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Chirplet approximation of band-limited, real
signals made easy
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Abstract

In this paper we present algorithms for approximating real band-
limited signals by multiple Gaussian Chirps. These algorithms do not
rely on matching pursuit ideas. They are hierarchial and, at each
stage, the number of terms in a given approximation depends only on
the number of positive-valued maxima and negative-valued minima of
a signed amplitude function characterizing part of the signal. Like
the algorithms used in [6] and unlike previous methods, our chirplet
approximations require neither a complete dictionary of chirps nor
complicated multi-dimensional searches to obtain suitable choices of
chirp parameters.

1 Introduction

A real-valued signal f : R → R is said to be band-limited if its Fourier
transform, usually denoted by f̂ , has compact support. This constitutes a
broad class of signals sometimes referred to as the Paley-Wiener space being
of paramount importance in the applications as most of human and natural
phenomena should exclude infinite frequencies. The classical Paley-Wiener
theorem states that any band-limited signal with finite energy (i.e. such
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that
∫

R
|f(t)|2 dt is finite) is indeed the restriction of an entire function of

exponential type defined in the whole complex plane [17]. Consequently, it
would suffice to know a small part of such a signal in order to be able to
extend it arbitrarily to any open set of the complex plane. However, this is
unrealistic at the time being (even if some progress has been made recently,
see for instance [18] and references therein) and in practice, one has still to
focus on their analysis.

As the Fourier transform is supposed to be of compact support, it may
seem a good idea to express numerically band-limited signals relying of opti-
mized algorithms like the well-known Fast Fourier Transform (FFT). Espe-
cially, Shannon’s sampling theorem ensures that all the signal’s information
can be recovered from the knowledge of a countable collection of samples.
However, we shall explain in §2.2 that this idea doesn’t lead to economical
(so–called sparse) representations (consult especially [8] in this direction).
An alternative can come from the decomposition into chirps which read like
A(t) exp(jφ(t)); the term chirplets has been coined by Steve Mann [13] in
an attempt to derive an object more sophisticated than wavelets. Briefly,
if Fourier transform gives a full resolution of frequencies but a null time-
resolution, wavelets offer a good compromise according to the uncertainty
principle but still decompose signals onto horizontal rectangles in the time-
frequency plane [5]. As chirps are endowed with a time-varying phase func-
tion t 7→ φ(t), decomposing a signal into a superposition of chirps means that
time-frequency curves are now involved. The most usual chirps are the gaus-
sian/quadratic ones, for which both ln(A) and φ are polynomials of degree
2: we shall work in this framework hereafter.

Clearly, since chirps are more complex objects, they need more parameters
to be defined correctly. Indeed, one can roughly count that 6 parameters are
needed for the definition of both functions, plus 2 other parameters dealing
with the time and the mean frequency around which the chirp is localized.
All in all, we found at the end of §2.3 that a signal being written as the
sum of p+1 chirps requires at most 6p+3 parameters to evaluate. In many
cases, this constitutes a great improvement with respect to classical Fourier
techniques.

The main drawback in the setup of chirp decomposition techniques is the
weight of the computational effort required: according to the literature, most
of the algorithms rely on matching pursuit techniques [12] where one first con-
siders a rather complete dictionary of chirps in order to find iteratively the
ones matching the signal as best as possible (see [1, 4, 7, 9, 10, 11, 14] and
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the recent paper [2] motivated by gravitational waves detection). However,
in a very recent paper, Greenberg and co-authors [6] proposed a completely
different approach where one gets rid of the dictionary and constructs the
chirp approximation by means of a simple and easy-to-implement procedure.
Loosely speaking, given a complex signal in polar form ω 7→ a(ω) exp(jϕ(ω)),
it amounts to seek local maxima of a (we call them for instance ωn) and
approximate both ln(a) and ϕ by polynomials of degree 2 admitting an ex-
tremum around ωn. The procedure is first applied to ω1, the first maximum
point of a, in order to derive 2 polynomials A1 and φ1, and then it applies
to the remaining signal a(ω) exp(jϕ(ω)) − A1(ω) exp(jφ1(ω)) until residues
become low enough. In the present paper, we propose a more elaborate algo-
rithm than the one contained inside [6]; it will be presented in detail within
§3. First, §3.1 will deal with a pointwise selection procedure to compute
chirps’ parameters. Then in §3.2, a mean squares L2 procedure will be pro-
posed. Both approaches will be tested on an academic example in §4 which
presents a numerical validation of these algorithms. We insist on the fact that
the approach is numerically efficient and computationally cheap. Finally, §5
will be devoted to more “real-life” experiments: trying to decompose a signal
slightly corrupted by white noise and seeking a chirp inside a stock market
index.

2 Preliminaries

2.1 Specificities of real, band-limited signals

Our interest lies in an efficient, approximate representation of real-valued,
band-limited signals t 7→ f(t). If f(·) is such a time-dependent signal, it may
be written in a very general way as

∀t ∈ R, f(t) =
1

π

∫ Ω

−Ω

ejwtH(ω)dω, (1)

where j =
√
−1 is the unit of the imaginary axis, ω stands from now on for

the Fourier dual variable and the function H rewrites like:

∀ω ∈ (−Ω,Ω), H(ω) = He(ω)− jHo(ω).

