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A RANDOMIZED ALGORITHM FOR

PRINCIPAL COMPONENT ANALYSIS

VLADIMIR ROKHLIN∗, ARTHUR SZLAM† , AND MARK TYGERT‡

Abstract. Principal component analysis (PCA) requires the computation of a low-rank approx-
imation to a matrix containing the data being analyzed. In many applications of PCA, the best
possible accuracy of any rank-deficient approximation is at most a few digits (measured in the spec-
tral norm, relative to the spectral norm of the matrix being approximated). In such circumstances,
efficient algorithms have not come with guarantees of good accuracy, unless one or both dimensions
of the matrix being approximated are small. We describe an efficient algorithm for the low-rank
approximation of matrices that produces accuracy very close to the best possible, for matrices of
arbitrary sizes. We illustrate our theoretical results via several numerical examples.
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1. Introduction. Principal component analysis (PCA) is among the mostwidely
used techniques in statistics, data analysis, and data mining. PCA is the basis of many
machine learning methods, including the latent semantic analysis of large databases of
text and HTML documents described in [6]. Computationally, PCA amounts to the
low-rank approximation of a matrix containing the data being analyzed. The present
article describes an algorithm for the low-rank approximation of matrices, suitable for
PCA. This paper demonstrates both theoretically and via numerical examples that
the algorithm efficiently produces low-rank approximations whose accuracies are very
close to the best possible.

The canonical construction of the best possible rank-k approximation to a real
m × n matrix A uses the singular value decomposition (SVD) of A,

A = U Σ V T, (1.1)

where U is a real unitary m × m matrix, V is a real unitary n × n matrix, and Σ is
a real m× n matrix whose only nonzero entries appear in nonincreasing order on the
diagonal and are nonnegative. The diagonal entries σ1, σ2, . . . , σmin(m,n)−1, σmin(m,n)

of Σ are known as the singular values of A. The best rank-k approximation to A,
with k < m and k < n, is

A ≈ Ũ Σ̃ Ṽ T, (1.2)

where Ũ is the leftmost m × k block of U , Ṽ is the leftmost n × k block of V , and Σ̃
is the k × k matrix whose only nonzero entries appear in nonincreasing order on the
diagonal and are the k greatest singular values of A. This approximation is “best” in
the sense that the spectral norm ‖A − B‖ of the difference between A and a rank-k
matrix B is minimal for B = Ũ Σ̃ Ṽ T. In fact,

‖A − Ũ Σ̃ Ṽ T‖ = σk+1, (1.3)

∗Departments of Computer Science, Mathematics, and Physics, Yale University, New Haven, CT
06511; supported in part by DARPA/AFOSR Grant FA9550-07-1-0541.

†Department of Mathematics, UCLA, Los Angeles, CA 90095-1555; supported in part by NSF
Grant DMS-0811203 (aszlam@math.ucla.edu).

‡Department of Mathematics, UCLA, Los Angeles, CA 90095-1555 (tygert@aya.yale.edu).

1

http://arxiv.org/abs/0809.2274v4


2 ROKHLIN, SZLAM, AND TYGERT

where σk+1 is the (k + 1)st greatest singular value of A. For more information about
the SVD, see, for example, Chapter 8 in [20].

For definiteness, let us assume that m ≤ n and that A is an arbitrary (dense) real
m×n matrix. To compute a rank-k approximation to A, one might form the matrices
U , Σ, and V in (1.1), and then use them to construct Ũ , Σ̃, and Ṽ in (1.2). However,
even computing just Σ, the leftmost m columns of U , and the leftmost m columns of
V requires at least O(nm2) floating-point operations (flops) using any of the standard
algorithms (see, for example, Chapter 8 in [20]). Alternatively, one might use pivoted
QR-decomposition algorithms, which require O(nmk) flops and typically produce a
rank-k approximation B to A such that

‖A − B‖ ≤ 10
√

m σk+1, (1.4)

where ‖A−B‖ is the spectral norm of A−B, and σk+1 is the (k+1)st greatest singular
value of A (see, for example, Chapter 5 in [20]). Furthermore, the algorithms of [24]
require only about O(nmk) flops to produce a rank-k approximation that (unlike
an approximation produced by a pivoted QR-decomposition) has been guaranteed to
satisfy a bound nearly as strong as (1.4).

While the accuracy in (1.4) is sufficient for many applications of low-rank approx-
imation, PCA often involves m ≥ 10,000, and a “signal-to-noise ratio” σ1/σk+1 ≤ 100,
where σ1 = ‖A‖ is the greatest singular value of A, and σk+1 is the (k +1)st greatest.
Moreover, the singular values ≤ σk+1 often arise from noise in the process generating
the data in A, making the singular values of A decay so slowly that σm ≥ σk+1/10.
When m ≥ 10,000, σ1/σk+1 ≤ 100, and σm ≥ σk+1/10, the rank-k approximation B
produced by a pivoted QR-decomposition algorithm typically satisfies ‖A−B‖ ∼ ‖A‖
— the “approximation” B is effectively unrelated to the matrix A being approximated!
For large matrices whose “signal-to-noise ratio” σ1/σk+1 is less than 10,000, the

√
m

factor in (1.4) may be unacceptable. Now, pivoted QR-decomposition algorithms are
not the only algorithms which can compute a rank-k approximation using O(nmk)
flops. However, other algorithms, such as those of [1], [2], [3], [5], [7], [8], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [21], [22], [23], [24], [25], [27], [28], [30], [32], [33],
[34], [35], and [37], also yield accuracies involving factors of at least

√
m when the

singular values σk+1, σk+2, σk+3, . . . of A decay slowly. (The decay is rather slow if,
for example, σk+j ∼ jα σk+1 for j = 1, 2, 3, . . . , with −1/2 < α ≤ 0. Many of these
other algorithms are designed to produce approximations having special properties
not treated in the present paper, and their spectral-norm accuracy is good when the
singular values decay sufficiently fast. Fairly recent surveys of algorithms for low-rank
approximation are available in [32], [33], and [27].)

The algorithm described in the present paper produces a rank-k approximation
B to A such that

‖A − B‖ ≤ C m1/(4i+2) σk+1 (1.5)

with very high probability (typically 1 − 10−15, independent of A, with the choice of
parameters from Remark 4.2 below), where ‖A−B‖ is the spectral norm of A−B, i
is a nonnegative integer specified by the user, σk+1 is the (k + 1)st greatest singular
value of A, and C is a constant independent of A that theoretically may depend
on the parameters of the algorithm. (Numerical evidence such as that in Section 5
suggests at the very least that C < 10; (4.23) and (4.10) in Section 4 provide more
complicated theoretical bounds on C.) The algorithm requires O(nmki) floating-point
operations when i > 0. In many applications of PCA, i = 1 or i = 2 is sufficient, and
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the algorithm then requires only O(nmk) flops. The algorithm provides the rank-k
approximation B in the form of an SVD, outputting three matrices, Ũ , Σ̃, and Ṽ ,
such that B = Ũ Σ̃ Ṽ T, where the columns of Ũ are orthonormal, the columns of Ṽ
are orthonormal, and the entries of Σ̃ are all nonnegative and zero off the diagonal.

