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Abstract

We study the behaviour of the solutions of the stationarfydibn equa-
tion as a function of a possibly rougli(-) diffusivity. This includes the
boundary behaviour of the solution maps, associating th défusivity the
solution corresponding to some fixed source function, whendiffusivity
approaches infinite values in parts of the mediumuddimensionsp > 1,
by assuming a weak notion of convergence on the set of diffies, we
prove the strong sequential continuity of the solution mapg-dimension,
we prove a stronger result, i.e., the unique extendabifithe map of so-
lution operators, associating to each diffusivity the esponding solution
operator, to a sequentially continuous map in the operatonion a set con-
taining ‘diffusivities’ assuming infinite values in part$ the medium. In
this case, we also give explicit estimates on the converybabaviour of
the map.
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1 Motivation

Numerical methods for the diffusion equation with roughftioents have been
studied extensivelyd, 4, 5, 12, 13, 14, 16] in the preconditioning (multigrid,
domain decomposition, and related iterative methodgjglitee starting the early
eighties and still continue to be an active area of researgharious precondition-
ing efforts R0, 21]. This article came about out of a need of deeper understgndi
of the performance of preconditioners and their connedbdhe underlying PDE.

In a recent articled], the first author constructed a new preconditioning strate
with rigorous justification which is comparable to algebraiultigrid. It is shown
in [2] that analytical tools such as singular perturbation asialgives valuable in-
sight about the asymptotic behavior of the solution of theeutying PDE, hence,
provides feedback for preconditioner construction.

According to experience, the performance of a preconditialepends essentially
on the degree to which the preconditioner operator apprabdathe underlying

operator. Then, the fundamental need is to explain the teffeess of the pre-
conditioner and to justify that rigorously. In that respemie can view the tools
in this article as steps towards adding tools to the arsealethods of analysis
for rigorous justification at the interface of precondifimn and operator theory.
Direct connections from the results here to preconditigniill be the subject for

future research.

2 Introduction

The diffusion equation
ou _

o div (pgradu) + f (2.0.2)

describes general diffusion processes, including thegmafon of heat, and flows
through porous media. Hereis the density of the diffusing materigh, is the
diffusivity of the material, and the functiofidescribes the distribution of ‘sources’
and ‘sinks’. This paper focuses on stationary solutiongdi. () satisfying

—div(pgradu) = f . (2.0.2)

For instance, the fictitious domain method and compositenads are sources of
rough coefficients; see the referenceslid]] Important current applications deal
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with composite materials whose components have nearlytaaingiffusivity, but

vary by several orders of magnitude. In composite matepplieations, it is quite
common to idealize the diffusivity by a piecewise constamiction and also to
consider limits where the values of that function approamto or infinity in parts
of the material.

Results of such study were given first by J. L. Liod$][ In his lecture notes,
he considers the limit of the solution 02.0.2 where the limit is associated to
a one-parameter family of piecewise constant diffusisitégproaching zero on
a subdomain. The same piecewise constant one-paramefnoaap was used
in [4, 13], but with diffusivities approaching infinity on a subdomaiThe limi-
tation of the one-parametric approach is its dependencheopdrticular approxi-
mating sequence. To the knowledge of the authors, this paies first to address
these questions in the necessary generality. Hence, wédeorgeneral fami-
lies of diffusivities that are not necessarily piecewisagstant. In addition, due
to the atomistic structure of matter, the physical treatnoérdiffusion involves
regular ('°-) diffusivity. It is unclear to what extent the idealizatiof diffusiv-
ity by piecewise constant coefficients has the capabilityajoture the underlying
physics. Mathematically, the severe contrast in diffugighould be represented
by a regular function whose size is changing drasticallyr @veall distances in
interface regions. In this paper, we demonstrate that thenastion of piecewise
constant diffusivities is meaningful by showing a continsalependence of the
solutions on the diffusivity.

Furthermore, the diffusion equation is meaningless if th#usivity’ is infinite

or zero in regions of the material. Physics requires nowkanéshing diffusivity
in the interior of the material. As a consequence, only tegive size of diffusiv-
ities should be significant. Therefore, physically, onethixpect that both types
of the above limits are equivalent, but mathematically ¢here differences. The
limit of the solution as diffusivity approaches infinite uak exists. However, only
the limit of the scaled solution exists as diffusivity apgcbes zero values (see
Example4.0.11for both cases). That is why, we choose to work with diffugivi
approaching infinity. We will refer these cases as ‘asyniptses’.

