
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2010 Society for Industrial and Applied Mathematics
Vol. 48, No. 5, pp. 3449–3481

OPTIMAL CONTROL FOR THE THERMISTOR PROBLEM∗
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Abstract. This paper is concerned with the state-constrained optimal control of the two-
dimensional thermistor problem, a quasi-linear coupled system of a parabolic and elliptic PDE with
mixed boundary conditions. This system models the heating of a conducting material by means of
direct current. Existence, uniqueness, and continuity for the state system are derived by employing
maximal elliptic and parabolic regularity. By similar arguments the linearized state system is dis-
cussed, while the adjoint system involving measures is investigated using a duality argument. These
results allow us to derive first-order necessary conditions for the optimal control problem.

Key words. partial differential equations, optimal control problems, state constraints

AMS subject classifications. 35K55, 35M10, 49J20, 49K20

DOI. 10.1137/080736259

1. Introduction. In this paper we consider state-constrained optimal control of
the two-dimensional thermistor problem. In detail the optimal control problem under
consideration looks as follows:

(P)

minimize J(θ, ϕ, u) :=
1

2

∫
D

|θ(T )− θd|2 dx+
β

2

∫
ΣN

u2 ds dt

subject to (1.1)–(1.7)

and θ(x, t) ≤ θmax(x, t) a.e. in Q,

0 ≤ u(x, t) ≤ umax(x, t) a.e. on ΣN ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

where (1.1)–(1.7) refer to the following coupled PDE system consisting of the insta-
tionary heat equation and the quasi-static potential equation, which is also known as
the thermistor problem:

∂tθ − div(κ∇θ) = (σ(θ)∇ϕ) · ∇ϕ in Q := Ω× ]0, T [,(1.1)

ν · κ∇θ + αθ = αθl on Σ := ∂Ω× ]0, T [,(1.2)

θ(0) = θ0 in Ω,(1.3)

− div(σ(θ)∇ϕ) = 0 in Q,(1.4)

ν · σ(θ)∇ϕ = u on ΣN := ΓN× ]0, T [,(1.5)

ϕ = 0 on ΣD := ΓD× ]0, T [,(1.6)

ν · σ(θ)∇ϕ = 0 on (∂Ω\ΓN ∪ ΓD)× ]0, T [.(1.7)

Here θ is the temperature in a conducting material covered by the two-dimensional
domain Ω, while ϕ refers to the electric potential. The boundary of Ω is denoted by
∂Ω with unit normal ν facing outward from Ω. In addition, ΓD is a closed part of
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∂Ω, while ΓN is an open part of ∂Ω which is disjoint to ΓD. Moreover, T is a given
end time, Q = Ω× ]0, T [ is the space-time cylinder with boundary Σ = ∂Ω× ]0, T [ ,
and ΣN and ΣD are defined analogously. Furthermore, κ and σ represent heat and
electric conductivity. While κ is a given prescribed function, σ is allowed to depend on
the temperature. Moreover, α is the heat transfer coefficient, and θl and θ0 are given
boundary and initial data, respectively. The bounds in the optimization problem
(P) as well as the desired temperature θd are given functions, and β is the usual
Tikhonov regularization parameter. Finally, D is an open part of Ω, and u denotes
the control. The precise assumptions on the data in (P) and (1.1)–(1.7) will be
specified in section 2. In all of what follows, the system (1.1)–(1.7) is frequently also
called a state system.

The PDE system (1.1)–(1.7) models the heating of a conducting material by
means of a direct current induced on the part ΓN of the boundary. At the anode ΓD,
homogeneous Dirichlet boundary conditions are given, whereas one has insulation on
∂Ω \ ΓN ∪ ΓD. We point out that the different boundary conditions are essential
for a realistic modeling of the process. The objective of (P) is to adjust the induced
current u to minimize the L2-distance between the desired and the induced tempera-
tures at end time T . Moreover, the optimization is subject to pointwise control and
state constraints. The control constraints reflect a maximum heating power, while
the state constraints limit the temperature evolution to prevent possible damage,
e.g., by melting of the material. Similarly to the mixed boundary conditions, the
inequality constraints in (P) are essential for a realistic model, as demonstrated by
the numerical example within this paper. Problem (P) underlies various applications,
such as the heat treatment of steel by means of an electric current. The example
considered in the numerical part of this paper will deal with an application of this
type.

The state system (1.1)–(1.7) exhibits some nonstandard features, particularly due
to the quasi-linear coupling of the parabolic and the elliptic PDEs, the mixed bound-
ary conditions in (1.5)–(1.7), and the inhomogeneity in the heat equation (1.1). A
slightly different version of the thermistor problem is discussed by Chipot and col-
laborators (see [3] and the references therein). The system considered in [3] differs
from (1.1)–(1.7), since it accounts for temperature dependent heat conductivities but
does not allow for mixed boundary conditions and nonsmooth domains. The discus-
sion of the state system (1.1)–(1.7) heavily rests on maximum elliptic and parabolic
regularity results as derived in Gröger [17, 18]. Based on these results, it is possible
to prove continuity of the temperature as a solution of (1.1)–(1.7), which is essential
in the presence of pointwise state constraints as the inequality constraints on θ in
(P). In particular, the application of Gröger’s results implies the restriction to two-
dimensional domains, since comparable results for the three-dimensional case are not
available.

To the best of the authors’ knowledge, there are only a few contributions dealing
with the optimal control of the thermistor problem. We refer to [23, 10, 22], where,
similarly to our setting, two-dimensional problems are discussed. In [23], a complete
parabolic problem is discussed, while [22] considers the purely elliptic counterpart
to (1.1)–(1.7). In [10] and [28], the authors investigate a parabolic-elliptic system
similar to (1.1)–(1.7), assuming a particular structure of the controls. In contrast
to [23] and [22], mixed boundary conditions are considered in [10]. However, none
of these works considers pointwise state constraints and nonsmooth data. Thus, (P)
differs significantly from the above-mentioned papers.
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Problem (P) represents a quasi-linearly coupled state-constrained optimal control
problem. Such optimization problems are known to provide particular difficulties, es-
pecially due to the pointwise state constraints. In the semilinear case, the analysis of
state-constrained optimal control problems is already quite comprehensive; we men-
tion only [4, 7, 27, 6] and the references therein. Concerning the state-constrained
optimal control of semilinear elliptic PDEs with mixed boundary conditions, we re-
fer to the recent publication [20]. In contrast to the semilinear case, less is known
for the control of quasi-linear PDEs. Concerning quasi-linear, elliptic problems with
pointwise state constraints, we refer to [8]. Hence, the discussion of optimal control
of a quasi-linearly coupled PDE system in the presence of pointwise state-constraints
and mixed boundary conditions represents a genuine contribution to the theory. Here
we focus on the first-order analysis of (P). The derivation of second-order sufficient
conditions in the case of state-constrained boundary control of instationary problems
is still an open question, even in the semilinear case with smooth data.

The paper is organized as follows. After stating the detailed setting and assump-
tions in section 2, the state system is discussed in section 3. The existence of an
optimal solution is shown in section 4, while section 5 is devoted to the analysis of
the linearized state system. In section 6, the first-order analysis of (P) is developed,
beginning with the differentiability of the control-to-state operator in section 6.1, fol-
lowed by the discussion of the adjoint system and the derivation of the optimality
system in sections 6.2 and 6.3, respectively. Finally, some numerical examples for a
particular application problem covered by (P) are presented in section 7.

2. Notation and general assumptions. In all of what follows, Ω always de-
notes a domain in R

2, and ΓD is a closed part of its boundary. The space Cδ(Ω)
denotes the space of Hölder continuous functions, while Hs,q(Ω) (s ∈ [0, 1]) is the
space of Bessel potentials with differential index s and summability index q on the set
Ω. (Please notice that H1,q(Ω) coincides with the Sobolev space W 1,q(Ω).) Further,
we use the symbol Hs,q

D (Ω) for the closure of
{
ψ|Ω : ψ ∈ C∞

0 (R2), supp ψ ∩ ΓD = ∅
}

in Hs,q(Ω). The dual of H1,q
D (Ω) with respect to the L2(Ω) inner product is denoted

by H−1,q′
D (Ω) with 1

q + 1
q′ = 1. The dual of H1,q′(Ω) is denoted by H−1,q

Ω (Ω). If Ω is

understood, we abbreviate Hs,q, Hs,q
D , and H−1,q

Ω , respectively. The symbol S ⊂ R

always stands for an (open) interval. If X is a Banach space, its dual is denoted
by X∗. Moreover, W 1,r(S;X) is the set of those elements from Lr(S;X) whose dis-
tributional derivative also belongs to Lr(S;X). In this spirit, ∂

∂t always means the
distributional derivative with respect to time; see [1, Chap. III.1] or [13, Chap. IV].
Furthermore, Cτ (S;X) denotes the space of X-valued, Hölder continuous functions
on S. For all these spaces, defined on an interval S = ]0, T [ , the subscript 0 denotes
the corresponding subspace of functions which vanish in t = 0. All function spaces
under our consideration are real. For two Banach spaces X and Y we denote the
space of linear bounded operators from X into Y by B(X ;Y ). The norm in a Banach
space X will be always indicated by ‖ · ‖X . If X,Y are Banach spaces which form an
interpolation couple, then we denote by [X,Y ]τ the corresponding complex interpo-
lation space and by (X,Y )τ,r the real interpolation space; see [31]. Finally c denotes
a generic positive constant.

Now we are in position to state the main assumptions for the quantities in (P).
Please notice that, in order to obtain sharp results, here we mention just the assump-
tions on the quantities in (1.1)–(1.7) that are needed to obtain existence, uniqueness,
and continuity of solutions to the state system. For the Fréchet-differentiability of
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the associated solution operator one has to require more restrictive conditions, which
are formulated in Assumption 5.1; see section 5. We start with the conditions on the
domain Ω, as follows.

Assumption 2.1. The domain Ω ⊂ R
2 is a bounded Lipschitz domain (see [16]),

and ΓN is an open part of ∂Ω, whereas ΓD is a closed part of ∂Ω. Furthermore ΓN

and ΓD have positive measure and are disjoint to each other. In addition, the set
Ω ∪ (∂Ω \ ΓD) is regular in the sense of Gröger (cf. [17]), which means in detail that
for every point x ∈ ∂Ω there is an open neighborhood Ux ⊂ R

2 of x and a bi-Lipschitz
mapping Ψx : Ux → R

2 such that Ψx(x) = 0 ∈ R
2 and Ψx(Ux ∩ (Ω ∪ (∂Ω \ ΓD)))

equals either the open half cube C := {y ∈ R
2 : −1 < y1 < 1,−1 < y2 < 0} or C ∪Υ

or C ∪Υ0, where Υ is the upper plate of C and Υ0 is the left half of Υ.
Remark 2.2. In [20] it is shown that for Ω ∪ (∂Ω \ ΓD) ⊂ R

2 to be regular in the
sense of Gröger it is necessary and sufficient that Ω be a Lipschitz domain and ΓD

be a finite union of closed arc pieces from ∂Ω, where none of these degenerates to a
single point.

Assumption 2.3. On the quantities in the state system we impose the following:
(i) The function σ(x, θ) : Ω×R → B(R2) is bounded and measurable w.r.t. x for

all θ ∈ R and Lipschitz continuous w.r.t. θ for almost all x ∈ Ω; i.e.,

‖σ(x, θ̃)− σ(x, θ)‖B(R2) ≤ Lσ |θ̃ − θ| a.e. in Ω, ∀θ̃, θ ∈ R,

with a constant Lσ > 0. Moreover, for all θ ∈ R and almost all x ∈ Ω, σ(x, θ)
is a symmetric matrix. Finally, σ(x, θ) satisfies

inf
θ∈R

essinf
x∈Ω

2∑
i,j=1

σij(x, θ) ξi ξj ≥ σ0 ‖ξ‖R2 ∀ ξ ∈ R
2,

sup
θ∈R

‖σ(x, θ)‖L∞(Ω;B(R2)) ≤ σ1,

with constants 0 < σ0 ≤ σ1 <∞.
(ii) The function κ ∈ L∞(Ω;B(R2)) is symmetric for almost all x ∈ Ω and satisfies

the usual ellipticity condition; i.e.,

essinf
x∈Ω

2∑
i,j=1

κij(x) ξi ξj ≥ σ0 ‖ξ‖R2 ∀ ξ ∈ R
2.

(iii) θl ∈ L∞(]0, T [;L∞(∂Ω)).
(iv) α ∈ L2(∂Ω) with

∫
∂Ω α

2dω > 0 and α(x) ≥ 0 a.e. on ∂Ω.
(v) θ0 ∈ C(Ω̄).
Assumption 2.4. The remaining quantities in (P) fulfill the following:
(i) D is an open (not necessarily proper) subset of Ω.
(ii) θd ∈ L2(D).
(iii) θmax ∈ C(Q̄) with θ0(x) < θmax(x, 0) for all x ∈ Ω̄.
(iv) umax ∈ L∞(]0, T [;L2(ΓN )), umax(x, t) ≥ 0 a.e. on ΣN .
(v) β > 0.
Remark 2.5. We point out that the conditions in Assumptions 2.1, 2.3, and 2.4

are satisfied in many relevant cases. In particular, allowing for nonsmooth domains
is important in many applications.
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3. Analysis of the nonlinear state system. We start with a precise formu-
lation of system (1.1)–(1.7) and the corresponding definition of weak solutions to
(1.1)–(1.7). To this end, define for any coefficient function ρ ∈ L∞(Ω;B(R2))

(3.1) −∇ · ρ∇ : H1,2
D (Ω) → H−1,2

D (Ω)

by

(3.2) 〈−∇ · ρ∇w , z〉 :=
∫
Ω

ρ∇w · ∇z dx , w, z ∈ H1,2
D (Ω).

