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Abstract

Hart, Iosevich, Koh and Rudnev (2007) show, using Fourier analysis method,
that the finite Erdös-Falconer distance conjecture holds for subsets of the unit sphere
in Fd

q . In this note, we give a graph theoretic proof of this result.

1 Introduction

The Erdös Distance Problem is perhaps the best known problem in combinatorial geom-
etry. How many distinct distances can occur among n points in the plane? Although
this problem has received considerable attention, we are still far from the solution. The
Falconer distance conjecture says that if E ⊂ Rd, d ≥ 2, has Hausdroff dimension greater
than d

2
, then the set of distances occur in E has positive Lebesgue measure. See [9] for

the connections between the Erdös and Falconer distance conjectures.
In the finite field setting, the distance problem turns out to have features of both the

Erdös and Falconer distance problems in real spaces. Let Fq denote the finite field with
q elements where q ≫ 1 is an odd prime power. For any x, y ∈ Fd

q , the distance between
x, y is defined as ‖x− y‖ = (x1 − y1)

2 + . . . + (xd − yd)
2. Let E ⊂ F

d
q , d > 2. Then the

finite analog of the classical Erdös distance problem is to determine the smallest possible
cardinality of the set

∆(E) = {‖x− y‖ : x, y ∈ E}, (1.1)

viewed as a subset of Fq. Bourgain, Katz and Tao ([4]), showed, using intricate incidence
geometry, that for every ε > 0, there exists δ > 0, such that if E ∈ F2

q and C1
ε q

ε 6 |E| 6

C2
ε q

2−ε, then |∆(E)| > Cδ|E|
1

2
+δ for some constants C1

ε , C
2
ε and Cδ. The relationship

between ε and δ in their argument is difficult to determine. Going up to higher dimension
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using arguments of Bourgain, Katz and Tao is quite subtle. Iosevich and Rudnev [8]
establish the following result using Fourier analytic method.

Theorem 1.1 ([8]) Let E ⊂ Fd
q such that |E| & Cqd/2 for C sufficiently large. Then

|∆(E)| & min

{

q,
|E|

q(d−1)/2

}

. (1.2)

In view of this reslut, Iosevich and Rudnev ([8]) formulated the Erdös-Falconer con-
jecture as follows.

Conjecture 1.2 Let E ⊂ Fd
q such that |E| ≥ Cǫq

d

2
+ǫ. Then there exists c > 0 such that

|∆(E)| ≥ cq.

By modifying the proof of Theorem 1.1 slightly, Iosevich and Rudnev ([8]) obtain the
following stronger conclusion.

Theorem 1.3 ([8]) Let E ⊂ F

d
q such that |E| ≥ Cq

d+1

2 for sufficient large constant C.
Then ∆(E) = Fq.

In [7], the authors show that Theorem 1.3 is essentially sharp, which implies that
Conjecture 1.2 is not true in general. They show however, that the exponent predicted
by Conjecture 1.2 does hold for subsets of the sphere Sd−1 = {x ∈ Fd

q : x
2
1 + . . . x2

d = 1}.

Theorem 1.4 ([7]) Let E ⊂ Fd
q , d ≥ 3, be a subset of the sphere

Sd−1 = {x ∈ Fd
q : ||x|| = 1}.

Suppose that |E| ≥ Cqd/2 with a sufficiently large constant C. Then there exists c > 0
such that |∆(E)| > cq.

In this note, we will give a graph theoretic proof of this result. The rest of this note is
organized as follows. In Section 2, we construct our main tools to study the Erdös-Falconer
distance problem over subsets of the sphere, the graphs associated to the projective spaces
over finite fields. Our construction follows one of Bannai, Shimabukuro and Tanaka in
[3]. We then prove Theorem 1.4 in Section 3. We also call the reader’s attention that this
note is a subsequent of an earlier paper [11].

Remark 1.5 If d is even, Hart, Iosevich, Koh and Rudnev showed that all the ditances
can be obtained under the same assumption and the size condition on E cannot be relaxed.
If d is odd then we cannot in general get all the distances if |E| ≪ q

d+1

2 . Interested readers
can see [7] for a detailed discussion and related results.

2



2 Finite non-Euclidean graphs

In this section, we give a construction of graphs from the action of simple orthogonal
group on the set of non-isotropic square-type of projective spaces over finite fields. Our
construction follows one of Bannai, Shimabukuro and Tanaka in [3]. Let V = Fd

q be the
d-dimensional vector space over the finite field Fq (q is an odd prime power). For each
element x of V , we denote the 1-dimensional subspace containing x by [x]. Let Ω be
the set of all square type non-isotropic 1-dimensional subspaces of V with respect to the
quadratic form Q(x) = x2

1+ . . .+x2
d. The simple orthogonal group Od(Fq) acts transtively

on Ω, and yields a symmetric association scheme Ψ(Od(Fq),Ω) of class (q+1)/2. We have
two cases.

