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AN OPTIMAL ORDER ERROR ANALYSIS OF THE ONE-DIMENSIONAL

QUASICONTINUUM APPROXIMATION

MATTHEW DOBSON AND MITCHELL LUSKIN

Abstract. We derive a model problem for quasicontinuum approximations that allows a simple,
yet insightful, analysis of the optimal-order convergence rate in the continuum limit for both the
energy-based quasicontinuum approximation and the quasi-nonlocal quasicontinuum approxima-
tion. The optimal-order error estimates for the quasi-nonlocal quasicontinuum approximation are
given for all strains up to the continuum limit strain for fracture. The analysis is based on an explicit
treatment of the coupling error at the atomistic to continuum interface, combined with an analysis
of the error due to atomistic and continuum schemes using the stability of the quasicontinuum
approximation.

1. Introduction

The quasicontinuum method (QC) denotes a class of related approximations of fully atomistic
models for crystalline solids that reduces the degrees of freedom necessary to compute a deformation
to a desired accuracy [6, 8, 9, 12, 13, 15–19, 21, 22, 25, 27, 28]. The derivation of a quasicontinuum
method first removes atomistic degrees of freedom by using a piecewise linear approximation of the
atom deformations with respect to a possibly much smaller number of representative atoms. Since
atoms interact significantly with atoms beyond their nearest neighbors, a further approximation is
required to obtain a computationally feasible method.

In this paper, we will analyze two QC variants that approximate the total atomistic energy
by using a continuum approximation in a portion of the material called the continuum region.
The deformation gradient is assumed to be slowly varying in the continuum region, making the
continuum approximation accurate. The more computationally intensive atomistic model is used for
the remainder of the computational domain, which is called the atomistic region. In this region, all
of the atoms are representative atoms, so that there is no restriction of the types of deformations in
the atomistic region. To maintain accuracy, the atomistic region must contain all regions of highly
varying deformation, such as material defects. Adaptive methods that determine what portion of
the domain should be assigned to the atomistic region in order to acheive the required accuracy
have been considered in [1–3,20–22,24]. Other approaches to atomistic to continuum coupling have
been developed and analyzed in [4, 23], for example.

In Section 2, we derive a model problem for QC approximations and describe the energy-based
quasicontinuum (QCE) approximation and the quasi-nonlocal quasicontinuum (QNL) approxima-
tion. These two approximations use the same continuum approximation, but differ in how they
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couple the atomistic and continuum regions. We also give stability estimates for the two QC
variants.

We have derived our model quasicontinuum energy from a general quasicontinuum energy by
expanding each interaction to second order to be able to present a simple, but illuminating, analysis.
The model differs from a standard quadratic approximation by keeping certain first-order terms.
These are a source of leading-order coupling error, and reflect the behavior in the non-linear case.
We have also chosen to analyze the model problem for boundary conditions given by restricting to
periodic displacements to maintain the simplicity of the analysis.

The goal of this paper is to give an error analysis as the number of atoms per interval increases
(the continuum limit). The residual at atoms in the coupling interface is lower order (order O(1/h)
and O(1) for QCE and QNL, respectively) than the residual in either the atomistic or continuum
region (O(h2) in all cases). However, the corresponding error depends primarily on the sum of the
residual at the atoms in the atomistic to continuum coupling interface, and this sum has the higher
order O(h) due to the cancellation of the lowest order terms when the residual is summed across
the interface.

In Section 3, we split the residual for the QCE approximation into the part due to the continuum
approximation and the part due to coupling the atomistic and continuum regions. The stability of
the QCE approximation and the O(h2) estimate for the corresponding residual combine to give an
optimal order bound on the error due to the continuum approximation. We then derive an explicit
representation of the coupling error, and we observe that this error is small and decays away from
the interface since the coupling residual is oscillatory, as described in the preceding paragraph. The
coupling error is the leading order term in the total error, dominating the continuum approximation
error.

We show that the displacement converges at the rate O(h) in the discrete l∞ norm and the rate

O(h1/p) in the w1,p norms where h is the interatomic spacing. Our analysis extends the results of
E, Ming, and Yang [14] that show that the error is O(1) in the w1,∞ norm for the QCE method
applied to a problem with harmonic interactions and Dirichlet boundary conditions.

In Section 4, we present the same analysis in the QNL case. Here we show that the improved
order of accuracy in the coupling interface serves to nearly balance the order of the error due to the
continuum approximation, and we are consequently able to give higher order optimal error estimates
for the QNL approximation than for the QCE approximation. We show that the displacement now
converges at the rate O(h2) in the discrete l∞ norm and the rate O(h1+1/p) in the w1,p norms where
h is the interatomic spacing. E, Ming, and Yang [14] have obtained O(h) esimtates in the w1,∞

norm for the Lennard-Jones potential and strains bounded away from the continuum limit strain
for fracture. We have obtained optimal order error estimates for the discrete l∞ and w1,p norms
for all strains up to the continuum limit strain for fracture.

This paper extends our analysis of the effect of atomistic to continuum model coupling on the
total error in the energy-based quasicontinuum approximation [10] to include external forcing. We
also now include an analysis of the quasi-nonlocal approximation.

