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Abstract. A generally applicable, automatic method for the efficient computation of a database of global
dynamics of a multiparameter dynamical system is introduced. An outer approximation of the
dynamics for each subset of the parameter range is computed using rigorous numerical methods
and is represented by means of a directed graph. The dynamics is then decomposed into the
recurrent and gradient-like parts by fast combinatorial algorithms and is classified via Morse decom-
positions. These Morse decompositions are compared at adjacent parameter sets via continuation
to detect possible changes in the dynamics. The Conley index is used to study the structure of
isolated invariant sets associated with the computed Morse decompositions and to detect the ex-
istence of certain types of dynamics. The power of the developed method is illustrated with an
application to the two-dimensional density-dependent Leslie population model. An interactive vi-
sualization of the results of computations discussed in the paper can be accessed at the Web site
http://chomp.rutgers.edu/database/, and the source code of the software used to obtain these results
has also been made freely available.
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1. Introduction. The global dynamics of a nonlinear system can exhibit structures at all
spatial scales, for example, the fractal structures associated to chaotic dynamics. The same
phenomenon can occur with respect to the parameters; that is, global dynamical structures
can change on Cantor sets in parameter space. From the point of view of scientific computa-
tion, only a finite amount of information can be computed, and therefore, any computational
characterization of global dynamics of a multiparameter system can be expected to repre-
sent a dramatic reduction of information. Nevertheless, the computation of global dynamical
information is an important problem for applications, which leads to the questions of how
to characterize global dynamical structures and how to identify changes in these structures
in practice. The fact that this is a nontrivial task has been made clear by the work of the
dynamical systems community over the last century.

Identifying and classifying the qualitative properties of models over wide ranges of pa-
rameter values is of fundamental importance in many disciplines, and in particular it is of
primary interest to many computational biologists [10]. The fact that most topics of interest
in systems biology are dynamic in nature suggests the need for a comprehensive yet efficient
method for cataloguing the global dynamics of nonlinear systems. In other words, a method
is desired which computationally constructs a database of global dynamical behavior of a
specific system over a range of parameters.

The starting point for our computational methods is Conley’s topological approach to dy-
namics [2], which we review in the next section. The prior work in [1, 5, 9, 12, 24] has shown
that Conley theory is an appropriate theoretical base for designing algorithms in computa-
tional dynamics. The purpose of this paper is to demonstrate that these ideas can be used
to design an efficient computational framework for constructing databases of global dynamics
of specific systems over multiple parameters. While the methods we propose are general, we
illustrate them using a particular population model which we describe in section 1.2.

1.1. Preliminary ideas. We restrict our attention to the setting of a multiparameter family
of dynamical systems given by a continuous function

(1.1) f : X × Λ � (x, λ) �→ f(x, λ) = fλ(x) ∈ X,

where the phase space X is a locally compact metric space and the parameter space Λ is a
compact, locally contractible, connected metric space. Note that we do not assume that fλ is
a homeomorphism.

The fundamental structures in any dynamical system are the invariant sets. A set Z ⊂ X
is invariant at λ ∈ Λ if fλ(Z) = Z. Since we cannot perform computations at each parameter
value independently, we are interested in considering sets which are invariant with respect to
a subset of the parameter space. We use the notation F : X × Λ → X × Λ for the trivial
extension of the system to include the parameters as explicit variables defined by

(1.2) F (x, λ) =
(
fλ(x), λ

)
=

(
f(x, λ), λ

)
.

For Λ0 ⊂ Λ we denote the restriction of F to X×Λ0 by FΛ0 : X×Λ0 → X×Λ0. Observe that
F = FΛ and that fλ is readily identified with F{λ}. Moreover, given a set S ⊂ X×Λ, we denote
its restriction to Λ0 by SΛ0 := S ∩ (X × Λ0). In particular, we often identify Sλ ⊂ X with
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S{λ} = Sλ × {λ}. In this language, a set S ⊂ X × Λ is invariant over Λ0 if FΛ0(SΛ0) = SΛ0,
which is an equivalent way of stating that the set Sλ is invariant at all λ ∈ Λ0.

We wish to identify and characterize a finite collection of invariant sets which determine
the global, qualitative behavior of the dynamics. In addition, we need a method for comparing
two invariant sets Sλ0 and Sλ1 at distinct parameters. Deciding what sets to compute and
how to compare them are the fundamental issues we attempt to address.

We emphasize that while the amount of information that can be computed is finite, this
does not mean that we cannot detect or characterize dynamical structures that occur on ar-
bitrarily small scales. For example, topological techniques can be used to identify chaotic
dynamics via a semiconjugacy onto a subshift of finite type; see [12]. Moreover, even though
we cannot compute the dynamics at each parameter separately, this does not mean that we
cannot obtain results which apply to every parameter value. Indeed, the methods we em-
ploy do compute mathematically rigorous global structures for invariant sets at all parameter
values.

1.2. Model example. To provide perspective on the practicality and utility of our ap-
proach, we consider the two-dimensional version of an overcompensatory Leslie population
model g : R2 × R4 → R2 given by[

x1

x2

]
�→

[
(θ1x1 + θ2x2)e−φ(x1+x2)

px1

]
,

where the fertility rates decay exponentially with population size. This model and its biological
relevance is discussed in considerable detail in work of Ugarcovici and Weiss [25]. As indicated
there, in view of g(x, θ, p, φ) = φ−1g(φx, θ, p, 1), the constant φ may be scaled arbitrarily, and
thus it suffices to study f : R2 × R3 → R2 given by

(1.3) (x, λ) =

⎛⎝[
x1

x2

]
,

⎡⎣ θ1

θ2

p

⎤⎦⎞⎠ �→ f(x, λ) =
[

(θ1x1 + θ2x2)e−0.1(x1+x2)

px1

]
.

Furthermore, the detailed numerical studies of [25] indicate that this system exhibits a wide
variety of different dynamical behavior, which suggests that it provides a meaningful test for
the usefulness of the techniques introduced in this paper.

1.3. Outline of the paper. In the remainder of the paper we develop our method and ap-
ply it to the Leslie model. In section 2 we introduce the dynamical structures which we utilize
and review Conley theory. In section 3 we introduce a method for building a combinatorial
representation of the dynamics and a means of comparing the computed structures at different
parameters. In section 4 we address the question of efficient computational algorithms based
on rectangular grids in X and Λ. In section 5 we describe a database computed with our
methods for the model example introduced in section 1.2 with p = 0.7 and θ1, θ2 varying in
selected ranges, and we show how this database can be queried for various dynamical proper-
ties. Finally, in section 6 we briefly mention a result containing similar computations, where
all three parameters are varied.
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2. Review of Conley theory. Recall that a compact set N ⊂ X × Λ0 is an isolating
neighborhood for FΛ0 if

Inv(N,FΛ0) ⊂ intX×Λ0(N),

where Inv(N,FΛ0) denotes the maximal invariant set in N under FΛ0 , and intX×Λ0(N) denotes
the interior of N with respect to the subspace topology on X × Λ0. Isolating neighborhoods
are computable and hence provide a means of identifying invariant sets. In particular, an
invariant set SΛ0 ⊂ X ×Λ0 is an isolated invariant set if SΛ0 = Inv(N,FΛ0) for some isolating
neighborhood N .

As indicated in [2, 15], the space of isolated invariant sets is a sheaf. More precisely, if
N is an isolating neighborhood for F = FΛ and S = Inv(N,F ), then for any Λ0 ⊂ Λ, NΛ0 is
an isolating neighborhood for FΛ0 and SΛ0 = Inv(NΛ0 , FΛ0). In particular, for any λ ∈ Λ,
S{λ} ⊂ X × {λ} is an isolated invariant set for F{λ} : X × {λ} → X × {λ} and Sλ ⊂ X is an
isolated invariant set for fλ : X → X.

To simplify the presentation and analysis, throughout this paper we make use of the
following assumption and establish the following notation.

A1: There exists a compact set B ⊂ X ×Λ which is an isolating neighborhood
for F . Its maximal invariant set is denoted by S := Inv(B,F ).

Using the sheaf property of isolated invariant sets, SΛ0 denotes the restriction of S to
X × Λ0, which is an isolated invariant set for FΛ0 if Λ0 is compact. As indicated above, we
are interested in understanding the structure of Sλ for all λ ∈ Λ, and we make use of two
essential ideas due to Conley [2]—Morse decompositions and the Conley index.

2.1. Morse decompositions. Recall that a Morse decomposition of SΛ0 is a finite collec-
tion

M(SΛ0) = {MΛ0(p) ⊂ SΛ0 | p ∈ PΛ0}
of disjoint isolated invariant sets of FΛ0 , called Morse sets, which are indexed by the set PΛ0

on which there exists a strict partial order >Λ0 , called an admissible order, such that for every
(x, λ) ∈ SΛ0 \

⋃
p∈P MΛ0(p) and any complete orbit γ of FΛ0 through (x, λ) in SΛ0 there exist

indices p >Λ0 q such that under FΛ0

ω(γ) ⊂ MΛ0(q) and α(γ) ⊂ MΛ0(p).