The algorithm of the present paper is randomized, but succeeds with very high
probability; for example, the bound (4.23) on its accuracy holds with probability
greater than 1− 10−15. The algorithm is similar to many recently discussed random-
ized algorithms for low-rank approximation, but produces approximations of higher
accuracy when the singular values σk+1, σk+2, σk+3, . . . of the matrix being approx-
imated decay slowly; see, for example, [32] or [27]. The algorithm is a variant of that
in [31], and the analysis of the present paper should extend to the algorithm of [31];
[31] stimulated the authors’ collaboration. The algorithm may be regarded as a gen-
eralization of the randomized power methods of [9] and [26], and in fact we use the
latter to ascertain the approximations’ accuracy rapidly and reliably.

The algorithm admits obvious “out-of-core” and parallel implementations (assum-
ing that the user chooses the parameter i in (1.5) to be reasonably small). As with
the algorithms of [9], [26], [27], [29], [31], [32], and [33], the core steps of the algorithm
of the present paper involve the application of the matrix A being approximated and
its transpose AT to random vectors. The algorithm is more efficient when A and AT

can be applied rapidly to arbitrary vectors, such as when A is sparse.

Throughout the present paper, we use 1 to denote an identity matrix. We use 0

to denote a matrix whose entries are all zeros. For any matrix A, we use ‖A‖ to denote
the spectral norm of A, that is, ‖A‖ is the greatest singular value of A. Furthermore,
the entries of all matrices in the present paper are real valued, though the algorithm
and analysis extend trivially to matrices whose entries are complex valued.

The present paper has the following structure: Section 2 collects together various
known facts which later sections utilize. Section 3 provides the principal lemmas
used in bounding the accuracy of the algorithm in Section 4. Section 4 describes the
algorithm of the present paper. Section 5 illustrates the performance of the algorithm
via several numerical examples. The appendix, Section 6, proves two lemmas stated
earlier in Section 3. We encourage the reader to begin with Sections 4 and 5, referring
back to the relevant portions of Sections 2 and 3 as they are referenced.

2. Preliminaries. In this section, we summarize various facts about matrices
and functions. Subsection 2.1 discusses the singular values of arbitrary matrices.
Subsection 2.2 discusses the singular values of certain random matrices. Subsection 2.3
observes that a certain function is monotone.

2.1. Singular values of general matrices. The following trivial technical
lemma will be needed in Section 3.

Lemma 2.1. Suppose that m and n are positive integers with m ≥ n. Suppose
further that A is a real m × n matrix such that the least (that is, the nth greatest)
singular value σn of A is nonzero.

Then,

∥

∥(AT A)−1 AT
∥

∥ =
1

σn
. (2.1)

The following lemma states that the greatest singular value of a matrix A is at
least as large as the greatest singular value of any rectangular block of entries in A;
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the lemma is a straightforward consequence of the minimax properties of singular
values (see, for example, Section 47 of Chapter 2 in [36]).

Lemma 2.2. Suppose that k, l, m, and n are positive integers with k ≤ m and
l ≤ n. Suppose further that A is a real m × n matrix, and B is a k × l rectangular
block of entries in A.

Then, the greatest singular value of B is at most the greatest singular value of
A.

The following classical lemma provides an approximation Q S to an n× l matrix
R via an n × k matrix Q whose columns are orthonormal, and a k × l matrix S. As
remarked in Observation 2.4, the proof of this lemma provides a classic algorithm
for computing Q and S, given R. We include the proof since we will be using this
algorithm.

Lemma 2.3. Suppose that k, l, and n are positive integers with k < l ≤ n, and
R is a real n × l matrix.

Then, there exist a real n × k matrix Q whose columns are orthonormal, and a
real k × l matrix S, such that

‖Q S − R‖ ≤ ρk+1, (2.2)

where ρk+1 is the (k + 1)st greatest singular value of R.
Proof. We start by forming an SVD of R,

R = U Σ V T, (2.3)

where U is a real n× l matrix whose columns are orthonormal, V is a real l× l matrix
whose columns are orthonormal, and Σ is a real diagonal l × l matrix, such that

Σj,j = ρj (2.4)

for j = 1, 2, . . . , l − 1, l, where Σj,j is the entry in row j and column j of Σ, and ρj

is the jth greatest singular value of R. We define Q to be the leftmost n× k block of
U , and P to be the rightmost n × (l − k) block of U , so that

U =
(

Q P
)

. (2.5)

We define S to be the uppermost k × l block of Σ V T, and T to be the lowermost
(l − k) × l block of Σ V T, so that

Σ V T =

(

S
T

)

. (2.6)

Combining (2.3), (2.4), (2.5), (2.6), and the fact that the columns of U are orthonor-
mal, as are the columns of V , yields (2.2).

Observation 2.4. In order to compute the matrices Q and S in (2.2) from
the matrix R, we can construct (2.3), and then form Q and S according to (2.5)
and (2.6). (See, for example, Chapter 8 in [20] for details concerning the computation
of the SVD.)

2.2. Singular values of random matrices. The following lemma provides a
highly probable upper bound on the greatest singular value of a square matrix whose
entries are independent, identically distributed (i.i.d.) Gaussian random variables of
zero mean and unit variance; Formula 8.8 in [19] provides an equivalent formulation
of the lemma.
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Lemma 2.5. Suppose that n is a positive integer, G is a real n× n matrix whose
entries are i.i.d. Gaussian random variables of zero mean and unit variance, and γ is
a positive real number, such that γ > 1 and

1 − 1

4 (γ2 − 1)
√

πnγ2

(

2γ2

eγ2−1

)n

(2.7)

is nonnegative.

Then, the greatest singular value of G is at most
√

2nγ with probability not less
than the amount in (2.7).

Combining Lemmas 2.2 and 2.5 yields the following lemma, providing a highly
probable upper bound on the greatest singular value of a rectangular matrix whose
entries are i.i.d. Gaussian random variables of zero mean and unit variance.

Lemma 2.6. Suppose that l, m, and n are positive integers with n ≥ l and n ≥ m.
Suppose further that G is a real l×m matrix whose entries are i.i.d. Gaussian random
variables of zero mean and unit variance, and γ is a positive real number, such that
γ > 1 and (2.7) is nonnegative.

Then, the greatest singular value of G is at most
√

2nγ with probability not less
than the amount in (2.7).

The following lemma provides a highly probable lower bound on the least singular
value of a rectangular matrix whose entries are i.i.d. Gaussian random variables of
zero mean and unit variance; Formula 2.5 in [4] and the proof of Lemma 4.1 in [4]
together provide an equivalent formulation of Lemma 2.7.

Lemma 2.7. Suppose that j and l are positive integers with j ≤ l. Suppose further
that G is a real l × j matrix whose entries are i.i.d. Gaussian random variables of
zero mean and unit variance, and β is a positive real number, such that

1 − 1
√

2π (l − j + 1)

(

e

(l − j + 1)β

)l−j+1

(2.8)

is nonnegative.

Then, the least (that is, the jth greatest) singular value of G is at least 1/(
√

l β)
with probability not less than the amount in (2.8).