The corresponding even and odd components of H, denoted by He(·) and
Ho(·), are smooth real-valued functions satisfying
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∀ω ∈ (−Ω,Ω), He(−ω) = He(ω) and Ho(−ω) = −Ho(ω).

By definition of band-limited, both He and Ho vanish identically outside of
the interval (−Ω,Ω); moreover, they are assumed to satisfy

lim
ǫ→0+

He(Ω− ǫ) = lim
ǫ→0+

Ho(Ω− ǫ) = 0. (2)

The symmetries of He(·) and Ho(·) imply that

∀ω ∈ (−Ω,Ω), H(ω) = H(−ω), (3)

which is a well-known property of the Fourier transform for real signals (the
overbar stands hereafter for complex conjugate). The function H(·) can be
recovered from the signal via the classical Fourier transform:

H(ω) =

∫ ∞

−∞

e−jωtf(t)dt. (4)

This last identify further implies that for all ω,

He(ω) = 2

∫ ∞

0

cos(ωt)fe(t)dt; Ho(ω) = 2

∫ ∞

0

sin(ωt)fo(t)dt (5)

hold for fe and fo, the even/odd parts of the signal f defined for all t ∈ R

as follows:

fe(t)
def
=

1

2

(

f(t)+f(−t)
)

= fe(−t) and fo(t)
def
=

1

2

(

f(t)−f(−t)
)

= −fo(−t).

We regard (4)–(5) as a sanity check on how well we are doing in synthesizing
f(·) from H(·); that is if we employ some algorithm to compute (1), approx-
imately, we then use that computed f(·) to approximately evaluate (3) and
see how well the result agrees with the original function H(·).
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2.2 Standard representations of band-limited signals

Standard representations of band-limited signals may be obtained by dis-
cretizing the integral defined in (1). If we introduce a discrete (and finite)
set of frequencies ωk

ωk =
kΩ

N
, k ∈ {−N,−N + 1, ..., N},

and exploit (2), we find that the trapezoidal rule, applied to (1), yields the
approximate band-limited function, fN(·), whose value reads

∀t ∈ R, fN(t) =
Ω

Nπ

N−1
∑

k=−N+1

ej
kΩt
N H

(

kΩ

N

)

.

The function is real-valued and satisfies |f(t) − fN (t)| = 0(1/N2) provided
the functions He(·) and Ho(·) are C2 on [−Ω,Ω]. More interestingly, fN (·) is
periodic with period, TN = 2Nπ

Ω
, and is completely determined by its values

at times tn = nπ
Ω
, −N ≤ n ≤ N − 1 (this is the classical Shannon sampling

theorem). To see this we note that

fN

(nπ

Ω

)

def
=

Ω

Nπ

N−1
∑

k=−N+1

ej
knπ
N H

(

kΩ

N

)

,

which yields

N−1
∑

n=−N

e−j
pnπ

N fN

(nπ

Ω

)

=
Ω

Nπ

N
∑

k=−N+1

H
(

kΩ

N

)

(

N−1
∑

n=−N

ej
(k−p)nπ

N

)

.

Now, one observes the following property of the exponentials:

N−1
∑

n=−N

ej
(k−p)nπ

N =







0 , if k 6= p

2N , if k = p.

The identities (2.2)–(2.2) imply that for −N + 1 ≤ p ≤ N − 1

H
(

pΩ

N

)

=
π

2Ω

N−1
∑

n=−N

e−j
pnπ

N fN

(nπ

Ω

)

(6)
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while for p = ±N , they yield:

0 =

N−1
∑

n=−N

e−jnπfN

(nπ

Ω

)

=

N−1
∑

n=−N

ejnπfN

(nπ

Ω

)

. (7)

This identity (7) shows that if we extend (6) to the indices p = ±N ,
then the extension is consistent with the constraint (2). This last set of
identities give an alternative means of computing H(·) at the lattice points
pΩ
N
, −N ≤ p ≤ N . For completeness, we record relevant identities for the

coefficients
(

He

(

pΩ
N

)

, Ho

(

pΩ
N

))

, 0 ≤ p ≤ N − 1. They are:

He

(

pΩ

N

)

=
π

2Ω
fN(0) +

π

Ω

N
∑

n=1

cos
(pnπ

N

)

fN,e

(nπ

Ω

)

, 0 ≤ p ≤ N − 1, (8)

Ho

(

pΩ

N

)

=
π

Ω

N
∑

n=1

sin
(pnπ

N

)

fN,o

(nπ

Ω

)

, 1 ≤ p ≤ N − 1, (9)

where

fN,e

(nπ

Ω

)

def
=

1

2

(

fN

(nπ

Ω

)

+ fN

(−nπ
Ω

))

= fN,e

(−nπ
Ω

)

, 1 ≤ n ≤ N,

and

fN,o

(nπ

Ω

)

def
=

1

2

(

fN

(nπ

Ω

)

− fN

(−nπ
Ω

))

= −fN,o
(−nπ

Ω

)

, 1 ≤ n ≤ N.