Morse decompositions provide a coarse but global description of the dynamics on SΛ0 .
Remark 2.1. With regard to the construction of a database for global dynamics, we make

several important observations concerning Morse decompositions; see [2, 13].
1. Morse decompositions of SΛ0 are not unique. They can often be refined or coarsened,

and many systems have no finest Morse decomposition.
2. The empty set can be a Morse set.
3. Every structure within SΛ0 that is associated with recurrent dynamics, e.g., a fixed

point, a periodic orbit, or chaotic dynamics, must lie in some Morse set. Away from the
Morse sets the dynamics is gradient-like, and the direction of trajectories is captured
by an admissible partial order.
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4. Given a Morse decomposition, there is a unique minimal admissible partial order called
the flow-defined order. Any extension of the flow-defined order which maintains a strict
partial order produces an admissible order.

5. Consider a Morse decomposition M(SΛ0) = {MΛ0(p) ⊂ SΛ0 | p ∈ PΛ0} of SΛ0 with
admissible order >Λ0. If Λ1 ⊂ Λ0, then the collection of sets

{MΛ1(p) ⊂ SΛ1 | p ∈ PΛ0} ,

where MΛ1(p) := MΛ0(p)∩ (X ×Λ1), is a Morse decomposition of SΛ1 under FΛ1 with
the same admissible order.

Observe that since PΛ0 is a strict partially ordered set, a Morse decomposition can be
represented as an acyclic directed graph MG(Λ0) called the Morse graph over Λ0. The elements
of the index set PΛ0 , which naturally correspond to the Morse sets, are the vertices of the
Morse graph over Λ0, and the edges of the Morse graph over Λ0 are the minimal order relations
which through transitivity generate >Λ0. In other words, for p, q ∈ PΛ0 there is a directed
edge p → q in MG(Λ0) if p >Λ0 q and there does not exist r ∈ PΛ0 such that p >Λ0 r >Λ0 q.

Computationally, we obtain Morse decompositions indirectly, and often it can be estab-
lished by further computation that a Morse set is empty. In that case, such a set can be
removed from the Morse decomposition, as described by the following proposition, whose
proof follows directly from the definition of a Morse decomposition.

Proposition 2.2. Consider a Morse decomposition M(SΛ0) =
{
MΛ0(p) ⊂ SΛ0 | p ∈ PΛ0

}
of SΛ0 with admissible order >. Assume MΛ0(p0) = ∅. Then

M′(SΛ0) := {MΛ0(p) ⊂ SΛ0 | p ∈ PΛ0 \ {p0}}
is a Morse decomposition of SΛ0 and an admissible order is given by >′ where for all p, q ∈
PΛ0 \ {p0} we have p >′ q if and only if p > q.

From Proposition 2.2, if MG(Λ0) is the Morse graph over Λ0 corresponding to M(SΛ0),
then MG′(Λ0), the Morse graph over Λ0 corresponding to M′(SΛ0), has vertices PΛ0 \ {p0}
and has an edge p → q if either p → q is an edge in MG(Λ0) or p → p0 → q are edges
in MG(Λ0). The simplified Morse graph MG′(Λ0) is called a trivial reduction of MG(Λ0).
Whenever possible, we work with a trivial reduction of a Morse graph. The possibility that
a Morse set is trivial can be detected via the Conley index, which is described in the next
section.

2.2. The Conley index. As explained in section 3, computational methods exist to find
Morse decompositions; see [1]. The Conley index, which is an algebraic topological invariant
of isolated invariant sets, is used to understand the structure of the dynamics within a Morse
set.

To explain the index we begin by considering an arbitrary continuous map g : Z → Z on a
locally compact metric space and a pair of compact sets N = (N1, N0) such that N0 ⊂ N1 ⊂ Z.
Consider the pointed quotient space

(
N1/N0, [N0]

)
obtained by collapsing N0 to a single point

[N0]. Define gN :
(
N1/N0, [N0]

) → (
N1/N0, [N0]

)
by

gN (x) =
{

g(x) if x, g(x) ∈ N1 \ N0,
[N0] otherwise.
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The pair N = (N1, N0) is an index pair if the map gN is continuous and cl(N1 \ N0) is an
isolating neighborhood [21].

The following two facts about index pairs are most relevant and can be found in [2, 13].
1. For any isolated invariant set K, there exists at least one index pair N = (N1, N0)

such that K = Inv(cl(N1 \ N0), g).
2. For any isolated invariant set K, there can exist many index pairs which isolate K.

The first fact implies that for any Morse set MΛ0(p) for the system FΛ0 there exists an
index pair N = (N1, N0) such that the induced map FΛ0,N :

(
N1/N0, [N0]

) → (
N1/N0, [N0]

)
is a continuous function and MΛ0(p) = Inv

(
cl(N1 \N0), FΛ0

)
. Passing to homology leads to a

family of group endomorphisms

(2.1) FΛ0,N∗ : H∗
(
N1/N0, [N0]

) → H∗
(
N1/N0, [N0]

)
.

The second fact allows for different choices of index pairs which can lead to different
group endomorphisms. Thus, to define the Conley index of an isolated invariant set, such as a
Morse set MΛ0(p), one must consider equivalence classes of these group endomorphisms [13].
In constructing our database, we do not utilize the full Conley index; instead, we store a
weaker invariant, namely, the nonzero eigenvalues of FΛ0,N∗ restricted to the torsion-free part
of H∗

(
N1/N0, [N0]

)
. This weaker invariant is chosen because these eigenvalues are readily

computed and compared.
Remark 2.3. With regard to the construction and interpretation of the database, there

are several important observations about the index to be made; see [13].
1. If the Conley index is trivial, then the map FΛ0,N∗ is nilpotent. This implies that

the eigenvalues of FΛ0,N∗ restricted to the torsion-free part of H∗
(
N1/N0, [N0]

)
are all

zero.
2. The empty set is an isolated invariant set with trivial Conley index. Thus, if there are

nonzero eigenvalues of FΛ0,N∗ restricted to the torsion-free part of H∗
(
N1/N0, [N0]

)
,

then MΛ0(p) 	= ∅.
3. There exist nontrivial isolated invariant sets with trivial Conley index. For example,

consider the logistic map gλ(x) = λx(1 − x), λ ∈ [1, 4], and an index pair N =
(N1, N0) =

(
[−1, 2], {−1, 2}). The index map FN∗ is nilpotent, but clearly Sλ =

Inv(N1 \ N0, gλ) 	= ∅.
4. The Conley index can be used to reconstruct some of the structure of the dynamics of

the associated isolated invariant set. In particular, under appropriate conditions the
Conley index can be used to conclude the existence of fixed points, periodic orbits,
and chaotic dynamics.

5. Suppose Λ1 ⊂ Λ0 are both contractible. If MΛ0(p) is a Morse set, or indeed any isolated
invariant set, then the nonzero eigenvalues of the torsion-free part of any index map
FΛ0,N∗ are identical to the nonzero eigenvalues of the torsion-free part of any index
map FΛ1,N∗ for the set MΛ1(p) = MΛ0(p) ∩ (X × Λ1).

2.3. Conley–Morse graphs. We are now in a position to describe the fundamental element
of our database. Let Λ0 ⊂ Λ, and let M(SΛ0) = {MΛ0(p) ⊂ SΛ0 | p ∈ PΛ0} be a Morse
decomposition of SΛ0 with admissible order >Λ0 . The Conley–Morse graph over Λ0 of M(SΛ0)
is denoted by CMG(Λ0) and consists of MG(Λ0), the Morse graph over Λ0 with the additional
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information of the nonzero eigenvalues of the torsion-free part of the index map of each Morse
set assigned to the associated node. We present this information by labeling each node in the
following format.

pk : n → {∗}
denotes the fact that the kth Morse set has nonzero eigenvalues {∗} on the nth level of
homology. If the kth Morse set has no nonzero eigenvalues, then we write

pk : 0 .

An example of how this information can be used to describe the structure of the dynamics is
given in Proposition 5.8.

As described in sections 3 and 4, we compute the Conley–Morse graphs over distinct
fixed subregions of parameter space. This raises the question of how to relate the resulting
Conley–Morse graphs. One answer is provided in the following definition.

Definition 2.4. Assume A1. Let Λ0,Λ1 ⊂ Λ be such that Λ0,1 := Λ0 ∩ Λ1 is a nonempty,
contractible set. Let

M(SΛi) = {MΛi(p) ⊂ SΛi | p ∈ PΛi}
for i = 0, 1 be Morse decompositions with admissible orders >i. The associated Morse graphs
MG(Λ0) over Λ0 and MG(Λ1) over Λ1 are equivalent if there exists an order preserving bijection
ι : (PΛ0 , >0) → (PΛ1 , >1) such that

MΛ0(p) ∩ (X × Λ0,1) = MΛ1

(
ι(p)

) ∩ (X × Λ0,1).