2. One-Dimensional, Linear Quasicontinuum Approximation

We consider the periodic displacement from a one-dimensional reference lattice with spacing
h = 1/N, and we denote the positions of the atoms in the reference lattice by

xj := jh, −∞ < j < ∞.
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We will derive and analyze the linearization about a uniform deformation gradient F given by the
deformation

yFj := jFh = ja, −∞ < j < ∞, (2.1)

which is a lattice with spacing a := Fh. We will then consider perturbations uj of the lattice yFj
which are 2N periodic in j, that is, we will consider deformations yj where

yj := yFj + uj, −∞ < j < ∞,

for

uj+2N = uj, −∞ < j < ∞. (2.2)

We will often describe the perturbations uj satisfying (2.2) as displacements (which they are if yFj
is considered the reference lattice). We thus have that the deformation satisfies

yj+2N = yj + 2F, −∞ < j < ∞. (2.3)

We note that neither the reference lattice spacing h nor the uniform lattice spacing a need be the
equilibrium lattice constant or the well of the interatomic potential.

2.1. Notation. Before introducing the models, we fix the following notation. We define the back-
ward differentiation operator, Du, on periodic displacements by

(Du)j :=
uj − uj−1

h
for −∞ < j < ∞.

Then (Du)j is also 2N periodic in j. We will use the short-hand (Du)j = Duj.
For periodic displacements, u, we define the discrete norms

‖u‖ℓp
h
:=


h

N∑

j=−N+1

|uj |p



1/p

, 1 ≤ p < ∞,

‖u‖ℓ∞
h

:= max
−N+1≤j≤N

|uj|,

By including the whole period, we ensure that they are all norms (in particular, ‖u‖ℓp
h
= 0 implies

u = 0). We sum over a single period to make the norms finite. We will also consider periodic
functions u(x) : R → R satisfying

u(x+ 2) = u(x) for x ∈ R. (2.4)

We define corresponding continuous norms

‖u‖Lp :=

(∫ 1

−1
|u(x)|p dx

)1/p

, 1 ≤ p < ∞,

‖u‖L∞ := ess sup
x∈(−1,1)

|u(x)|.

We let u′ denote the weak derivative of the periodic function u. We note that if ‖u′‖Lp < ∞, then
u(x) is continuous for all x in R and u(−1) = u(1). We will similarly denote higher order weak

derivatives of the periodic function u as u′′, u′′′, and u(4).
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2.2. Atomistic Model. We first consider the total energy per period

E tot,h(y) := Ea,h(y) −F(y), (2.5)

for deformations y satisfying (2.3) where the total atomistic energy per period is

Ea,h(y) =
N∑

j=−N+1

h

[
φ

(
yj − yj−1

h

)
+ φ

(
yj − yj−2

h

)]
(2.6)

for a two-body interatomic potential φ (assumptions on the potential are given in Section 2.5), and
where the total external potential energy per period is

F(y) =
N∑

j=−N+1

hfjyj (2.7)

for periodic dead loads f such that fj+2N = fj and
∑N

j=−N+1 fj = 0.

We have scaled the atomistic energy per bond in (2.6) by hφ(r/h) and the external force per
atom by hfi in (2.7). This scaling permits a continuum limit as h → 0. If y, f ∈ C∞(R) satisfy

y(x+ 2) = y(x) + 2F, y′(x) > 0, f(x+ 2) = f(x), and
∫ 1
−1 f(x) dx = 0; if φ(r) is locally Lipschitz

for r ∈ (0,∞); and if we set yj = y(xj) and fj = f(xj), then the energy per period (2.5) converges
to [5]

∫ 1

−1

[
φ̂
(
y′(x)

)
− f(x)y(x)

]
dx (2.8)

as N → ∞ (which implies h → 0), where φ̂(r) = φ(r) + φ(2r). In the following, we linearize the
atomistic model which leads to a corresponding linearized continuum model. This paper analyzes
the convergence of two quasicontinuum approximations to the minimizer of the linearized continuum
model’s total energy.

2.3. Linearized Atomistic Model. We will henceforth consider the linearized version of the
above energies while reusing the notation Ea,h and E tot,h. The total atomistic energy (2.6) be-
comes [10]

Ea,h(u) :=

N∑

j=−N+1

h

[
φ′
F

[
uj − uj−1

h

]
+ 1

2φ
′′
F

[
uj − uj−1

h

]2

+φ′
2F

[
uj − uj−2

h

]
+ 1

2φ
′′
2F

[
uj − uj−2

h

]2]
,

(2.9)

for displacements, u, satisfying the periodic boundary conditions (2.2). Here φ′
F := φ′(F ), φ′′

F :=
φ′′(F ), φ′

2F := φ′(2F ), φ′′
2F := φ′′(2F ), where φ is the interatomic potential in (2.6). We have

removed the additive constant 2φ(F ) + 2φ(2F ) from the quadratic expansion of the energy, and

we will remove the additive constant −h
∑N

j=−N+1 fjy
F
j from F(u) when computing the external

potential of the displacement u. We note that the first order terms in (2.9) sum to zero by the
periodic boundary conditions and thus do not contribute to the total energy or the equilibrium
equations. We keep the first order terms in the model (2.9) since they do not sum to zero when the
atomistic model is coupled to the continuum approximation in the quasicontinuum energy. The
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atomistic energy (2.9) has the equilibrium equations

(La,hu)j =
−φ′′

2Fuj+2 − φ′′
Fuj+1 + 2(φ′′

F + φ′′
2F )uj − φ′′

Fuj−1 − φ′′
2Fuj−2

h2
= fj,

uj+2N = uj,
(2.10)

for −∞ < j < ∞.