2.3. A monotone function. The following technical lemma will be needed in
Section 4.

Lemma 2.8. Suppose that α is a nonnegative real number, and f is the function
defined on (0,∞) via the formula

f(x) =
1√
2πx

(eα

x

)x

. (2.9)

Then, f decreases monotonically for x > α.

Proof. The derivative of f is

f ′(x) = f(x)

(

ln
(α

x

)

− 1

2x

)

(2.10)

for any positive real number x. The right-hand side of (2.10) is negative when x > α.
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3. Mathematical apparatus. In this section, we provide lemmas to be used
in Section 4 in bounding the accuracy of the algorithm of the present paper.

The following lemma, proven in the appendix (Section 6), shows that the product
AQ QT of matrices A, Q, and QT is a good approximation to a matrix A, provided
that there exist matrices G and S such that

1. the columns of Q are orthonormal,
2. Q S is a good approximation to (G (AAT)i A)T, and
3. there exists a matrix F such that ‖F‖ is not too large, and F G (AAT)i A is

a good approximation to A.

Lemma 3.1. Suppose that i, k, l, m, and n are positive integers with k ≤ l ≤
m ≤ n. Suppose further that A is a real m×n matrix, Q is a real n× k matrix whose
columns are orthonormal, S is a real k × l matrix, F is a real m× l matrix, and G is
a real l × m matrix.

Then,

‖AQ QT − A‖ ≤ 2 ‖F G (AAT)i A − A‖ + 2 ‖F‖ ‖Q S − (G (AAT)i A)T‖. (3.1)

The following lemma, proven in the appendix (Section 6), states that, for any
positive integer i, matrix A, and matrix G whose entries are i.i.d. Gaussian random
variables of zero mean and unit variance, with very high probability there exists a
matrix F with a reasonably small norm, such that F G (AAT)i A is a good approxi-
mation to A. This lemma is similar to Lemma 19 of [29].

Lemma 3.2. Suppose that i, j, k, l, m, and n are positive integers with j < k <
l < m ≤ n. Suppose further that A is a real m × n matrix, G is a real l × m matrix
whose entries are i.i.d. Gaussian random variables of zero mean and unit variance,
and β and γ are positive real numbers, such that the jth greatest singular value σj of
A is positive, γ > 1, and

Φ = 1 − 1
√

2π (l − j + 1)

(

e

(l − j + 1)β

)l−j+1

− 1

4 (γ2 − 1)
√

π max(m − k, l) γ2

(

2γ2

eγ2−1

)max(m−k, l)

− 1

4 (γ2 − 1)
√

π l γ2

(

2γ2

eγ2−1

)l

(3.2)

is nonnegative.

Then, there exists a real m × l matrix F such that

‖F G (AAT)i A − A‖ ≤
√

2l2 β2 γ2 + 1 σj+1

+

√

2l max(m − k, l)β2 γ2

(

σk+1

σj

)4i

+ 1 σk+1 (3.3)

and

‖F‖ ≤
√

l β

(σj)2i
(3.4)
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with probability not less than Φ defined in (3.2), where σj is the jth greatest singular
value of A, σj+1 is the (j +1)st greatest singular value of A, and σk+1 is the (k +1)st

greatest singular value of A.

Given a matrix A, and a matrix G whose entries are i.i.d. Gaussian random vari-
ables of zero mean and unit variance, the following lemma provides a highly probable
upper bound on the singular values of the product GA in terms of the singular values
of A. This lemma is reproduced from [29], where it appears as Lemma 20.

Lemma 3.3. Suppose that j, k, l, m, and n are positive integers with k < l, such
that k + j < m and k + j < n. Suppose further that A is a real m × n matrix, G is
a real l × m matrix whose entries are i.i.d. Gaussian random variables of zero mean
and unit variance, and γ is a positive real number, such that γ > 1 and

Ξ = 1 − 1

4 (γ2 − 1)
√

π max(m − k − j, l) γ2

(

2γ2

eγ2−1

)max(m−k−j, l)

− 1

4 (γ2 − 1)
√

π max(k + j, l) γ2

(

2γ2

eγ2−1

)max(k+j, l)

(3.5)

is nonnegative.

Then,

ρk+1 ≤
√

2 max(k + j, l) γ σk+1 +
√

2 max(m − k − j, l) γ σk+j+1 (3.6)

with probability not less than Ξ defined in (3.5), where ρk+1 is the (k + 1)st greatest
singular value of GA, σk+1 is the (k + 1)st greatest singular value of A, and σk+j+1

is the (k + j + 1)st greatest singular value of A.

The following corollary follows immediately from the preceding lemma, by re-
placing the matrix A with (AAT)i A, the integer k with j, and the integer j with
k − j.

Corollary 3.4. Suppose i, j, k, l, m, and n are positive integers with j < k <
l < m ≤ n. Suppose further that A is a real m × n matrix, G is a real l × m matrix
whose entries are i.i.d. Gaussian random variables of zero mean and unit variance,
and γ is a positive real number, such that γ > 1 and

Ψ = 1 − 1

4 (γ2 − 1)
√

π max(m − k, l) γ2

(

2γ2

eγ2−1

)max(m−k, l)

− 1

4 (γ2 − 1)
√

π l γ2

(

2γ2

eγ2−1

)l

(3.7)

is nonnegative.

Then,

ρj+1 ≤
√

2l γ (σj+1)
2i+1 +

√

2 max(m − k, l) γ (σk+1)
2i+1 (3.8)

with probability not less than Ψ defined in (3.7), where ρj+1 is the (j + 1)st greatest
singular value of G (AAT)i A, σj+1 is the (j + 1)st greatest singular value of A, and
σk+1 is the (k + 1)st greatest singular value of A.
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4. Description of the algorithm. In this section, we describe the algorithm
of the present paper, providing details about its accuracy and computational costs.
Subsection 4.1 describes the basic algorithm. Subsection 4.2 tabulates the computa-
tional costs of the algorithm. Subsection 4.3 describes a complementary algorithm.
Subsection 4.4 describes a computationally more expensive variant that is somewhat
more accurate and tolerant to roundoff.

4.1. The algorithm. Suppose that i, k, m, and n are positive integers with
2k < m ≤ n, and A is a real m × n matrix. In this subsection, we will construct an
approximation to an SVD of A such that

‖A − U Σ V T‖ ≤ C m1/(4i+2) σk+1 (4.1)

with very high probability, where U is a real m×k matrix whose columns are orthonor-
mal, V is a real n × k matrix whose columns are orthonormal, Σ is a real diagonal
k × k matrix whose entries are all nonnegative, σk+1 is the (k + 1)st greatest singular
value of A, and C is a constant independent of A that depends on the parameters of
the algorithm. (Section 5 will give an empirical indication of the size of C, and (4.23)
will give one of our best theoretical estimates to date.)

Intuitively, we could apply AT to several random vectors, in order to identify the
part of its range corresponding to the larger singular values. To enhance the decay
of the singular values, we apply AT (AAT)i instead. Once we have identified most of
the range of AT, we perform several linear-algebraic manipulations in order to recover
an approximation to A. (It is possible to obtain a similar, somewhat less accurate
algorithm by substituting our short, fat matrix A for AT, and AT for A.)