Also, the treatment in4, 13] considers only limits on specific parts of the ma-
terial. In this connection, it should also be remarked takihough 2.0.1), (2.0.2



are linear equations, in general, their solutions depemdlinearly on the coeffi-
cients.

For the treatment of these questions, we use methods fronatopeheory. For
this, we use a common approach to gi2ed(1) a well-defined meaning that, in a
first step, represents the diffusion operator

—divpgrad (2.0.3)

as a densely-defined positive self-adjoint linear operdtpm a suitable Hilbert
space. As aresult2(0.9 is represented by the equation

Apu = f,

where f is an element of the Hilbert space, amds from the domainD(A4,), of
Ayt

Specifically, we treat the clags of diffusivities p € L*(Q2) that are almost ev-
erywhere> ¢ on €2 for somes > 0, where{2 ¢ R", n € N*, is some non-empty
open subset. By use of Dirichlet boundary conditions, itraefid,, as an oper-
ator in the complex Hilbert spack?(£2). For non-smoottp, the domain of4,,
depends heavily op. This fact significantly complicates the study of sequences
of functions ofA,,.

In this paper, we turn to a first-order formulation &f@.2 which is often referred
as mixed formulation in the discretization literatur@. [ The first-order formula-
tion was popularized in the least squares finite element aamitgnby the so-called
FOSLS ploneermg papeg]. Here, we provide the self- adjomtness of the corre-
spondlng operatoA in a Hilbert space. The key propertyﬂg is that its domain,
D(A ), is independent of. This property is exploited in establishing the conti-
nuity of the squtionsA;lf as a function op. Moreover,flp remains defined for
the asymptotic cases wheh.(.1), (2.0.2 are ill-defined. This fact is used in the
study of the asymptotic cases.

1 After that, the abstract theory of strongly continuous paeameter semigroups of operators can
be used to associate a rigorous formulation of a well-pasiéidlivalue problem t04.0.1) [6, 10,
17]. In this, A, becomes the infinitesimal generator of time evolution. Téés step will not be
detailed here.



Specifically, forp € £ and by assuming a weak notion of convergencejn
we show that the maps that associatéo the operatord, ' and —p VA", re-
spectively, are strongly sequentially continuous, seeofidra5.0.21and Corol-
lary 5.0.22 In particular, this shows in these cases that the apprdiamay dis-
continuous coefficients to physical diffusivity is indee@amningful. In addition,
for the case:r = 1 and bounded open intervals &f we show stronger results that
include also the asymptotic cases, except that where thapdstic ‘diffusivity’

is almost everywhere infinite on the interval. In this cake,maps that associate
P to the operatom;/lp and —(1/p) VAf/lﬁ, respectively, have unique extensions
to sequentially continuous maps in the operator norm on ¢hefsa.e. positive
elements ofL*(€2)\{0}, see Corollary5.0.26 6.0.27 In addition, an explicit es-
timate of the convergence behaviour of the maps is givenTkeerem6.0.25 It

is still an open problem, whether the last results are géinebde to dimensions
n = 2.

3 Basic notation

Mainly, this section introduces basic notation. In patacuan operator theoretic
definition of Sobolev spaces is given that is based on weakadi®e operators,

instead of distributions. In such formulation, the comghetss of the Sobolev
spaces is an obvious consequence of the cussedness of pleeatrs. Also, we

give some basic results that are connected to this formoulakor the convenience
to the reader, corresponding proofs are given in the appendi

General Assumption 3.0.1.In the following, letn € N* and{) be a non-empty
open subset dR”.

We follow common usage and do not differentiate between etiom f which is
almost everywhere defined (with respect to a chosen measarspme set and
the associated equivalence class consisting of all fumgtihich are almost ev-
erywhere defined on that set and differ frghonly on a set of measure zero. The
following definitions need to be understood in this sense.

