lim sup
m→+∞

lim sup
l→+∞

lim sup
ε2→0+

lim sup
ε1→0+

|I3(ψδ,m,l,ε3, ε1, ε2)| = 0. (5.28)

In addition, from (3.11)–(3.12), it follows that

|I2(ψδ,m,l,ε3, ε1, ε2)| ≤ ‖A− Ã‖η,T + |I1(ψδ,m,l,ε3, ε1, ε2) + I3(ψδ,m,l,ε3, ε1, ε2)|, (5.29)

for 0 < δ <
min(1,T )

2
, m ∈ N, l ≥ 2, εi > 0, i = 1 . . . 3. Combining (5.29), (5.24),

(5.25) and (5.28) we obtain (3.21).

Proof of Theorem 3.2. The method used to prove (3.23) is the same as in [W] and
[BJ1]. For the reader’s convenience, we adapt the proof given in [BJ1] with minor
modification.

Let (σ, k), (σ̃, k̃) ∈ M. We extend σ and σ̃ outside X by 0. Let f = σ − σ̃ and
consider Pf the X-ray transform of f = σ−σ̃ defined by Pf(x, ϕ) :=

∫ +∞

−∞
f(tϕ+x)dt

for (x, ϕ) ∈ TSd−1 := {(z, v) ∈ Rd × Sd−1 | vz = 0}.
From f|X ∈ H

d
2
+r̃(X), it follows that

‖f‖
H−1

2 (X)
≤ D1(d,X)‖Pf‖∗, (5.30)
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where

‖Pf‖∗ :=
(

∫

Sd−1

∫

Πϕ

|Pf(x, ϕ)|2dxdϕ
)

1
2

and D1(d,X) is a real constant which does not depend on f and Πϕ := {x ∈
Rd | xϕ = 0} for ϕ ∈ Sd−1. Note that Pf(x, ϕ) = 0 for (x, ϕ) ∈ TSd−1 and
|x| ≥ supz∈X |z|. Therefore using also (5.30) we obtain

‖f‖
H

−1
2 (X)

≤ D2(d,X)‖Pf‖L∞(TSd−1), (5.31)

where D2(d,X) is a real constant which does not depend on σ, σ̃.
We also use the following interpolation inequality:

‖f‖Hs(X) ≤ ‖f‖
2s+1

d+1+2r̃

H
d
2+r̃

‖f‖
d+2r̃

d+1+2r̃

H−1
2
, (5.32)

for −1
2
≤ s ≤ d

2
+ r̃. As (σ, k) ∈ M, it follows that

‖σ‖∞ ≤ D3(d, r̃)‖σ‖
H

d
2+r̃ ≤ D3(d, r̃)M. (5.33)

Therefore,
∫ τ+(x′

0,v
′
0)

0

σ(x′0 + sv′0)ds ≤ diam(X)D3(d, r̃)M, (5.34)

for (x′0, v
′
0) ∈ Γ−. From (5.34), it follows that

∣

∣

∣

∣

e−
R τ+(x′0,v

′
0)

0 σ(x′
0+sv′0,v

′
0)ds − e−

R τ+(x′0,v
′
0)

0 σ̃(x′
0+sv′0,v

′
0)ds

∣

∣

∣

∣

≥ e−diam(X)D3(d,r̃)M |P (σ−σ̃)(x′0, v′0)|,
(5.35)

for (x′0, v
′
0) ∈ Γ− (we used the equality et1 − et2 = ec(t2 − t1) for t1 < t2 ∈ R and for

some c ∈ [t1, t2], which depends on t1 and t2).
Combining (5.35), (5.31) and (3.20), we obtain

e−diam(X)D3(d,r̃)M

D2(d,X)
‖σ − σ̃‖

H− 1
2 (X)

≤ ‖A− Ã‖η,T . (5.36)

Combining (5.36) and (5.32), we obtain (3.23).
We now prove (3.24). Using (3.7) and (5.33), we obtain that

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

∣

∣

∣
k(x′0 + sv′0, v

′
0, v)− k̃(x′0 + sv′0, v

′
0, v)

∣

∣

∣
E(x′0, v

′
0, s, v)dsdv

≥ e−2diam(X)D3(d,r̃)M

∫

Sd−1

∫ τ+(x′
0,v

′
0)

0

|k − k̃|(x′0 + sv′0, v
′
0, v)|dsdv, (5.37)

for any (x′0, v
′
0) ∈ Γ−.

As (σ̃, k̃) ∈ M we have ‖σ̃p‖∞ ≤ M . Using the latter estimate and (3.7), we
obtain

sup
s∈(0,τ+(x′

0,v
′
0))

σp(x
′
0 + sv′0, v

′
0) sup

(x′
0
,v′

0
)∈Γ−

s∈(0,τ+(x′
0
,v′

0
))

|E − Ẽ|(x′0, v′0, s, v) ≤Me2diam(X)D3(d,r̃)M

× sup
(x′

0
,v′

0
)∈Γ−

s∈(0,τ+(x′0,v
′
0))

[

∫ s

0

|σ − σ̃|(x− pv, v)dp+

∫ τ+(x′
0+sv′0,v)

0

|σ − σ̃|(x′0 + sv′0 + pv, v)dp

]
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≤ 2diam(X)Me2diam(X)D3(d,r̃)M‖σ − σ̃‖∞, (5.38)

for any (x′0, v
′
0) ∈ Γ−. (We also used |eu − eũ| ≤ emax(|u|,|ũ|)|u − ũ| where u =

−
∫ s

0
σ(x′0+pv

′
0, v

′
0)dp−

∫ τ+(x′
0+sv′0,v)

0
σ̃(x′0+sv

′
0+pv, v)dp and ũ denotes the real num-

ber obtained by replacing σ by σ̃ on the right-hand side of the latter equality that de-
fines u ; using (5.33) (for σ and for σ̃) we obtain max(|u|, |ũ|) ≤ 2diam(X)D3(d, r̃)M .)
Note that ‖σ − σ̃‖∞ ≤ D3(d, r)‖σ − σ̃‖

H
d
2+r for 0 < r < r̃ (see (5.33)). Therefore,

combining (5.37), (5.38), (3.21) and (3.23), we obtain (3.24).

Let us finally prove (3.25). Let 0 < r < r̃ and let κ = 2(r̃−r)
d+1+2r̃

. From (3.24) it
follows that

∫

Γ−

∫ τ+(x′
0,v

′
0)

0

∫

Sd−1

∣

∣

∣
(k − k̃)(x′0 + sv′0, v

′
0, v)

∣

∣

∣
dvdsdξ(x′0, v

′
0) ≤ D4‖A−Ã‖κη,T

(

1 + ‖A− Ã‖1−κ
η,T

)

,

(5.39)
where D4 = C2

∫

Γ−
dξ(x′0, v

′
0) and C2 is the constant that appears on the right-hand

side of (3.24). From (5.39) and Lemma 4.1, we obtain (3.25).
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