2.4. Linearized Continuum Model. For periodic u ∈ C∞(R) and uj = u(xj), the total lin-
earized atomistic energy

E tot,h(u) := Ea,h(u)−F(u) (2.11)

converges to ∫ 1

−1

[
W (u′(x))− f(x)u(x)

]
dx (2.12)

as N → ∞, where the continuum strain energy density, W (ǫ), is given by

W (ǫ) :=
[
(φ′

F + 2φ′
2F )ǫ+

1
2 (φ

′′
F + 4φ′′

2F )ǫ
2
]
. (2.13)

The equilibrium equations (2.10) are a five-point consistent difference approximation of the equi-
librium equation of the continuum model (2.12), which are

−(φ′′
F + 4φ′′

2F )u
′′
e = f,

ue(x+ 2) = ue(x),
(2.14)

for x ∈ R.
Quasicontinuum approximations couple an approximation of the continuum model with the atom-

istic model. The continuum approximation consists of a finite element discretization of the contin-
uum model’s elastic energy. The discretization uses a continuous, piecewise linear displacement u
with the atom positions x as nodes. The external force term is applied as a point force at each
node, so that (2.12) becomes

N∑

l=−N+1

h[W (Dul)− flul]. (2.15)

The continuum approximation has equilibrium equations

− (φ′′
F + 4φ′′

2F )
ul+1 − 2ul + ul−1

h2
= fl, −∞ < l < ∞,

ul+2N = ul,

which is a three-point consistent difference approximation of the equilibrium equations for the
continuum model (2.14). In one dimension, the above is actually the standard finite difference
approximation of (2.12); however, it is framed in finite element terminology for flexibility in coars-
ening, adapativity, and higher dimensional modelling.

2.5. Assumptions. We assume that

φ′′
F + 4φ′′

2F > 0, (2.16)

which implies that the total linearized atomistic energy (2.9) is positive definite (up to uniform
translation of the displacement). Thus both equations (2.10) and (2.14) have a unique solution (up
to uniform translation) provided that

N∑

j=−N+1

fj = 0. (2.17)
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For simplicity, we assume in the following that f is odd in addition to being periodic, that is,

f(x) = −f(−x) and f(x+ 2) = f(x) for −∞ < x < ∞, (2.18)

which implies that fj := f(xj) satisfies

fj = −f−j and fj+2N = fj for −∞ < j < ∞. (2.19)

We obtain a unique, odd periodic solution satisfying the mean value condition

N∑

j=−N+1

uj = 0. (2.20)

To give nonoscillatory solutions to the equilibrium equations (2.10) (that is, to guarantee that the
roots of the corresponding characteristic equation are real (3.17)), we further assume that

φ′′
F > 0 and φ′′

2F < 0. (2.21)

The assumption (2.21) holds for potentials that allow an accurate second neighbor cut-off, such as
the Lennard-Jones potential [9, 10].

2.6. Energy-Based Quasicontinuum Approximation. The energy-based quasicontinuum ap-
proximation (QCE) of Ea,h(u) decomposes the reference lattice into an atomistic region and a
coarse-grained continuum region. It computes a total energy by using the atomistic energy (2.9)
in the atomistic region and by using the continuum approximation (2.15) to sum the energy of the
continuum region.

For our analysis, we will consider an atomistic region defined by the atoms with reference
positions xj for j = −K, . . . ,K, and a continuum region containing the remaining atoms, j =
−N +1, . . . ,−K − 1 and j = K +1, . . . , N. All atoms in the continuum region, along with the two
atoms on the boundary, j = ±K will act as nodes for the continuum approximation. The continuum
region can be decomposed into elements (x(l−1), xl) for l = −N + 1, · · · −K and l = K + 1, . . . , N.
(In general, elements can contain many atoms of the reference lattice, but in this paper we do not
consider coarsening in the continuum region.)

To construct the contribution of the atomistic region to the total quasicontinuum energy, it is
convenient to construct an energy associated with each atom by splitting equally the energy of each
bond to obtain

Ea,h
j (u) :=

h

2

[
φ′
F

[
uj+1 − uj

h

]
+ 1

2φ
′′
F

[
uj+1 − uj

h

]2

+ φ′
2F

[
uj+2 − uj

h

]
+ 1

2φ
′′
2F

[
uj+2 − uj

h

]2 ]

+
h

2

[
φ′
F

[
uj − uj−1

h

]
+ 1

2φ
′′
F

[
uj − uj−1

h

]2

+ φ′
2F

[
uj − uj−2

h

]
+ 1

2φ
′′
2F

[
uj − uj−2

h

]2 ]
.

(2.22)

The continuum energy (2.15) is split into energy per element hW (Dul) where W is given in (2.13),
and h = xl − xl−1 is the length of the continuum element (xl−1, xl).

To construct a quasicontinuum approximation QCE that conserves exactly the energy of atom-
istic model (2.9) for lattices yFj given by a uniform deformation gradient F (see (2.1)) the elements
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(x−K−1, x−K) and (xK , xK+1) on the border of the atomistic region should contribute only one
half of the continuum energy associated with that element. The QCE energy is then

Eqce,h(u) :=

−K−1∑

l=−N+1

hW (Dul) +
1
2hW (Du−K) +

K∑

j=−K

Ea,h
j (u)

+ 1
2hW (DuK+1) +

N∑

l=K+2

hW (Dul).

(2.23)

The equilibrium equations for the total QCE energy, Eqce,h(u)−F(u), then take the form [9,10]

Lqce,huqce − g = f , (2.24)

where, for 0 ≤ j ≤ N, we have

(Lqce,hu)j = φ′′
F

−uj+1 + 2uj − uj−1

h2

+





4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
, 0 ≤ j ≤ K − 2,

4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
+

φ′′
2F

h

uj+2 − uj
2h

, j = K − 1,

4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
− 2φ′′

2F

h

uj+1 − uj
h

+
φ′′
2F

h

uj+2 − uj
2h

, j = K,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
− 2φ′′

2F

h

uj − uj−1

h
+

φ′′
2F

h

uj − uj−2

2h
, j = K + 1,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
+

φ′′
2F

h

uj − uj−2

2h
, j = K + 2,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
, K + 3 ≤ j ≤ N,

with g given by

gj =





0, 0 ≤ j ≤ K − 2,

− 1
2hφ

′
2F , j = K − 1,

1
2hφ

′
2F , j = K,

1
2hφ

′
2F , j = K + 1,

− 1
2hφ

′
2F , j = K + 2,

0, K + 3 ≤ j ≤ N.