The 2Nπ
Ω

periodicity of fN(·) guarantees that fN,e
(

Nπ
Ω

)

= fN
(

−Nπ
Ω

)

and
that fN,o

(

Nπ
Ω

)

= 0. Moreover, if we extend (8) to p = N , then (7) guarantees
that the extension is consistent with (2)1. Similarly, if we extend (9) to
p = N , we find the extension is also consistent with (2). The standard
approach outlined above will, in the limit as N → ∞, yield the desired
signal f(·) but is computationally intensive and requires a significant amount
of data. Our goal here is a more economical approximate representation of
f(·) which, in many circumstances, requires substantially less data.
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2.3 Chirplet representation of band-limited signals

We first note that if He and Ho are defined as in §2.1 and satisfy (2), then
H(·) can be written in polar form (at least at points where it doesn’t vanish):

∀ω ∈ (−Ω,Ω), H(ω) = A(ω)e−jψ(ω)

where the “amplitude” is real, nonnegative and satisfies:

A(ω)
def
=
(

H2
e (ω) +H2

o (ω)
)1/2

= A(−ω),
Furthermore, A(ω) is identically zero on |ω| > Ω and satisfies lim

ǫ→0+
A(Ω− ǫ) = 0.

The “phase” ω 7→ ψ(ω) is a smooth, odd function satisfying

cosψ(ω) =
He(ω)

A(ω)
and sinψ(ω) =

Ho(ω)

A(ω)
.

As our canonical model for A(·) we assume that it has exactly p local
maxima at the following distinct points,

0 < Ω1 < Ω2 < . . . < Ωp < Ω, (10)

and that each of these maxima is non-degenerate; i.e. A(2)(Ωk) < 0, 1 ≤ k ≤
p. The fact that A(−ω) = A(ω) guarantees that A(·) also has non-degenerate
local maxima located at the symmetric set of points:

− Ω < −Ωp < . . . < −Ω2 < −Ω1 < 0. (11)

The origin, ω = 0, will be either a local maximum or a local minimum of A(·).
In the former case we shall assume that A(2)(0) < 0. Given the structural
properties of the amplitude A(·) we attempt to approximate it by means of
functions Ap(·) of the following gaussian form:

Ap(ω) = α0e
− ω2

2σ0 +

p
∑

k=1

αk

(

e
−

(ω−ωk)2

2σk + e
−

(ω+ωk)
2

2σk

)

(12)

where αk > 0, σk > 0, and

0 < ω1 < ω2 < . . . < ωp.

When ω = 0 corresponds to a minimum of A(·) we choose α0 = 0. Approxi-
mate A(·)’s of the form (12) are not band limited but they have tails which
decay rapidly as |ω| → ∞ and this is adequate for our purposes.
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In §3 we present two algorithms for choosing the parameters αk > 0, σk >
0, and the numbers ωk’s and show how these selection procedures perform
on various examples. For the time being, we assume the relevant parameters
are known and instead of working with H(ω) = A(ω)e−jψ(ω), we replace it
with

Hp,1(ω)
def
= Ap(ω)e

−jψ(ω). (13)

Using this approximation to H(·) we arrive at the following approximation
for the signal defined by (1):

fp,1(t) = α0

∫ ∞

−∞

e
− ω2

2σ0
+j(ωt−ψ(ω))

dω

+

p
∑

k=1

αk

(

ejωkt

∫ ∞

−∞

e
− u2

2σk
+j(ut−ψ(ωk+u))du

+ e−jωkt

∫ ∞

−∞

e
− u2

2σk
+j(ut−ψ(−wk+u))du

)

(14)

To carry this process further, we replace the terms ψ(±wk + u) in (14) by
their local quadratic Taylor approximations around ±wk. The result is

ψ(ωk + u) = γk + tku+
κku

2

2
, ψ(−ωk + u) = −γk + tku−

κku
2

2
,

hence






γk = ψ(ωk) = −ψ(−ωk),
tk = ψ′(ωk) = ψ′(−ωk),
κk = ψ′′(ωk) = −ψ′′(−ωk).

(15)

We note that this last step is equivalent to replacing Hp,1(ω) with

Hp,2(ω) = α0e
− ω2

2σ0
−jt0ω

+

p
∑

k=1

αke
−

(ω−ωk)2

2σk
−j(γk+tk(ω−ωk)+

κk
2
(ω−ωk)

2)

+

p
∑

k=1

αke
−

(ω+ωk)2

2σk
+j(γk−tk(ω+ωk)+

κk
2
(ω+ωk)

2)

(16)
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and computing (1) with H(·) replaced by Hp,2(·). The function Hp,2(·) sat-
isfies Hp,2(ω) = Hp,2(−ω) as required by (3) of H(·). The reader will note
that Hp,2(·) is merely the sum of 2p + 1 complex Gaussian (or quadratic)
chirps. Exploiting the quadratic approximations defined in (15) when eval-
uating (14) yields, after a tedious calculation, the approximation fp,2(·) to
f(·):

fp,2(t) = (2πσ0)
1/2α0e

−
σ0(t−t0)

2

2

+23/2π1/2

p
∑

k=1

αk
σ
1/2
k e

−σk(t−tk)
2

2(1+κ2
k
σ2
k
)

(1 + σ2
kκ

2
k)

1/4
cos
(

κkσ
2
k
(t−tk)

2

2(1+κ2
k
σ2
k
)
+ ωkt− γk − φk

)

where

(1 + jκkσk) = (1 + κ2kσ
2
k)

1/2e2jφk

or equivalently

cos 2φk =
1

(1 + κ2kσ
2
k)

1/2
and sin 2φk =

κkσk
(1 + κ2kσ

2
k)

1/2
. (17)

The aforementioned approximation fp,2(·) is simply the sum of p+ 1 real
Gaussian chirps which are characterized by 6p+ 3 parameters

• (α0, σ0, t0),

• (αk, ωk, σk, γk, tk, κk), for k = {1, ..., p}.