The continuation property of the Conley index [2] implies that if MG(Λ0) and MG(Λ1)
are equivalent via the order preserving bijection ι : (PΛ0 , >0) → (PΛ1 , >1), then the Conley–
Morse graphs CMG(Λ0) and CMG(Λ1) are also equivalent; that is, the nonzero eigenvalues
associated to corresponding Morse sets are identical.

3. Combinatorial representation of dynamics. Conley–Morse graphs are the key ele-
ments of information stored in our database. In this section we describe a general procedure
for computing these graphs. We begin by describing a means of combinatorializing the dy-
namics.

Recall [17] that a grid on a metric space Z is a collection Z of nonempty, compact subsets
of Z with the following properties:

(a) Z =
⋃

G∈Z G,
(b) G = cl

(
int(G)

)
for all G ∈ Z,

(c) G ∩ int(H) = ∅ for all G 	= H ∈ Z, and
(d) if K ⊂ Z is compact, then {G ∈ Z | G ∩ K 	= ∅} is a finite set.

The grid Z has the simple intersection property if G,H ∈ Z and G∩H 	= ∅ implies that G∩H
is contractible. The diameter of a grid is defined by diam(Z) := supG∈Z diam(G), and the
realization map | · | is a function from subsets of Z to subsets of Z defined by |A| :=

⋃
A∈A A.

Given Y ⊂ Z, define
Z(Y ) := {G ∈ Z | int(G) ∩ Y 	= ∅} .
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For the remainder of the paper, X and Q denote grids with the simple intersection property
on X and Λ, respectively. Observe that X × Q is a grid for X × Λ. As shown in [9], given
δ > 0, we can choose grids such that diam(X ) < δ and diam(Q) < δ.

A combinatorial multivalued map F : Z ⇒ Z assigns to each element G ∈ Z a finite
(possibly empty) subset F(G) of Z. Important for efficient computation is the observation
that a combinatorial multivalued map F : Z ⇒ Z is equivalent to a directed graph with
vertices Z and directed edges (G,H) whenever H ∈ F(G). A directed graph is closed if each
vertex is both the head of at least one edge and the tail of at least one edge.

We use combinatorial multivalued maps on the grid X as a means to discretize and combi-
natorially approximate the dynamics of f . For a more detailed description, see [9]. Fix λ ∈ Λ
and a compact set Bλ ⊂ X. We relate fλ|Bλ

: Bλ → X to the combinatorial multivalued map
Fλ : X (Bλ) ⇒ X by requiring that Fλ outer approximates fλ in the following sense [24]. A
multivalued map Fλ : X (Bλ) ⇒ X is called an outer approximation of fλ restricted to |X (Bλ)|
if fλ(G) ⊂ int

(|Fλ(G)|) for all G ∈ X (Bλ).
The property of being an outer approximation is the key to approximating the dynamics

of f combinatorially. Since we can perform only a finite number of computations, we cannot
compute Fλ individually for each λ ∈ Λ. Recall that we have made the assumption A1 so that
the compact set B ⊂ X ×Λ is an isolating neighborhood for F , and S = Inv(B,F ). From the
point of view of the computational algorithms, it is more convenient to additionally assume
the following condition similar in spirit to A1. As it is made clear via Remarks 4.3 and 5.2,
these two assumptions are computationally compatible.

A1′: For each grid element Q ∈ Q the set BQ := X (⋃
λ∈Q Bλ

)
has the property

that SQ = Inv
(|BQ| × Q,FQ

)
.

Now for each Q ∈ Q we consider a multivalued map FQ : BQ ⇒ X with the property that

(3.1) f(G,Q) ⊂ int
(|FQ(G)|)

for all G ∈ BQ. Observe that if λ ∈ Q, then FQ is an outer approximation of fλ restricted to
|BQ|. We organize the collection of FQ via the following definition. Set

B :=
⋃

Q∈Q

(BQ × {Q}) ⊂ X ×Q.

A combinatorialization of F on |B| is the combinatorial multivalued map F : B ⇒ X × Q
defined by

F(G,Q) = FQ(G) × {Q} .

Note that F is composed of a collection of outer approximations of each FQ.
The following proposition indicates how outer approximations are used to capture invariant

sets.
Proposition 3.1. Suppose A1′ holds and F is a combinatorialization of F on |B|. Let

Q ∈ Q, and suppose Y ⊂ BQ. If N is the maximal subset of Y such that the restriction
FQ : N ⇒ N is closed, then

Inv(|Y| × Q,FQ) = Inv(|N | × Q,FQ).
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Proof. Let (x, λ) ∈ Inv(|Y| × Q,FQ), and choose any G ∈ Y that contains x. Let γx be a
complete orbit of FQ through (x, λ) in Inv(|Y| ×Q,FQ). Since FQ satisfies (3.1), there exists
a sequence {Gn} in Y with G0 = G and Gn+1 ∈ FQ(Gn) such that γx(n) ∈ Gn × Q for all
n ∈ Z. Therefore, G ∈ N , because it lies in a closed subgraph {Gn} of Y, which implies
that {Gn} ⊂ N , and thus γx ⊂ |N | × Q. Hence (x, λ) ∈ Inv(|N | × Q,FQ). This implies that
Inv(|Y| × Q,FQ) ⊂ Inv(|N | × Q,FQ). Since the opposite inclusion is trivial, this concludes
the proof.

Proposition 3.1 states that the maximal invariant set is captured by the largest closed
subgraph of a combinatorialization. We have already commented that grids of arbitrarily
small diameter exist in general. If SQ is the largest closed subgraph of BQ, then it follows
from the results in [9] that |SQ| converges to SQ in Hausdorff metric as the grid diameters
of X and Q tend to zero and the amount of overestimation in the computation of the outer
approximation of the image of f by F tends to zero; see Theorem 5.8 and Lemma 7.6 of [9].
We do not provide details here, because even though the convergence results prove that the
maximal invariant set can be approximated arbitrarily closely if computations are performed
on a sufficiently fine scale, in practice we fix a priori a finest resolution in the phase space and
the parameter space with which we do our computations.

3.1. Constructing Conley–Morse graphs. Recall that we have assumed that F satisfies
A1. In addition, for the remainder of this section we assume that the set B and the grid X
are chosen in such a way that A1′ is satisfied.

A natural starting point for examining the global structure of both a dynamical system
and a directed graph is to look for recurrence. The recurrent set of FQ : SQ ⇒ X is defined
by

RQ := {G ∈ SQ | there exists a nontrivial path from G to G in SQ} ,

where a nontrivial path is any path of nonzero length, including the case of a loop from
a vertex to itself. The recurrent set RQ is naturally partitioned into equivalence classes
{MQ(p) | p ∈ PQ} called combinatorial Morse sets according to the following equivalence
relation:

G � H if and only if there exist a path in FQ from G to H and a path in FQ

from H to G.

Since every node in SQ that lies on a cycle is an element of RQ, we can define a strict partial
order on the indexing set PQ by setting p >Q q if there exist G ∈ MQ(p), H ∈ MQ(q), and
a path from G to H in FQ.

Observe that this construction implies that a combinatorial Morse decomposition can be
represented as a directed graph. Let MG(FQ) denote the acyclic directed graph with vertices
consisting of the elements of PQ and the minimal set of directed edges p → q which generate
p >Q q under transitivity. The following proposition states that given a combinatorial Morse
decomposition for an outer approximation FQ, there is a Morse decomposition of FQ such
that MG(FQ) is the Morse graph over Q for the Morse decomposition.

Proposition 3.2. Assume A1 and A1′ are satisfied. Let Q ∈ Q, and let {MQ(p) | p ∈ PQ}
be the set of combinatorial Morse sets for FQ. If FQ

(MQ(p)
) ⊂ BQ for all p ∈ PQ, then

the acyclic directed graph MG(FQ) which represents the combinatorial Morse sets is a Morse
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graph over Q for the Morse decomposition of SQ defined by

M(SQ) := {Inv (|MQ(p)| × Q,FQ) | p ∈ PQ} .

Moreover, each |MQ(p)| is an isolating neighborhood for Inv |MQ(p)|.
Proof. By [9, Theorem 4.1], we know that |MQ(p)| × Q is an isolating neighborhood

for FQ, and by [9, Corollary 4.2],

M(SQ) := {MQ(p) := Inv(|MQ(p)| × Q,FQ) | p ∈ (PQ, >Q)}
is a Morse decomposition of SQ.

Remark 3.3. Observe that Proposition 3.2 implies that once an appropriate combinatori-
alization of F has been computed, then for each Q ∈ Q a Morse graph MG(FQ) over Q is
determined which can be associated with a true Morse decomposition M(SQ) for FQ, and this
in turn provides a Morse decomposition M(Sλ) for fλ for each λ ∈ Q.

The algorithms used to compute the Conley–Morse graphs are discussed in greater detail in
section 4. For the moment we remark that we use the algorithm presented in section 2.2 of [1]
to compute the Morse graph MG(FQ). There are a variety of algorithms for determining index
pairs (see [8, 18, 19, 24]), and in this paper we adopt the approach of [19]; see Remark 4.3. For
systems defined in Rn and simplicial or rectangular grids, there exist algorithms to compute
the induced map on homology [8, 14, 20]. Hence for each Q ∈ Q the Conley–Morse graph
CMG(FQ) can be determined in a fairly general setting.