More precisely, we choose an integer l > k such that l ≤ m − k (for example,
l = k + 12), and make the following five steps:

1. Using a random number generator, form a real l×m matrix G whose entries
are i.i.d. Gaussian random variables of zero mean and unit variance, and
compute the l × n product matrix

R = G (AAT)i A. (4.2)

2. Using an SVD, form a real n × k matrix Q whose columns are orthonormal,
such that there exists a real k × l matrix S for which

‖Q S − RT‖ ≤ ρk+1, (4.3)

where ρk+1 is the (k + 1)st greatest singular value of R. (See Observation 2.4
for details concerning the construction of such a matrix Q.)

3. Compute the m × k product matrix

T = AQ. (4.4)

4. Form an SVD of T ,

T = U Σ WT, (4.5)

where U is a real m × k matrix whose columns are orthonormal, W is a real
k × k matrix whose columns are orthonormal, and Σ is a real diagonal k × k
matrix whose entries are all nonnegative. (See, for example, Chapter 8 in [20]
for details concerning the construction of such an SVD.)
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5. Compute the n × k product matrix

V = Q W. (4.6)

The following theorem states precisely that the matrices U , Σ, and V satisfy (4.1).
See (4.23) for a more compact (but less general) formulation.

Theorem 4.1. Suppose that i, k, l, m, and n are positive integers with k < l ≤
m − k and m ≤ n, and A is a real m × n matrix. Suppose further that β and γ are
positive real numbers such that γ > 1,

(l − k + 1)β ≥ 1, (4.7)

2 l2 γ2 β2 ≥ 1, (4.8)

and

Π = 1 − 1

2 (γ2 − 1)
√

π (m − k) γ2

(

2γ2

eγ2−1

)m−k

− 1

2 (γ2 − 1)
√

π l γ2

(

2γ2

eγ2−1

)l

− 1
√

2π (l − k + 1)

(

e

(l − k + 1)β

)l−k+1

(4.9)

is nonnegative. Suppose in addition that U , Σ, and V are the matrices produced via
the five-step algorithm of the present subsection, given above.

Then,

‖A − U Σ V T‖ ≤ 16 γ β l

(

m − k

l

)1/(4i+2)

σk+1 (4.10)

with probability not less than Π, where Π is defined in (4.9), and σk+1 is the (k +1)st

greatest singular value of A.
Proof. Observing that U Σ V T = AQ QT, it is sufficient to prove that

‖AQ QT − A‖ ≤ 16 γ β l

(

m − k

l

)1/(4i+2)

σk+1 (4.11)

with probability Π, where Q is the matrix from (4.3), since combining (4.11), (4.4),
(4.5), and (4.6) yields (4.10). We now prove (4.11).

First, we consider the case when

‖A‖ ≤
(

m − k

l

)1/(4i+2)

σk+1. (4.12)

Clearly,

‖AQ QT − A‖ ≤ ‖A‖ ‖Q‖ ‖QT‖ + ‖A‖. (4.13)

But, it follows from the fact that the columns of Q are orthonormal that

‖Q‖ ≤ 1 (4.14)

and

‖QT‖ ≤ 1. (4.15)
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Combining (4.13), (4.14), (4.15), (4.12), and (4.8) yields (4.11), completing the proof
for the case when (4.12) holds.

For the remainder of the proof, we consider the case when

‖A‖ >

(

m − k

l

)1/(4i+2)

σk+1. (4.16)

To prove (4.11), we will use (3.1) (which is restated and proven in Lemma 6.1 in the
appendix), namely,

‖AQ QT − A‖ ≤ 2 ‖F G (AAT)i A − A‖ + 2 ‖F‖ ‖Q S − (G (AAT)i A)T‖ (4.17)

for any real m × l matrix F , where G is from (4.2), and Q and S are from (4.3). We
now choose an appropriate matrix F .

First, we define j to be the positive integer such that

σj+1 ≤
(

m − k

l

)1/(4i+2)

σk+1 < σj , (4.18)

where σj is the jth greatest singular value of A, and σj+1 is the (j+1)st greatest (such
an integer j exists due to (4.16) and the supposition of the theorem that l ≤ m − k).
We then use the matrix F from (3.3) and (3.4) associated with this integer j, so that
(as stated in (3.3) and (3.4), which are restated and proven in Lemma 6.2 in the
appendix)

‖F G (AAT)i A − A‖ ≤
√

2l2 β2 γ2 + 1 σj+1

+

√

2l max(m − k, l)β2 γ2

(

σk+1

σj

)4i

+ 1 σk+1 (4.19)

and

‖F‖ ≤
√

l β

(σj)2i
(4.20)

with probability not less than Φ defined in (3.2). Formula (4.19) bounds the first
term in the right-hand side of (4.17).

To bound the second term in the right-hand side of (4.17), we observe that j ≤ k,
due to (4.18) and the supposition of the theorem that l ≤ m − k. Combining (4.3),
(4.2), (3.8), and the fact that j ≤ k yields

‖Q S−(G (AAT)i A)T‖ ≤
√

2l γ (σj+1)
2i+1 +

√

2 max(m − k, l) γ (σk+1)
2i+1 (4.21)

with probability not less than Ψ defined in (3.7). Combining (4.20) and (4.21) yields

‖F‖ ‖Q S − (G (AAT)i A)T‖ ≤
√

2 l2 γ2 β2 σj+1

+

√

2 l max(m − k, l) γ2 β2

(

σk+1

σj

)4i

σk+1 (4.22)

with probability not less than Π defined in (4.9). The combination of Lemma 2.8,
(4.7), and the fact that j ≤ k justifies the use of k (rather than the j used in (3.2) for
Φ) in the last term in the right-hand side of (4.9).
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Combining (4.17), (4.19), (4.22), (4.18), (4.8), and the supposition of the theorem
that l ≤ m − k yields (4.11), completing the proof.

Remark 4.2. Choosing l = k + 12, β = 2.57, and γ = 2.43 in (4.9) and (4.10)
yields

‖A − U Σ V T‖ ≤ 100 l

(

m − k

l

)1/(4i+2)

σk+1 (4.23)

with probability greater than 1− 10−15, where σk+1 is the (k + 1)st greatest singular
value of A. Numerical experiments (some of which are reported in Section 5) indicate
that the factor 100l in the right-hand side of (4.23) is much greater than necessary.

Remark 4.3. Above, we permit l to be any integer greater than k. Stronger
theoretical bounds on the accuracy are available when l ≥ 2k. Indeed, via an analysis
similar to the proof of Theorem 4.1 (using in addition the result stated in the abstract
of [4]), it can be shown that the following six-step algorithm with l ≥ 2k produces
matrices U , Σ, and V satisfying the bound (4.10) with its right-hand side reduced by
a factor of

√
l:

1. Using a random number generator, form a real l×m matrix G whose entries
are i.i.d. Gaussian random variables of zero mean and unit variance, and
compute the l × n product matrix

R = G (AAT)i A. (4.24)

2. Using a pivoted QR-decomposition algorithm, form a real n × l matrix Q
whose columns are orthonormal, such that there exists a real l × l matrix S
for which

RT = Q S. (4.25)

(See, for example, Chapter 5 in [20] for details concerning the construction
of such a matrix Q.)