Definition 3.0.2. (Complex LP-space$

(i) Forp > 0, the symbolLf.(Q) denotes the vector space of all complex-
valued measurable functiornswhich are a.e. defined ol and such that



| f|P is integrable with respect to the Lebesgue meastre~or every such
f, we define the_?-norm|| f||,, corresponding t¢ by

1/p
o= ([ 1)

In addition, for the special cage= 2, we define a scalar product ), on
L2(%) by

(FlgDy = L frgdv”

forall f,g € L%(Q). Here* denotes complex conjugation di. As a
consequence, | ), is antilinear in the first argument and linear in its second.
This convention will be used for sesquilinear forms in gaher

(i) LE(S) denotes the vector space of complex-valued measurablededun
functions orf2. For everyf € LZ(2), we define

|flloo == sup | f ()] -
z€e)

(i) Foreveryk e N*andf,g¢€ (L%(Q))’“, we define

. 1/2
|2,k = (Z ||fj|§> :
j=1

Definition 3.0.3. (Weak derivatives and Sobolev spacgdVe define

k
SlDag =D, Filgis » I

Jj=1

(i) for every multi-indexa € N" the densely-defined linear opera@f in
LE(%) by

0% = (—1)ll. <Co°°(97<c) - Le(@), f = g%:> ’

where: denotes the adjoint operation and

n
la] := 2 aj .
j=1



(iii) for every k € N the Sobolev spacﬁf(’g(Q) of orderk by

wWEQ) =[] D(@").

aeN" |a|<k

Equipped with the scalar product
(o + (WEWQ)? - C,
defined by
o= ), 0°f10%),

aeN™ Jal<k
for all f, g € WE(2), Wk(Q2) becomes a Hilbert space.
(iv) Wi () asthe closure afg®(2, C) in (WE(Q), || [|x), where]| || denotes
the norm that is induced oV (2) by ¢, ), .
We note that
Lemma 3.0.4. (Partial integration)
(f10Fg)y = =<0 flg)s (3.0.4)

forall (f,g) € Wol,(c(Q) x W(Q) andk € N*, wheree, denotes thé-th canonical
unit vector ofR".

The next defines gradient operators.

Definition 3.0.5. (Gradient operators) We define the L2 (£2))"-valued densely-
defined linear operators ibZ (£2)

Vo : C(Q,C) — (LE(Q)" . Vi : W () — (LE())"
by

t
- (9L (o e
VOf'_ (0361"“’0%) >vwg'_ (a g?"'aa g)

forall f € C°(Q2,C) andg € WL(9).
Then the following holds.
Lemma 3.0.6. (Adjoints of gradient operators)

*
(Vo")" = Vulws (o) - (Vw\w&c(m> = Vo* . (3.0.5)



4 Basic properties of the diffusion operator

This section provides the basis of the paper. It defines tifiesdin operator as
operator inLZ($2) and gives basic properties.

Definition 4.0.7. Letp : Q — R be measurable and such thdp is a.e. defined
on (. We define the linear operater : D(A) — L%(€2) in LZ(Q) by

D(A) := {ue Wyc(Q) : (1/p)Vuwu € D(Vo*)}

and
Au = Vy*(1/p) Vyu
for everyu € D(A).

Diffusion operators corresponding to diffusivities frohetfollowing large subset
L of L*(€2) will turn out to be densely-defined self-adjoint linear agers.

Definition 4.0.8. We define the subset of L*(£2) to consist of those elemenys
for which there are real’;, Cs satisfyingCy > ¢y > 0 and such tha€;, < p <
Cy a.e. onf). Note that the last also implies thatp € £ and in particular that
1/02 < 1/}7 < 1/01 a.e. on).

The next proves the self-adjointness of diffusion opesatarresponding to diffu-
sivities from L. For this, so called ‘form methods’ from operator theory ased.
For these methods, se®l].

Theorem 4.0.9.Letp € L. ThenA is a densely-defined linear self-adjoint opera-
tor in LZ(€2).