The restriction of these operators to the spaces H1,q
D (q ≥ 2) will also be denoted by

−∇ · ρ∇. Analogously, we define

(3.3) K : H1,2(Ω) → H−1,2
Ω (Ω)

by

(3.4) 〈Kw , z〉 :=
∫
Ω

κ∇w · ∇z dx+

∫
∂Ω

αwz dω , w, z ∈ H1,2(Ω),

where (here and in what follows) ω is the surface measure on ∂Ω.
Remark 3.1. The function

(3.5) ι0 : [0,∞[� t �→ e−tKθ0 ∈ L∞(Ω)

is continuous on ]0,∞[ and admits the estimate ‖e−tKθ0‖L∞ ≤ ‖θ0‖L∞; see Lemma
3.20 below.

Remark 3.2. For q ∈ [2, 4[ one has the embedding H1,q′(Ω) ↪→ L2+ε(∂Ω) for
an ε = ε(q) > 0 and H1,2(Ω) ↪→ Lm(∂Ω) for any finite m; see [16]. Assume now

� ∈ L2(∂Ω). If one sets m := 2(2+ε)
ε , then there is a constant c > 0 such that, for all

v ∈ H1,2(Ω) and all ψ ∈ H1,q′(Ω),∣∣∣∣
∫
∂Ω

� v ψdω

∣∣∣∣ ≤ ‖�‖L2(∂Ω) ‖v‖Lm(∂Ω) ‖ψ‖L2+ε(∂Ω)

≤ c‖�‖L2(∂Ω) ‖v‖H1,2(Ω) ‖ψ‖H1,q′ (Ω).

(3.6)

This estimate gives the following two results:
(a) Setting v ≡ 1, one can associate with the L2(∂Ω) function α θl(t) for almost

all t ∈ ]0,∞[ an element from H−1,q
Ω (Ω), provided q ∈ [2, 4[ . In this spirit we will

understand αθl ∈ L∞(]0, T [;L2(∂Ω)) as an element α̃ ∈ L∞(]0, T [;H−1,q
Ω (Ω)). In

the same way a function u ∈ L∞(]0, T [;L2(ΓN )) will be interpreted as an element
ũ ∈ L∞(]0, T [;H−1,q

D ) by setting

〈ũ(t) , v〉
H−1,q

D ,H1,q′
D

=

∫
ΓN

u(t) v ds, v ∈ H1,q′
D (Ω),

for almost all t ∈ ]0,∞[ .
(b) The estimate (3.6) shows that � ∈ L2(∂Ω) induces a (continuous) linear

mapping Φ� : H1,2(Ω) → H−1,q
Ω given by 〈Φ�v, ψ〉 :=

∫
∂Ω � v ψdω.

Now we are in a position to give the precise definition of solutions to (1.1)–(1.7)
in a weak sense.
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Definition 3.3. Let u be a given function in L∞(]0, T [;L2(ΓN )). We consider
(θ, ϕ) as a solution of (1.1)–(1.7) if there are indices q ∈ ]2, 4[ and r ∈ ]1,∞[ such that

ϕ ∈ L∞(]0, T [;H1,q
D ),(3.7)

ζ := θ − ι0 ∈ W 1,r
0 (]0, T [;H−1,q

Ω ) ∩ Lr(]0, T [;H1,q),(3.8)

and, additionally, the operator equations

∂ζ

∂t
+K ζ =

(
σ(ζ + ι0)∇ϕ

)
· ∇ϕ+ α̃,(3.9)

−∇ · σ(ζ + ι0)∇ϕ = ũ(3.10)

are satisfied.
Remark 3.4. The reader will verify that the boundary conditions imposed on

θ and ϕ in (1.2), (1.5), (1.7) are incorporated in this definition in the spirit of [13,
Chap. II.2] or [9, Chap. 1.2], for instance.

The main result, which we will show in this section, reads as follows.
Theorem 3.5. Suppose that u is given in L∞(]0, T [;L2(ΓN )). Then under As-

sumptions 2.1, 2.3, and 2.4 the following hold:
(i) There is a solution of (1.1)–(1.7) in the sense of Definition 3.3.
(ii) This solution is unique.
(iii) There is an index η > 0 such that for every T > 0 the function ζ even belongs

to Cη(]0, T [;Cη(Ω)).
(iv) If θ0 ∈ Hς,q(Ω) with ς > 2

q , then ι0 takes its values in a Hölder space Cη(Ω)

and is Hölderian in time when considered as Cη(Ω)-valued, which means ζ +
ι0 ∈ Cη(]0, T [;Cη(Ω)) if η > 0 is sufficiently small.

Remark 3.6. Please notice that the Hölder property of θ in case (iv) extends to
the boundaries, i.e., θ ∈ Cη([0, T ];Cη(Ω̄)), and naturally implies continuity of θ. This
is essential for the derivation of first-order necessary conditions for (P); see section 6.

3.1. Proof of Theorem 3.5. Let us start with a brief sketch of the proof. In
contrast to [3], where Schauder’s fixed point theorem is used to analyze the thermistor
problem, we here apply Banach’s contraction principle to prove existence and unique-
ness for (1.1)–(1.7). The associated fixed point mapping is constructed as follows:
Let J : θ �→ ϕ be the solution operator associated with the elliptic equation (3.10)
for given u, while K : f �→ θ is the solution operator of the parabolic equation (3.9)
with right-hand side f . (The precise definitions of J and K with their domains and
ranges, respectively, will be given later on; see Lemmas 3.9, 3.11, and 3.21.) Then a
solution of (1.1)–(1.7) in the sense of Definition 3.3 is equivalent to a fixed point of
the equation

θ = K(σ(θ̃)|∇J (θ̃)|2 + α̃).(3.11)

To prove contractivity of this combined mapping, we apply maximal elliptic and
parabolic regularity results in the spirit of Gröger [17, 18]. These results in particular
allow us to account for the mixed boundary conditions in the elliptic equation. The
contractivity will first be shown on sufficiently small time intervals. A repetition
argument then implies the assertion of Theorem 3.5 on the whole time interval.

The proof is organized as follows. We start with the discussion of the elliptic
equation. Afterwards the parabolic equation is investigated, starting with a summary
of some well-known results on semigroup theory and maximum parabolic regularity,
which are proven in the appendix. Finally the fixed point mapping is constructed,
and the contractivity is shown. Throughout the proof, let T0 and T1 be fixed but
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arbitrary numbers satisfying 0 ≤ T0 < T1 <∞. The interval ]T0, T1[ is denoted by S.
Moreover, by ιT0 we denote the mapping ι0(· − T0).

For the discussion of the elliptic equation, we employ a result of Gröger [17]. It
covers maximal regularity for elliptic equations.

Theorem 3.7. Assume that Ω∪ (∂Ω \ΓD) is regular in the sense of Gröger (see
Assumption 2.1 and Remark 2.2), and let ρ, ρ̄ be two positive constants, satisfying
ρ ≤ ρ̄.

(i) Then there is a q0 > 2 such that for every q ∈ [2, q0] and for all coefficient
functions ρ with ellipticity constant not smaller than ρ and ‖ρ‖L∞(Ω;B(R2)) ≤ ρ̄

the operator −∇·ρ∇ provides a topological isomorphism between H1,q
D (Ω) and

H−1,q
D (Ω).

(ii) For each q ∈ [2, q0] the numbers ‖(−∇ · ρ∇)−1‖B(H−1,q
D ;H1,q

D ) are uniformly

bounded within the class of all such coefficient functions ρ.
Now, let q̃0 be the number q0 from Theorem 3.7 which corresponds to ρ := σ0

and ρ̄ := σ1, where σ0 and σ1 are the constants taken from Assumption 2.3, and fix
a q from ]2,min(q̃0, 4)[ .

Remark 3.8. It is well known from the theory of mixed boundary value problems
that a number q0 ≥ 4 cannot be expected in the context of Theorem 3.7.

With Theorem 3.7 at hand, we can introduce the first part of our fixed point
mapping, namely the solution operator associated with the elliptic equation.

Lemma 3.9.

(i) The mapping J which assigns to any function ζ ∈ L∞(S;L∞(Ω)) the function
t �→ ϕt with ϕt given by

(3.12) −∇ · σ(ζ(t) + ιT0(t))∇ϕt = ũ(t)

takes its image in a ball B in L∞(S;H1,q
D (Ω)), the radius of which depends

only on ‖u‖L∞(S;L2(ΓN )) (not on θ0 ∈ L∞(Ω) and the interval S).
(ii) J : L∞(S;L∞(Ω)) → B is Lipschitz continuous.
Proof. (i) First, Remark 3.1 shows that ιT0 has globally in time the L∞(Ω)-

bound ‖θ0‖L∞(Ω). Moreover, for almost all t ∈ S, u(t) ∈ L2(ΓN ) defines an element

ũ(t) ∈ H−1,q
D (Ω); see Remark 3.2. Thus, the first assertion follows from Theorem 3.7

and the uniform boundedness of σ.
(ii) Let ζ, ζ̃ ∈ L∞(S;L∞(Ω)) be fixed but arbitrary. For almost all t ∈ S, we

estimate

‖ϕ̃t − ϕt‖H1,q
D

=
∥∥[(∇ · σ(ζ̃(t) + ιT0(t))∇)−1 − (∇ · σ(ζ(t) + ιT0(t))∇)−1

]
ũ(t)

∥∥
H1,q

D

=
∥∥∥(∇ · σ(ζ̃(t) + ιT0(t))∇)−1

(
∇ ·
(
σ(ζ̃(t) + ιT0(t))− σ(ζ(t) + ιT0(t))

)
∇
)

(∇ · σ(ζ(t) + ιT0(t))∇)−1ũ(t)
∥∥∥
H1,q

D

≤ ‖(∇ · σ(ζ̃(t) + ιT0 (t))∇)−1‖B(H−1,q
D ;H1,q

D )‖(∇ · σ(ζ(t) + ιT0(t))∇)−1‖B(H−1,q
D ;H1,q

D )∥∥(σ(ζ̃(t) + ιT0(t)) − σ(ζ(t) + ιT0(t))
)∥∥

L∞(Ω;B(R2))
‖ũ(t)‖H−1,q

D

≤ ‖(∇ · σ(ζ̃(t) + ιT0 (t))∇)−1‖B(H−1,q
D ;H1,q

D )‖(∇ · σ(ζ(t) + ιT0(t))∇)−1‖B(H−1,q
D ;H1,q

D )

Lσ ‖ζ̃ − ζ‖L∞(S;L∞(Ω))‖ũ(t)‖H−1,q
D

,

where Lσ denotes the Lipschitz constant of σ. Thus the proof is complete.
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Remark 3.10. Please notice that none of these estimates depends on the interval
S nor on the initial value θ0 ∈ L∞(Ω).

The next lemma incorporates the right-hand side of the parabolic equation (3.9)
into the fixed point mapping.

Lemma 3.11. The mapping

G : L∞(S;L∞(Ω)) � ζ �→ σ(ζ + ιT0)∇J (ζ) · ∇J (ζ) ∈ L∞(S;Lq/2(Ω))

is Lipschitzian, and its image is contained in a ball M ⊂ L∞(S;Lq/2(Ω)).
Proof. Suppose that ϕ, ϕ̃ ∈ H1,q

D (Ω) and θ ∈ R are fixed but arbitrary. Using
Minkowski’s and Hölder’s inequalities, we find(∫

Ω

|(σ(θ)∇ϕ) · ∇ϕ− (σ(θ)∇ϕ̃) · ∇ϕ̃|q/2
)2/q

≤
(∫

Ω

(
|(σ(θ)∇ϕ) · ∇(ϕ− ϕ̃)|+ |(σ(θ)∇(ϕ − ϕ̃)) · ∇ϕ̃|

)q/2)2/q

≤ σ1

[(∫
Ω

|∇ϕ̃|q dx
)1/q

+

(∫
Ω

|∇ϕ|q dx
)1/q

](∫
Ω

|∇(ϕ− ϕ̃)|q
)1/q

.

(3.13)

Now let ζ, ζ̃ ∈ L∞(S;L∞(Ω)) be fixed but arbitrary. Hence J (ζ),J (ζ̃) ∈ B ⊂
L∞(S;H1,q

D ). In view of (3.13), we then find

‖(σ(ζ + ιT0)∇J (ζ)) · ∇J (ζ) − (σ(ζ̃ + ιT0)∇J (ζ̃)) · ∇J (ζ̃)‖L∞(S;Lq/2)

≤ ‖(σ(ζ + ιT0)∇J (ζ)) · ∇J (ζ)− (σ(ζ + ιT0 )∇J (ζ̃)) · ∇J (ζ̃)‖L∞(S;Lq/2)

‖[σ(ζ + ιT0)− σ(ζ̃ + ιT0)]∇J (ζ̃) · ∇J (ζ̃)‖L∞(S;Lq/2)

≤ σ1
(
‖J (ζ)‖L∞(S;H1,q

D ) + ‖J (ζ̃)‖L∞(S;H1,q
D )

)
‖J (ζ) − J (ζ̃)‖L∞(S;H1,q

D )

+ Lσ‖ζ − ζ̃‖L∞(S;L∞(Ω))‖∇J (ζ̃) · ∇J (ζ̃)‖L∞(S;Lq/2).

Thus, Lemma 3.9 gives the first assertion.
Remark 3.12. An inspection of the above arguments shows that neither the

radius of M nor the Lipschitz constant depends on the initial value θ0 ∈ L∞(Ω) or
the interval S.

For the definition of the solution operator associated with the parabolic equation,
which is the last part of our fixed point mapping (cf. (3.11)), some essential results on
semigroup theory and maximal parabolic regularity are required. For the convenience
of the reader, we collect these in what follows. The associated proofs are postponed
to the appendix.