Case I. Suppose that d = 2m+ 1. The relations of Ψ(O2m+1(Fq),Ω) are given by

R1 = {([U ], [V ]) ∈ Ω× Ω | (U + V ) · (U + V ) = 0},

Ri = {([U ], [V ]) ∈ Ω× Ω | (U + V ) · (U + V ) = 2 + 2ν−(i−1)} (2 6 i 6 (q − 1)/2)

R(q+1)/2 = {([U ], [V ]) ∈ Ω× Ω · (U + V ) · (U + V ) = 2},

where ν is a generator of the field Fq and we assume U · U = 1 for all [U ] ∈ Ω (see [2]).
Case II. Suppose that d = 2m. The relations of Ψ(O2m(Fq),Ω) are given by

Ri = {([U ], [V ]) ∈ Ω× Ω | (U + V ) · (U + V ) = 2 + 2−1νi} (1 6 i 6 (q − 1)/2)

R(q+1)/2 = {([U ], [V ]) ∈ Ω× Ω · (U + V ) · (U + V ) = 2},

where ν is a generator of the field Fq and we assume U · U = 1 for all [U ] ∈ Ω (see [2]).
The graphs (Ω, Ri) are not Ramanujan in general, but fortunately, they are asymptotic

Ramanujan for large q. The following theorem summaries the results from [3] in a rough
form.

Theorem 2.1 ([3]) The graphs (Ω, Ri) (1 ≤ i ≤ (q + 1)/2) are regular of order qd−1(1 +
o(1))/2 and valency Kqd−2(1 + o(1)). Let λ be any eigenvalue of the graph (Ω, Ri) with
λ 6= valency of the graph then

|λ| ≤ k(1 + o(1))q(d−2)/2,

for some k,K > 0 (In fact, we can show that k = 2 and K = 1 or 1/2).

3 Graph theoretic proof of Theorem 1.4

Let E be a subset of the unit sphere Sd−1 = {x ∈ Fd
q : ||x|| = 1} with |E| ≥ Cqd/2. Let

E1 = {[x] : x ∈ E} ⊂ Ω (where Ω is the set of all square type non-isotropic 1-dimensional
subspaces of V with respect to the quadratic form Q(x) = x2

1 + . . . + x2
d). Since each

line through origin in Fd
q intersects the unit sphere Sd−1 at two points, |E1| ≥ Cqd/2/2.

Suppose that ([U ], [V ]) ∈ E1 ×E1 is an edge of (Ω, Ri). Then

(U + V ) · (U + V ) = 2 + αi,
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where αi = 2ν(−(i−1)) if d is odd and αi = 2−1νi if d is even. Since U · U = V · V = 1,
we have (U − V ) · (U − V ) = 2 − αi. The distance between U and V (in E) is either
(U + V ) · (U + V ) or (U − V ) · (U + V ), so

|∆(E) ∩ {2 + αi, 2− αi}| ≥ 1.

Therefore, it is sufficient to show that E1×E1 contains edges of at least cq graphs among
(Ω, Ri), 1 ≤ i ≤ (q + 1)/2.

To complete the proof, we need the following result from spectral graph theory. We call
a graph G (n, d, λ)-regular if G is a d-regular graph on n vertices with the absolute value
of each of its eigenvalues but the largest one is at most λ. It is well-known that if λ ≪ d
then a (n, d, λ)-regular graph behaves similarly as a random graph Gn,d/n. Presicely, we
have the following result (see Corollary 9.2.5 and Corollary 9.2.6 in [1]).

Theorem 3.1 ([1]) Let G be a (n, d, λ)-regular graph. For every set of vertices B of G,
we have

|eG(B)−
d

2n
|B|2| 6

1

2
λ|B|, (3.1)

where eG(B) is number of edges in the induced subgraph of G on B.

From Theorem 3.1, we have

|e(Ω,Ri)(E1)−
Kqd−2(1 + o(1))

qd−1(1 + o(1))/2
|E1|

2| ≤
1

2
k(1 + o(1))q(d−2)/2|E1|.

Since |E1| ≥ Cqd/2/2 for C sufficiently large, the left hand term 1
2
k(1+ o(1))q(d−2)/2|E1| is

neglected by Kqd−2(1+o(1))
qd−1(1+o(1))/2

|E1|
2. Thus, we have e(Ω,Ri)(E1) = O(|E1|

2/q). Besides E1 ×E1

is edge-decomposed into (q + 1)/2 graphs (Ω, Ri), 1 ≤ i ≤ (q + 1)/2. This implies that
E1 × E1 contains edges of at lesat cq graphs among (Ω, Ri), 1 ≤ i ≤ (q + 1)/2 for some
constant c > 0. The theorem follows.
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