3. Compute the m × l product matrix

T = AQ. (4.26)

4. Form an SVD of T ,

T = Ũ Σ̃ WT, (4.27)

where Ũ is a real m×l matrix whose columns are orthonormal, W is a real l×l
matrix whose columns are orthonormal, and Σ̃ is a real diagonal l× l matrix
whose only nonzero entries are nonnegative and appear in nonincreasing order
on the diagonal. (See, for example, Chapter 8 in [20] for details concerning
the construction of such an SVD.)

5. Compute the n × l product matrix

Ṽ = Q W. (4.28)

6. Extract the leftmost m × k block U of Ũ , the leftmost n × k block V of Ṽ ,
and the leftmost uppermost k × k block Σ of Σ̃.
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4.2. Computational costs. In this subsection, we tabulate the number of
floating-point operations required by the five-step algorithm described in Subsec-
tion 4.1 as applied once to a matrix A.

The algorithm incurs the following costs in order to compute an approximation
to an SVD of A:

1. Forming R in (4.2) requires applying A to il column vectors, and AT to (i+1) l
column vectors.

2. Computing Q in (4.3) costs O(l2 n).
3. Forming T in (4.4) requires applying A to k column vectors.
4. Computing the SVD (4.5) of T costs O(k2 m).
5. Forming V in (4.6) costs O(k2 n).

Summing up the costs in Steps 1–5 above, and using the fact that k ≤ l ≤ m ≤ n, we
conclude that the algorithm of Subsection 4.1 costs

CPCA = (il + k) · CA + (il + l) · CAT + O(l2 n) (4.29)

floating-point operations, where CA is the cost of applying A to a real n × 1 column
vector, and CAT is the cost of applying AT to a real m × 1 column vector.

Remark 4.4. We observe that the algorithm only requires applying A to il + k
vectors and AT to il + l vectors; it does not require explicit access to the individual
entries of A. This consideration can be important when A and AT are available
solely in the form of procedures for their applications to arbitrary vectors. Often such
procedures for applying A and AT cost much less than the standard procedure for
applying a dense matrix to a vector.

4.3. A modified algorithm. In this subsection, we describe a simple modifi-
cation of the algorithm described in Subsection 4.1. Again, suppose that i, k, l, m,
and n are positive integers with k < l ≤ m − k and m ≤ n, and A is a real m × n
matrix. Then, the following five-step algorithm constructs an approximation to an
SVD of AT such that

‖AT − U Σ V T‖ ≤ C m1/(4i) σk+1 (4.30)

with very high probability, where U is a real n×k matrix whose columns are orthonor-
mal, V is a real m × k matrix whose columns are orthonormal, Σ is a real diagonal
k × k matrix whose entries are all nonnegative, σk+1 is the (k + 1)st greatest singular
value of A, and C is a constant independent of A that depends on the parameters of
the algorithm:

1. Using a random number generator, form a real l×m matrix G whose entries
are i.i.d. Gaussian random variables of zero mean and unit variance, and
compute the l × m product matrix

R = G (AAT)i. (4.31)

2. Using an SVD, form a real m× k matrix Q whose columns are orthonormal,
such that there exists a real k × l matrix S for which

‖Q S − RT‖ ≤ ρk+1, (4.32)

where ρk+1 is the (k + 1)st greatest singular value of R. (See Observation 2.4
for details concerning the construction of such a matrix Q.)
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3. Compute the n × k product matrix

T = AT Q. (4.33)

4. Form an SVD of T ,

T = U Σ WT, (4.34)

where U is a real n × k matrix whose columns are orthonormal, W is a real
k × k matrix whose columns are orthonormal, and Σ is a real diagonal k × k
matrix whose entries are all nonnegative. (See, for example, Chapter 8 in [20]
for details concerning the construction of such an SVD.)

5. Compute the m × k product matrix

V = Q W. (4.35)

Clearly, (4.30) is similar to (4.1), as (4.31) is similar to (4.2).
Remark 4.5. The ideas of Remark 4.3 are obviously relevant to the algorithm

of the present subsection, too.

4.4. Blanczos. In this subsection, we describe a modification of the algorithm
of Subsection 4.1, enhancing the accuracy at a little extra computational expense.
Suppose that i, k, l, m, and n are positive integers with k < l and (i + 1)l ≤ m − k,
and A is a real m×n matrix, such that m ≤ n. Then, the following five-step algorithm
constructs an approximation U Σ V T to an SVD of A:

1. Using a random number generator, form a real l×m matrix G whose entries
are i.i.d. Gaussian random variables of zero mean and unit variance, and
compute the l×n matrices R(0), R(1), . . . , R(i−1), R(i) defined via the formulae

R(0) = GA, (4.36)

R(1) = R(0) AT A, (4.37)

R(2) = R(1) AT A, (4.38)

...

R(i−1) = R(i−2) AT A, (4.39)

R(i) = R(i−1) AT A. (4.40)

Form the ((i + 1)l) × n matrix

R =















R(0)

R(1)

...

R(i−1)

R(i)















. (4.41)
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2. Using a pivoted QR-decomposition algorithm, form a real n×((i+1)l) matrix
Q whose columns are orthonormal, such that there exists a real ((i + 1)l) ×
((i + 1)l) matrix S for which

RT = Q S. (4.42)

(See, for example, Chapter 5 in [20] for details concerning the construction
of such a matrix Q.)

3. Compute the m × ((i + 1)l) product matrix

T = AQ. (4.43)

4. Form an SVD of T ,

T = U Σ WT, (4.44)

where U is a real m× ((i+1)l) matrix whose columns are orthonormal, W is
a real ((i + 1)l)× ((i + 1)l) matrix whose columns are orthonormal, and Σ is
a real diagonal ((i+1)l)× ((i+1)l) matrix whose entries are all nonnegative.
(See, for example, Chapter 8 in [20] for details concerning the construction
of such an SVD.)

5. Compute the n × ((i + 1)l) product matrix

V = Q W. (4.45)

An analysis similar to the proof of Theorem 4.1 above shows that the matrices U ,
Σ, and V produced by the algorithm of the present subsection satisfy the same upper
bounds (4.10) and (4.23) as the matrices produced by the algorithm of Subsection 4.1.
If desired, one may produce a similarly accurate rank-k approximation by arranging
U , Σ, and V such that the diagonal entries of Σ appear in nonincreasing order, and
then discarding all but the leftmost k columns of U and all but the leftmost k columns
of V , and retaining only the leftmost uppermost k × k block of Σ. We will refer to
the algorithm of the present subsection as “blanczos,” due to its similarity with the
block Lanczos method (see, for example, Subsection 9.2.6 in [20] for a description of
the block Lanczos method).

5. Numerical results. In this section, we illustrate the performance of the
algorithm of the present paper via several numerical examples.