Finally, φk is computed using (17).

2.4 The objective of the paper

Approximations of band-limited signals by real-valued Gaussian chirps of
the type described in (2.3) offers efficient representation of radar, seismic,
and some biological signals. A sampling of the literature on this subject
may be found in [1, 2, 7, 8, 9, 10, 11, 14, 15] and the references contained
therein. The central problem in establishing such a formula is an efficient
and natural method for obtaining the parameters characterizing the chirps.
The “matching-pursuit” and “ridge-pursuit” algorithms have been used by a
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number of authors; for details see e.g. [1, 4, 7, 12, 19]. These typically require
complicated multi-dimensional searches to obtain the chirp parameters and
they also demand complete a-priori dictionary of chirps. The procedures
we advance in §3 to capture the parameters (αk, σk, ωk)

p
k=1 require no such

complete dictionary and rely only on information about the signal amplitude
A(·). The remaining chirp parameters (γk, tk, κk)

p
k=1 are obtained from local

information about the phase, ψ(·), near the points ωk. The algorithms are
also hierarchical and give our approximations a multi-resolution character.
Less refined versions of these procedures were advanced in [6].

3 Parameter Selection for Ap(·)
In this section we present two different algorithms for the selection of the
parameters defining Ap(·), recall (12). For definiteness, we assume ω = 0 is
a local minimum of A(·) and thus choose α0 = 0.

3.1 Pointwise Selection Procedure

We attempt to choose the parameters so that at the positive local maxima,
Ω1 < Ω2 < . . . < Ωp, one gets:

Ap(Ωj) = A(Ωj), A
(1)
p (Ωj) = A(1)(Ωj) = 0, and A(2)

p (Ωj) = A(2)(Ωj) < 0,
(3.1)j

for 1 ≤ j ≤ p. Hereafter, we denote by g the Gaussian function centered in
±ωk:

g(ω;ωk, σk) =

(

e
−

(ω−ωk)2

2σk + e
−

(ω+ωk)
2

2σk

)

. (18)

Then, its first derivative reads

g(1)(ω, ωk, σk) = −
(

(ω − ωk)

σk
e
−

(ω−ωk)
2

2σk +
(ω + ωk)

σk
e
−

(ω−ωk)
2

2σk

)

and its second derivative is

g(2)(ω;ωk, σk) =

((

− 1

σk
+

(ω − ωk)
2

σ2
k

)

e
−

(ω−ωk)
2

2σk +

(

− 1

σk
+

(ω + ωk)
2

σ2
k

)

e
−

(ω+ωk)
2

2σk

)

.
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Hence, for 1 ≤ j ≤ p, the set of equations (3.1)j rewrites as

αjg(ω;ωj, σj) = A(Ωj)−
p
∑

k=1
k 6=j

αkg(Ωj;ωk, σk), (19)

which boils down to:

αje
−

(Ωj−ωj)
2

2σj = A(Ωj)−
p
∑

k=1
k 6=j

αkg(Ωj;ωk, σk)− αje
−

(Ωj+ωj)
2

2σj .

We differentiate this equality once,

αj
(Ωj − ωj)

σj
e
−

(Ωj−ωj )
2

2σj =

p
∑

k=1
k 6=j

αkg
(1)(Ωj ;ωk, σk)− αj

(Ωj + ωj)

σj
e
−

(Ωj+ωj)
2

2σj ,

and twice:

αj

(

− 1
σj

+
(Ωj−ωj)

2

σ2j

)

e
−

(Ωj−ωj)
2

2σj = A(2)(Ωj)−
p
∑

k=1
k 6=j

αkg
(2)(Ωj ;ωk, σk)

+αj

(

1
σj

− (Ωj+ωj)2

σ2j

)

e
−

(Ωj+ωj)
2

2σj

We have in mind to propose an iterative algorithm to compute a solution to
the above system of 3 equations in order to get the value of the 3 parame-
ters; the index n will refer to the successive approximations built out of this
iterative process.