3.2. Comparing Conley–Morse graphs. We now turn to the question of comparing the
dynamical information over different parameter regions via Conley–Morse graphs. Recall that
we assume that the grid Q has the simple intersection property. Furthermore, we continue to
assume that A1 and A1′ are satisfied. We also assume that CMG(FQ) has been computed for
each Q ∈ Q. We begin with a few definitions.

Definition 3.4. To each Q ∈ Q, there is an associated CMG(FQ). Consider Q0, Q1 ∈ Q
such that Q0 ∩ Q1 	= ∅. The clutching graph J (Q0, Q1) is defined to be the bipartite graph
with vertices PQ0 ∪ PQ1 (the union of the vertices from MG(FQ0) and MG(FQ1)) and with
an edge (p, q) ∈ PQ0 × PQ1 if MQ0(p) ∩MQ1(q) 	= ∅.

Observe that if every vertex in PQ0 in the clutching graph J (Q0, Q1) has a unique edge,
then we can define the clutching function

ιQ1,Q0 : PQ0 → PQ1

by ιQ1,Q0(p) := q for each edge (p, q) of J (Q0, Q1).
Definition 3.5. Consider the set of Conley–Morse graphs over the grid elements of the

parameter space, i.e., {CMG(FQ) | Q ∈ Q}. Let Q0, Q1 ∈ Q such that Q0 ∩ Q1 	= ∅. If
the clutching function ιQ1,Q0 : PQ0 → PQ1 is defined and gives a directed graph isomorphism
from MG(FQ0) to MG(FQ1), then we say that the Conley–Morse graphs over Q0 and Q1,
CMG(FQ0) and CMG(FQ1), are equivalent. The equivalence classes of {CMG(FQ) | Q ∈ Q}
with respect to the transitive closure of this relation are called continuation classes.

Remark 3.6. We require that ιQ1,Q0 generate a directed graph isomorphism as opposed to
the weaker condition that ιQ1,Q0 be a bijection, because differences in the partial order may
indicate a difference in the dynamics.
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Proposition 3.7. Assume A1 and A1′ are satisfied. Let Q0, Q1 ∈ Q such that Q0 ∩Q1 	= ∅.
If the clutching function ιQ1,Q0 : PQ0 → PQ1 is a directed graph isomorphism, then there exists
a Morse decomposition

M(SQ0∪Q1) = {MQ0∪Q1(r) | r ∈ PQ0∪Q1}

with admissible order >Q0∪Q1 such that its restriction is the same as the Morse decompo-
sition M(SQi) over Qi for each i = 0, 1. Specifically, there is a natural correspondence
πi : PQ0∪Q1 → PQi such that

MQi

(
πi(r)

)
= MQ0∪Q1(r) ∩ (X × Qi) for any r ∈ PQ0∪Q1,

and >Q0∪Q1 agrees with >Qi through the identification. Furthermore, the nonzero eigenvalues
associated to the index maps for pairs of corresponding Morse sets MQ0(π0(r)) and MQ1(π1(r))
are the same.

Proof. Define
PQ0∪Q1 = {(p, q) ∈ PQ0 × PQ1 | q = ιQ1,Q0(p)} ,

and the natural correspondence πi : PQ0∪Q1 → PQi . Then one can introduce a well-defined
partial order >Q0∪Q1 on PQ0∪Q1 from the isomorphic partial order >Qi on PQi , and πi becomes
an order-preserving isomorphism.

Now define
MQ0∪Q1(r) = MQ0

(
π0(r)

) ∪ MQ1

(
π1(r)

)
.

It follows from the construction that the collection {MQ0∪Q1(r) | r ∈ PQ0∪Q1} forms a Morse
decomposition over Q0 ∪Q1. The result now follows from the sheaf property of Morse decom-
positions and the continuation property of the Conley index.

Proposition 3.7 implies that if CMG(FQ0) and CMG(FQ1) belong to the same continu-
ation class, then there is a path in the parameter space along which the underlying Morse
decompositions are related by continuation, and the Conley indices of the corresponding Morse
sets are isomorphic.

Remark 3.8. It is important to note that belonging to the same continuation class is a
weak equivalence relation. In particular, it is possible that λ0, λ1 ∈ Q ∈ Q and yet Sλ0 and
Sλ1 are not topologically conjugate. Thus, membership in the same continuation class does
not imply equivalence on the level of conjugacy. Heuristically, this is because we are studying
the dynamics on the level of the grid elements, and differences in the dynamics that lie below
this scale cannot be observed. Similarly, it is possible that CMG(FQ0) and CMG(FQ1) lie in
different continuation classes, but the dynamics of fλ0 on SQ0 for λ0 ∈ Q0 and fλ1 on SQ1 for
λ1 ∈ Q1 are topologically equivalent. To see that this is the case, consider λi = λ ∈ Q0 ∩ Q1,
but CMG(FQ0) and CMG(FQ1) do not belong to the same continuation class. The heuristic
explanation for this is that topological conjugacy is independent of the size of the dynamic
structures, but the construction of F clearly depends on the size of the grid decomposition.

Finally, it is possible to construct examples in which CMG(FQ0) and CMG(FQ1) belong to
the same continuation class and Q0 ∩Q1 	= ∅, but ιQ1,Q0 is not a directed graph isomorphism,
or even ιQ1,Q0 may not be defined. This situation can arise from a lack of resolution in
either the phase space or parameter space. In fact, in practice (see section 4.6) we employ a
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local subdivision algorithm that in principle reduces—but does not necessarily eliminate—the
occurrence of phenomena of this type.

The thesis of this paper is that, given grids for the phase space and parameter space, a
useful database for the global dynamics is a list of the continuation classes and their relative
connectivity. To be more precise, we introduce the following notion.

Definition 3.9. Assume A1 and A1′ are satisfied. The associated continuation graph
CG(F) is a graph whose vertices are the continuation classes{(

CMG(j),Q(j)
) | j = 1, . . . , J

}
,

where Q(k) ⊂ Q is the set of parameter boxes associated with the kth continuation class and
CMG(k) = CMG(FQ) for some Q ∈ Q(k). Note that all Conley–Morse graphs CMG(FQ)
over Q ∈ Q(k) are isomorphic. There is an edge between the jth and kth vertices in CG(F)
if there exist Q ∈ Q(j) and Q′ ∈ Q(k) such that Q ∩ Q′ 	= ∅.

The continuation graph is our database. Of course, additional, problem specific informa-
tion can also be stored. However, as will be indicated in the context of the density-dependent
Leslie model, this database provides an extremely compressed yet useful means of describing
the global dynamics over a broad range of parameter values. We return to these issues when
we use the database to investigate the Leslie model.

4. Building the database using rectangular grids. The results of section 3 indicate how
a combinatorialization of F leads to a database. In this section we describe how a combina-
torialization can be effectively computed, including details of selected computational aspects
of the method.

The optimal choice of a suitable grid is determined by the structure of X, Λ, and B ⊂
X × Λ. For many applications Λ ⊂ Rm is a rectangular region, X = Rn, and B is also a
rectangular region; that is, B = R×Λ for some rectangular region R ⊂ Rn. For convenience,
we make this assumption, i.e., Bλ = R for all λ ∈ Λ, throughout the rest of this paper. This
leads to the use of a pair of rectangular grids

(4.1) Q =

{
m∏

i=1

[
bi + qi

ζi

Ki
, bi + (qi + 1)

ζi

Ki

]
| qj ∈ {0, . . . ,Kj − 1}, j = 1, . . . ,m

}
,

where b, ζ ∈ Rm and K ∈ Zm,

(4.2) X (d) =

{
n∏

i=1

[
ai + ki

ξi

2d
, ai + (ki + 1)

ξi

2d

]
| kj ∈ Z, j = 1, . . . , n

}
,

where d ∈ Z+ and a, ξ ∈ Rn, and

B(d) := X (d)(R) ⊂ X (d).

The choices of K and d define the accuracy of computations, and the choices of a, b, ξ, and ζ
are determined by the regions one wishes to study. The parameter d allows for the use of an
iterative multiscale method described later that is essential for efficient computation of the
dynamics.
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4.1. Constructing an outer approximation. For each Q ∈ Q we construct an outer ap-
proximation F (d)

Q : B(d) ⇒ X (d) as follows. For each grid element G ∈ B(d), interval arithmetic
[16] is used to compute a rectangular box β(G) which contains the image f(G,Q). More
precisely, the edges of the rectangular grid element G × Q (which are intervals) are inserted
directly into the formula for f in place of corresponding variables, and the value of f(G,Q) is
evaluated using interval arithmetic which provides a rigorous result in the form of a product
of intervals. For each G ∈ B(d) define

F (d)
Q (G) :=

{
H ∈ X (d) | H ∩ β(G) 	= ∅}

and observe that f(G,Q) ⊂ int |F (d)
Q (G)|; see Figure 1. Thus, F (d)

Q is an outer approximation
as defined in (3.1).