We use the algorithm to construct a rank-k approximation, with k = 10, to the
m × (2m) matrix A defined via its singular value decomposition

A = U (A) Σ(A) (V (A))T, (5.1)

where U (A) is an m × m Hadamard matrix (a unitary matrix whose entries are all
±1/

√
m), V (A) is a (2m)× (2m) Hadamard matrix, and Σ(A) is an m× (2m) matrix

whose entries are zero off the main diagonal, and whose diagonal entries are defined
in terms of the (k + 1)st singular value σk+1 via the formulae

Σ
(A)
j,j = σj = (σk+1)

⌊j/2⌋/5 (5.2)

for j = 1, 2, . . . , 9, 10, where ⌊j/2⌋ is the greatest integer less than or equal to j/2,
and

Σ
(A)
j,j = σj = σk+1 ·

m − j

m − 11
(5.3)
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for j = 11, 12, . . . , m − 1, m. Thus, σ1 = 1 and σk = σk+1 (recall that k = 10). We
always choose σk+1 < 1, so that σ1 ≥ σ2 ≥ · · · ≥ σm−1 ≥ σm.

Figure 1 plots the singular values σ1, σ2, . . . , σm−1, σm of A with m = 512 and
σk+1 = .001; these parameters correspond to the first row of numbers in Table 1, the
first row of numbers in Table 2, and the first row of numbers in Table 6.

Table 1 reports the results of applying the five-step algorithm of Subsection 4.1
to matrices of various sizes, with i = 1. Table 2 reports the results of applying the
five-step algorithm of Subsection 4.1 to matrices of various sizes, with i = 0. The
algorithms of [32], [33], and [27] for low-rank approximation are essentially the same
as the algorithm used for Table 2 (with i = 0).

Table 3 reports the results of applying the five-step algorithms of Subsections 4.1
and 4.3 with varying numbers of iterations i. Rows in the table where i is enclosed
in parentheses correspond to the algorithm of Subsection 4.3; rows where i is not
enclosed in parentheses correspond to the algorithm of Subsection 4.1.

Table 4 reports the results of applying the five-step algorithm of Subsection 4.1 to
matrices whose best rank-k approximations have varying accuracies. Table 5 reports
the results of applying the blanczos algorithm of Subsection 4.4 to matrices whose
best rank-k approximations have varying accuracies.

Table 6 reports the results of calculating pivoted QR-decompositions, via plane
(Householder) reflections, of matrices of various sizes. We computed the pivoted
QR-decomposition of the transpose of A defined in (5.1), rather than of A itself,
for reasons of accuracy and efficiency. As pivoted QR-decomposition requires dense
matrix arithmetic, our 1 GB of random-access memory (RAM) imposed the limit
m ≤ 4096 for Table 6.

The headings of the tables have the following meanings:
• m is the number of rows in A, the matrix being approximated.
• n is the number of columns in A, the matrix being approximated.
• i is the integer parameter used in the algorithms of Subsections 4.1, 4.3,

and 4.4. Rows in the tables where i is enclosed in parentheses correspond to
the algorithm of Subsection 4.3; rows where i is not enclosed in parentheses
correspond to either the algorithm of Subsection 4.1 or that of Subsection 4.4.

• t is the time in seconds required by the algorithm to create an approximation
and compute its accuracy δ.

• σk+1 is the (k + 1)st greatest singular value of A, the matrix being approx-
imated; σk+1 is also the accuracy of the best possible rank-k approximation
to A.

• δ is the accuracy of the approximation U Σ V T (or (QRP )T, for Table 6)
constructed by the algorithm. For Tables 1–5,

δ = ‖A − U Σ V T‖, (5.4)

where U is an m × k matrix whose columns are orthonormal, V is an n × k
matrix whose columns are orthonormal, and Σ is a diagonal k × k matrix
whose entries are all nonnegative; for Table 6,

δ = ‖A − (QRP )T‖, (5.5)

where P is an m × m permutation matrix, R is a k × m upper-triangular
(meaning upper-trapezoidal) matrix, and Q is an n×k matrix whose columns
are orthonormal.
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The values for t are the average values over 3 independent randomized trials of
the algorithm. The values for δ are the worst (maximum) values encountered in 3
independent randomized trials of the algorithm. The values for δ in each trial are
those produced by 20 iterations of the power method applied to A − U Σ V T (or
A − (QRP )T, for Table 6), started with a vector whose entries are i.i.d. centered
Gaussian random variables. The theorems of [9] and [26] guarantee that this power
method produces accurate results with overwhelmingly high probability.

We performed all computations using IEEE standard double-precision variables,
whose mantissas have approximately one bit of precision less than 16 digits (so that
the relative precision of the variables is approximately .2E–15). We ran all com-
putations on one core of a 1.86 GHz Intel Centrino Core Duo microprocessor with
2 MB of L2 cache and 1 GB of RAM. We compiled the Fortran 77 code using the
Lahey/Fujitsu Linux Express v6.2 compiler, with the optimization flag --o2 enabled.
We implemented a fast Walsh-Hadamard transform to apply rapidly the Hadamard
matrices U (A) and V (A) in (5.1). We used plane (Householder) reflections to compute
all pivoted QR-decompositions. We used the LAPACK 3.1.1 divide-and-conquer SVD
routine dgesdd to compute all full SVDs. For the parameter l, we set l = 12 (= k+2)
for all of the examples reported here.

The experiments reported here and our further tests point to the following:

1. The accuracies in Table 1 are superior to those in Table 2; the algorithm
performs much better with i > 0. (The algorithms of [27], [32], and [33] for
low-rank approximation are essentially the same as the algorithm used for
Tables 1 and 2 when i = 0.)

2. The accuracies in Table 1 are superior to the corresponding accuracies in
Table 6; the algorithm of the present paper produces higher accuracy than
the classical pivoted QR-decompositions for matrices whose spectra decay
slowly (such as those matrices tested in the present section).

3. The accuracies in Tables 1–3 appear to be proportional to m1/(4i+2) σk+1 for
the algorithm of Subsection 4.1, and to be proportional to m1/(4i) σk+1 for
the algorithm of Subsection 4.3, in accordance with (4.1) and (4.30). The
numerical results reported here, as well as our further experiments, indicate
that the theoretical bound (4.10) on the accuracy should remain valid with
a greatly reduced constant in the right-hand side, independent of the matrix
A being approximated. See item 6 below for a discussion of Tables 4 and 5.

4. The timings in Tables 1–5 are consistent with (4.29), as we could (and did)
apply the Hadamard matrices U (A) and V (A) in (5.1) to vectors via fast
Walsh-Hadamard transforms at a cost of O(m log(m)) floating-point opera-
tions per matrix-vector multiplication.

5. The quality of the pseudorandom number generator has almost no effect on
the accuracy of the algorithm, nor does substituting uniform variates for the
normal variates.

6. The accuracies in Table 5 are superior to those in Table 4, particularly when
the kth greatest singular value σk of the matrix A being approximated is
very small. Understandably, the algorithm of Subsection 4.1 would seem
to break down when (σk)2i+1 is less than the machine precision, while σk

itself is not, unlike the blanczos algorithm of Subsection 4.4. When (σk)2i+1

is much less than the machine precision, while σk is not, the accuracy of
blanczos in the presence of roundoff is similar to that of the algorithm of
Subsection 4.1 run with a reduced i. When (σk)2i+1 is much greater than the
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machine precision, the accuracy of blanczos is similar to that of the algorithm
of Subsection 4.1 run with i being the same as in the blanczos algorithm. Since
the blanczos algorithm of Subsection 4.4 is so tolerant of roundoff, we suspect
that the blanczos algorithm is a better general-purpose black-box tool for the
computation of principal component analyses, despite its somewhat higher
cost as compared with the algorithms of Subsections 4.1 and 4.3.