(2.25)

For space reasons, we only list the entries for 0 ≤ j ≤ N. The equations for all other j ∈ Z

follow from symmetry and periodicity. Due to the symmetry in the definition of the atomistic and

continuum regions, we have that Lqce,h
i,j = Lqce,h

−i,−j and gj = −g−j for −N +1 ≤ i, j ≤ 0. To see this,

we define the involution operator (Su)j = −u−j and observe that Eqce,h(Su) = Eqce,h(u). It then
follows from the chain rule that

STLqce,hSu− STg − ST f = Lqce,hu− g − f for all periodic u.

Since ST = S and the assumption (2.19) is equivalent to Sf = f, we can conclude that

SLqce,hS = Lqce,h and Sg = g. (2.26)

Furthermore, we can conclude that the unique mean zero solution (2.20) to the equilibrium equa-
tions (2.24) is odd. This follows from S−1 = S and (2.26) which together imply that Su is a
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solution if and only if u is. Because S preserves the mean zero property, we conclude that uqce is
odd.

2.7. Stability of the Quasicontinuum Operator. Our analysis of the QCE error will utilize
the following stability results for the operator Lqce,h.

Lemma 2.1. If ν := φ′′
F − 5|φ′′

2F | > 0, then

hv · Lqce,hv ≥ ν ‖Dv‖2ℓ2
h
. (2.27)

Proof. The stability result (2.27) follows from the identity

1
2hv · Lqce,hv =

−K−1∑

l=−N+1

hŴ (Dvl) +
1
2hŴ (Dv−K) +

K∑

j=−K

Êa,h
j (v)

+ 1
2hŴ (DvK+1) +

N∑

l=K+2

hŴ (Dvl),

where

Êa,h
j (v) :=

h

2

[
1
2φ

′′
F

[
vj+1 − vj

h

]2
+ 1

2φ
′′
2F

[
vj+2 − vj

h

]2 ]

+
h

2

[
1
2φ

′′
F

[
vj − vj−1

h

]2
+ 1

2φ
′′
2F

[
vj − vj−2

h

]2 ] (2.28)

and

Ŵ (ǫ) := 1
2(φ

′′
F + 4φ′′

2F )ǫ
2. (2.29)

We then have that

hv · Lqce,hv ≥ h

N∑

j=−N+1

1
2φ

′′
F

[
(Dvj+1)

2 + (Dvj)
2
]
− h

−K−1∑

j=−N+1

4|φ′′
2F | (Dvj)

2

− 2h|φ′′
2F |(Dv−K)2 − h

K∑

j=−K

|φ′′
2F |

[
(Dvj+2)

2 + (Dvj+1)
2 + (Dvj)

2 + (Dvj−1)
2
]

− 2h|φ′′
2F |(DvK+1)

2 − h

N∑

j=K+2

4|φ′′
2F | (Dvj)

2

≥ (φ′′
F − 5|φ′′

2F |)


h

N∑

j=−N+1

(Dvj)
2


 . �

The preceding stability Lemma 2.1 and the discrete Poincaré inequality,

‖v‖ℓ2
h
≤ h

2 sin πh
2

‖Dv‖ℓ2
h
≤ 1

2
‖Dv‖ℓ2

h
if

N∑

j=−N+1

vj = 0 (2.30)

for 0 < h ≤ 1, give the following stability result in the ‖·‖ℓ2
h
norm. The proof of (2.30) follows from

verifying that (2 sin πh
2 )/h is the smallest eigenvalue of DTD.
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Lemma 2.2. If ν := φ′′
F − 5|φ′′

2F | and
Lqce,hv = b, (2.31)

where
∑N

j=−N+1 bj = 0, then

‖Dv‖ℓ2
h
≤ 1

2ν
‖b‖ℓ2

h
. (2.32)

Proof. The result (2.32) follows from taking the inner product of (2.31) with v and then using the
positive definiteness inequality (2.27) and the Poincaré inequality (2.30). �

2.8. Quasi-nonlocal Quasicontinuum Approximation. The quasi-nonlocal quasicontinuum
approximation (QNL) is similar to the QCE approximation, but it modifies the interactions around
the interface in order to remove g from the elastic force. The quasi-nonlocal atoms ±K,±(K + 1)
interact directly with any atoms in the atomistic region within the next nearest neighbor cut-off, but
interact as in the continuum region with other all other atoms. That is, unlike the atomistic model
and continuum approximation, the form of energy contributions for quasi-nonlocal atoms depends
on the type (atomstic, continuum, or quasi-nonlocal) of the neighboring atoms. For example, the
energy contribution for j = K is

Eq,h
K (u) :=

h

2

[
(φ′

F + 2φ′
2F )

[
uK+1 − uK

h

]
+ 1

2(φ
′′
F + 4φ′′

2F )

[
uK+1 − uK

h

]2]

+
h

2

[
φ′
F

[
uK − uK−1

h

]
+ 1

2φ
′′
F

[
uK − uK−1

h

]2

+ φ′
2F

[
uK − uK−2

h

]
+ 1

2φ
′′
2F

[
uK − uK−2

h

]2 ]

and the energy contribution for j = K + 1 is

Eq,h
K+1(u) :=

h

2

[
(φ′

F + 2φ′
2F )

[
uK+2 − uK+1

h

]
+ 1

2(φ
′′
F + 4φ′′

2F )

[
uK+2 − uK+1

h

]2]

+
h

2

[
φ′
F

[
uK+1 − uK

h

]
+ 1

2φ
′′
F

[
uK+1 − uK

h

]2

+ φ′
2F

[
uK+1 − uK−1

h

]
+ 1

2φ
′′
2F

[
uK+1 − uK−1

h

]2 ]
.