Lemma 3.13. Let A be a generator of an analytic semigroup on a Banach space
X and 0 /∈ spec(A) (so that the graph norm on D induced by A is equivalent to the
norm ‖A · ‖X). Then the following hold:

(i) For every x ∈ X and every T0, T1 ∈ ]0,∞[ the function

(3.14) ]T0, T1[� t �→ e−tAx ∈ D

is Lipschitzian.
(ii) If x ∈ [X,D]τ and ρ ∈ ]0, τ [ , then the function

(3.15) ]0, T [� t �→ e−tAx ∈ [X,D]ρ

is from Cτ−ρ(]0, T [; [X,D]ρ) for any finite T > 0.
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The proof of Lemma 3.13 is fairly standard and given in the appendix. Let us next
recall the concept of maximal regularity and point out some basic facts, as follows.

Definition 3.14. Let X be a Banach space and A be a closed operator with dense
domain D ⊂ X and S = ]T0, T1[⊂ R a bounded interval. Suppose r ∈ ]1,∞[ . Then
we say that A satisfies maximal parabolic Lr(S;X)-regularity if for any f ∈ Lr(S;X)
there is a unique function w ∈W 1,r

0 (S;X) ∩ Lr(S;D) which satisfies

(3.16)
dw

dt
+Aw = f.

Remark 3.15. The following results on maximal parabolic Lr(S;X)-regularity
are known:

(a) If A satisfies maximal parabolic Lr(S;X)-regularity, then it does so for any
other (bounded) interval (see [12]).

(b) If A satisfies maximal parabolic Lr(S;X)-regularity, then it satisfies maximal
parabolic Ls(S;X)-regularity for all s ∈ ]1,∞[ ; see [30] or [12].

(c) There is a continuous injection

E :W 1,r(S;X) ∩ Lr(S;D) ↪→ C(S̄; (X,D)1− 1
r ,r

);

see [1, Chap. III, Thm. 4.10.2] and [31, Chap. 1.8].
Lemma 3.16.

(i) Assume that A satisfies maximal parabolic Lr(S;X)-regularity. Let L be the
operator which assigns to any right-hand side f ∈ Lr(S;X) the solution w ∈
W 1,r

0 (S;X)∩Lr(S;D) of (3.16). Then the norm of L does not increase when
the interval length shrinks.

(ii) Let E0 denote the restriction of E to the subspace {ψ : ψ(T0) = 0}; then the
norm of E0 does not increase if the interval length shrinks.

As for the proof of Lemma 3.13, the corresponding proof is postponed to the
appendix. We continue with the following lemma. Its proof is based on the theory of
interpolation spaces and also given in the appendix.

Lemma 3.17.

(i) For any η ∈ ]0, 1− 1
r [ there is a continuous embedding

(X,D)1− 1
r ,r

↪→ [X,D]η

and, consequently, a continuous embedding

EC : C(S; (X,D)1− 1
r ,r

) ↪→ C(S; [X,D]η).

(ii) The norm of ECE0L does not increase if the interval length shrinks.
(iii) Assume τ ∈ ]0, 1 − 1

r [ . Then there is an index � such that W 1,r(S;X) ∩
Lr(S;D) even continuously embeds into C�(S; [X,D]τ ).

In order to apply the concept of maximal parabolic regularity to our situation,
we need the following result.

Theorem 3.18. There is a q1 ∈ ]2, 4[ such that for every q ∈ [2, q1] and every
S ⊂ ]0, T [ the operator K, defined in (3.4), satisfies maximal parabolic Lr(S;H−1,q

Ω )-
regularity with H1,q being the domain D of K.

Proof. The theorem is proved in [18] for the case r = q; namely, it is first shown
if only A = −∇·κ∇ and afterwards extended to perturbed operators A+F , provided
that F is a mapping from H1,2(Ω) into H−1,q

Ω (Ω); see Remark 5 of [18]. That this
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is indeed the case for the α-term in (3.4) was shown in Remark 3.2(b). The case of
arbitrary r ∈ ]1,∞[ is obtained by Remark 3.15(ii).

Remark 3.19. In all of what follows, let q be a fixed number in ]2,min(q̄0, q1, 4)[ ,
where q̄0 is the number q0 from Theorem 3.7 associated with σ0 and σ1.

The next result concerns an a priori estimate for the function ι0, as defined in
Remark 3.1. The associated proof is based on the theory of semigroups and presented
in the appendix.

Lemma 3.20. Let us (as above) denote the function [0,∞[� t �→ e−tKθ0 by ι0,
where K is as defined in (3.4). Moreover, let q > 0 be the number defined in the above
remark.

(i) If θ0 ∈ L∞, then ι0 admits the estimate ‖e−tKθ0‖L∞ ≤ ‖θ0‖L∞. For t > 0,
ι0(t) even belongs to H1,q and the restriction of ι0 to any interval ]T0, T1[ with
0 < T0 < T1 <∞ is Lipschitz continuous if ι0 is considered as H1,q-valued.

(ii) If θ0 ∈ Hς,q(Ω) with ς > 2
q , then ι0 takes its values in a Hölder space Cη(Ω)

and is Hölderian in time when considered as Cη(Ω)-valued.
Following the notation of Lemma 3.16, we denote by L the operator that assigns to

a given right-hand side f ∈ Lr(S;H−1,q
Ω ) the solution ζ ∈ W 1,r

0 (S;H−1,q
Ω )∩Lr(S;H1,q)

of

∂ζ

∂t
+Kζ = f.(3.17)

Since K satisfies maximal parabolic Lr(S;H−1,q
Ω )-regularity, L is well defined, and

the assertions of Lemmas 3.16 and 3.17 hold with X = H−1,q
Ω and D = H1,q.

Lemma 3.21. Let F denote the mapping

L∞(S,Lq/2) � f �→ f + α̃ ∈ Lr(S,H−1,q
Ω )

(via the embedding Lq/2 ↪→ H−1,q
Ω ), and define K := ECE0LF . Then K is Lipschitzian,

and its Lipschitz constant tends to zero as (T1 − T0) → 0, i.e., with shrinking time
interval length.

Proof. Let f, f̃ ∈ L∞(S,Lq/2) be given. The maximal parabolic regularity of K
then implies

‖K(f)−K(f̃)‖C(S;[X,D]η) ≤ ‖ECE0L‖B(Lr(S;X);C(S;[X,D]η)) ‖F(f)−F(f̃)‖Lr(S;H−1,q
Ω )

≤ c |T1 − T0|1/r ‖f − f̃‖L∞(S;Lq/2),

with a constant c independent of |S| = |T1 − T0| because of Lemma 3.17.
With the above results we can now prove the contractivity of the fixed point

mapping, as indicated at the beginning of this section. For this purpose, we consider
the combined mapping

(3.18) KG : L∞(]T0, T1[;L
∞(Ω)) → L∞(]T0, T1[;L

∞(Ω))

and show that it is strictly contractive if T1 − T0 is sufficiently small. Here G is the
operator, defined in Lemma 3.11. In order to prove contractivity, let us define the
number r as r > 2q

q−2 . Please notice that the interval ] 12 +
1
q , 1−

1
r [ is then not empty

due to q > 2. Assume now η ∈ ] 12 + 1
q , 1−

1
r [ ; then 2η − 1 > 2

q , and hence,

(3.19) [H−1,q, H1,q]η = H2η−1,q ↪→ Cς(Ω) ↪→ L∞(Ω)
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with ς := 2η − 1 − 2
q > 0; see [31, Chap. 4.6.1]. Due to Lemmas 3.11 and 3.21 and

(3.19), KG is well defined, and for all ζ, ζ̃ ∈ L∞(S;L∞(Ω)) there holds

‖KG(ζ) −KG(ζ̃)‖L∞(S;L∞(Ω)) ≤ c |T1 − T0|1/r ‖ζ − ζ̃‖L∞(S;L∞(Ω)).

Thus KG is contractive if T1 − T0 < ε, provided that ε is sufficiently small. There-
fore, the fixed point equation ζ = KG(ζ) must have a unique solution by Banach’s
contraction principle if ε is small enough. Please notice that ε depends neither on T0
nor on θ0. Moreover, by construction, this fixed point equation is equivalent to the
following system of operator equations on ]T0, T0 + ε[ :

∂ζ

∂t
+K ζ =

(
σ(ζ + ιT0)∇ϕ

)
· ∇ϕ+ α̃ in H−1,q

Ω ,

−∇ · σ(ζ + ιT0)∇ϕ = ũ in H−1,q
D .

(3.20)

Hence, the fixed point is identical with the unique solution

ϕ ∈ L∞(]T0, T0 + ε[;H1,q
D ),

ζ ∈ W 1,r
0 (]T0, T0 + ε[;H−1,q

Ω ) ∩ Lr(]T0, T0 + ε[;H1,q)

of (3.20). Choosing T0 = 0, the corresponding solution coincides with that of Def-
inition 3.3 with T = ε. The property θ ∈ Lr(]0, ε[;H1,q) ensures the existence of
a point t ∈ ]ε/2, ε] such that θ(t) ∈ H1,q(Ω) ↪→ L∞(Ω). Hence, we may start once
more, i.e., consider (3.20), this time with T0 = t. By the contractivity of KG, we
again obtain a unique solution of (3.20) on ]t, t+ ε[ , which together with the solution
on ]0, t[ represents the solution of (3.9) and (3.10) on ]0, t + ε[. Finally, repeating
this argument yields the unique existence of a solution according to Definition 3.3
on ]0, T [. Furthermore, part (iii) of Theorem 3.5 follows from Lemma 3.17(iii) and
(3.19), and part (iv) is obtained from Lemma 3.20(ii).

4. Existence of an optimal control. The existence of a (globally) optimal
control for problem (P) can be shown only under an additional hypothesis on the
feasible set; see Assumption 4.4 below. Nevertheless, let us already point out here
that this assumption is not necessary for the upcoming analysis, addressing first-order
necessary conditions for (P); cf. Remark 4.5. Since the state equation is nonlinear,
we can naturally not expect uniqueness of an optimal solution. We start with the
definition of the state space

Definition 4.1. Let q be the real number from section 3, hence q ∈ ]2,min{q̃0, q1}[ ,
while r satisfies 2q/(q − 2) < r ≤ ∞. Then the state space is defined by

Y :=W 1,r(]0, T [;H−1,q
Ω ) ∩ Lr(S;H1,q)

and thus coincides with the space given in Definition 3.3.
Definition 4.2. Based on Theorem 3.5, we introduce the control-to-state oper-

ators S : L∞(]0, T [;L2(ΓN )) → Y × L∞(]0, T [;H1,q
D ), S1 : L∞(]0, T [;L2(ΓN )) → Y ,

and S2 : L∞(]0, T [;L2(ΓN )) → L∞(]0, T [;H1,q
D ) by

S(u) =
(
S1(u)
S2(u)

)
=

(
θ(u)
ϕ(u)

)
,

where θ(u) and ϕ(u) denote the solution of (1.1)–(1.7) associated with u in the sense
of Definition 3.3. We point out that, in all of what follows, S is sometimes used with

D
ow

nl
oa

de
d 

07
/1

0/
19

 to
 1

43
.5

0.
47

.1
47

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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different ranges, for simplicity also denoted by S. Using S, we define the reduced
objective functional j : L∞(]0, T [;L2(ΓN )) → R by

j(u) := J(S1(u),S2(u), u),

where J is the objective functional of (P).
Definition 4.3. A function u ∈ L∞(]0, T [;L2(ΓN )) is called feasible for (P) if

it satisfies 0 ≤ u(x, t) ≤ umax(x, t) a.e. in Q and S1(u)(x, t) ≤ θmax(x, t) a.e. in Q.
Moreover, the set Uad is defined by

Uad := {u ∈ L∞(]0, T [, L2(ΓN )) : 0 ≤ u(x, t) ≤ umax(x, t) a.e. in ΣN}.

To show the existence of a globally optimal control, we need an additional as-
sumption, which is stated next.

Assumption 4.4. Let K be a given compact subset of L∞(]0, T [;H−1,q
D ). Instead

of (P), we consider the problem

(P̃)

minimize j(u)

subject to S1(u)(x, t) ≤ θmax(x, t) a.e. in Q

and u ∈ Kad ,

⎫⎪⎬
⎪⎭

where Kad = Uad ∩K.
Remark 4.5. We point out that the restriction of the set of controls to a compact

subset of L∞(]0, T [;H−1,q
D ) is necessary only to show existence of a globally optimal

solution. It is not needed for the derivation of first-order necessary optimality condi-
tions for (locally) optimal solutions as carried out in section 6. Thus we only require
this additional assumption within the scope of this section.

Before we are in the position to prove an existence result for (P̃), the continuity
of the fixed point mapping KG is addressed in the next lemma.

Lemma 4.6. Let KG be defined as in the previous section (cf. (3.18)), and indicate
the additional dependence of KG on the control u by (KG)u. Then, the following hold:

(i) The mapping

(4.1) L∞(]0, T [;H−1,q)× L∞([0, T [;L∞(Ω)) � (u, ζ) �→ (KG)u(ζ)

takes its values in C([0, T ]× Ω) and is continuous.
(ii) If M is a bounded set in L∞(]0, T [;H−1,q), then the set

{(KG)u(ζ) : u ∈M, ζ ∈ L∞([0, T [;L∞(Ω))}

is bounded in W 1,r
0 (]0, T [;H−1,q

Ω ) ∩ Lr(]0, T [;H1,q) and, by embedding, even
precompact in C([0, T ]× Ω).

Proof. The assertions are mainly obtained by slightly extending the considerations
in Lemma 3.9. For the convenience of the reader, we briefly sketch the arguments
leading to the first assertion. The continuity of (ζ, u) �→ ϕ is easily seen analogously
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to part (ii) of Lemma 3.9:

‖(∇·σ(ζ1 + ι0)(t)∇)−1u1(t)− (∇ · σ(ζ2 + ι0)(t)∇)−1u2(t)‖H1,q
D

≤
∥∥[(∇ · σ(ζ1 + ι0)(t)∇)−1 − (∇ · σ(ζ2 + ι0)(t)∇)−1

]
u2(t)

∥∥
H1,q

D

+ ‖(∇ · σ(ζ1 + ι0)(t)∇)−1(u1(t)− u2(t))‖H1,q
D

≤ ‖(∇ · σ(ζ1 + ι0)(t)∇)−1‖B(H−1,q
D ;H1,q

D )‖(∇ · σ(ζ2 + ι0)(t)∇)−1‖B(H−1,q
D ;H1,q

D )

Lσ ‖u2(t)‖H−1,q
D

‖ζ1(t)− ζ2(t)‖L∞(Ω)

+ ‖(∇ · σ(ζ1 + ι0)(t)∇)−1‖B(H−1,q
D ;H1,q

D )‖u1(t)− u2(t)‖H−1,q
D

.