• For the first index n = 0, we let

α0
j = A(Ωj), ω

0
j = Ωj , and σ

0
j = − A(Ωj)

A(2)(Ωj)
, for 1 ≤ j ≤ p. (20)

• We now suppose the coefficients
(

σnj , ω
n
j , σ

n
j

)p

j=1
are known; we want to

compute these parameters at step n + 1. For the first index j = 1, we
let

11













































An+1
1 = A(Ω1)−

p
∑

k=2

αnkg (Ω1;ω
n
k , σ

n
k )− αn1e

−
(Ω1+ωn

1 )2

2σn
1 ,

Bn+1
1 =

p
∑

k=2

αnkg
(1) (Ω1;ω

n
k , σ

n
k )−

αn1 (Ω1 + ωn1 )

σn1
e
−

(Ω1+ωn
1 )2

2σn
1 ,

Cn+1
1 = A(2)(Ω1)−

p
∑

k=2

αnkg
(2)(Ω1;ω

n
k , σ

n
k ) + αn1

(

1

σn1
− (Ω1 + ωn1 )

2

(σn1 )
2

)

e
−

(Ω1+ωn
1 )2

2σn
1

If An+1
1 > 0 and Cn+1

1 < 0, then we can compute an auxiliary quantity:

Dn+1
1 = Bn+1

1 /An+1
1 ,

and σn+1
1 , ωn+1

1 , and αn+1
1 are deduced as follows:



























σn+1
1 =

An+1
1

An+1
1 (Dn+1

1 )2 − Cn+1
1

> 0,

ωn+1
1 = Ω1 − σn+1

1 Dn+1
1 ,

αn+1
1 = An+1

1 e
σ
n+1
1

(Dn+1
1

)2

2 > 0.

(21)

• We now assume we have determined
(

αn+1
j , ωn+1

j , σn+1
j

)

for indices
1 ≤ j ≤ j0 ≤ p − 1. We then fix the index jo and compute1 at step
jo + 1:

An+1
j0+1

= A (Ωj0+1)−
j0
∑

k=1

αn+1
k g

(

Ωj0+1;ω
n+1
k , σn+1

k

)

−αnj0+1e
−

(Ωj0+1+ωn
j0+1)

2

2σn
j0+1 −

p
∑

k=j0+2

αnkg (Ωj0+1;ω
n
k , σ

n
k )

(22)

then,

1If jo = p− 1, the last sums in (22)-(24) are not present.
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Bn+1
jo+1 =

jo
∑

k=1

αn+1
k g(1)

(

Ωjo+1;ω
n+1
k , σn+1

k

)

−αnj0+1

(

Ωjo+1 + ωnjo+1

)

σnjo+1

e
−

(Ωjo+1+ωj0+1)
2

2σjo+1

+

p
∑

k=j0+2

αnkg
(1) (Ωjo+1;ω

n
k , σ

n
k ) ,

(23)

and:

Cn+1
jo+1 = A(2)(Ωjo+1)−

j0
∑

k=1

αn+1
k g(2)(Ωjo+1;ω

n+1
k , σn+1

k )

+αnj0+1

(

1

σn+1
jo+1

−
(Ωjo+1 + ωnj0+1)

2

(σnj0+1)
2

)

e
−

(Ωjo+1+ωn
j0+1)

2

2σn
jo+1

−
p
∑

k=jo+2

αnkg
(2) (Ωjo+1;ω

n
k , σ

n
2 ) .

(24)

If An+1
jo+1 > 0 and Cn+1

jo+1 < 0, then the auxiliary quantity reads

Dn+1
jo+1 = Bn+1

jo+1/An+1
jo+1,

and compute σn+1
jo+1, ω

n+1
jo+1 and αn+1

jo+1 as follows:































σn+1
jo+1 =

An+1
jo+1

An+1
jo+1(Dn+1

jo+1)
2 − Cn+1

jo+1

> 0,

ωn+1
jo+1 = Ωjo+1 − σn+1

jo+1Dn+1
jo+1,

αn+1
jo+1 = An+1

jo+1e
σ
n+1
jo+1

(Dn+1
jo+1

)2

2 > 0.

(25)

We thus iterate until satisfactory convergence is obtained.
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The aforementioned algorithm realizes a compromise between simplicity and
efficiency because it stems on inverting only half of the nonlinearities appear-
ing in the equation (19) and its derivatives in order to keep computations
easy as it suffices to define the auxiliary quantity D to derive (21) and (25).
This way of proceeding is related to standard iterative methods in numerical
linear algebra, like for instance Jacobi or Gauss-Seidel.

Remark 1 We note that with this method of parameter selection, the fol-
lowing estimate holds: |A(ω)− Ap(ω)| = O(|ω − Ωj |3) in a neighborhood of
each of the local maxima, Ωj, of A(·). This pointwise selection procedure
generalizes the procedure used in [6] and captures the behavior of A(·) near
all maxima simultaneously.

3.2 L2 Parameter Selection

Again, we seek to approximate the amplitude A(·) by a function of the form
Ap(·), recall (12), and choose the parameters (αk, ωk, σk) so as to minimize
the mean-squares error:

||A(·)− Ap(·)||2
def
=

∫ ∞

−∞

|A(ω)−Ap(ω)|2 dω

=

∫ Ω

−Ω

A2(ω)dω − 2

∫ Ω

−Ω

A(ω)Ap(ω)dω +

∫ ∞

−∞

A2
p(ω)dω.

For definiteness, we again assume that ω = 0 is a local minimum of A(·) and
choose α0 = 0. We also adopt the short-hand notation

Gi(ω) =

(

e
−

(ω−ωi)
2

2σi + e
−

(ω+ωi)
2

2σi

)

= g(ω;ωi, σi), 1 ≤ i ≤ p, (26)

and note, for future reference, that for all 1 ≤ i and j ≤ p:

〈Gi, Gj〉 = 〈Gj, Gi〉
def
=

∫ ∞

−∞

Gi(ω)Gj(ω)dω

= 2

(

2σiσjπ

σi + σj

)1/2
(

e
−

(ωi−ωj )
2

2(σi+σj) + e
−

(ωi+ωj)
2

2(σi+σj)

)

.