The QNL energy is then

Eqnl,h(u) :=

−K−2∑

l=−N+1

hW (Dul) +
1
2hW (Du−K−1) +

−K∑

j=−K−1

Eq,h
j (u) +

K−1∑

j=−K+1

Ea,h
j (u)

+

K+1∑

j=K

Eq,h
j (u) + 1

2hW (DuK+2) +

N∑

l=K+3

hW (Dul).

(2.33)

The QNL equilibrium equations are

Lqnl,huqnl = f ,
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where

(Lqnl,hu)j = φ′′
F

−uj+1 + 2uj − uj−1

h2

+





4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
, 0 ≤ j ≤ K − 1,

4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
− φ′′

2F

−uj+2 + 2uj+1 − uj
h2

, j = K,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
+ φ′′

2F

−uj + 2uj−1 − uj−2

h2
, j = K + 1,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
, K + 2 ≤ j ≤ N.

We note that the QNL energy satisfies the symmetry condition Eqnl,h(Su) = Eqnl,h(u), so the QNL
operator Lqnl,h is defined for j < 0 by the identity SLqnl,hS = Lqnl,h. While we have successfully
removed the ghost force terms g, QNL is also not a consistent approximation of the continuum
equations (2.14) at the interfacial atoms, such as j = K and j = K +1 above. We will give a more
detailed analysis of the approximation at the interface in Section 4.

Our analysis of the QNL error will utilize the following stability result for the operator Lqnl,h.

Lemma 2.3. If 1 ≤ p ≤ ∞, ν := φ′′
F − 4|φ′′

2F | > 0, and

Lqnl,hv = b

where
∑N

j=−N+1 bj = 0, then

hv · Lqnl,hv ≥ ν ‖Dv‖2ℓ2
h
,

‖Dv‖ℓ2
h
≤ 1

2ν
‖b‖ℓ2

h
.

(2.34)

Proof. The proof of the stability result (2.34) follows the proof of the stability results for the QCE
approximation in Lemmas 2.1 and 2.2 with the appropriate modification. �

Remark 2.1. The basic formulation of the QNL method removes the ghost force terms only for
second-neighbor interactions in the 1D case. A longer-range matching method is proposed in [12]
that removes ghost forces for longer-range interactions by extending the region near the interface
which have special energies.

In 2D and 3D, there are similar restrictions on the interaction length that QNL corrects. Ad-
ditional ghost forces arise when the quasicontinuum energy is extended to allow coarsening in the
continuum region [12].

3. Convergence of the Energy-Based Quasicontinuum Solution

We now analyze the quasicontinuum error and obtain estimates for its convergence rate by
splitting the residual into two parts. One portion contains the low order terms, has support only
near the atomistic to continuum interface, and is oscillatory. The remainder is higher order, and
its influence will be bounded using the stability results. We recall that the QCE solution, uqce, is
an odd, periodic solution of

Lqce,huqce = g + f , (3.1)

and the continuum model solution is an odd, periodic function ue(x) satisfying

−(φ′′
F + 4φ′′

2F )u
′′
e = f, (3.2)
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Let ue denote the vector satisfying uj = ue(xj).We will now derive estimates for the quasicontinuum
error e = ue − uqce.

It follows from the QCE equilibrium equation (3.1) that

Lqce,he = Lqce,hue − Lqce,huqce = Lqce,hue − g − f . (3.3)

We split the residual Lqce,he as

Lqce,he := ρ+ σ, (3.4)

where ρ contains the three lowest-order residual error terms in the interface,

ρ =





0, 0 ≤ j ≤ K − 2,(
1
2φ

′
2F + φ′′

2Fu
′
K+1/2

)
1
h − 1

2φ
′′
2Fu

′′
K+1/2,+

7
24φ

′′
2Fu

′′′
K+1/2h, j = K − 1,

−
(
1
2φ

′
2F + φ′′

2Fu
′
K+1/2

)
1
h + 1

2φ
′′
2Fu

′′
K+1/2,+

5
24φ

′′
2Fu

′′′
K+1/2h, j = K,

−
(
1
2φ

′
2F + φ′′

2Fu
′
K+1/2

)
1
h − 1

2φ
′′
2Fu

′′
K+1/2,+

5
24φ

′′
2Fu

′′′
K+1/2h, j = K + 1,(

1
2φ

′
2F + φ′′

2Fu
′
K+1/2

)
1
h + 1

2φ
′′
2Fu

′′
K+1/2,+

7
24φ

′′
2Fu

′′′
K+1/2h, j = K + 2,

0, K + 3 ≤ j ≤ N,

(3.5)

and ρj = −ρ−j. Although ρj = O(1/h) in the interface j = K−1, . . . ,K+2, we will prove that the
effect of ρ on the error is small away from the interface because it oscillates and the lowest order
terms cancel in the sum

∆ρ :=

K+2∑

j=K−1

ρj = hφ′′
2Fu

′′′
K+1/2. (3.6)

The residual term ρ represents the inconsistency of the operator Lqce,h as a second-order finite
difference approximation of the differential equation (3.2). This inconsistency is located only in the
interface because the models themselves are second-order approximations.