Remark 5.1. A MATLABR⊙ implementation of the blanczos algorithm of
Subsection 4.4 is available on the file exchange at http://www.mathworks.com in the
package entitled, “Principal Component Analysis.”

6. Appendix. In this appendix, we restate and prove Lemmas 3.1 and 3.2 from
Section 3.

The following lemma, stated earlier as Lemma 3.1 in Section 3, shows that the
product AQ QT of matrices A, Q, and QT is a good approximation to a matrix A,
provided that there exist matrices G and S such that

1. the columns of Q are orthonormal,
2. Q S is a good approximation to (G (AAT)i A)T, and
3. there exists a matrix F such that ‖F‖ is not too large, and F G (AAT)i A is

a good approximation to A.
Lemma 6.1. Suppose that i, k, l, m, and n are positive integers with k ≤ l ≤

m ≤ n. Suppose further that A is a real m×n matrix, Q is a real n× k matrix whose
columns are orthonormal, S is a real k × l matrix, F is a real m× l matrix, and G is
a real l × m matrix.

Then,

‖AQ QT − A‖ ≤ 2 ‖F G (AAT)i A − A‖ + 2 ‖F‖ ‖Q S − (G (AAT)i A)T‖. (6.1)

Proof. The proof is straightforward, but tedious, as follows.
To simplify notation, we define

B = (AAT)i A. (6.2)

We obtain from the triangle inequality that

‖AQ QT − A‖ ≤ ‖AQ QT − F GB Q QT‖ + ‖F GB Q QT − F GB‖
+ ‖F GB − A‖. (6.3)

First, we provide a bound for ‖AQ QT − F GB Q QT‖. Clearly,

‖AQ QT − F GB Q QT‖ ≤ ‖A − F GB‖ ‖Q‖ ‖QT‖. (6.4)

It follows from the fact that the columns of Q are orthonormal that

‖Q‖ ≤ 1 (6.5)

and

‖QT‖ ≤ 1. (6.6)

Combining (6.4), (6.5), and (6.6) yields

‖AQ QT − F GB Q QT‖ ≤ ‖A − F GB‖. (6.7)



18 ROKHLIN, SZLAM, AND TYGERT

Next, we provide a bound for ‖F GB Q QT − F GB‖. Clearly,

‖F GB Q QT − F GB‖ ≤ ‖F‖ ‖GB Q QT − GB‖. (6.8)

It follows from the triangle inequality that

‖GB Q QT − GB‖ ≤ ‖GB Q QT − ST QT Q QT‖
+ ‖ST QT Q QT − ST QT‖ + ‖ST QT − GB‖. (6.9)

Furthermore,

‖GB Q QT − ST QT Q QT‖ ≤ ‖GB − ST QT‖ ‖Q‖ ‖QT‖. (6.10)

Combining (6.10), (6.5), and (6.6) yields

‖GB Q QT − ST QT Q QT‖ ≤ ‖GB − ST QT‖. (6.11)

Also, it follows from the fact that the columns of Q are orthonormal that

QT Q = 1. (6.12)

It follows from (6.12) that

‖ST QT Q QT − ST QT‖ = 0. (6.13)

Combining (6.9), (6.11), and (6.13) yields

‖GB Q QT − GB‖ ≤ 2 ‖ST QT − GB‖. (6.14)

Combining (6.8) and (6.14) yields

‖F GB Q QT − F GB‖ ≤ 2 ‖F‖ ‖ST QT − GB‖. (6.15)

Combining (6.3), (6.7), (6.15), and (6.2) yields (6.1).
The following lemma, stated earlier as Lemma 3.2 in Section 3, shows that, for

any positive integer i, matrix A, and matrix G whose entries are i.i.d. Gaussian
random variables of zero mean and unit variance, with very high probability there
exists a matrix F with a reasonably small norm, such that F G (AAT)i A is a good
approximation to A. This lemma is similar to Lemma 19 of [29].

Lemma 6.2. Suppose that i, j, k, l, m, and n are positive integers with j < k <
l < m ≤ n. Suppose further that A is a real m × n matrix, G is a real l × m matrix
whose entries are i.i.d. Gaussian random variables of zero mean and unit variance,
and β and γ are positive real numbers, such that the jth greatest singular value σj of
A is positive, γ > 1, and

Φ = 1 − 1
√

2π (l − j + 1)

(

e

(l − j + 1)β

)l−j+1

− 1

4 (γ2 − 1)
√

π max(m − k, l) γ2

(

2γ2

eγ2−1

)max(m−k, l)

− 1

4 (γ2 − 1)
√

π l γ2

(

2γ2

eγ2−1

)l

(6.16)



A RANDOMIZED ALGORITHM FOR PCA 19

is nonnegative.
Then, there exists a real m × l matrix F such that

‖F G (AAT)i A − A‖ ≤
√

2l2 β2 γ2 + 1 σj+1

+

√

2l max(m − k, l)β2 γ2

(

σk+1

σj

)4i

+ 1 σk+1 (6.17)

and

‖F‖ ≤
√

l β

(σj)2i
(6.18)

with probability not less than Φ defined in (6.16), where σj is the jth greatest singular
value of A, σj+1 is the (j +1)st greatest singular value of A, and σk+1 is the (k +1)st

greatest singular value of A.
Proof. We prove the existence of a matrix F satisfying (6.17) and (6.18) by

constructing one.
We start by forming an SVD of A,

A = U Σ V T, (6.19)

where U is a real unitary m × m matrix, Σ is a real diagonal m × m matrix, and V
is a real n × m matrix whose columns are orthonormal, such that

Σp,p = σp (6.20)

for p = 1, 2, . . . , m − 1, m, where Σp,p is the entry in row p and column p of Σ, and
σp is the pth greatest singular value of A.

Next, we define auxiliary matrices H , R, Γ, S, T , Θ, and P . We define H to be
the leftmost l × j block of the l × m matrix GU , R to be the l × (k − j) block of
GU whose first column is the (k + 1)st column of GU , and Γ to be the rightmost
l × (m − k) block of GU , so that

GU =
(

H R Γ
)

. (6.21)

Combining the fact that U is real and unitary, and the fact that the entries of G
are i.i.d. Gaussian random variables of zero mean and unit variance, we see that the
entries of H are also i.i.d. Gaussian random variables of zero mean and unit variance,
as are the entries of R, and as are the entries of Γ. We define H(−1) to be the real
j × l matrix given by the formula

H(−1) = (HT H)−1 HT (6.22)

(HT H is invertible with high probability due to Lemma 2.7). We define S to be the
leftmost uppermost j × j block of Σ, T to be the (k − j) × (k − j) block of Σ whose
leftmost uppermost entry is the entry in the (j + 1)st row and (j + 1)st column of Σ,
and Θ to be the rightmost lowermost (m − k) × (m − k) block of Σ, so that

Σ =





S 0 0

0 T 0

0 0 Θ



 . (6.23)
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We define P to be the real m × l matrix whose uppermost j × l block is the product
S−2i H(−1), whose entries are zero in the (k−j)×l block whose first row is the (j+1)st

row of P , and whose entries in the lowermost (m − k) × l block are zero, so that

P =





S−2i H(−1)

0

0



 . (6.24)

Finally, we define F to be the m × l matrix given by

F = U P = U





S−2i H(−1)

0

0



 . (6.25)

Combining (6.22), (2.1), the fact that the entries of H are i.i.d. Gaussian random
variables of zero mean and unit variance, and Lemma 2.7 yields

∥

∥

∥H(−1)
∥

∥

∥ ≤
√

l β (6.26)

with probability not less than

1 − 1
√

2π (l − j + 1)

(

e

(l − j + 1)β

)l−j+1

. (6.27)

Combining (6.25), (6.26), (6.23), (6.20), the fact that Σ is zero off its main diagonal,
and the fact that U is unitary yields (6.18).