Similarly to the proof of Lemma 3.11, the continuity of G w.r.t. (u, ζ) is derived.
Finally, the boundedness of K implies the assertion.

Theorem 4.7. Let Assumptions 2.1–2.4 and 4.4 be fulfilled, and assume that
there is at least one feasible control. Then there exists an optimal solution of problem
(P̃).

Remark 4.8. We point out that the assumption of existence of a feasible control in
the above theorem is fulfilled in many practically relevant situations. If, for instance,
K is given as in Remark 4.9 below, θ0 = θl ≡ 290 K, and θmax(x, t) ≥ 290 K a.e. in
Ω (cf. the numerical example in section 7), then u ≡ 0 is a feasible control, since we
clearly have S1(0)(x) ≡ 290 K in this case.

Proof of Theorem 4.7. Since there is a feasible control and the objective functional
J is clearly bounded from below, there is a minimizing sequence of feasible controls,
denoted by {un}. According to the compactness of K ⊂ L∞(]0, T [;H−1,q

D ), there

is a subsequence {uk} converging to an element ū ∈ K in L∞(]0, T [;H−1,q
D ). First

we show that ū can be interpreted as a function in Uad . To this end, observe that,
by possibly passing to a further subsequence, we may suppose that {uk} converges
weakly in L2(]0, T [×ΓN) to an element w. Since Uad is closed and convex, it is
weakly closed, giving in turn w ∈ Uad . Moreover, due to q < 4, the trace operator

maps H1,q′
D continuously into L2(∂Ω) ↪→ L2(ΓN ), such that w uniquely defines an

element w̃ ∈ L2(]0, T [;H−1,q
D ) via

〈w̃ , v〉L2(H−1,q),L2(H1,q′ ) :=

∫ T

0

∫
ΓN

w(x, t) τN (v)(x, t) ds dt , v ∈ L2(]0, T [;H1,q′
D ),

where τN : H1,q′
D → L2(ΓN ) is the trace operator on ΓN . Now, in view of the weak

convergence of {uk} in L2(]0, T [×ΓN) and its strong convergence in L2(]0, T [;H−1,q
D ),

we clearly obtain w̃ = ū in L2(]0, T [;H−1,q
D ). Hence, ū is indeed represented by the

L2(]0, T [×ΓN)-function w. We are thus allowed to identify ū ∈ K and w ∈ Uad as an
element ū ∈ Kad .

Next, we prove that the state system (3.9)–(3.10) is satisfied in the limit. As
depicted at the end of the previous section, for given u ∈ L∞([0, T [;L2(ΓN )), (3.9)–
(3.10) is fulfilled iff ζ is a fixed point of the mapping KG and ϕ is defined via the elliptic
equation (3.10). Denoting the fixed point of the mapping (KG)uk

by ζk, part (ii)
of Lemma 4.6 assures the existence of a subsequence {ζl} such that the sequence
{(KG)ul

(ζl)} = {ζl} converges in C([0, T ]×Ω) towards an element ζ̄. Hence, because
of (KG)ul

(ζl) − ζl = 0, part (i) of Lemma 4.6 yields (KG)ū(ζ̄) − ζ̄ = 0. Therefore, ζ̄
provides a solution of (3.9)–(3.10), belonging to the limit control ū.

In addition, since {ζl} converges to ζ̄ in C([0, T ] × Ω), θ̄ := ζ̄ + ι0 also satisfies
the state constraints; i.e., θ̄(x, t) ≤ θmax(x, t) a.e. in Q. Finally, since the objective
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is clearly weakly lower semicontinuous, (θ̄, ϕ̄, ū) represents an optimal solution of
(P̃).

Remark 4.9. Let us give an example for the set K from Assumption 4.4. Assume
that a (fixed) partition of [0, T ] into subintervals is given, defined by the points 0 =
t1 < t2 < · · · < tn+1 = T . Additionally, we fix the two constants α,C > 0. Then, the
set K from Assumption 4.4 is defined by

K := {u ∈ L∞(]0, T [;H−1,q
D ) : ‖u|(ti,ti+1)‖Cα(ti,ti+1;H

−1,q
D ) ≤ C ∀ i = 1, 2, . . . , n}.

Considering a sequence {vk} from K, it follows from [29, sec. 6, Thm. 3] that the
restrictions of the sequence to each of the intervals ]tj , tj+1[ admit a subsequence

which converges in L∞(]tj , tj+1[;H
−1,q
D ). Thus, one can extract a subsequence which

converges as a whole in L∞(]0, T [;H−1,q
D ). Moreover, it is easily shown that the limit

is again contained in K, so that K satisfies the conditions in Assumption 4.4.
This example shows that the setting of Theorem 4.7 allows us to consider controls

which are discontinuous in time. This is essential in the presence of state constraints,
since the optimality system does not imply continuity of optimal controls in this case;
see (6.47).

5. Analysis of the linearized state system. For the derivation of first-order
optimality conditions, it is essential to show the Fréchet-differentiability of the control-
to-state operator, mapping u to θ (see section 6.1 below). In preparation for a corre-
sponding theorem, we now consider the following linearized version of the thermistor
problem (1.1)–(1.7):

∂tθ
′ − div(κ∇θ′) = (σ′(θ)θ′∇ϕ) · ∇ϕ+ 2(σ(θ)∇ϕ) · ∇ϕ′ + f1 in Q,(5.1)

ν · κ∇θ′ + αθ′ = f2 on ∂Ω× ]0, T [ ,(5.2)

θ′(T0) = θ′0 in Ω,(5.3)

− div(σ(θ)∇ϕ′) = div(σ′(θ)θ′∇ϕ) + g1 in Q,(5.4)

ν · σ(θ)∇ϕ′ = −ν · σ′(θ)θ′∇ϕ+ g2 on ∂Ω \ ΓD× ]0, T [ ,(5.5)

ϕ′ = 0 on ΓD× ]0, T [ ,(5.6)

with given functions θ, ϕ, θ′0, fi, and gi, i = 1, 2, which are specified in the subsequent
section (cf. Assumption 5.1). Later, θ and ϕ will be the solution of the nonlinear state
system (1.1)–(1.7) associated with a reference control. In the following, we will show
that (5.1)–(5.6) admit a unique solution (θ′, ϕ′) which is Hölder continuous in space
and time. This result is then used to establish Fréchet-differentiability of the solution
operator associated with (1.1)–(1.7); see section 6.1.

5.1. Additional assumptions and existence result. Beside Assumptions 2.1
and 2.3, we need the following assumptions for the discussion of (5.1)–(5.6), in par-
ticular an additional hypothesis on σ.

Assumption 5.1. In addition to Assumptions 2.1 and 2.3, the quantities in (5.1)–
(5.6) satisfy the following:

(i) θ′0 ∈ L∞(Ω).
(ii) θ and ϕ are fixed functions in L∞(]0, T [;L∞(Ω)) and L∞(]0, T [;H1,q

D (Ω)) with
q ∈ ]2,min{q̃0, q1}], where q̃0 and q1 are the numbers from Theorems 3.18
and 3.7, respectively (such that q ∈ ]2, 4[).

(iii) The functions f1, f2, g1, and g2 define elements of Ls(]0, T [, H−1,q
Ω (Ω)) and

Ls(]0, T [, H−1,q
D (Ω)), respectively, where s ∈ ]q/(q − 2),∞].
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(iv) Each component of the matrix σ = σ(x, θ) is continuously differentiable
w.r.t. θ for almost all x ∈ Ω, and there is a constant C > 0 such that
‖σ′(x, 0)‖B(R2) ≤ C. Furthermore, the derivative of σ is locally Lipschitz con-
tinuous; i.e., for every real number M > 0, there exists a constant L(M) > 0
such that

‖σ′(x, θ̃)− σ′(x, θ)‖B(R2) ≤ L(M)|θ̃ − θ|

for all θ̃, θ ∈ [−M,M ] and almost all x ∈ Ω.
Similarly to Remark 3.2, one verifies that Assumption 5.1 (iii) is fulfilled if f1, g1 ∈

Ls(S;Lρ1(Ω)), f2 ∈ Ls(S;Lρ2(∂Ω)), and g2 ∈ Ls(S;Lρ2(∂Ω \ ΓD)) hold true with
ρ1 ≥ 2q/(q + 2) and ρ2 ≥ q/2. As before, we denote the associated functionals
by f̃i and g̃i, i = 1, 2, and define f̃ := f̃1 + f̃2 and g̃ := g̃1 + g̃2. Furthermore,
Assumption 5.1 implies that the Nemytskii-operator associated with σ′ is continuous
from L∞(]0, T [;L∞(Ω)) to L∞(]0, T [;L∞(Ω;B(R2))) and that there holds

‖σ′(θ)‖L∞(]0,T [;L∞(Ω;B(R2))) ≤ C + L(‖θ‖L∞(]0,T [;L∞(Ω))) ‖θ‖L∞(]0,T [;L∞(Ω)).(5.7)

Similarly to section 3.1, we set ι′T0
(t) = e−(t−T0)Kθ′0, t ≥ T0, such that ι′T0

exhibits
the same properties as ιT0 , in particular Lemma 3.20.

Definition 5.2. A pair (θ′, ϕ′) is considered as solution of (5.1)–(5.6) if there
exist indices q and s satisfying the conditions in Assumption 5.1(ii) and (iii) such that
ϕ′ and ζ′ := θ′ − ι′0 satisfy

ϕ′ ∈ Ls(]0, T [;H1,q
D ),(5.8)

ζ′ ∈
{
W 1,s

0 (]0, T [;H−1,q
Ω ) ∩ Ls(]0, T [;H1,q) if s <∞,

W 1,ρ
0 (]0, T [;H−1,q

Ω ) ∩ Lρ(]0, T [;H1,q) ∀ ρ <∞ if s = ∞,
(5.9)

and additionally the operator equations

∂tζ
′ +K ζ′ = (σ′(θ)(ζ′ + ι′0)∇ϕ) · ∇ϕ+ 2σ(θ)∇ϕ · ∇ϕ′ + f̃ ,(5.10)

−∇ · (σ(θ)∇ϕ′) = ∇ · (σ′(θ)(ζ′ + ι′0)∇ϕ) + g̃(5.11)

hold true.
Notice that, due to H1,q(Ω) ↪→ L∞(Ω), q > 2, we have σ′(θ(t))θ′(t) ∈ L∞(Ω) for

almost all t ∈ ]0, T [ such that ∇ · σ′(θ(t))θ′(t)∇ : H1,q
D → H−1,q

D is defined as in (3.2).
Theorem 5.3.

(i) There is a solution of (5.1)–(5.6) in the sense of Definition 5.2.
(ii) This solution is unique.
(iii) If s > 2q/(q − 2) and θ′0 ∈ Hς,q, ς > 2

q , then θ
′ ∈ Cη(]0, T [;Cη(Ω)).

5.2. Proof of Theorem 5.3. The proof basically follows the lines of the analysis
for the nonlinear state system investigated in section 3. Again, T0 and T1 are fixed
but arbitrary numbers satisfying 0 ≤ T0 < T1 < ∞, and S = ]T0, T1[. We start with
the investigation of the elliptic equation (5.11). Similar to Lemma 3.9, we find the
following.

Lemma 5.4. Let γ be defined by γ := 2q
q−2 , and g̃ be given in Ls(S;H−1,q

D ). Then,

the affine linear mapping H which assigns to every ζ′ ∈ Ls(S;Lγ) the solution ϕ′ of

−∇ · (σ(θ)∇ϕ′) = ∇ · (σ′(θ)(ζ′ + ι′T0
)∇ϕ) + g̃(5.12)
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is Lipschitz continuous from Ls(S;Lγ) to Ls(S;H1,2
D ). Moreover, the associated Lip-

schitz constant depends neither on S nor on θ′0.
Proof. First, we find 1/γ+1/q = 1/2 such that ι′T0

∈ L∞(S;L∞) (by Lemma 3.20),

ζ′ ∈ Ls(S;Lγ), and ϕ ∈ L∞(S;H1,q
D ) imply (ζ′ + ι′T0

)∇ϕ ∈ Ls(S;L2)2. Hence,

due to Theorem 3.7, (5.12) admits a unique solution in Ls(S;H1,2
D ) for every g̃ ∈

Ls(S;H−1,q
D ), since σ′(θ) ∈ L∞(S;L∞(Ω;B(R2))) according to (5.7). Moreover, one

has

‖ϕ̃′ − ϕ′‖Ls(S;H1,2
D )

≤ ‖ − (∇ · σ(θ))∇)−1‖L∞(S;B(H−1,2
D ;H1,2

D ))‖∇ · σ′(θ)(ζ̃′ − ζ′)∇ϕ‖Ls(H−1,2
D ).

For the latter norm, we find

‖∇ · σ′(θ)a(ζ̃′ − ζ′)∇ϕ‖H−1,2
D

= sup
‖v‖

H
1,2
D

=1

∣∣∣∣
∫
Ω

σ′(θ)(ζ̃′ − ζ′)∇ϕ · ∇v dx
∣∣∣∣

≤ sup
‖v‖

H
1,2
D

=1

‖σ′(θ)‖L∞‖ϕ‖H1,q
D

‖(ζ̃′ − ζ′)∇v‖Lq/(q−1)

≤ ‖σ′(θ)‖L∞‖ϕ‖H1,q
D

‖ζ̃′ − ζ′‖Lγ ,

with ‖σ′(θ)‖L∞ := ‖σ′(θ)‖L∞(Ω;B(R2)), which is also used in what follows. Together
with our assumptions on σ, ϕ, and θ, and Theorem 3.7(ii), this implies the asser-
tion.