The residual term σ accounts for the error in approximating the continuum model (2.14) by a
second-order finite difference approximation. We can estimate the residual σ from Taylor’s Theorem
to obtain

‖σ‖ℓ2
h
≤ Ch2

∥∥∥u(4)e

∥∥∥
L2

. (3.7)

Note that since ue, f , and g are odd, and ρ was constructed to be odd, then σ is odd as well.
Therefore, we can split the error e as

e = eρ + eσ

such that

Lqce,heρ = ρ, eρ,j = −eρ,−j,

Lqce,heσ = σ, eσ,j = −eσ,−j .
(3.8)

3.1. Global Discretization Error, eσ. We now have by the stability (2.27) of Lqce,h and the
estimate of the residual (3.7) that

‖Deσ‖ℓ2
h
≤ Ch2

∥∥∥u(4)e

∥∥∥
L2

. (3.9)

We can extend the bound to
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Lemma 3.1. For eσ defined in (3.8), we have

‖eσ‖ℓ∞
h

≤
√
2 ‖Deσ‖ℓ2

h
≤ Ch2

∥∥∥u(4)e

∥∥∥
L2

, (3.10)

‖Deσ‖ℓp
h
≤




Ch2

∥∥∥u(4)e

∥∥∥
L2

, 1 ≤ p ≤ 2,

Ch
3

2
+ 1

p

∥∥∥u(4)e

∥∥∥
L2

, 2 ≤ p ≤ ∞.
(3.11)

Proof. We obtain the Poincaré inequality [7]

‖v‖ℓ∞
h

≤ ‖Dv‖ℓ1
h
≤

√
2 ‖Dv‖ℓ2

h
(3.12)

for all odd periodic v from the identity

vj =

{∑j
ℓ=1 h(Dvℓ) if j > 0,

−∑0
ℓ=j−1 h(Dvℓ) if j < 0,

which gives the first inequality in (3.12). The second follows from Hölder’s inequality. We can then
obtain the error estimate (3.10) for ‖eσ‖ℓ∞

h
from the Poincaré inequality (3.12) and the bound (3.9).

The “inverse” estimate [7]

‖Dv‖ℓ∞
h

≤ h−1/2 ‖Dv‖ℓ2
h

(3.13)

for all periodic v, and the Hölder estimates [26]

‖Dv‖ℓp
h
≤




2

2−p

2p ‖Dv‖ℓ2
h
, 1 ≤ p ≤ 2,

‖Dv‖2/p
ℓ2
h

‖Dv‖1−2/p
ℓ∞
h

, 2 ≤ p ≤ ∞,
(3.14)

combine to prove (3.11) by taking v = eσ. �

3.2. Interfacial coupling error, eρ. In the following, we will bound the error, eρ, by constructing
and estimating an explicit odd solution of

Lqce,heρ = ρ. (3.15)

Since ρj is zero for all j except j = ±{K − 1,K,K + 1,K + 2}, eρ satisfies a second-order,
homogeneous recurrence relation in the interior of the continuum region and a fourth-order, ho-
mogeneous recurrence relation in the interior of the atomistic region. Therefore, eρ,j is linear for
j ≥ K + 3 or j ≤ −K − 3, and it is the sum of a linear solution and exponential solution for
−K + 2 ≤ j ≤ K − 2. The coefficients for these solutions are determined by the equations in the
atomistic to continuum interface.

The homogeneous atomistic difference scheme

−φ′′
2Fuj+2 − φ′′

Fuj+1 + (2φ′′
F + 2φ′′

2F )uj − φ′′
Fuj−1 − φ′′

2Fuj−2 = 0 (3.16)

has characteristic equation

−φ′′
2FΛ

2 − φ′′
FΛ+ (2φ′′

F + 2φ′′
2F )− φ′′

FΛ
−1 − φ′′

2FΛ
−2 = 0,

with roots

1, 1, λ,
1

λ
, (3.17)

where

λ =
(φ′′

F + 2φ′′
2F ) +

√
(φ′′

F )
2 + 4φ′′

Fφ
′′
2F

−2φ′′
2F

.
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Based on the assumptions on φ in (2.16)and (2.21) and we have that λ > 1. We note that if φ′′
2F were

positive contrary to assumption (2.21), then λ would be negative which would give an oscillatory
error in the atomistic region. General solutions of the homogeneous atomistic equations (3.16) have
the form uj = C1 + C2hj + C3λ

j + C4λ
−j, but seeking an odd solution reduces this to the form

uj = C2hj + C3(λ
j − λ−j).

The odd solution of the approximate error equations is thus of the form

eρ,j =





m1hj + β
(
λj−λ−j

λK

)
, 0 ≤ j ≤ K,

m2hj −m2 + êK+1, j = K + 1,

m2hj −m2, K + 2 ≤ j ≤ N,

(3.18)

where expressing the unknown eρ,K+1 using a perturbation of the linear solution, êK+1, simplifies
the solution of the equilibrium equations. The four coefficients m1, m2, êK+1, and β can be found
by satisfying the four equilibrium equations in the interface, j = K − 1, . . . ,K + 2. Summing the
equilibrium equations across the interface gives

∆ρ =

K+2∑

j=K−1

ρj =

K+2∑

j=K−1

(Lqce,heρ)j

= φ′′
F

[
eρ,K−1 − eρ,K−2

h2

]
+ 4φ′′

2F

[
eρ,K + eρ,K−1 − eρ,K−2 − eρ,K−3

4h2

]

− (φ′′
F + 4φ′′

2F )

[
eρ,K+3 − eρ,K+2

h2

]

= (φ′′
F + 4φ′′

2F )
(m1

h
− m2

h

)
.