(27)
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A quick calculation shows that ||A(·)−Ap(·)||2 is given by

||A(·)− Ap(·)||2 =
∫ Ω

−Ω

A2(ω)dω − 2

p
∑

k=1

fkαk +

p
∑

i,j=1

αi 〈Gi, Gj〉αj ≥ 0, (28)

where the value of 〈Gi, Gj〉 has been given above and

fk
def
= 〈A,Gk〉 =

∫ Ω

−Ω

A(ω)Gk(ω)dω, 1 ≤ k ≤ p. (29)

For a given choice of parameters (ωi, σi)
p
i=1 the α’s which minimize (28)

satisfy

Gα = f , (30)

where G is the symmetric, positive-definite, p× p matrix whose (i, j)th entry
reads:

Gi,j = 〈Gi, Gj〉 = Gj,i, (31)

α is the p× 1 column vector whose ith entry is αi and f is the p× 1 column
vector whose ith entry is fi. The solution to (30) is given by α = G−1f , and
this implies:

||A(·)−Ap(·)||2 =
∫ Ω

−Ω

A2(ω)dω − fTG−1f ≥ 0.

Thus, the task before us is to choose (ωi, σi)
p
i=1 to maximize fTG−1f where

again G−1 is the symmetric, positive-definite inverse of G defined in (31)
above. At first blush, the problem of maximizing Q = fTG−1f looks rather
daunting but, in fact, this problem has a rather simple structure.

• For any integer k between 1 and p we let βk be one of the two parameters
ωk or σk and we observe that:

∂Q

∂βk
= fTG−1,βk f + 2fTG−1f ,βk . (32)

Noting that fTG−1 = αT and that f ,βk is the p × 1 column vector
whose kth component is fk,βk = 〈A,Gk,βk〉 and other components zero,
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we see that the second term on the right-hand side of (32) is 2αkfk,βk .
Moreover, if we exploit the identity,

G−1,βk = −G−1G,βk G−1, (33)

we find that the first term on the right-hand side of (32) is

−2αk

p
∑

j=1

j 6=k

〈Gk, Gj〉
,βk

αj − α2
k 〈Gk, Gk〉

,βk

and again the α’s are the solution of (30). These observations imply
that

∂Q

∂βk
= 2αk







∂fk
∂βk

−
p
∑

j=1

j 6=k

∂ 〈Gk, Gj〉
∂βk

αj






− α2

k 〈Gk, Gk〉
,βk

where again Gα = f . Given the particularly simple structure of ∂Q
∂βi

we solve the problem of maximizing Q by a “steepest ascent” type
algorithm as we explain now.

• So we assume now (ωni , σ
n
i )
p
i=1 being known. With these data, and the

explicit formula (26) for Gi(ω), we explicitly compute the 〈Gi, Gj〉’s and
∂
∂βi

〈Gi, Gj〉’s at the nth data set. Once again βi = ωi or σi. We denote

the results by 〈Gi, Gj〉n and ∂
∂βi

〈Gi, Gj〉n respectively. We sample the

amplitude A(·) at points

ωp =
pΩ

N
, −N + 1 ≤ p ≤ N − 1,

and do the same for the functions Gi(·) and ∂Gi

∂βi
(·). These are of course

also evaluated with the nth data set and the results are superscripted
with the index n. We then derive approximate values for fi and

∂fi
∂βi

using the discrete inner products defined below to replace the integrals
(see (29))

fni ≈ Ω

N

N+1
∑

p=−N+1

Gn
i

(

pΩ

N

)

A

(

pΩ

N

)
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and

∂fni
∂βi

≈ Ω

N

N−1
∑

p=−N+1

∂Gn
i

∂βi

(

pΩ

N

)

A

(

pΩ

N

)

.

Next we obtain αn by solving Gnαn = fn in order to compute,

∂Qn

∂βi
= 2αni







∂fni
∂βi

−
p
∑

j=1

j 6=1

∂ 〈Gi, Gj〉n
∂βi

αnj






− (αni )

2 〈Gi, Gi〉n
,βi

, (34)

and use (34) to update the parameters as follows:

ωn+1
i = ωni +∆

∂Qn

∂ωi
, σn+1

i = σni +∆
∂Qn

∂σi
.

Unless ∂Qn

∂ωi
= ∂Qn

∂σi
= 0, 1 ≤ i ≤ p, Q will increase for ∆ small enough.

We iterate the aforementioned process till convergence.

4 A first “academic” numerical example

4.1 First test

To see how these selection processes perform we consider the following ex-
ample. We let

A(ω) =















0, −∞ < ω ≤ −2

(4− ω2)2
(

1

2
+ ω2

)

, −2 ≤ ω ≤ 2

0, 2 ≤ ω <∞.