Now, we turn to the right-hand side of (5.10).
Lemma 5.5. The mapping Q : Ls(S;Lγ) → Ls(S;H−1,q

Ω ) with γ as in Lemma 5.4,
given by

Q : ζ′ �→ (σ′(θ)(ζ′ + ι′T0
)∇ϕ) · ∇ϕ+ 2σ(θ)∇ϕ · ∇H(ζ ′) + f̃ ,

is Lipschitzian with a Lipschitz constant independent of S and θ′0.
Proof. Using Hölder’s inequality twice yields for the first part in the image of Q

‖(σ′(θ)(ζ̃′ − ζ′)∇ϕ) · ∇ϕ‖H−1,q
Ω

≤ sup
‖v‖

H1,q′=1

‖σ′(θ)‖L∞‖(∇ϕ)‖2Lq‖(ζ̃′ − ζ′)v‖L(q−2)/q

≤ sup
‖v‖

H1,q′=1

‖σ′(θ)‖L∞‖ϕ‖2
H1,q

D

‖ζ̃′ − ζ′‖Lγ‖v‖L2q/(q−2)

≤ c ‖σ′(θ)‖L∞‖ϕ‖2
H1,q

D

‖ζ̃′ − ζ′‖Lγ ,

where we have used the continuous embedding H1,q′(Ω) ↪→ L2q/(q−2)(Ω) for the last
estimate. The second part is estimated by

‖(σ(θ)∇ϕ) · ∇(H(ζ̃′)−H(ζ′))‖H−1,q
Ω

≤ sup
‖v‖

H1,q′=1

‖σ(θ)‖L∞‖ϕ‖H1,q
D

‖∇(ϕ̃′ − ϕ′)v‖Lq/(q−1)

≤ sup
‖v‖

H1,q′=1

‖σ(θ)‖L∞‖ϕ‖H1,q
D

‖ϕ̃′ − ϕ′‖H1,2
D

‖v‖L2q/(2−2)

≤ ‖σ(θ)‖L∞‖ϕ‖H1,q
D

‖ζ̃′ − ζ′‖Lγ ,
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where Lemma 5.4 gives the latter estimate. Based on these estimates, we obtain

‖Q(ζ̃′)−Q(ζ′)‖Ls(S;H−1,q
Ω )

≤
∫
S

(
‖(σ′(θ)(ζ̃′ − ζ′)∇ϕ) · ∇ϕ‖H−1,q

Ω
+ 2‖(σ(θ)∇ϕ) · ∇(ϕ̃′ − ϕ′)‖H−1,q

Ω

)s
dt1/s

≤
(
‖σ′(θ)‖L∞(S;L∞)‖ϕ‖2L∞(S;H1,q

D )

+ 2‖σ(θ)‖L∞(S;L∞)‖ϕ‖L∞(S;H1,q
D )

)
‖ζ̃′ − ζ′‖Ls(S;Lγ).

Thanks to our assumptions on σ, θ, and ϕ, the expression in the brackets does not
depend on S or θ′0.

Similarly to the operator KG in section 3, we now consider the combined mapping:

W := E∞LQ : Ls(S;Lγ) → L∞(S;Lγ),

where L : Ls(S;H−1,q
Ω ) →W 1,s

0 (S;H−1,q
Ω ) ∩ Ls(S;H1,q) is defined as in Lemma 3.16.

Moreover, E∞ denotes the embedding of W 1,s
0 (S;H−1,q

Ω ) ∩ Ls(S;H1,q) in L∞(S;Lγ),

which is well defined sinceW 1,s
0 (S;H−1,q

Ω )∩Ls(S;H1,q) ↪→ C(S̄;H2η−1,q), η < 1−1/s,
by (3.19), and H2η−1,q ↪→ Lγ for s > q/(q − 2), which is ensured by Assump-
tion 5.1(iii). Clearly, due to the above lemmas and the results of section 3, in particular
Lemma 3.16 and Lemma 3.17, W is Lipschitz continuous from Ls(S;Lγ) to L∞(S;Lγ)
with a Lipschitz constant LW independent of θ′0 and S. Furthermore, if we consider
the operator Ws = EsW , where Es : L∞(S;Lγ) → Ls(S;Lγ) denotes associated
embedding, we obtain for its Lipschitz constant

‖Ws(ζ̃
′)−Ws(ζ

′)‖Ls(S;Lγ) ≤
∫
S

‖
(
Ws(ζ̃

′)−Ws(ζ
′)
)
(t)‖sLγdt1/s

≤ |T1 − T0|1/s ‖W(ζ̃′)−W(ζ′)‖L∞(S;Lγ)

≤ LW |T1 − T0|1/s ‖ζ̃′ − ζ′‖Ls(S;Lγ)

such that Ws : Ls(S;Lγ) → Ls(S;Lγ) is contractive for sufficiently small T1 − T0.
The rest of the proof is completely analogous to the theory in the nonlinear case: By
construction, the fixed point equation

ζ′ = Wsζ
′ in Ls(S;Lγ)

is equivalent to the operator equation

(5.13)
∂tζ

′ +K ζ′ = (σ′(θ)(ζ′ + ι′T0
)∇ϕ) · ∇ϕ+ 2(σ(θ)∇ϕ) · ∇ϕ′ + f̃

−∇ · (σ(θ)∇ϕ′) = ∇ · (σ′(θ)(ζ′ + ι′T0
)∇ϕ) + g̃

on ]T0, T1[. Provided that T1 − T0 is small enough, Banach’s contraction principle
again yields the existence of a unique fixed point and consequently a solution,

ϕ′ ∈ Ls(]T0, T1[;H
1,q
D ),

ζ′ ∈W 1,s
0 (]T0, T1[;H

−1,q
Ω ) ∩ Ls(]T0, T1[;H

1,q),

of (5.13). By the same arguments as in section 3, one can repeat the fixed point tech-
nique to obtain a solution on the whole time interval ]0, T [ . As in the nonlinear case,
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the additional regularity of θ′, stated in Theorem 5.3(iii), follows from Lemma 3.17(iii),
(3.19), and Lemma 3.20. Notice that Lemma 5.4 just implies ϕ′ ∈ Ls(S;H1,2

D ). How-
ever, similarly to the proof of Lemma 5.4, one obtains

‖ϕ′‖Ls(S;H1,q
D ) ≤ ‖ − (∇ · σ(θ))∇)−1‖L∞(S;B(H−1,q

D ;H1,q
D ))

‖∇ · σ′(θ) θ′ ∇ϕ+ g̃‖Ls(H−1,q
D )

≤ c
(
‖σ′(θ)‖L∞(S;L∞)‖ϕ‖L∞(S;H1,q

D )‖ζ̃
′ + ι′0‖Ls(S;L∞)

+ ‖g̃‖Ls(S;H−1,q
D )

)
,

(5.14)

where we used Theorem 3.7(ii) for the last estimate. Now, by Lemma 3.20(i), we have
ι′0 ∈ L∞(S;L∞). Moreover, due to q > 2, ζ′ ∈ Ls(S;H1,q) implies ζ′ ∈ Ls(S;L∞)
such that ϕ′ ∈ Ls(S;H1,q

D ) according to Definition 5.2.
Remark 5.6. Suppose that (θ, ϕ) is a solution of the nonlinear state system (1.1)–

(1.7) in the sense of Definition 3.3. Then, (θ, ϕ) ∈ C([0, T ];C(Ω̄)) ∩ L∞(]0, T [, H1,q
D )

such that Assumption 5.1(ii) is fulfilled. Hence, Theorem 5.3 ensures the existence
of a unique solution (θ′, ϕ′) ∈ W 1,s(]0, T [;H−1,q

Ω ) ∩ Ls(]0, T [;H1,q) × Ls(S;H1,q
D ),

s > q/(q−2), for every right-hand side f̃ ∈ Ls(]0, T [;H−1,q
Ω ) and g̃ ∈ Ls(]0, T [;H−1,q

D ).
Moreover, Theorem 5.3 guarantees θ′ ∈ L∞(]0, T [;L∞), provided that s > 2q/(q −
2). If we further suppose that g̃ is more regular, i.e., g̃ ∈ Lρ(]0, T [;H−1,q

D ) with
ρ > s > 2q/(q − 2), then an estimate, analogous to (5.14), immediately implies
ϕ′ ∈ Lρ(]0, T [;H1,q

D ).

6. First-order necessary optimality conditions. We start the derivation of
first-order conditions with the Fréchet-differentiability of the control-to-state operator
S (cf. Definition 4.2) in section 6.1, which is one of the crucial points of the first-order
analysis for (P). However, using the analysis for the linearized equation, presented in
section 5, the implicit function theorem yields the desired differentiability of S as well
as of the Lagrange function, which is defined in a standard way; see Definition 6.4
below. Later, in sections 6.2 and 6.3, we reformulate the derivative of the Lagrange
function by introducing an adjoint PDE system which leads to first-order necessary
optimality conditions in the form of a Karush–Kuhn–Tucker (KKT)-type optimality
system.

For the subsequent analysis we redefine S as S := ]0, T [ . Recall that the state
space is given by Y = W 1,r(S;H−1,q

Ω ) ∩ Lr(S;H1,q) with r and s as defined in Defi-
nition 4.1.

Definition 6.1. We define

y(u) :=

(
ζ(u)
ϕ(u)

)
∈ Y × L∞(S;H1,q

D ),

where ζ(u) and ϕ(u) are the solutions of (3.9) and (3.10) associated with u. Moreover,
let A : Y × L∞(S;H1,q

D ) → Lr(S;H−1,q
Ω )× L∞(S;H−1,q

D ) be defined by

A(y) :=

(
∂tζ +Kζ − (σ(ζ + ι0)∇ϕ) · ∇ϕ

−∇ · σ(ζ + ι0)∇ϕ

)
.

Hence (1.1)–(1.7) is equivalent to

A(y) =

(
α̃
Iu

)
,(6.1)
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where I : L∞(S;L2(ΓN )) → L∞(S;H−1,q
D (Ω)) is defined by ũ = Iu (cf. Remark 3.2).

Therefore, in view of Theorem 3.5, (6.1) admits a unique solution for every u ∈
L∞(]0, T [;L2(ΓN )).

6.1. Differentiability of the control-to-state mapping. As stated above,
we will utilize the implicit function theorem to prove the Fréchet-differentiability of
S. To this end let us introduce the mapping T : Y ×L∞(S;L2(Γ)) → Lr(S;H−1,q

Ω )×
L∞(S;H−1,q

D ),

T (y, u) := A(y)−
(

α
Iu

)
,

and hence (6.1) is equivalent to T (y, u) = 0.
Theorem 6.2. The control-to-state operator S is continuously Fréchet-differen-

tiable from L∞(S;L2(ΓN )) to Y × L∞(S;H1,q
D ). Its derivative at the point u in the

direction h ∈ L∞(S;L2(ΓN )) is given by the solution of

∂tθ
′ − div(κ∇θ′) = (σ′(θ)θ′∇ϕ) · ∇ϕ+ 2(σ(θ)∇ϕ) · ∇ϕ′ in Q,(6.2)

ν · κ∇θ′ + αθ′ = 0 on Σ,(6.3)

θ′(0) = 0 in Ω,(6.4)

− div(σ(θ)∇ϕ′) = div(σ′(θ)θ′∇ϕ) in Q,(6.5)

ν · σ(θ)∇ϕ′ = −ν · σ′(θ)θ′∇ϕ+ h on ΣN ,(6.6)

ν · σ(θ)∇ϕ′ = −ν · σ′(θ)θ′∇ϕ on (∂Ω\ΓN ∪ ΓD)× ]0, T [ ,(6.7)

ϕ′ = 0 on ΣD,(6.8)

where (θ, ϕ) = S(u) and (θ′, ϕ′) ∈ Y × L∞(S;H1,q
D ) is a solution in the sense of

Definition 5.2.
Proof. We apply the implicit function theorem to T (y, u) to verify the asser-

tion. First, Theorem 3.5 implies that, for every u ∈ L∞(S;L2(ΓN )), there is a
y(u) ∈ Y × L∞(S;H1,q

D ) such that T (y(u), u) = 0. Next, we show that T is continu-

ously Fréchet-differentiable with respect to y from Y ×L∞(S;H1,q
D ) to Lr(S;H−1,q

Ω )×
L∞(S;H−1,q

D ). The Nemytskii-operator associated with σ is Fréchet-differentiable in
L∞(S;L∞(Ω;B(R2))) because of Assumption 5.1(iv), and thus, thanks to the con-
tinuous embedding, also from W 1,r(S;H−1,q

Ω )∩Lr(S;H1,q) to L∞(S;L∞(Ω;B(R2))).
Furthermore, the Nemytskii-operator Φ : L∞(S;Lq) → L∞(S;Lq/2), defined by

Φ(v)(x, t) := v(x, t)2,

is clearly continuously Fréchet-differentiable from L∞(S;Lq) to L∞(S;Lq/2). Conse-
quently, the chain rule implies the continuous Fréchet-differentiability of |∇ϕ|2 from
L∞(S;H1,q

D ) to L∞(S;Lq/2). Since all other constituents of T are linear and bounded
in their respective functions spaces, this gives the continuous Fréchet-differentiability
of T .