The cancellation of the exponential terms in the final equality holds because

φ′′
2F (λ

K − λ−K) + (φ′′
F + φ′′

2F )(λ
K−1 − λ−K+1 − λK−2 + λ−K+2) + φ′′

2F (−λK−3 + λ−K+3) = 0,

which can be seen by summing (3.16) with the homogeneous solution yj = −λj for j = −K +
2, . . . ,K − 2. Thus, we have from summing the equilibrium equations (3.15) across the interface
that

m1 = m2 +
h∆ρ

φ′′
F + 4φ′′

2F

. (3.19)

The equality (3.19) can be interpreted as saying that the interfacial residual ρ acts as a source
f = ∆ρ in the continuum equations (3.2) at x = xK .

Lemma 3.2. For eρ defined in (3.8), we have that

‖eρ‖ℓ∞
h

≤ Ch(1 + |u′K+1/2|+ h|u′′K+1/2|+ h|u′′′K+1/2|),

‖Deρ‖ℓp
h
≤ Ch1/p(1 + |u′K+1/2|+ h|u′′K+1/2|+ h|u′′′K+1/2|),

(3.20)

where C > 0 is independent of h,K, and p, 1 ≤ p ≤ ∞.
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Proof. We will set up the system of equations for the coefficients in (3.18) and bound the decay of
the coefficients. We split the interface equations as (A+ hB)x = b, where

A =




0 1
2φ

′′
2F −1

2φ
′′
2F φ′′

2F γK+1 − 1
2φ

′′
2F γK−1

0 φ′′
F + 5

2φ
′′
2F −φ′′

F − 2φ′′
2F φ′′

FγK+1 + φ′′
2F γK+2 +

3
2φ

′′
2F γK

0 −φ′′
F − 5

2φ
′′
2F 2φ′′

F + 13
2 φ

′′
2F −φ′′

FγK − 2φ′′
2F γK − 1

2φ
′′
2F γK−1

0 −1
2φ

′′
2F −φ′′

F − 4φ′′
2F −1

2φ
′′
2F γK


 ,

B =




(12K + 3
2)φ

′′
2F −(12K + 1

2)φ
′′
2F 0 0

(K + 1)φ′′
F + (52K + 2)φ′′

2F −(K + 1)φ′′
F − (52K + 3)φ′′

2F 0 0

−Kφ′′
F − (52K − 1

2)φ
′′
2F Kφ′′

F − (52K − 3
2)φ

′′
2F 0 0

−1
2Kφ′′

2F (12K + 1)φ′′
2F 0 0


 ,

x =




m1

m2

êK+1

β


 , b = h2




ρK−1

ρK
ρK+1

ρK+2


 .

(3.21)

Using the equality (3.19), we rewrite the above as (ÃK + hB̃)x̃ = b̃ where

ÃK =




1
2φ

′′
2F −1

2φ
′′
2F φ′′

2F γK+1 − 1
2φ

′′
2F γK−1

−φ′′
F − 5

2φ
′′
2F 2φ′′

F + 13
2 φ

′′
2F −φ′′

F γK − 2φ′′
2F γK − 1

2φ
′′
2F γK−1

−1
2φ

′′
2F −φ′′

F − 4φ′′
2F −1

2φ
′′
2F γK


 ,

B̃ =




φ′′
2F 0 0

−φ′′
2F 0 0

φ′′
2F 0 0


 , x̃ =




m2

êK+1

β


 ,

b̃ = h2




ρK−1

ρK+1

ρK+2


− h2

∆ρ

φ′′
F + 4φ′′

2F




(12K + 3
2)φ

′′
2F

−Kφ′′
F − (52K − 1

2)φ
′′
2F

−1
2Kφ′′

2F


 ,

(3.22)

and γj = λj−λ−j

λK . We have omitted the second equation, as the full system is linearly dependent
after the elimination of m1 by (3.19).

We note that ÃK , B̃, and b̃ do not depend on h directly, though ÃK may have indirect dependence

if K scales with h. Therefore, we can neglect B̃ for sufficiently small h provided that Ã−1
K exists

and is bounded uniformly in K. The following lemma, proven in [11], gives such a bound for ÃK .

Lemma 3.3. For all K satisfying 2 ≤ K ≤ N − 2, the matrix ÃK is nonsingular and ||Ã−1
K || ≤ C

where C > 0 is independent of K and h.

Due to the definition of ρ (3.5) and ∆ρ (3.6), we have that

||b̃||ℓ∞ ≤ C(h+ h|u′K+1/2|+ h2|u′′K+1/2|+ h2|u′′′K+1/2|).

The |u′′′K+1/2| contribution from ∆ρ does not have h3 as coefficient since K may scale linearly with

N = 1/h. In general, we only have that hK ≤ 1.
Applying Lemma 3.3, we see that x̃ is O(h), and by (3.19), so is x. From (3.18), we finally

conclude (3.20). �
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3.3. Total error. Combining the estimates (3.11) and (3.10) given in Lemma 3.1 for eσ with the
estimate (3.20) in Lemma 3.2 for eρ, we obtain from the triangle inequality that

Theorem 3.1. Let e denote the QCE error. Then for 1 ≤ p ≤ ∞, 2 ≤ K ≤ N − 2, and h
sufficiently small, the error can be bounded by

‖e‖ℓ∞
h

≤ Ch
(
1 + |u′K+1/2|+ h|u′′K+1/2|+ h|u′′′K+1/2|+ h

∥∥∥u(4)e

∥∥∥
L2

)
,

‖De‖ℓp
h
≤ Ch1/p

(
1 + |u′K+1/2|+ h|u′′K+1/2|+ h|u′′′K+1/2|+ h

∥∥∥u(4)e

∥∥∥
L2

)
.