(35)

The origin ω = 0 is a local minimum of A and the points ω = ±1 are the
maxima of A(·) with A(±1) = 13.5. The second derivative at these points is
A(2)(±1) = −36. Our approximations are of the form:

A1(ω) = α1

(

e
−

(ω−ω1)
2

2σ1 + e
−

(ω+ω1)
2

2σ1

)

, ω ∈ R. (36)
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The pointwise selection procedure yielded the following results: α1 = 13.4515,
ω1 = 1.0074 and σ1 = 0.3595, which in turn yields max

ω
A1(ω) = A1(±1) =

13.5. The L2 procedure furnished α1 = 13.8189, ω1 = .8974 and σ1 = 0.2942;
in this case max

ω
A1(ω) = A1(±.9) = 13.8782. The maximal value of Q is

390.9413 and the L2 norm of A(·) is 395.0055. Figure 1, below, shows a
graph of A(·) along with graphs of A1(·) for each selection procedure.

−4 −3 −2 −1 0 1 2 3 4

0

2

4

6

8

10

12

14
FIGURE 1: A vs w − black; A1 vs w, Pointwise Procedure − red; A1 vs w, L2 Procedure  − red

Figure 1: Comparison between pointwise and L2 selection procedures with
example (35)–(36): original signal A is in black, pointwise algorithm in blue
and L2 in red.

The results for this simple example are not atypical of the general case;
namely, one application of either selection process typically yields an approx-
imation, Ap(·), which is qualitatively similar to the given amplitude, A(·),
but may differ quantitatively from A(·). This defect may be overcome by
repeated applications of the procedure.
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4.2 Hierarchical Refinements of Selection Procedures

We assume we have already applied either the pointwise or L2 selection pro-
cedures n− 1 times and constructed the functions ANk,k(·), 1 ≤ k ≤ n − 1,
each which are sums of Nk Gaussians. We let

∀ω ∈ (−Ω,Ω), An(ω) = A0(ω)−
n−1
∑

k=1

Apk,k(ω),

where ω 7→ Ao(ω) is the original amplitude, previously denoted by A(·). As
defined An(·) is even and rapidly decreasing as |ω| → ∞. The principal
qualitative difference between An(·) and Ao(·) is that An(·) takes on both
positive and negative values. For definiteness, we assume now that ω = 0 is
a maximum of An(·) and that the typical structure of An(·) is as follows:

• there are exactly qn negative-valued, local minima of An(·) at points

0 < Ωn1 < Ωn
2 < . . . < Ωnqn

and each minima is non-degenerate;

• there are exactly pn positive-valued, local maxima of An(·) at points

0 < Ω
n

1 < Ω
n

2 < . . . < Ω
n

pn

and each maxima is non-degenerate;

• the minima and maxima are not necessarily interlaced since An(·) may
have positive valued local minima and negative valued local maxima.

Graphs of A1(·) = A0(·) − A1,0(·) for the two selection procedures used in
our previous example are shown in Figure 2. Our induction step is to replace
An(·) by a sum of Nn = qn + pn + 1 even Gaussians:

ANn,n(ω) = αn0e
− ω2

2σn
0 +

pn
∑

k=1

αnk

(

e
−

(ω−ωn
k
)2

2σn
k + e

−
(ω+ωn

k
)2

2σn
k

)

−
qn
∑

k=1

βnk

(

e
−

(ω−ωn
k
)2

2σn
k + e

−
(ω+ωn

k
)2

2σn
k

) (37)
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FIGURE 2: A0 − A1,0 vs w, Pointwise Procedure − blue, A0 − A1,0 vs w, L2 Procedure − red

Figure 2: Difference A0(ω)−A1,0(ω): pointwise selection in blue, L2 selection
in red.

where the α’s, β’s, σ’s, and σ’s are positive and the ω’s and ω’s satisfy

0 ≤ ωn1 < ωn2 < . . . < ωnqn , 0 < ωn1 < ωn2 < . . . < ωnpn .

The pointwise selection procedure generates the unknown parameters
by insisting that ANn,n(·), A(1)

Nn,n
(·), and A(2)

Nn,n
(·) match An(·), A(1)

n (·), and
A

(2)
n (·) at the local maxima {0, {Ωnk}pnk=1} and local minima {Ωnk}qnk=1. The L

2

selection procedure chooses the coefficients to minimize ||An(·)−ANn,n(·)||2.
This problem has the same structure as the optimization problem discussed
in detail earlier, and may be solved by the “steepest-ascent” algorithm. The
optimal solution satisfies

0 ≤ ||An+1(·)||2 = ||An(·)− ANn,n(·)||2 = ||An(·)||2 −Qn,max, (38)

where (ωn, σn;ωn, σn) → Qn = ||ANn,n
(·)||2 when the α’s and β’s are the

least squares parameters corresponding to the given choice ωn, σn, ωn, σn
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and Qn,max = max
(ωn,σn,ωn,σn)

Qn. The equality (38) implies that

0 ≤ ||An+1(·)||2 = ||A0(·)−
n
∑

j=0

ANj ,j(·)||2 = ||A0(·)||2 −
n
∑

j=0

Qj,max,

and provides us with a stopping criteria for the number of applications of
the L2 selection procedure. Specifically, we stop when ||An+1(·)||2 ≤ ǫstop,
a preassigned tolerance. The stopping criteria for the pointwise selection
procedure is equally easy; we stop when

max
ω

(An+1(ω)) ≤ ǫstop and min
ω

(An+1(ω)) ≥ −ǫstop. (39)

Figures 3 and 4 shows the results of applying the hierarchical L2 procedure
2,3, and 4 times, respectively. The “black” curves on each figure are the
original amplitude, A(·), and the “red”curves are the composite hierarchial
gaussian approximations. In applying the L2 procedure twice we went from
1 to 5 even gaussians; in the third application we went from 5 to 16 even
gaussians, and in the fourth application from 16 to 47 even gaussians. After
four applications of the algorithm, the curves become indistinguishable.