It remains to verify that ∂yT (y, u) is continuously invertible. Given an arbi-

trary g = (g1, g2) ∈ Lr(S;H−1,q
Ω ) × L∞(S;H−1,q

D ), the equation ∂yT (y, u)y′ = g is
equivalent to

∂tζ
′ +K ζ′ = (σ′(ζ + ι0)ζ

′∇ϕ) · ∇ϕ+ 2(σ(ζ + ι0)∇ϕ) · ∇ϕ′ + g1,

−∇ · (σ(ζ + ι0)∇ϕ′) = ∇ · (σ′(ζ + ι0)ζ
′∇ϕ) + g2,
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with y′ = (ζ′, ϕ′). We observe that it coincides with (5.10) and (5.11) with ι′0 = 0,
which of course corresponds to θ′0 = 0. Hence, Theorem 5.3 yields the unique existence
of y′ in Y ×L∞(S;H1,q

D ) (cf. Remark 5.6), giving in turn the invertibility of ∂yT (y, u).
Therefore, the implicit function theorem implies that y(u) is as smooth as T and thus
continuously Fréchet-differentiable. The particular form of S′ immediately follows
from

y′(u)h = −∂yT (y(u), u)−1∂uT (y(u), u)h = ∂yT (y(u), u)−1

(
0
Ih

)
.

Notice that I is linear and continuous and consequently Fréchet-differentiable.
Remark 6.3. Based on Theorem 5.3, system (6.2)–(6.8) is also uniquely solvable

if the inhomogeneity is only an element of Ls(S;H−1,q
D ). The associated solution is

also denoted by θ′ and ϕ′; i.e.,

(θ′, ϕ′) ∈W 1,s
0 (]0, T [;H−1,q

Ω ) ∩ Ls(]0, T [;H1,q)× Ls(]0, T [;H1,q
D )

solves

∂tθ
′ +K θ′ = (σ′(θ)θ′∇ϕ) · ∇ϕ+ 2(σ(θ)∇ϕ) · ∇ϕ′,(6.9)

−∇ · (σ(θ)∇ϕ′) = ∇ · (σ′(θ)θ′∇ϕ) + h̃.(6.10)

Notice, however, that the above proof cannot be carried out with this notion of solu-
tions to (6.2)–(6.8) since the Nemytskii-operator Φ is clearly not Fréchet-differentiable
from Ls(S;Lq) to Ls(S;Lq/2).

It is well known that the Lagrange multipliers associated with pointwise state
constraints are in general only regular Borel measures; see, for instance, Casas [5].
Hence we define the Lagrange function associated with (P) as follows.

Definition 6.4. The space of regular Borel measures on Q̄ is denoted by M(Q̄).
The Lagrange function L : L∞(S;L2(ΓN ))×M(Q̄) → R associated with (P) is given
by

L(u, μ) = j(u) + 〈S1(u)− θmax , μ〉C(Q̄),M(Q̄),

where j is the reduced objective functional defined in Definition 4.2.
Remark 6.5. Notice that L is well defined since, by the Riesz representation the-

orem, M(Q̄) can be identified with the dual space of C(Q̄) and since Theorem 3.5(iv)
implies that S1(u) = θ(u) ∈ C(Q̄).

Corollary 6.6. By the chain rule L is continuously Fréchet-differentiable w.r.t.
u from L∞(S;L2(ΓN )) to R, and its derivative at u ∈ L∞(S;L2(ΓN )) in direction
h ∈ L∞(S;L2(ΓN )) is given by

∂uL(u, μ)h =

∫
D

(θ(T )− θd) θ
′(T ) dx+ β

∫
ΣN

u h ds dt+ 〈θ′ , μ〉C(Q̄),M(Q̄)(6.11)

with θ′ = S ′
1(u)h = 〈(1, 0)�,S ′(u)h〉R2 ; i.e., y′ := (θ′, ϕ′) = S ′(u)h is the solution of

(6.2)–(6.8).
In the next section, we will reformulate the derivative of L by introducing an

adjoint state which is a solution of a PDE system, adjoint to (5.1)–(5.6), with measures
on the right-hand side.
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6.2. An adjoint equation involving measures. In the subsequent section,
we discuss the following equation, which is the system formally adjoint to (5.1)–(5.6):

−∂tϑ− div(κ∇ϑ) = (σ′(θ)ϑ∇ϕ) · ∇ϕ− (σ′(θ)∇ϕ) · ∇ψ + f1 in Q,(6.12)

ν · κ∇ϑ+ αϑ = f2 on ∂Ω× ]0, T [ ,(6.13)

ϑ(T ) = ϑT in Ω,(6.14)

− div(σ(θ)∇ψ) = −2 div(σ(θ)ϑ∇ϕ) + g1 in Q,(6.15)

ν · σ(θ)∇ψ = 2 ν · σ(θ)ϑ∇ϕ + g2 on (∂Ω\ΓD)× ]0, T [ ,(6.16)

ψ = 0 on ΓD× ]0, T [ .(6.17)

The regularity of the inhomogeneities f1, f2, g1, and g2 and of the terminal value ϑT
will be specified in the subsequent analysis. The analysis for (6.12)–(6.17), carried out
in the following, mainly relies on a duality argument in the spirit of Amann [2]; i.e.,
we use Theorem 5.3 to prove existence and uniqueness of solutions to (6.12)–(6.17).

Definition 6.7. Let q and s be real numbers that satisfy the conditions of As-
sumption 5.1, and denote their conjugate exponents by q′ and s′ such that

q′ ∈ ] max{q̃′0, q′1}, 2[ and s′ ∈ ]1, q/2[ ,

where q̃0 and q1 are the numbers from Theorems 3.7 and 3.18.
Definition 6.8. Let q, s ∈ R satisfy the conditions of Definition 6.7. Then, we

set

Ws′ :=W 1,s′(S;H−1,q′
Ω ) ∩ Ls′(S;H1,q′),

Ws,0 :=W 1,s
0 (S;H−1,q

Ω ) ∩ Ls(S;H1,q).

The associated dual spaces are denoted by the superscript ∗. Moreover, given r,m > 1,
we define

H1,m
1/r′,r := (H−1,m

Ω , H1,m)1−1/r,r,

where r′ satisfies 1/r′ = 1− 1/r.
Note that, due to the duality properties of real interpolation functors,

H1,q′

1/s,s′ = (H−1,q′
Ω , H1,q′)1/s,s′

= (H1,q′ , H−1,q′
Ω )1/s′,s′ =

(
(H−1,q

Ω , H1,q)1/s′,s
)∗

= (H1,q
1/s′,s)

∗(6.18)

holds true. Let us now define the notion of weak and strong solutions in the spirit of
Amann [2].

Definition 6.9. Let q and s be numbers according to Definition 6.7. Suppose

that the inhomogeneities f1 and f2 define an element f̃ of Ls′(S;H−1,q′
Ω ), whereas

g1 and g2 are identified with g̃ ∈ Ls′(S;H−1,q′
D ). Furthermore, let ϑT be given in

H1,q′

1/s,s′ . Then, a pair (ϑ, ψ) ∈ Ws′ × Ls′(]0, T [;H1,q′
D ) is said to be a strong solution

of (6.12)–(6.17) if it satisfies the following:
1. the operator equations

−∂tϑ+K∗ ϑ = (σ′(θ)ϑ∇ϕ) · ∇ϕ+ (σ′(θ)∇ϕ) · ∇ψ + f̃ ,(6.19) (
−∇ · (σ(θ)∇

)∗
ψ = −2∇ · (σ(θ)ϑ∇ϕ) + g̃,(6.20)
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2. the terminal condition

(6.21) ϑ(T ) = ϑT .

Clearly, since κ and σ(θ) are symmetric, K and −∇ · σ(θ)∇ are formally self-

adjoint such that K∗ : H1,q′ → H−1,q′
Ω and (−∇ · σ(θ)∇)∗ : H1,q′

D → H−1,q′
D are

defined analogously to (3.2) and (3.4), respectively. Notice, moreover, that

(6.22) Ws′ ↪→ C(S̄, (H−1,q′
Ω , H1,q′)1/s,s′) = C(S̄, H1,q′

1/s,s′)

(cf. Remark 3.15(iii)) such that (6.21) is well defined.
Definition 6.10. Let f1 and f2 define an element f̃ ∈W ∗

s,0, while g1 and g2 are

identified with g̃ ∈ Ls′(S;H−1,q′
D ). Moreover, ϑT is given in H1,q′

1/s,s′ with γ as defined

in Assumption 6.7. Then functions ϑ ∈ Ls′(S;H1,q′) and ψ ∈ Ls′(S;H1,q′
D ) are said

to be a weak solution of (6.12)–(6.17) if they fulfill∫
S

〈∂tΘ , ϑ〉
H−1,q

Ω ,H1,q′
Ω

dt+

∫
Σ

αΘϑ dω dt

+

∫
Q

(
κ∇Θ · ∇ϑ− (σ′(θ)∇ϕ) · ∇ϕΘϑ+ (σ′(θ)∇ϕ) · ∇ψΘ

)
dx dt

= 〈Θ , f̃〉Ws,0,W∗
s,0

+ 〈Θ(T ) , ϑT 〉H1,q

1/s′,s,H
1,q′
1/s,s′

∀ Θ ∈ Ws,0,

(6.23)

(
−∇ · (σ(θ)∇

)∗
ψ = −2∇ · (σ(θ)ϑ∇ϕ) + g̃.(6.24)

Note that the terminal condition is implicitly incorporated into this definition
via the term 〈Θ(T ) , ϑT 〉, which is well defined because of Ws,0 ↪→ C(S̄, H1,q

1/s′,s) and

(6.18) (cf. also [2, sect. 7]).
Remark 6.11. Since the set D := C∞

0 ([0, T [, C∞(Ω̄)) is dense in Ws,0, (6.23) can
equivalently be formulated with D as a test space.

Theorem 6.12.

(i) Under Assumption 6.7, for every right-hand side f̃ ∈W ∗
s,0, g̃ ∈ Ls′(S;H−1,q′

D )

and every ϑT ∈ H1,q′

1/s,s′ , there exists a unique weak solution to (6.12)–(6.17)

in the sense of Definition 6.10.

(ii) If the f̃ is more regular, i.e., f̃ ∈ Ls′(S;H−1,q′
Ω ), then the weak solution is a

strong solution according to Definition 6.9.
Proof. We mainly follow the lines of [2]. Let us start with the derivative of the

operatorA as given in Definition 6.1. As shown in the proof of Theorem 6.2, A is con-
tinuously Fréchet-differentiable from Y×L∞(S;H1,q

D ) to Lr(S;H−1,q
Ω )×L∞(S;H−1,q

D ),
and its derivative at y := (θ, ϕ) in direction w := (Θ,Φ) is given by

A′(y)w =

(
∂tΘ+K Θ− (σ′(θ)Θ∇ϕ) · ∇ϕ− 2(σ(θ)∇ϕ) · ∇Φ

−∇ · (σ(θ)∇Φ) −∇ · (σ′(θ)Θ∇ϕ)

)
.(6.25)

In view of Theorem 5.3, A′(y) is also well defined and, by the open mapping theorem,
continuously invertible when considered as an operator from Ws,0 × Ls(S;H1,q

D ) to

Ls(S;H−1,q
Ω ) × Ls(S;H−1,q

D ) (cf. also Remark 6.3). For simplicity let us denote this

operator also by A′(y). Now, set p = (ϑ, ψ) ∈ Ls′(S;H1,q′
Ω ) × Ls′(S;H1,q′

D ). Then
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the adjoint operator A′(y)∗ : Ls′(S;H1,q′)× Ls′(S;H1,q′
D ) →W ∗

s,0 × Ls′(S;H−1,q′
D ) is

given by

〈A′(y)∗p , w〉 = 〈p , A′(y)w〉

=

∫
S

〈∂tΘ , ϑ〉H−1,q
Ω ,H1,q′ dt+

∫
Σ

αΘϑ dω dt

+

∫
Q

(
κ∇Θ · ∇ϑ− (σ′(θ)∇ϕ) · ∇ϕΘϑ+ (σ′(θ)Θ∇ϕ) · ∇ψ

)
dx dt

+

∫
Q

(
(σ(θ)∇Φ) · ∇ψ − 2(σ(θ)∇ϕ) · ∇Φϑ

)
dx dt.

(6.26)

As stated above, in view of the open mapping theorem, Theorem 5.3 implies that
A′(y) is continuously invertible, giving in turn

(A′(y)∗)−1 ∈ B(W ∗
s,0 × Ls′(S;H−1,q′

D ), Ls′(S;H1,q′)× Ls′(S;H1,q′
D )).

Hence, for every right-hand side b̃ ∈ W ∗
s,0 × Ls′(S;H−1,q′

D ), there is a unique solution
of the equation

〈A′(y)∗p , w〉 = 〈b̃ , w〉 ∀ w ∈ Ws,0 × Ls(S;H1,q
D )(6.27)

in Ls′(S;H1,q′)× Ls′(S;H1,q′
D ). Now suppose that b̃ takes the form

〈b̃ , w〉 = 〈Θ , f̃〉Ws,0,W∗
s,0

+ 〈Θ(T ) , ϑT 〉H1,q

1/s′,s,H
1,q′
1/s,s′

+ 〈Φ , g̃〉
Ls(S;H1,q

D ),Ls′(S;H−1,q′
D )

,

where ϑT clearly defines an element of W ∗
s,0 due to the above-mentioned embeddings.

If one inserts this definition of b̃ and test functions (Θ, 0) and (0,Φ), respectively, with
arbitrary Θ and Φ, into (6.27), then the definition of A′(y)∗ in (6.26) immediately
yields part (i) of the theorem.

Next assume that f̃ is more regular, i.e., f̃ ∈ Ls′(S;H−1,q′
Ω ), and insert Θ(x, t) =

z(t) v(x) with z ∈ C∞
0 [0, T ] and v ∈ H1,q(Ω) as test functions into (6.23) such that〈∫

S

∂tz ϑ dt , v

〉
H−1,q′

Ω ,H1,q

=

〈∫
S

(−K∗ ϑ+ (σ′(θ)ϑ∇ϕ) · ∇ϕ+ (σ′(θ)∇ϕ) · ∇ψ + f̃) z dt , v

〉
H−1,q′

Ω ,H1,q

.