We now show that F defined in (6.25) satisfies (6.17).
Combining (6.19), (6.21), and (6.25) yields

F G (AAT)i A − A = U









S−2i H(−1)

0

0





(

H R Γ
)

Σ2i − 1



 Σ V T. (6.28)

Combining (6.22) and (6.23) yields









S−2i H(−1)

0

0





(

H R Γ
)

Σ2i − 1



 Σ

=





0 S−2i H(−1) R T 2i+1 S−2i H(−1) Γ Θ2i+1

0 −T 0

0 0 −Θ



 . (6.29)

Furthermore,

∥

∥

∥

∥

∥

∥





0 S−2i H(−1) R T 2i+1 S−2i H(−1) Γ Θ2i+1

0 −T 0

0 0 −Θ





∥

∥

∥

∥

∥

∥

2

≤
∥

∥

∥S−2i H(−1) R T 2i+1
∥

∥

∥

2

+
∥

∥

∥S−2i H(−1) Γ Θ2i+1
∥

∥

∥

2

+ ‖T ‖2 + ‖Θ‖2. (6.30)
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Moreover,
∥

∥

∥S−2i H(−1) R T 2i+1
∥

∥

∥ ≤
∥

∥S−1
∥

∥

2i
∥

∥

∥H(−1)
∥

∥

∥ ‖R‖ ‖T ‖2i+1 (6.31)

and
∥

∥

∥S−2i H(−1) Γ Θ2i+1
∥

∥

∥ ≤
∥

∥S−1
∥

∥

2i
∥

∥

∥H(−1)
∥

∥

∥ ‖Γ‖ ‖Θ‖2i+1. (6.32)

Combining (6.23) and (6.20) yields

∥

∥S−1
∥

∥ ≤ 1

σj
, (6.33)

‖T ‖ ≤ σj+1, (6.34)

and

‖Θ‖ ≤ σk+1. (6.35)

Combining (6.28)–(6.35) and the fact that the columns of U are orthonormal, as are
the columns of V , yields

‖F G (AAT)i A − A‖2 ≤
(

∥

∥

∥H(−1)
∥

∥

∥

2

‖R‖2

(

σj+1

σj

)4i

+ 1

)

(σj+1)
2

+

(

∥

∥

∥
H(−1)

∥

∥

∥

2

‖Γ‖2

(

σk+1

σj

)4i

+ 1

)

(σk+1)
2. (6.36)

Combining Lemma 2.6 and the fact that the entries of R are i.i.d. Gaussian
random variables of zero mean and unit variance, as are the entries of Γ, yields

‖R‖ ≤
√

2l γ (6.37)

and

‖Γ‖ ≤
√

2 max(m − k, l) γ, (6.38)

with probability not less than

1 − 1

4 (γ2 − 1)
√

π max(m − k, l) γ2

(

2γ2

eγ2−1

)max(m−k, l)

− 1

4 (γ2 − 1)
√

π l γ2

(

2γ2

eγ2−1

)l

. (6.39)

Combining (6.36), (6.26), (6.37), and (6.38) yields

‖F G (AAT)i A − A‖2 ≤
(

2l2 β2 γ2

(

σj+1

σj

)4i

+ 1

)

(σj+1)
2

+

(

2l max(m − k, l)β2 γ2

(

σk+1

σj

)4i

+ 1

)

(σk+1)
2 (6.40)

with probability not less than Φ defined in (6.16). Combining (6.40), the fact that
σj+1 ≤ σj , and the fact that

√
x + y ≤

√
x +

√
y (6.41)

for any nonnegative real numbers x and y yields (6.17).
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m n i t σk+1 δ

512 1024 1 .13E–01 .001 .0011
2048 4096 1 .56E–01 .001 .0013
8192 16384 1 .25E–00 .001 .0018

32768 65536 1 .12E+01 .001 .0024
131072 262144 1 .75E+01 .001 .0037
524288 1048576 1 .36E+02 .001 .0039

Table 1: Five-step algorithm of Subsection 4.1

m n i t σk+1 δ

512 1024 0 .14E–01 .001 .012
2048 4096 0 .47E–01 .001 .027
8192 16384 0 .22E–00 .001 .039

32768 65536 0 .10E+01 .001 .053
131072 262144 0 .60E+01 .001 .110
524288 1048576 0 .29E+02 .001 .220

Table 2: Five-step algorithm of Subsection 4.1

m n i t σk+1 δ

524288 1048576 0 .29E+02 .01 .862
524288 1048576 (1) .31E+02 .01 .091
524288 1048576 1 .36E+02 .01 .037
524288 1048576 (2) .38E+02 .01 .025
524288 1048576 2 .43E+02 .01 .022
524288 1048576 (3) .45E+02 .01 .015
524288 1048576 3 .49E+02 .01 .010

Table 3: Five-step algorithms of Subsections 4.1 and 4.3
(parentheses around i designate Subsection 4.3)

m n i t σk+1 δ

262144 524288 1 .17E+02 .10E–02 .39E–02
262144 524288 1 .17E+02 .10E–04 .10E–03
262144 524288 1 .17E+02 .10E–06 .25E–05
262144 524288 1 .17E+02 .10E–08 .90E–06
262144 524288 1 .17E+02 .10E–10 .55E–07
262144 524288 1 .17E+02 .10E–12 .51E–08
262144 524288 1 .17E+02 .10E–14 .10E–05

Table 4: Five-step algorithm of Subsection 4.1
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m n i t σk+1 δ

262144 524288 1 .31E+02 .10E–02 .35E–02
262144 524288 1 .31E+02 .10E–04 .15E–04
262144 524288 1 .31E+02 .10E–06 .24E–05
262144 524288 1 .31E+02 .10E–08 .11E–06
262144 524288 1 .31E+02 .10E–10 .19E–08
262144 524288 1 .31E+02 .10E–12 .25E–10
262144 524288 1 .31E+02 .10E–14 .53E–11

Table 5: Five-step algorithm of Subsection 4.4

m n t σk+1 δ

512 1024 .60E–01 .001 .0047
1024 2048 .29E–00 .001 .0065
2048 4096 .11E+01 .001 .0092
4096 8192 .43E+01 .001 .0131

Table 6: Pivoted QR-decomposition
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Figure 1: Singular values with m = 512, n = 1024,
and σk+1 = .001
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