We note that the above argument giving optimal order estimates in Theorem 3.1 only utilized
the estimate ∆ρ =O(1), rather than the optimal estimate ∆ρ =O(h) given in (3.6).

Although our theorems give optimal order rates of convergence, our assumptions on the required

regularity on ue is not optimal. We have assumed for simplicity of exposition that
∥∥∥u(4)e

∥∥∥
L2

< ∞
and used the estimate (3.7). Lower order estimates for σ such as

‖σ‖ℓ2
h
≤ Ch2−s

∥∥∥u(4−s)
e

∥∥∥
L2

, 2 < s < 4,

can be used to reduce the regularity assumptions on ue and still obtain optimal rates of convergence.
Assuming the full regularity on ue also makes possible the precise identification and removal of the
lower order terms in the error by the modification of the atomistic-to-continuum coupling scheme.

4. Convergence of the Quasi-nonlocal Quasicontinuum Solution

For the quasi-nonlocal approximation, we split the residual as

Lqnl,he = Lqnl,hue − f = ρ+ σ, (4.1)

where

ρ =





0, 0 ≤ j ≤ K − 1,

−φ′′
2Fu

′′
K+1/2 − 1

2φ
′′
2Fu

′′′
K+1/2h, j = K,

φ′′
2Fu

′′
K+1/2 − 1

2φ
′′
2Fu

′′′
K+1/2h, j = K + 1,

0, K + 2 ≤ j ≤ N,

(4.2)

and where

‖σ‖ℓp
h
≤ Ch2

∥∥∥u(4)e

∥∥∥
Lp

.

The residual maximum norm ‖ρ‖ℓ∞
h

here is O(1) as opposed to the energy-based quasicontinuum

which has a O(1/h) residual maximum norm. However, the sum of ρ is similarly O(h), that is,

∆ρ = −hφ′′
2Fu

′′′
K+1/2. (4.3)

A similar argument as in the QCE case follows. We split the error as

e = eρ + eσ,

where

Lqnl,heρ = ρ, eρ,j = −eρ,−j,

Lqnl,heσ = σ, eσ,j = −eσ,−j.
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The same arguments apply to give the bounds (3.11) and (3.10) on eσ. Thus, we need to work
through the modified argument to bound eρ. Since ρ is non-zero only at j = ±{K,K +1}, the odd
solution eρ has the form

eρ,j =

{
m1hj + β(λ

j−λ−j

λK ), 0 ≤ j ≤ K,

m2hj −m2, K + 1 ≤ j ≤ N.
(4.4)

Summing across the interface again gives

∆ρ :=

K+2∑

j=K−1

ρj =

K+2∑

j=K−1

(Lqce,heρ)j

= (φ′′
F + 4φ′′

2F )
(m1

h
− m2

h

)
.

Thus, we have again that

m1 = m2 +
h∆ρ

φ′′
F + 4φ′′

2F

. (4.5)

We focus on the equations at j = K − 1,K, and K + 1 and split the interface equations as
(A+ hB)x = b, where

A =




0 φ′′
2F φ′′

2F γK+1

0 φ′′
F + 2φ′′

2F φ′′
FγK+1 + φ′′

2F γK+2 + φ′′
2F γK

0 −φ′′
F − 3φ′′

2F −φ′′
FγK − 2φ′′

2F γK − φ′′
2F γK−1


 ,

B =




(K + 1)φ′′
2F −(K + 1)φ′′

2F 0

(K + 1)(φ′′
F + φ′′

2F ) −(K + 1)(φ′′
F + φ′′

2F ) 0

−K(φ′′
F + 3φ′′

2F ) + φ′′
2F K(φ′′

F + 3φ′′
2F )− φ′′

2F 0


 ,

x =




m1

m2

β


 , b = h2




ρK−1

ρK
ρK+1


 .

(4.6)

Using the equality (4.5), we rewrite the above as ÃK x̃ = b̃ where

ÃK =

[
φ′′
2F φ′′

2F γK+1

φ′′
F + 2φ′′

2F φ′′
F γK+1 + φ′′

2F γK+2 + φ′′
2F γK

]
,

x =

[
m2

β

]
, b̃ = h2

[
ρK−1

ρK

]
+ h2

∆ρ

φ′′
F + φ′′

2F

[
(K + 1)φ′′

2F

(K + 1)(φ′′
F + φ′′

2F )

]
.

(4.7)

We have omitted the second equation, as the full system is linearly dependent after substitution of

m1. We have that ÃK has full rank and ||b̃||ℓ∞ ≤ Ch2(|u′′K+1/2|+ |u′′′K+1/2|), so that we obtain the

following error estimate for the quasi-nonlocal approximation.

Theorem 4.1. Let e be the solution to the quasi-nonlocal error equation (4.1). Then for 1 ≤ p ≤ ∞,
2 ≤ K ≤ N − 2, and h sufficiently small, the error can be bounded by

‖e‖ℓ∞
h

≤ Ch2
(
|u′′K+1/2|+ |u′′′K+1/2|+

∥∥∥u(4)e

∥∥∥
L2

)
,

‖De‖ℓp
h
≤ Ch1+1/p

(
|u′′K+1/2|+ |u′′′K+1/2|+

∥∥∥u(4)e

∥∥∥
L2

)
,

where C > 0 is independent of h,K, and p.
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We note that the proof above of the optimal order estimates for the quasi-nonlocal approximation
does use the full O(h) order of the estimate (4.3) for ∆ρ.
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