Since v was chosen arbitrary, we have for the distributional derivative of ϑ

∂tϑ(z) = −
∫
S

∂tz ϑ dt

= −
∫
S

(−K∗ ϑ+ (σ′(θ)ϑ∇ϕ) · ∇ϕ

+ (σ′(θ)∇ϕ) · ∇ψ + f̃) z dt ∀ z ∈ C∞
0 [0, T ].

Thus, ∂tϑ is a regular distribution generated by

f := K∗ ϑ− (σ′(θ)ϑ∇ϕ) · ∇ϕ− (σ′(θ)∇ϕ) · ∇ψ − f̃ .
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Consequently, if we identify ∂tϑ with f, (6.19) is obtained. Moreover, this immediately

implies that ∂tϑ is an element of Ls′(S,H−1,q′
Ω ) due to the regularity of f. Hence we

obtain ϑ ∈ Ws′ , i.e., the regularity of a strong solution. Thus, with regard to [2,
Prop. 5.1], we are allowed to integrate by parts w.r.t. time and obtain∫

S

〈−∂tϑ+K∗ϑ− (σ′(θ) ϑ∇ϕ) · ∇ϕ− (σ′(θ)∇ϕ) · ∇ψ − f̃ , Θ〉
H−1,q′

Ω ,H1,qdt

+ 〈Θ(T ) , ϑ(T )− ϑT 〉H1,q

1/s′,s,H
1,q′
1/s,s′

= 0 ∀ Θ ∈Ws,0.

In view of (6.19), this finally gives the terminal condition (6.21).
Now, let s > 2q/(q − 2) such that

H1,q
1/s′,s = (H−1,q

Ω , H1,q)1−1/s,s ↪→ C(Ω̄)

(cf. Lemma 3.17(i) and (3.19)). In addition, Remark 3.15(iii) yields Ws,0 ↪→ C(Q̄).
Since both embeddings are dense, we therefore have

M(Ω̄) ↪→ H1,q′

1/s,s and M(Q̄) ↪→W ∗
s,0,

provided that s > 2q/(q − 2). Here, M(Ω̄) and M(Q̄) denote the spaces of regular
measures on Ω̄ and Q̄, respectively (see Definition 6.4). As in the case of M(Q̄) �
C(Q̄)∗, we identify M(Ω̄) with the dual of C(Ω̄) by the Riesz representation theorem.
Consequently, Theorem 6.12 implies the following.

Corollary 6.13. Assume that μ ∈ M(Q̄) is given and that the restriction of μ
on 0 × Ω̄ is zero. Moreover, denote the restrictions of μ on Q, Σ := ∂Ω× ]0, T [ , and
T × Ω̄ by μQ, μΣ, and μT . Then the system

−∂tϑ− div(κ∇ϑ) = (σ′(θ)ϑ∇ϕ) · ∇ϕ− (σ′(θ)∇ϕ) · ∇ψ + μQ in Q,(6.28)

ν · κ∇ϑ+ αϑ = μΣ on ∂Ω× ]0, T [ ,(6.29)

ϑ(T ) = μT in Ω,(6.30)

− div(σ(θ)∇ψ) = −2 div(σ(θ)ϑ∇ϕ) in Q,(6.31)

ν · σ(θ)∇ψ = 2 ν · σ(θ)ϑ∇ϕ on (∂Ω\ΓD)× ]0, T [ ,(6.32)

ψ = 0 on ΓD× ]0, T [(6.33)

admits a unique weak solution (ϑ, ψ) ∈ Ls′(S;H1,q′)× Ls′(S;H1,q′
D ), s′ < 2q/(q + 2),

in the sense of Definition 6.10.
Remark 6.14. We note that, if measures appear on the right-hand side of the

adjoint equation, then ϑ ∈ Ls′(S;H1,q′) such that no weak differentiability of the
adjoint state w.r.t. time can be expected in this case.

6.3. Derivation of the optimality system. Now we are in a position to state
the first-order necessary optimality conditions for (P). Let us begin with the notion
of local optimality, as follows.

Definition 6.15. A function ū ∈ L∞(S;L2(ΓN )) is called locally optimal for
(P) if there is an ε > 0 such that j(ū) ≤ j(u) holds for all feasible u ∈ L∞(S; (ΓN ))
with ‖u− ū‖L∞(S;L2(ΓN )) ≤ ε.

Recall that the Lagrange function is Fréchet-differentiable w.r.t. u by Corol-
lary 6.6. Hence we continue with the definition of Lagrange multipliers associated
with the state constraints in (P).
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Definition 6.16. Let ū be a locally optimal solution of (P); then μ ∈ M(Q̄) is
said to be a Lagrange multiplier associated with the state constraints in (P) if

∂uL(ū, μ)(u− ū) ≥ 0 ∀u ∈ Uad ,(6.34)

μ ≥ 0,(6.35)

〈θ − θmax , μ〉C(Q̄),M(Q̄) = 0(6.36)

hold true.
Here, (6.35) is equivalent to

〈y , μ〉C(Q̄),M(Q̄) ≥ 0 ∀ y ∈ {y ∈ C(Q̄) | y(x, t) ≥ 0 ∀ (x, t) ∈ Q̄}.(6.37)

Moreover, (6.36) is referred to as the complementary slackness conditions in all that
follows. The following theorem states the first-order necessary optimality conditions
for (P), i.e., the existence of Lagrange multipliers in the sense of Definition 6.16. It
is, for instance, proven by Casas in [5].

Theorem 6.17. Assume that ū is a locally optimal solution of (P) and satisfies
the following linearized Slater condition: There exist an interior point u0 ∈ Uad and
a real number δ > 0 such that

(6.38) S1(ū)(x, t) + S ′
1(ū)(u0 − ū)(x, t) ≤ θmax(x, t)− δ ∀ (x, t) ∈ Q̄.

Then, there exists a Lagrange multiplier μ ∈ M(Q̄) according to Definition 6.16 such
that (6.34)–(6.36) are satisfied.

It is well known that a certain constraint qualification is needed to ensure the
existence of Lagrange multipliers, such as the linearized Slater condition (6.38) (cf.
also Zowe and Kurcyusz [32]). Notice that this condition requires us to consider the
state constraints in C(Q̄). The Lagrange multipliers are elements of the associated
dual space and therefore in general only regular Borel measures, i.e., μ ∈ M(Q̄).
Next, let us transform (6.34)–(6.36) into the optimality system of (P) by introducing
the adjoint state. To that end, let us consider a fixed but arbitrary local optimum
ū with associated state ȳ = (θ̄, ϕ̄). Moreover, we again denote the derivative of S in
an arbitrary direction h ∈ L∞(S;L2(Γ)) by y′; i.e., y′ = S ′(ū)h. Now, consider h
as an element of Ls(S;H−1,q

D ) with q and s according to Definition 6.7, i.e., q ∈ ]2,
min{q̃0, q1}[ and s ∈ ]q/(q − 2),∞]. Then y′ clearly also solves

A′(ȳ)y′ =
(

0
h

)
,(6.39)

where, as in the proof of Theorem 6.12, A′(ȳ) is considered as an operator fromWs,0×
Ls(S;H1,q

D ) to Ls(S;H−1,q
Ω ) × Ls(S;H−1,q

D ) (which is well defined and continuously
invertible; cf. also Remark 6.3). Note that, according to Definition 6.8, Ws,0 is given

by Ws,0 =W 1,s
0 (S;H−1,q

Ω ) ∩Ls(S;H1,q). Now, define p1 = (ϑ1, ψ1) as the solution of

−∂tϑ1 − div(κ∇ϑ1) = (σ′(θ̄)ϑ1∇ϕ̄) · ∇ϕ− (σ′(θ̄)∇ϕ) · ∇ψ1 in Q,(6.40)

ν · κ∇ϑ1 + αϑ1 = 0 on ∂Ω× ]0, T [ ,(6.41)

ϑ1(T ) = ID(χDθ̄(T )− θd) in Ω,(6.42)

− div(σ(θ̄)∇ψ1) = −2 div(σ(θ̄)ϑ1∇ϕ̄) in Q,(6.43)

ν · σ(θ̄)∇ψ1 = 2 ν · σ(θ̄)ϑ1∇ϕ̄ on (∂Ω\ΓD)× ]0, T [ ,(6.44)

ψ = 0 on ΓD× ]0, T [ ,(6.45)
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3474 D. HÖMBERG, C. MEYER, J. REHBERG, W. RING

where ID : L2(D) → H1,q′

1/s,s′(Ω) is defined by

〈ID(g) , Θ〉
H1,q′

1/s,s′ ,H
1,q

1/s′,s
:=

∫
D

gΘ dx, g ∈ L2(D),Θ ∈ H1,q
1/s′,s,

while χD is the characteristic function on D. Notice that ID is well defined since

H1,q
1/s′,s = (H−1,q

Ω , H1,q)1−1/s,s ↪→ H2η−1,q

with η = 2/q < 1 − 1/s because of s > q/(q − 2) such that 2η − 1 > 0 due to q < 4.
Therefore H1,q

1/s′,s ↪→ L2(D). Theorem 6.12 implies that there is a strong solution

p1 ∈Ws′ × Ls′(S;H1,q′
D ) to (6.40)–(6.45) that satisfies

〈A(ȳ)∗p1 , w〉 =
∫
D

(θ̄(T )− θd)Θ(T ) dx

for all w = (Θ,Φ) ∈ Ws,0 × Ls(S;H1,q
D ). Next, assume s ∈ ]2q/(q − 2),∞], and

introduce p2 = (ϑ2, ψ2) ∈ Ls′(S;H1,q′) × Ls′(S;H1,q′
D ) as a weak solution of (6.28)–

(6.33), where the inhomogeneity μ is the Lagrange multiplier associated with the
state constraints in (P). Notice in this context that, due to Assumption 2.4(iii), the
state constraint is not active at t = 0. Consequently, the positivity of the Lagrange
multipliers and the complementary slackness conditions yield that the restriction of
μ on 0× Ω̄ is indeed zero, as in case of (6.28)–(6.33). Hence, p2 solves

〈A′(y)∗p2 , w〉 = 〈Θ , μ〉C(Q̄),M(Q̄) ∀w ∈Ws,0 × Ls(S;H1,q
D )

with s > 2q/(q − 2) (such that Ws,0 ↪→ C(Q̄); cf. Corollary 6.13). Thus, taking this
together with (6.39), we obtain∫

D

(θ̄(T )− θd)θ
′(T ) dx+ 〈θ′ , μ〉C(Q̄),M(Q̄)

= 〈A′(ȳ)∗p1 , y′〉+ 〈A′(ȳ)∗p2 , y′〉 = 〈p1 + p2 , A′(ȳ)y′〉

=

〈
p1 + p2 ,

(
0
h

)〉
=

∫
Σ

(ψ1 + ψ2)h ds dt.

Inserting this into (6.11) and (6.34) and a pointwise evaluation of the arising inequality
imply by standard arguments

ū(x, t) = Πad

{
− 1

β
(τN ψ1 + τN ψ2)

}
,(6.46)

where Πad denotes the pointwise projection operator on Uad and τN is again the trace
operator on ΓN . In this way, we have proven the following result stating the first-order
necessary conditions for (P).

Theorem 6.18. Let ū ∈ L∞(S;L2(ΓN )) be a local optimum of (P) with associated
state

ȳ = (θ̄, ϕ̄) ∈ W 1,r
0 (S;H−1,q

Ω ) ∩ Lr(S;H1,q)× L∞(S;H1,q
D )

with q ∈ ]2,min{q̃0, q1}] and r > 2q/(q− 2). Suppose further that a function u0 ∈ Uad

exists such that the linearized Slater condition (6.38) is fulfilled. Then there exist a
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Lagrange multiplier μ ∈ M(Q̄) and adjoint states

p1 = (ϑ1, ψ1) ∈ W 1,s′1(]0, T [;H−1,q′
Ω ) ∩ Ls′1(]0, T [;H1,q′),

p2 = (ϑ2, ψ2) ∈ Ls′2(S;H1,q′)× Ls′2(S;H1,q′
D ),

with q′ = q/(q− 1), s′1 < q/2, and s′2 < 2q/(q+2), such that the following conditions
are satisfied:

• the state system (1.1)–(1.7) in the sense of Definition 3.3,
• the first adjoint system (6.40)–(6.45) in the sense of Definition 6.9,
• the second adjoint system (6.28)–(6.33) in the sense of Definition 6.10,
• the positivity property (6.37) of the multipliers,
• the complementary slackness conditions (6.36),
• the projection formula (6.46).

Notice that, due to the trace theorem, Πad clearly maps Ls′(S;H1−1/q′,q′(ΓN ))
into Ls′(S;H1−1/q′,q′(ΓN )) such that the generic regularity for a local optimal control
is given by

ū ∈ L∞(S;L2(ΓN )) ∩ Ls′(S;H1−1/q′,q′(ΓN ))(6.47)

with s′ < 2q/(q+2), q ≤ qmax = min{q̃0, q1} < 4 (see Remark 3.8), such that s′ < 4/3.
In addition, we have q′ ∈ [q′min, 2[ , where q

′
min is the conjugate exponent to qmax. Note

further that the optimality system can be simplified by introducing p = p1 + p2 as an
adjoint state, i.e., the weak solution of

−∂tϑ− div(κ∇ϑ) = (σ′(θ̄)ϑ∇ϕ̄) · ∇ϕ− (σ′(θ̄)∇ϕ) · ∇ψ + μQ in Q,

ν · κ∇ϑ+ αϑ = μΣ on ∂Ω× ]0, T [ ,

ϑ(T ) = ID(χDθ̄(T )− θd) + μT in Ω,

− div(σ(θ̄)∇ψ) = −2 div(σ(θ̄)ϑ∇ϕ) in Q,

ν · σ(θ̄)∇ψ = 2 ν · σ(θ̄)ϑ∇ϕ̄ on (∂Ω\ΓD)× ]0, T [ ,

ψ = 0 on ΓD× ]0, T [ .