Figure 1. A rigorous enclosure of the image of each grid box (dark gray) is computed with interval arithmetic
(indicated by the dotted line) and then covered by grid boxes (light gray).

Having described the construction of F (d)
Q : B(d) ⇒ X (d), we turn to the need for a multi-

scale approach. Observe that the number of grid elements in B(d) is 2nd, and hence the size of
the graph of FQ grows exponentially as a function either of discretization size or of dimension
of the problem. However, we are interested only in the largest closed subgraph of FQ on B(d),
and thus we use only the restriction of FQ to S(d)

Q , where |S(d)
Q | × Q covers Inv BQ, which is

often a small subset of BQ.

4.2. Iterative multiscale identification of the invariant set. To avoid unnecessary com-
putation, we use the following iterative multiscale approach motivated by [6, 7]. Let d0, d1, . . . , d�

be an increasing sequence of positive integers. Fix Q ∈ Q. Construct F (d0)
Q : B(d0) ⇒ X (d0).

Following the algorithms in [1], we compute the maximal closed directed graph S(d0)
Q in F (d0)

Q .

Define Y(d1) ⊂ B(d1) to be the grid for |S(d0)
Q |. Construct F (d1)

Q : Y(d1) ⇒ X (d1). We repeat

the construction of S(di)
Q and F (di)

Q : Y(di) ⇒ X (di) until i = l. Note that since we assume A1′,

Proposition 3.1 implies that Inv
(|S(d�)| × Q

)
= Inv

(|B(d0)
Q | × Q

)
.

Example 4.1. To put the above construction into perspective, consider the Leslie model
(1.3), where we fix p = 0.7. Set

Λ := {(θ1, θ2) ∈ [8, 37] × [3, 50]} ,

R := [−0.001, 320.056] × [−0.001, 224.040] for all λ ∈ Λ.
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Figure 2. Computation of S(di)
Q by means of gradual refinements. In the first row, the lines indicate the

subdivision of the region X into 4n boxes for n = 1, . . . , 4. No more lines are added in the second row to keep
the picture clear. The third row shows a magnified fragment of the region S(di)

Q with the lines corresponding to
those in the second row. Parameter box Q coordinates: (q1, q2) = (20, 33).

The grid Q in Λ is given by (4.1) with m = 2, b1 = 8, b2 = 3, ζ1 = 29, ζ2 = 47, and
K1 = K2 = 50, while the grids X (d) in X = R2 are given for d = 1, . . . , 12 by (4.2) with n = 2,
a1 = a2 = −0.001, ξ1 = 320.057, and ξ2 = 224.041. Figure 2 indicates the evolution of the
sets S(d)

Q for d = 1, . . . , 12, where Q ∈ Q is given by (q1, q2) = (20, 33) in (4.1).

Remark 4.2. Observe that the diameter of |F (d)
Q (G)| depends on the diameter of β(G),

which in turn is dependent both on the diameter of G and Q. Currently, we fix the grid Q
and then iteratively refine X (d). Thus, the size of Q ∈ Q puts an upper bound on the number of
iterative steps that lead to a useful refinement of the outer approximation F (d)

Q : Y(d) ⇒ X (d).
A more sophisticated approach would involve an iterative method for both the phase space
and the parameter space.

Remark 4.3. By Proposition 3.1, SQ ⊂ |S(di)
Q | × Q for i = 0, . . . , l. Moreover, since S(di)

Q

is the maximal closed subgraph, and combinatorial Morse sets are closed subgraphs, each
combinatorial Morse set MQ(p) for p ∈ PQ is contained in S(di)

Q for each i = 0, . . . , �. If
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F(MQ(p)
) ⊂ BQ for all p ∈ PQ, then by Proposition 3.2, the neighborhoods |MQ(p)| isolate

Morse sets in a Morse decomposition of SQ. Moreover, since Morse sets are recurrent, the
condition F(MQ(p)

) ⊂ BQ implies that

(4.3) FQ

(FQ(MQ(p)) \MQ(p)
) ∩MQ(p) = ∅,

where FQ : X → X is an outer approximation. As described in the next section, this allows
us to readily compute the Conley index of Inv(|MQ|). If the condition F(MQ(p)

) ⊂ BQ is
not satisfied, then we cannot compute the index without extending our computation of FQ

outside of BQ, and this situation is reported in the output of our computations.

4.3. Conley–Morse graph computation. Given F (d�)
Q : S(d�)

Q ⇒ X (d�) the algorithm in

[1, section 2.2] is used to compute the Morse graph MG(FQ), where FQ := F (d�)
Q . To

produce the Conley–Morse graph over Q requires the computation of the Conley indices
of each Morse set. This is done using the algorithms in [14, 20] and the easy observation
that if MQ(p) is a combinatorial Morse set for FQ and the condition (4.3) is satisfied for
FQ : MQ(p) ∪ FQ(MQ(p)) ⇒ X , then

(MQ(p) ∪ FQ(MQ(p)), FQ(MQ(p)) \ MQ(p)
)

is a
combinatorial index pair as in [19, 20]. In practice, there are memory constraints associated
with these algorithms for computing the Conley index. In the computations performed for this
paper we did not attempt to compute the Conley index if the index pairs generated contained
more than 400,000 boxes.

Example 4.4. Returning to Example 4.1, the computed Conley–Morse graph over Q is
indicated in Figure 3(a). The three Morse sets MQ(pi), i = 2, 4, 5, indicated by the shaded
boxes have no nonzero eigenvalues. The numbers in parentheses indicate the number of
boxes that define each combinatorial Morse set MQ(pi). Remark 2.3.2 raises the possibility—
but does not imply—that MQ(pi) = ∅ for i = 2, 4, 5. This possibility is reinforced by the
observation that there are very few boxes in MQ(pi) for i = 2, 4, 5.

To test whether the Morse sets with trivial index may, in fact, be numerical artifacts, we
need to be able to study them at a finer level of resolution.

4.4. Combinatorial Morse set refinement. Observe that if MQ(p) is a combinatorial
Morse set determined by an outer approximation F (d)

Q , then the restriction F (d)
Q : MQ(p) ⇒

MQ(p) is a closed graph. Choose d′ greater than d. Define Y(d′)
Q to be the grid for |MQ(p)|,

construct F (d′)
Q : Y(d′)

Q ⇒ Y(d′)
Q , and compute S(d′)

Q , the maximal closed directed graph in F (d′)
Q .

By Proposition 3.1 all the recurrent dynamics of MQ(p) is contained in S(d′)
Q , because

MQ(p) = Inv
(|S(d′)

Q |, FQ

)
= Inv

(|MQ(p)|, FQ

)
.

4.5. Conley–Morse graph reduction test. The first step is to apply the Combinatorial
Morse Set Refinement algorithm with d = d� and d′ = d�+1. There are two possible outcomes.

1. S(d′)
Q = ∅. In this case MQ(p) = ∅, so we remove the vertex p and replace CMG(F (d�)

Q )
with its trivial reduction.

2. S(d′)
Q 	= ∅. In this case there are two other options: Either we halt and accept

CMG(F (d�)
Q ) as the appropriate Conley–Morse graph over Q, or we apply the Combi-

natorial Morse Set Refinement procedure to S(d′)
Q and repeat the process.
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(a) (b)

Figure 3. (a) The Conley–Morse graph computed over the parameter box Q defined by (q1, q2) = (20, 33)
and d� = 12. The three Morse sets indicated by the shaded boxes have no nonzero eigenvalues. (b) The trivially
reduced Conley–Morse graph over Q.

In practice there are two constraints to this procedure. The first is the number of iterations
before accepting during which a Morse set with trivial index remains in the Conley–Morse
graph. In the computations performed for this paper we stopped after three iterations. The
second arises from memory considerations. If the combinatorial Morse set consists of a large
number of boxes, then representing it on a finer grid can produce an impractically large set.
In the computations performed for this paper we did not apply the Combinatorial Morse Set
Refinement to sets consisting of more than 40,000 boxes.

Example 4.5. Continuing with Example 4.4, after applying one iteration of the Conley–
Morse Graph Reduction Test with d′ = 13 it is determined that MQ(pk) = ∅ for k = 2, 4, 5.
This leads to the trivially reduced Conley–Morse graph indicated in Figure 3(b). The sets
MQ(pk) for the reduced Conley–Morse graph over Q are indicated in Figure 4.

Recall that the desired database is a continuation graph. The first step is to create the
continuation classes. Observe that over each Q ∈ Q we have computed the trivially reduced
Conley–Morse graphs CMG(FQ). We still retain the information of the boxes {MQ(p) |
p ∈ PQ} which define the vertices of CMG(FQ) and of course the ordering >Q between the
vertices.