5 Two “real-life” applications

5.1 Chirp decomposition of a noisy signal

A band-limited signal slightly corrupted by white noise isn’t band limited
anymore; however, if we set up the preceding algorithms with a value of Ω
being large enough, it may be possible to recover a correct approximation.
First of all, we set up the following data: consider the even amplitude function
displaying only two bumps,

A(ω) =
exp(−a|ω|3)− exp(−b|ω|3)

b− a
; a = 0.8, b = 1.3. (40)

We couple it with different phase functions of increasing complexity: first,
we chosed a cubic one, φ(ω) = ω3

50
and then φ(ω) = π(1− exp(−ω2)) sin(2ω).

The discretization grid is 512 points from t = −5.1 to t = 5.12. We don’t
insist on the fact that in case the original phase function φ is a polynomial
of degree 2, its recovery is exact.

21



−4 −3 −2 −1 0 1 2 3 4

0

2

4

6

8

10

12

14
A vs w−black and AA vs w, L2 Procedure−red, number of applications of the algorithm and total number of chirps =2  5

Figure 3: L2 hierarchical refinement procedure (to be continued in Fig. 4):
Original signal A is in black and L2 in red.

The specificity of these runs is that now, we test the algorithm “blind”,
which means that we just furnish the collection of sample data for both
amplitude and phase, and we look after the maximum numerically. Similarly,
the derivatives involved in the parameters calculation are computed with
finite differences. Corresponding results are displayed in the Figures 5–7.
On the left column, one sees the original amplitudes and phases (in black)
and their approximations (in blue); on the right one, there are the signal
as a function of t (in black), its chirplet approximation (in blue) and finally
the absolute error in log-scale. The recovery of the amplitude (40) by means
of two Gaussians looks very satisfying and errors are noticeable only in the
last example where the original signal is corrupted by white noise; the cubic
phase (Fig. 5) is approximated in a correct way by second degree polynomials
around the maxima of A which are well identified. Of course, in case A would
display several local extrema, a more involved process would have to be set up
in order to localize them properly inside the vector of samples. Concerning
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the sinusoidal phase model (Fig. 6), its recovery by means of polynomials
of degree two is of course rather poor; however, what really matters is that
it is correct in the vicinity of maximum points of A, and this is just what
happens (see [16]). The behavior of these approximations in the t variable is
good, and the absolute error remains reasonable.

Fig. 7 deals with a more difficult test-case, namely we set up the ampli-
tude (40) with the sinusoidal phase, we perform the inverse Fourier transform
to get it as a function of t, we corrupt the resulting signal with white noise
(which makes it not band-limited anymore). This is the data we furnish to
the algorithm of §3.1. Obviously, the white noise has to remain small in order
not to perturb the maxima of A. What we found is that even this require-
ment isn’t enough as the phase function should not be corrupted too much
in order to let the algorithm approximate it locally by a parabola correctly.
In this case, the absolute recovery error is bigger compared to the noise-free
case (see again Fig. 6).

5.2 Finding chirp patterns in stock market indices

The Hang-Seng Composite Enterprise Index is one of the main index for the
Chinese stock market and the CAC 40 is the leading index for the Parisian
place. We used the corresponding daily price fluctuations on an interval of
1024 days (ending on august 29th 2008) in order to check on a real-life case
whether or not the level of tolerance to noise was acceptable. Clearly, in order
to avoid as much as possible spurious local extrema in the Fourier spectrum
of the data, we detrended the prices by a global least-squares interpolation2;
polynomials of degree 5 and 6 have been used. Moreover, for the CAC 40 only,
the detrended fluctuation was displaying quite a sharp peak corresponding to
a periodic cycle. We also used a Basis Pursuit algorithm to remove as much
as possible the white noise components of these fluctuations, see [3]. On Fig.
8, we display the detrended data (in black), the long-lasting periodic cycle
of the CAC 40 (in blue) and the chirps we got out of the algorithm of §3.1.
The case of the Chinese index seem to be quite interesting as the recovery
seems to be quite sharp. Results on both CAC 40 and HSCEI suggest that
a qualitative change in the behavior of blue chips quotations occurred after
the ignition of the so-called subprime crisis/credit crunch (corresponding to
abscissa t ≃ 700).

2This construction ensures the fluctuation has some amount of vanishing moments.
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Figure 4: L2 hierarchical refinement procedure, continued from Fig. 3.
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Figure 5: Pointwise procedure selection on example (40) for cubic phase.
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Figure 6: Pointwise procedure selection on example (40) for sinusoidal phase.
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Figure 7: Pointwise procedure selection on example (40) slightly corrupted
by white noise with sinusoidal phase.29
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Figure 8: Chirp patterns in the daily price fluctuations of CAC 40 (top) and
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