7. A specific application and numerical tests. As mentioned in the intro-
duction, a problem of type (P) arises, for instance, when optimizing the heat treatment
of steel by means of an electric current. This procedure is applied in the automotive
industry for the hardening of gear racks as part of the widely used rack-and-pinion
steering mechanism. Here the workpiece is heated up by direct current and then
rapidly cooled down by means of water nozzles to produce a hard martensitic outer
layer. For a detailed description of such heating procedures, see [25]. The aim of the
optimization is a uniform heating of the teeth of the gear rack which is essential for
the hardening process in order to avoid thermal stress and to guarantee a uniform
hardening of the tooth system. Thus the measurement domain D in the objective
functional of (P) is the domain which is covered by the teeth of the gear rack. Since
it is essential to prevent melting during the hardening process, the bound θmax in
the state constraint of (P) is given by the melting temperature of the material. In
addition, the control constraints in (P) reflect the maximum electrical power that can
be induced into the workpiece.

In the following, we report on two numerical tests for this particular application
problem. The respective optimality system, described in Theorem 6.18, is solved by
means of a projected gradient method, fitting to the first-order analysis presented in
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Fig. 7.1. Computational domain.

Table 7.1

Material parameters within the numerical tests.

� Cp κ α θ0 θl θd

7900 kg
m3 470 J

kg K
50 W

m K
20 W

m2 K
290 K 290 K 1500 K

the preceding sections. While the control constraints are incorporated into the pro-
jected gradient method, the pointwise state constraints are regularized by means of a
quadratic penalization; see [21] and the references therein. Moreover, the PDEs aris-
ing in each step of the optimization algorithm are discretized by linear finite elements
in combination with a semi-implicit time stepping. Furthermore, the control is dis-
cretized by a piecewise linear and continuous spatial ansatz function, while piecewise
constant ansatz functions are used in time.

For the computational domain we choose the two-dimensional simplified gear
rack shown in Figure 7.1. Aside from σ, the material parameters are constant and
chosen to approximate the realistic distributions. The particular values used are
shown in Table 7.1. Here Cp and � refer to the specific heat capacity and the density,
respectively, that enter the heat equation via

Cp � ∂tθ − div(κ∇θ) = (σ(θ)∇ϕ) · ∇ϕ,

which clearly does not influence the theory since they are assumed to be constant.
Notice that all parameters are positive constants such that the hypotheses in As-
sumptions 2.3, 2.4, and 5.1 are satisfied. Moreover, in this case, the function σ is a
scalar-valued function, depending only on θ, i.e., σ : R → R, which is given by

σ(θ) =
(
a+ b θ + c θ2 + d θ3

)−1
if θ ∈ [0, 10000],

with a = 4.9659 · 10−7, b = 8.4121 · 10−10, c = −3.7246 · 10−13, and d = 6.1960 ·
10−17 (see [11] for details). On R \ [0, 10000], σ is smoothly extended such that
0 < σ0 ≤ σ(θ) ≤ σ1 < ∞ is satisfied for all θ ∈ R. Hence it fulfills the conditions
in Assumptions 2.3 and 5.1. Finally, the end time T was set to 2.0 s. The Tikhonov
parameter β within the objective functional is set to 10−13 to compensate for the
comparatively high values of the control (see below).

In the following, two numerical tests are presented, differing concerning the in-
equality constraints in (P). While there are inequality constraints only on the control
but not on the state in the first example, we choose θmax = 1800 K in the second test
case. In both cases we set umax = 7 ·107 A/m2. Note that both test cases are covered
by the above theory, since the control is uniformly bounded in L∞(]0, T [;L2(ΓN )). In
all of what follows we refer to the first example as free optimization, since no state
constraints are present in this case. It serves as a reference problem in comparison to
the state-constrained case. Figure 7.2 shows a detail of the tooth-system at end time

D
ow

nl
oa

de
d 

07
/1

0/
19

 to
 1

43
.5

0.
47

.1
47

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONTROL OF THE THERMISTOR PROBLEM 3477

Fig. 7.2. Temperature at end time for the
free optimization.

Fig. 7.3. Temperature at end time for the
state-constrained optimization.

Fig. 7.4. Temperature at t = 0.58 s for
the free optimization.

Fig. 7.5. Time evolution of the control
in case of free (circles) and state-constrained
(crosses) optimization.

for this case. We observe that the desired temperature of 1500 K is nearly reached.
However, since no state constraints are imposed, the material is in danger of melting
in the corners of the tooth-system, as Figure 7.4 illustrates. The situation changes
if the temperature is forced to stay below the melting temperature by the additional
state constraints in (P). In the second numerical test this is approximately enforced
by a quadratic penalty term, resulting in a maximum temperature of 1805.1 K in the
right corner of the tooth-system at t = 0.26 s. However, in this case, the temperature
distribution differs more significantly from the desired 1500 K than does the free opti-
mization, as Figure 7.3 shows. This observation appears natural since the inequality
constraints on the state do not allow for the extreme temperature evolution observed
in the case of the free optimization. Therefore, it seems that a time interval of 2.0 s
is not sufficient for heating up the workpiece to 1500 K before cooling it down if, at
the same time, melting should be prevented.

In Figure 7.5 the time evolution of the control u in case of free and state-
constrained optimization is depicted. Here the crosses refer to the state-constrained
case, while the circles represent the free optimization. The values are taken at a fixed
but arbitrary point on ΓN . One observes that the time evolution of the control differs
significantly between the cases. Moreover, the control significantly decreases in time
in both examples. An explanation for this observation is the fact that the current does
not flow directly through the teeth. Only the area straight below the tooth system is
heated up intensely by the current. Afterwards, heat conduction from this area into
the teeth increases the temperature in the tooth system. Thus, to achieve a tempera-
ture distribution in the teeth as uniform as possible, it appears reasonable to heat up
the area below the teeth comparatively fast to ensure a uniform heat conduction into
the teeth. Finally the optimal potential ϕ in the state-constrained case at end time
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Fig. 7.6. Potential at end time for the state-constrained optimization.

T = 2.0 s is shown in Figure 7.6. We observe that the expected decay from cathode
to anode is reflected by the numerical computations.

Appendix. Here, the basic properties of solutions to parabolic equations, men-
tioned at the beginning of section 3.1, are proven. We start with Lemma 3.13.

Proof of Lemma 3.13. (i) Based on [26, Chap. 2.5], we estimate for s, t ∈ [T0, T1]
with s < t

‖e−sAx− e−tAx‖D = ‖Ae−sAx−Ae−tAx‖X
≤ ‖Ae− s

2A‖B(X)‖e−
s
2Ax− e−(t−s)Ae−

s
2Ax‖X

≤ c ‖Ae− s
2A‖2B(X)‖x‖X |t− s|,

which gives the first assertion.
(ii) First one notices that ‖e−tA‖B(D) ≤ ‖e−tA‖B(X), which implies by interpola-

tion that ‖e−tA‖B([X,D]τ) ≤ ‖e−tA‖B(X) for all t ∈ [0,∞[ and all τ ∈ ]0, 1[ (see [31,
Chap. 1.2.2 and 1.9.3]). Now let T > 0 be given and s, t ∈ ]0, T [ ; then we have by the
reiteration theorem (see [31, Chap. 1.9.3])

‖e−tAx− e−sAx‖[X,D]ρ

|t− s|τ−ρ
≤ c

‖e−tAx− e−sAx‖[X,[X,D]τ ] ρ
τ

|t− s|τ(1− ρ
τ )

≤ c

(
‖e−tAx− e−sAx‖X

|t− s|τ

)(1− ρ
τ )

‖e−tAx− e−sAx‖
ρ
τ

[X,D]τ

≤ c

(
sup

s∈ ]0,T [

‖e−sA‖B(X)

)(1− ρ
τ )

(
sup

t∈ ]0,T [

‖e−tAx− x‖X
|t|τ

)(1− ρ
τ )(

2 sup
s∈ ]0,T [

‖e−sA‖B([X,D]τ)

) ρ
τ

‖x‖
ρ
τ

[X,D]τ

≤ 2c

(
sup

s∈ ]0,T [

‖e−sA‖B(X)

)(
sup

t∈ ]0,T [

‖e−tAx− x‖X
|t|τ

)(1− ρ
τ )

‖x‖
ρ
τ

[X,D]τ
.

(A.1)

By a well-known theorem (see [31, Chap. 1.13.2] or [24, Prop. 2.2.4 and Rem. 2.2.5]),
one has

sup
t∈ ]0,T [

‖e−tAx− x‖X
|t|τ ≤ c1‖x‖(X,D)τ,∞

with a positive constant c1 (independent from x ∈ [X,D]τ ) and, secondly, the con-
tinuous embedding [X,D]τ ↪→ (X,D)τ,∞; see [31, Chap. 1.10.3]. Hence, we continue
(A.1) by

‖e−tAx− e−sAx‖[X,D]ρ

|t− s|τ−ρ
≤ 2c

(
sup

s∈ ]0,T [

‖e−sA‖B(X)

)
‖x‖[X,D]τ ,

which proves (ii) (see also [1, Chap. II.5.3]).
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Proof of Lemma 3.16. (i) During this proof, let S, S′ denote the intervals ]T0, T1[
and ]T0, T

′[, respectively, with T ′ < T1. Associate with any function f ∈ Lr(S′;X) a
function If which is defined as follows:

If(t) :=
{
0 if t ∈ ]T0, T1 − T ′[ ,
f(t− (T1 − T ′)) if t ∈ ]T1 − T ′, T1[ .

Clearly, I then provides isometric injections

Lr(S′;X) → Lr(S;X),(A.2)

W 1,r
0 (S′;X) ∩ Lr(S′;D) →W 1,r

0 (S;X) ∩ Lr(S;D),(A.3)

C0(S̄
′; (X,D)1− 1

r ,r
) → C0(S̄; (X,D)1− 1

r ,r
).(A.4)

If we indicate L by its interval end and write LT1 and LT ′ , then we have for any
f ∈ Lr(S′;X) the identity LT1If = ILT ′f . Thus, one may estimate for any f ∈
Lr(S′;X)

‖LT ′f‖W 1,r
0 (S′;X)∩Lr(S′;D) = ‖ILT ′f‖W 1,r

0 (S;X)∩Lr(S;D) = ‖LT1If‖W 1,r
0 (S;X)∩Lr(S;D)

≤ ‖LT1‖ ‖If‖Lr(S;X) = ‖LT1‖ ‖f‖Lr(S′;X),

which implies ‖LT ′‖ ≤ ‖LT1‖.
(ii) Denoting the embedding constant of

W 1,r
0 (S;X) ∩ Lr(S;D) ↪→ C0(S̄; (X,D)1− 1

r ,r
)

by cT , we estimate

‖w‖C0(S̄1;(X,D)
1− 1

r
,r
) = ‖Iw‖C0(S̄;(X,D)

1− 1
r
,r
)

≤ cT ‖Iw‖W 1,r
0 (S;X)∩Lr(S;D) = cT ‖w‖W 1,r

0 (S1;X)∩Lr(S1;D).

Thus, the embedding constant which corresponds to the interval ]T0, T
′[ is at most

cT .
Proof of Lemma 3.17. (i) is obtained from well-known embedding theorems; see

[31, Chap. 1.3.3 and 1.10].
(ii) Obviously, the norm of EC does not depend on the interval length. This,

combined with the Lemma 3.16, gives the assertion.
(iii) First, the estimate

‖w(t)− w(t0)‖X =

∥∥∥∥
∫ t

t0

w′(s) ds
∥∥∥∥ ≤

(∫ t

t0

‖w′(s)‖r ds‖
) 1

r
(∫ t

t0

ds

) r−1
r

≤ ‖w‖W 1,r(S;X) |t− t0|
r−1
r

implies a continuous embedding fromW 1,r(S;X) into C
r−1
r (S;X). Let η be a number

from ]τ, 1 − 1
r [ . Then, by setting δ = r−1

r and λ = τ
η , we obtain by the reiteration
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3480 D. HÖMBERG, C. MEYER, J. REHBERG, W. RING

theorem for complex interpolation (see [31, Chap. 1.9.3])

‖w(t)− w(s)‖[X,D]τ

|t− s|δ(1−λ)
≤ c

‖w(t)− w(s)‖[X,[X,D]η ]λ

|t− s|δ(1−λ)

≤ c
‖w(t)− w(s)‖1−λ

X

|t− s|δ(1−λ)
‖w(t)− w(s)‖λ[X,D]η

≤ c

(
‖w(t)− w(s)‖X

|t− s|δ

)1−λ (
2‖w‖C(S̄;[X,D]η)

)λ
≤ c ‖w‖W 1,r(S;X)∩Lr(S;D),

which completes the proof.
Proof of Lemma 3.20. (i) The L∞ estimate follows from the fact that K generates

a contraction semigroup on L∞; see [15]. Further, K generates an analytic semigroup
on H−1,q (see [12] or [19]), and 0 belongs to its resolvent set because the resolvent is
compact and 0 cannot be an eigenvalue due to Assumption 2.3; see [13, Lem. 1.36].
Hence, the Lipschitz continuity follows from Lemma 3.13(i).

(ii) Assume ϑ ∈ ] 2q , ς [ . We have for λ = ς and λ = ϑ the interpolation identity

Hλ,q = [H−1,q
Ω , H1,q]λ+1

2
;

see [14, Thm. 3.5]. Thus, the supposition θ0 ∈ Hς,q(Ω) and Lemma 3.13(ii) imply

ι|]0,T [ ∈ C
ς−ϑ
2 (]0, T [;Hϑ,q). An application of the (continuous) embeddingHϑ,q(Ω) ↪→

Cϑ− 2
q (Ω) (see [31, Chap. 4.6.1]) then proves the assertion.
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[17] K. Gröger, A W 1,p-estimate for solutions to mixed boundary value problems for second order

elliptic differential equations, Math. Ann., 283 (1989), pp. 679–687.
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