4.6. Continuation graph construction. Let Q0 and Q1 be grid elements such that Q0 ∩
Q1 	= ∅. In order to determine whether CMG(FQ0) and CMG(FQ1) are equivalent, we proceed
with the following steps:

1. If the cardinalities of PQ0 and PQ1 differ, then Q0 and Q1 do not belong to the same
continuation class.

2. If the cardinalities of PQ0 and PQ1 agree, then we construct the clutching graph (see
comment preceding Definition 3.5). If the clutching graph defines a directed graph iso-
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Figure 4. The sets MQ(pi), i = 0, 1, 2, 3, for the reduced Conley–Morse graph from Figure 3(b). The color
coding in the two figures matches; thus the green and red regions indicate attracting neighborhoods for fλ for
all λ in the parameter box Q defined by (q1, q2) = (20, 33) and d� = 12. The set MQ(p0) covers the origin and
consists of a single box at the lower left corner of the picture and is barely visible at this resolution.

morphism between the Morse graphs MG(FQ0) and MG(FQ1), then the Conley–Morse
graphs CMG(FQ0) and CMG(FQ1) over Q0 and Q1 belong to the same continuation
class.

3. The clutching graph can fail to define a directed graph isomorphism between the Morse
graphs MG(FQ0) and MG(FQ1) in several ways:

• The partial orders do not agree, in which case CMG(FQ0) and CMG(FQ1) are
not identified as belonging to the same continuation class.

• There is a vertex with no edge in the clutching graph, in which case CMG(FQ0)
and CMG(FQ1) do not belong to the same continuation class.

• There is a vertex with two or more edges in the clutching graph. Recall that
the edge (p, q) is in the clutching graph if MQ0(p) ∩ MQ1(q) 	= ∅. Assume the
edges at the vertex p are given by {(p, qi) | i = 1, . . . , I}. Then we apply several
iterations of the Combinatorial Morse Set Refinement algorithm to MQ0(p) and
MQ1(qi), i = 1, . . . , I. If, after performing this at each vertex for which there
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are multiple edges, the clutching graph reduces to a directed graph isomorphism,
then CMG(FQ0) and CMG(FQ1) belong to the same continuation class; otherwise
CMG(FQ0) and CMG(FQ1) belong to different continuation classes.

This procedure applied to all pairs of adjacent boxes in the parameter space results in
the set of continuation classes and the continuation graph which defines the database hav-
ing been determined. Note that although this procedure admits the situation in which two
Conley–Morse graphs are identified as belonging to the same continuation class even if the
clutching function does not define a directed graph isomorphism, in such a case the conclusion
of Proposition 3.7 still holds true, because the clutching function of the refined combinatorial
Morse decompositions does provide the isomorphism.

5. Database for the Leslie model with p = 0.7. In this section we present the results
of the computational procedure described in section 4 applied to the density-dependent Leslie
model (1.3) when p = 0.7. The procedure was implemented in an efficient program written in
C++. An interactive presentation of the results of computations which we did can be found
at http://chomp.rutgers.edu/database/, and the source code of the general purpose software
used to compute this database has also been made freely available.

Observe that fixing p = 0.7 results in a two-dimensional parameter space. We compute
the continuation graph over the parameter space

Λ := {(θ1, θ2) ∈ [8, 37] × [3, 50]} .

We choose an equipartitioned 50×50 grid for this parameter space given by (4.1) with m = 2,
b1 = 8, b2 = 3, ζ1 = 29, ζ2 = 47, and K1 = K2 = 50.

Recasting the Leslie model in the general form of (1.2) and recalling that x1 and x2

represent population sizes, we are interested in studying F : (R+)2 × Λ → (R+)2 × Λ, where
R+ := [0,∞).

There are two essential observations.
Remark 5.1. For λ = (θ1, θ2), define

Bλ :=
{
(x1, x2) ∈ (R+)2 | 0 ≤ x1 ≤ 10(θ1 + θ2)e−1, 0 ≤ x2 ≤ 10p(θ1 + θ2)e−1

}
.

A direct calculation shows that F 2
(
(R+)2 × Λ

) ⊂ B :=
⋃

λ∈Λ Bλ × {λ}. In particular, any
invariant set for the Leslie model on (R+)2 must lie in B. Furthermore, F (0, λ) = (0, λ) and
{0} × (0,∞) 	⊂ fλ

(
(R+)2

)
.

Remark 5.2. There are some technical reasons why we do not compute on the set B ⊂
(R+)2 × Λ as defined in Remark 5.1. First, F (0, λ) = (0, λ) so that B is not an isolating
neighborhood as a subset of R2 ×Λ. While this would not violate A1 restricted to (R+)2 ×Λ,
it does imply that the Conley index of the invariant set {0} computed restricted to B would
not be capable of measuring the hyperbolicity of the origin. Our approach to this problem is
pragmatic; we can explicitly compute the eigenvalues at the origin as

μ± =
θ1 ±

√
θ2
1 + 4pθ2

2
.

Observe that restricted to Λ, μ+ > 1. This information can then be used to compute the
index analytically. However, this is not the only reason not to compute on B.

http://chomp.rutgers.edu/database/
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As exhibited in the figures in the next section, the maximal invariant set in B comes very
close to the coordinate axes, even though it does not touch the axes by Remark 5.1. This
causes a problem again in isolating and computing the Conley index, even for some Morse sets
that do not include the origin, when the computations are restricted to the first quadrant.

Given these issues, we have chosen to compute on a larger rectangle

R := [−0.001, 320.056] × [−0.001, 224.040]

in R2 and consider the origin analytically. With respect to the dynamics on R2, the origin
undergoes a period-doubling bifurcation since μ− < −1 if θ2 > 1

pθ1 + 1 and −1 < μ− < 0
if θ2 < 1

pθ1 + 1. The eigenvector v+ associated with μ+ can be chosen to lie in the positive
orthant. The eigenvector associated with μ− lies outside the positive cone. Thus, this period-
doubling bifurcation has no direct impact on the ordering of the Morse decomposition of
Sλ := Inv(R, fλ). Combining this with the observation that μ+ > 1, one can conclude that
for any λ ∈ Λ the origin is always a repeller for Sλ.

These observations imply that, even though the condition A1′ does not hold near the
period-doubling bifurcation, this bifurcation plays no role in the construction of the contin-
uation classes. Moreover, the Conley index of the origin provides no information and hence
can be ignored in the database.

Using the grids defined in Example 4.1, we compute the continuation graph using the
iterative method in section 4.2 on the grids B(d) for d = 6, . . . , 12. The output is indicated in
Figure 5. Since there is no natural order on the continuation classes, we have labeled them
from “Class 1” to “Class 17,” according to their volume in parameter space, beginning with
the largest region.

The advantage of the continuation graph is that it is dimension-independent, and thus it
can be used to organize the information about the dynamics independent of the dimension of
the parameter space. In this example, however, the parameter space is two-dimensional; thus
we also present a continuation diagram in Figure 6 where each continuation class with more
than one parameter box is identified by some color. Thus, it is easy to see the sets Q(j) ⊂ Q
which define the parameter values for which the Conley–Morse graphs are valid.

The Conley–Morse graphs associated to the continuation classes, which are the basic items
of the database, are shown in the next subsection.

5.1. Catalogue of continuation classes. This section contains a list of Conley–Morse
graphs and Morse decompositions at selected parameter boxes for all the continuation classes
found for the two-dimensional Leslie model with two varying parameters, as discussed above.

Recall that each node in a Conley–Morse graph is labeled

pk : n → {∗} ,

where k labels the Morse set, {∗} indicates the nonzero eigenvalues, and n indicates the level
of homology of the index map on which these eigenvalues arise. If the kth Morse set has no
nonzero eigenvalues, then we write

pk : 0 .
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Figure 5. The continuation graph computed for the density-dependent Leslie population model (1.3) with
Λ = {θ = (θ1, θ2) ∈ [8, 37] × [3, 50]} and p = 0.7. The label of each node indicates the class number and the
number of boxes in Q(j), and the border color agrees with Figure 6.

Figure 6. Continuation diagram computed for the two-dimensional Leslie population model with θ1 ∈ [8, 37],
θ2 ∈ [3, 50], p = 0.7. Grid sizes: 50× 50 in the parameter space for (θ1, θ2) and 4096× 4096 in the phase space
[−0.001, 320.056] × [−0.001, 224.040].

Since, as indicated in Remark 5.2, the origin is an exceptional Morse set, we indicate it
with a shaded box and do not include any index information. The boxes are color-coded to
match the combinatorial Morse sets that are shown in the right panel.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATABASES FOR DYNAMICS 777

We do not consider the figures showing the combinatorial Morse sets to be part of the
database for the following reasons:

1. The boxes that make up the combinatorial Morse sets will, in general, be different for
each Q ∈ Q.

2. For higher dimensional problems, visualizing the combinatorial Morse sets becomes
impractical if not impossible.

3. Storing the combinatorial Morse sets becomes prohibitive for higher dimensional prob-
lems.

4. We do not have a method for directly querying the combinatorial Morse sets.

1. The Conley–Morse graph CMG(1) and the sets M(p) at the box (35, 32).

2. The Conley–Morse graph CMG(2) and the sets M(p) at the box (10, 13).
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3. The Conley–Morse graph CMG(3) and the sets M(p) at the box (18, 12).

4. The Conley–Morse graph CMG(4) and the sets M(p) at the box (20, 22).

5. The Conley–Morse graph CMG(5) and the sets M(p) at the box (0, 45).
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6. The Conley–Morse graph CMG(6) and the sets M(p) at the box (11, 11).

7. The Conley–Morse graph CMG(7) and the sets M(p) at the box (31, 22).

8. The Conley–Morse graph CMG(8) and the sets M(p) at the box (27, 39).
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9. The Conley–Morse graph CMG(9) and the sets M(p) at the box (31, 47).

10. The Conley–Morse graph CMG(10) and the sets M(p) at the box (47, 2).

11. The Conley–Morse graph CMG(11) and the sets M(p) at the box (22, 47).
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12. The Conley–Morse graph CMG(12) and the sets M(p) at the box (23, 49).

13. The Conley–Morse graph CMG(13) and the sets M(p) at the box (22, 45).

14. The Conley–Morse graph CMG(14) and the sets M(p) at the box (26, 0).
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15. The Conley–Morse graph CMG(15) and the sets M(p) at the box (27, 0).

16. The Conley–Morse graph CMG(16) and the sets M(p) at the box (29, 1).

17. The Conley–Morse graph CMG(17) and the sets M(p) at the box (31, 2).
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5.2. Querying the database. The purpose of the database is to shed light on the possible
dynamics exhibited over a wide range of parameter values. To be effective it must be able
to be queried. Recall that the database consists of the continuation graph as indicated in
Figure 5. Thus, we have the following information at our disposal.

(1) Associated with each node in the continuation graph we have
• the Conley–Morse graph with the information provided in the left panel of the

catalogue of continuation classes and
• the set of parameter values Q(k) associated with the continuation class. (We have

not listed Q(k) explicitly in this paper; however, this information is presented
graphically in Figure 6.)

(2) The edges of the continuation graph indicating which continuation classes intersect in
parameter space.

Observe that the information in (2) can be recovered from the information in (1). However,
we believe it is more efficient to tabulate this information once and store it, as opposed to
recomputing it every time that a query is performed.

The reader should also observe that this database is reasonably small. The continuation
graph has 17 nodes and 33 edges. Each node contains a directed graph, but these directed
graphs typically have only 3 or 4 nodes and edges. Thus, memory is not an issue with regard
to storage of the database, and queries of the database are fast. For the remainder of this
section we demonstrate how the database can be used to answer relevant questions about the
dynamics of the Leslie model.

5.2.1. Multiple basins of attraction. A fundamental question for any dynamical system
is whether there exist multiple basins of attraction. Our ability to detect basins of attrac-
tion is based on the following proposition, which follows from the fact that FQ is an outer
approximation [9].

Proposition 5.3. Assume A1. Furthermore, assume that S is a global attractor for F . Let
{MQ(p) | p ∈ PQ} be the set of combinatorial Morse sets for FQ. If q is minimal with respect
to the order >Q, that is, q ≯ p for all p ∈ PQ, then M(q) is a trapping region for FQ.

With regard to the density-dependent Leslie model, Remark 5.1 implies that S is the global
attractor for the dynamics restricted to (R+)2. Therefore, the existence of multiple disjoint
trapping regions in (R+)2 implies the existence of multiple distinct basins of attraction. Thus
the following query identifies regions in parameter space which support multiple basins of
attraction.

Which continuation classes have a Conley–Morse graph with more than one
minimal element?

The result of this query is {Q(k) : k = 4, 12, 13}, and each of the graphs has two minimal
elements. Thus Q̂ :=

⋃
k=4,12,13 Q(k) is a region in parameter space for which there exist at

least two basins of attraction. From the edges of the connection graph we see that this defines
a connected region (we can compute the homology of Q̂ to conclude that it is contractible).
Furthermore, there are 199 boxes in Q̂, which represents approximately 8% of parameter
space.

Remark 5.4. If we define Λ̂ ⊂ Λ to be the set of parameter values at which fλ possesses
multiple basins of attraction, then |Q̂| ⊂ int(Λ̂). The inclusion follows from the fact that Q̂ is
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determined by the outer approximation F , and thus if the attractors are too close together,
then they cannot be separated by F . However, given that in applications (1.3) is meant to
represent a biological population, one would expect noise in the system. Depending on the
variance in the noise and the error bounds associated with F , it is possible that |Q̂| is a more
appropriate measure of the experimentally observable attractors than Λ̂.

5.2.2. Persistence. The notion of persistence was introduced to account for the fact that
though a population model, such as the density-dependent Leslie model, is deterministic
and predicts that it is impossible to have extinction, in practice populations are subject to
stochastic perturbations. For a biologically motivated review, see [22], wherein the following
three notions of persistence are discussed. We recast these definitions to be specifically directed
toward the Leslie model considered here. Recall the sets Bλ for λ = (θ1, θ2) defined in
Remark 5.1, and further define

B̊λ :=
{
(x1, x2) ∈ (R+)2 | 0 < x1 ≤ 10(θ1 + θ2)e−1, 0 < x2 ≤ 10p(θ1 + θ2)e−1

}
.

1. f is persistent despite frequent small perturbations if there exist a state x ∈ B̊λ and
ε > 0 such that there are no ε-chains from x to 0.

2. f is persistent despite rare large perturbations if the origin is not in the closure of⋃ {ω(x) | x ∈ B̊λ}.
3. f is robustly persistent despite frequent small perturbations (respectively, robustly per-

sistent despite rare large perturbations) if all maps g sufficiently near f are persistent
despite frequent small perturbations (respectively, persistent despite rare large pertur-
bations).

It is easy to check that f2(Bλ, λ) ⊂ B̊λ∪{0}. Furthermore, by Remark 5.2 for the param-
eter range Λ covered by the database, the origin is always unstable, and thus for each λ ∈ Λ
the Leslie model satisfies all these notions of persistence (if one considers C1 perturbations of
the model).

This statement is no longer true, however, if one fixes the size of the allowed perturbations.
This can be seen from the database via the following query:

Which continuation classes have a Conley–Morse graph CMG(k) in which the
box G containing the origin belongs to a combinatorial Morse set M(p) which
is a minimal element of CMG(k)?

Observe that for CMG(10) the minimal Morse set is shaded indicating that the box containing
the origin belongs to M(0). Observe that Q(10) contains 43 boxes of parameter space and
is in the region of the parameter space Λ corresponding to large values of seed production of
the first age class.

5.2.3. Cycle sets. One of the goals of population dynamics is to explain fluctuations
in population levels. We now explain how the database can be used for this purpose. As
indicated in section 2.2, the Conley index can be used to understand the structure of the
dynamics within a Morse set. For a more complete description of how this can be done, the
reader is referred to [8, 13]. Here we concentrate on the existence of equilibria and periodic
orbits. We begin by stating the following result (see [8, 13]).
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Proposition 5.5. Let f : Rn → Rn be continuous. If K is a hyperbolic periodic orbit of f
with minimal period τ ∈ N and unstable manifold of dimension d, then the set of nonzero
eigenvalues of the index map occur on the dth homology groups and are

either
{

e2πi n
τ | n = 0, . . . , τ − 1

}
or

{
−e2πi n

τ | n = 0, . . . , τ − 1
}

.

The first case occurs if the action on the unstable manifold is orientation preserving and the
second case occurs if the action is orientation reversing.

Remark 5.6. The converse of Proposition 5.5 need not be true. A simple counterexample
can be found by considering the logistic equation fλ(x) = λx(1 − x) for λ ≈ 3.0 and the
isolating neighborhood N = [0.6, 0.7]. For λ < 3.0, the maximal invariant set is a unique
stable hyperbolic fixed point, and thus the nonzero eigenvalues are {1} on the 0th homology
group. However, for λ > 3.0 the maximal invariant set contains an unstable fixed point, a
stable periodic orbit of period two, and a connecting orbit from the fixed point to the periodic
orbit. Consider, however, the logistic map as a population model with a small amount of
noise. At parameter values λ ≈ 3.0, an observer would detect that orbits converge to the
neighborhood N but would not be able to distinguish the existence of the period 2 orbit.
Thus, from the point of view of an experimentalist, it is conceivable that it is more useful to
identify the invariant set inside N with a fixed point. This leads us to the following definition.

Definition 5.7. Let g : Z → Z be a continuous map. An isolated invariant set S is a T -
cycle set if there exist T disjoint, compact regions N1, . . . , NT such that S = Inv(N, g), where
N :=

⋃T
i=1 Ni is an isolating neighborhood, and

g(Ni) ∩ N ⊂ Ni+1, i = 0, . . . T − 1,

where N0 = NT . Moreover, S is an attracting T -cycle set if g(Ni) ⊂ Ni+1 for i = 0, . . . , T − 1.
Heuristically the dynamics associated with a T -cycle set could resemble that of a periodic

orbit with minimal period T , but subject to perturbations.
Proposition 5.8. Let MQ be a combinatorial Morse set obtained using a rectangular grid

on the phase space. Let MQ = Inv
(|MQ|, FQ

)
. Then the set of nontrivial eigenvalues of the

index map on the 0th level of homology is

either ∅ or
{
e2πi k

T | k = 0, . . . , T − 1
}

.

In the latter case, MQ is an attracting T -cycle set.
Proof. Since |MQ| is an isolating block [9], the work of [18] implies that there exists an

index pair for FQ of the form P = (P1, P0), where P1 = |MQ|.
Let MQ =

⋃J
j=1 Nj, where |Nj| are the disjoint components of P1. Let J = {1, . . . , J}.

Let I = {j ∈ J | |Nj | ∩ P0 = ∅}. Observe that

H0(N1, N0) ∼=
⊕
j∈J

H0

(|Nj |, |Nj | ∩ P0

) ∼=
⊕
j∈I

H0

(|Nj|, |Nj | ∩ P0

) ∼=
⊕
j∈I

Z[ξj],

where ξj is the generator of H0

(|Nj|, |Nj | ∩ P0

)
.
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Consider j ∈ I. Since (P1, P0) is an index pair and |Nj | has no exit set associated with
it, this implies that FQ

(|Nj |
) ⊂ |N�| for some � ∈ J . If � ∈ I, then FQP∗(ξj) = ξ�. If � /∈ I,

then FQP∗(ξj) = 0.
Since MQ is a combinatorial Morse set, it is an equivalence class of the recurrent set.

Thus, if I 	= J , then FQ∗ is nilpotent on the 0th level. In this case the set of nonzero
eigenvalues is ∅. If I = J , then FQP∗ restricted to the 0th level is a permutation matrix and
the associated eigenvalues are roots of unit with T = J .

This remark leads us to propose the following query for identifying attracting cyclic sets.

For a fixed τ ∈ {1, 2, 3, . . .}, which continuation classes have a Conley–Morse
graph whose minimal node has nonzero eigenvalues

{
e2πi n

τ | n = 0, . . . , τ − 1
}

at the 0th homology level?

The result of this query indicates that there is an attracting 1-cycle set for the parameter
values Q(k), k = 1, 2, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, an attracting 2-cycle set at Q(k), k = 5,
and an attracting 3-cycle set at Q(k), k = 3, 4, 7, 12, 13, 15.

Observe that this analysis also provides us with a better understanding of the possible
dynamics at those parameter values where we identified multiple basins of attraction Q(k),
k = 4, 12, 13. A T -cycle set is a very weak description of the dynamics. Careful numerical
studies such as those of [25] suggest the existence of chaotic dynamics at some of the parameter
values associated with the 3-cycle sets. Some of this finer information can be also obtained
using the Conley index. For example, each 2-cycle and 3-cycle set contains a period 2 and
period 3 orbit, respectively (though these orbits need not be stable). There are also Conley
index techniques for extracting entropy estimates and symbolic dynamics within Morse sets
[11, 23, 5, 4]. The relevance of this information is problem-dependent. However, to extract
this information will require refinements of the current algorithms being used to construct the
database.

As discussed in [3], attempting to match the dynamics of a deterministic model to exper-
imental data in which the presence of noise is to be expected requires an understanding of
not only the structure of attractors but also the unstable invariant sets. This is because with
sufficient time stochastic events will almost certainly push the trajectory away from the at-
tractors, in which case the dynamics will be determined by the stable and unstable manifolds
of the unstable invariant sets. In the context of the Leslie model, perhaps the most interesting
cases in which to study the unstable invariant sets is to identify the separatrices in the case
of multiple basins of attraction. This is done using the following type of query.

The minimal nodes in CMG(4) are 1, 0. Find the minimal node p such that
p > 1 and p > 0.

The result of this query is MQ(4)(2) for which the nonzero eigenvalues are
{
e2πi n

3 | n = 0, 1, 2
}
,

which suggests the behavior of a period 3 orbit with a one-dimensional orientable unstable
manifold.

6. Database for the Leslie model. To some extent section 5 is included for pedagogical
purposes. Our hope is that the continuation diagram, Figure 6, and the fact that there are
only 17 continuation classes provide the reader with a clear indication of the potential use and
applicability of the database. As discussed in the derivation of (1.3), the density-dependent
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Leslie model involves three parameters. The computational procedures described in section 4
are dimension-independent, and thus we can apply them to (1.3) over the parameter space

Λ := {(θ1, θ2, p) ∈ [8, 37] × [3, 50] × [0.5, 0.9]} .

We choose an equipartitioned 80 × 80 × 40 grid for this parameter space, given by (4.1) with
m = 3, b1 = 8, b2 = 3, b3 = 0.5, ζ1 = 29, ζ2 = 47, ζ3 = 0.4, K1 = K2 = 80, and K3 = 40.

Recasting the Leslie model in the general form of (1.2) and recalling that x1 and x2

represent population sizes, we are interested in studying F : (R+)2 × Λ → (R+)2 × Λ, where
R+ := [0,∞). Remarks 5.1 and 5.2 are still applicable, and thus, as explained in the previous
section, for all parameter values λ ∈ Λ we compute on

R := [−0.001, 320.056] × [−0.001, 288.051],

and the grids X (d) in X = R2 are given for d = 1, 2, . . . by (4.2) with n = 2, a1 = a2 = −0.001,
ξ1 = 320.057, and ξ2 = 288.052.

With this input we compute the continuation graph using iteratively generated grids X (d)

in the phase space for d = 6, . . . , 12.
Using the techniques outlined in section 4, a continuation graph was computed in 5,225

CPU hours on a cluster based on AMD Opteron 248 processors with 4 GB of memory per
node. This results in a continuation graph with 92 vertices and 263 edges. Because of the
size of the graph, its visual presentation is of limited use. Also, since we are working with
a three-dimensional parameter space and 256,000 parameter boxes, there is no hope of pre-
senting a continuation diagram in this paper. An attempt has been made at the Web site
http://chomp.rutgers.edu/database/ to use a series of two-dimensional pictures of slices of the
diagram, either as an animation or as a list of consecutive images, to visualize the continua-
tion diagram; an interested reader is kindly invited to explore these results further. Although
careful analysis of this kind of visualization may shed light on the dynamics of interest, we
would like to point out that this approach will not work in higher dimensions and is therefore
of limited use.

Independent of how complicated the continuation graph is, however, the queries from
section 5.2 can still be performed with equal ease and provide the following results:

• There are parameter values associated with multiple basins of attraction.
• At Q(k), k = 6, 10, 34, 37, 51, 58, 59 (comprising 18,632 boxes in parameter space),

one attractor is a 1-cycle set and the other attractor is a 3-cycle set. The index
information suggests (there is no theorem to guarantee this; however, visual in-
spection confirms this) that the separatrix between the basins of attraction has
the behavior of an unstable 3-cycle set.

• At Q(k), k = 15, 17 (comprising 221 boxes in parameter space), one attractor is
a 2-cycle set and the other attractor is a 3-cycle set. The index information also
suggests that the separatrix between the basins of attraction has the behavior of
an unstable 3-cycle set.

• Persistence is lost on the level of the computational grid for the parameter values in
Q(k), k = 7 (comprising 16,686 boxes in parameter space).

http://chomp.rutgers.edu/database/
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7. Final remarks. The presentation of this paper has focused on discrete time dynam-
ical systems. On a theoretical level it is clear that the same ideas apply to dynamics gen-
erated by differential equations. In particular, if one considers a parameterized family of
semiflows ϕ : [0,∞) × X × Λ → X and chooses a constant τ > 0, then the time-τ map
ϕτ = ϕ(τ, ·, ·) : X × Λ → X returns one to the setting of this paper. On a practical level
the issue is much more subtle. Typically, the semiflow is defined in terms of solutions to a
differential equation. Thus, constructing an outer approximation requires rigorous numerical
calculation of an enclosure of the forward translation of a grid element. There are tools for
doing this effectively (see, in particular, the work of the CAPD group [26]); however, the
computational cost is clearly much greater than the simple evaluation of a formula, as was
done in this paper. Furthermore, if τ is chosen to be small, then ϕτ represents a perturbation
of the identity. In order to identify interesting dynamics in this case, the diameter of the grid
on phase space will need to be extremely small. On the other hand, if τ is chosen to be large,
then not only does the cost of evaluation of ϕτ on grid elements become large, growing at
least proportionally to τ , but also for a reasonable computational cost, the error bounds on
the images of the grid elements will be extremely large. An important open problem is then
how to choose, a priori, an appropriate size for τ .

Another obvious topic which has been only briefly discussed is the relationship between the
continuation classes and classical bifurcation theory. As was pointed out in Remark 3.8, the
boundaries between the continuation classes need not represent boundaries between different
topological conjugacy classes of dynamics, and vice versa. Using standard bifurcation analysis
it is fairly easy to check that a period-doubling bifurcation occurs near the boundary between
continuation classes 2 and 5 (see Figure 6). Similarly, a saddle-node bifurcation to a period 3
orbit occurs within continuation class 6 as one passes from continuation class 2 to continuation
class 4. However, recognizing these bifurcations from the database and predicting how the
database will represent these bifurcations as a function of grid size in both phase space and
parameter space remains an open problem.
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