Proof. For this, we define a positive Hermitian sesquilinear f@rrT(VVO{C(Q))2 —
C by
s(u,v) :=(Vyu| (1/p) Vw’u>27n

for all u,v € Wi (). Then(]), : (W (92))* — C, defined by

(ulvy, = s(u, v) + (ulv),

for everyu, v € W (Q), defines a scalar product &  (€2) with induced norm
| [ls - W5.c(22) — R given by

[ull? = (Vwu | (1/p) Vs, + Jull3
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forall u € WOI,C(Q). In particular,s is closable. For the proof, let;, us, ... be a
Cauchy sequence it (), | ||s) and such that

lim |u,|2 =0.
V—>00
We note that
. 2 1 2 2
min{1, 1/Ca} [Jull{ < o IVwullz,n + [ulz < ulls
1
<G | Vawtlan + ul3 < max{1,1/C}[ul|?,

whereC1, Cs € R satisfyCy, > 'y > 0 and are such that; < p < C5 a.e. o2,
and hence tha | s and the restriction of| ||, to Wi (f2) are equivalent. Hence
it follows that ’

Vh_r}go luy s =0 .

Since(WO{C(Q), | |Is) is in particular complete, it follows thatcoincides with its
closure. As a consequence, there is a unique densely-ddiiirezd self-adjoint
operatorA : D(A) — LZ(2) in L4(Q) such thatD(A) is a dense subspace of
(WO{C(Q), |l 1) and such that

QulAwpy = s(u,u) = (Vyu| (1/p) Vi, ,

for all w € D(A). In particular,D(A) consists of alk € W&C(Q) for which there
is f € LA(Q) such that

1w b gy = (/D) Vst | Vi D sy -
Further, ifu and f satisfy these requirements, then
Au=f .
Henceu € D(A) if and only if

(1/p) Vyu e D <(Vw‘w&c(9)> *> = D(Vo")

and in this case
Au = V™ (1/p) Vyu .



Fig. 1: Graphs of; from Example4.0.11as a function of\/.

For completeness, the next gives the proof that diffusiceraters corresponding
to diffusivities from£L have a purely discrete spectrum, i.e., that their spectsuam i
discrete subset of the real numbers consisting of eigeasadtifinite multiplicity
and that there is a Hilbert basis consisting of eigenvectoiss result is not used
in the following.

Corollary 4.0.10. Letp € £ and, in addition{) be bounded. Thed has a purely
discrete spectrum.

Proof. According to the proof of Theorem.0.9 | || : Wol’(c(Q) — R defines a
norm which is equivalent to the restriction {§f||, to W -(€2). Hence the closed
unit ball B in (W (), | |s) is contained in a closed ball ¢iV (), || [|1)-
The last is relatively compact ihZ(€2). From this, it follows also thaB is rel-

atively compact inL%(Q). Hence it follows, see, e.g.1§] Vol. IV, that A has a
purely discrete spectrum. O

Example 4.0.11.The following example illustrates the influence of disconiiies
of the diffusivity on the regularity of the elementsin A). Consider the case that
) =1:=(—1,1) and a piecewise constant diffusivity: / — R given by
1 if-l<z<-1/2
plx):=4M if —1/2<x2<1/2
1 if12<z<1

10



for z € I, whereM > 0. ThenAu = f, whereu : I — R is defined by

(1—22)/2 if —1<2<-1/2
u(z) =< (1 —422 +3M)/(8M) if —1/2 <z <1/2
(1—22)/2 if1/2<z<1

andf is the constant function ohof valuel. We note that.’ has no extension to
a continuous function on if M # 1. In general, discontinuities in the diffusivity
cause low regularity of elements in(A). Also, see the concluding remarks.

There is a unique solution; to the equation
Aup = f

for every f € LZ(2) if and only if A is bijective or equivalently, if and only i
is not part of the spectrum of. In general,A is not bijective. For instance, the
operatorA that is associated t@ = R"™ and the diffusivityp(z) = 1 for every
x € R™ is not surjective. Below, we place a restriction @rthat leads to bijective
diffusion operators.

General Assumption 4.0.12.In the following, we assume th&t is in addition
such that the following Poincare inequality is valid

[0 f 2 = ¢ fl2 (4.0.6)

for somej € {1,...,n} and everyf € W(},(C(Q), wherec > 0. In the remainder,
suchc is considered chosen.

Remark 4.0.13.Itis known that(2 of the assumed type are not necessarily bounded.
For instance, every non-trivial open set, for which there sR™\ {0} along with
real numbers:, b such that

a<zr-n<b

for all z € ©, is of this type.

In particular, the following proves that diffusion opena@orresponding to diffu-
sivities from L are bijective.

Theorem 4.0.14.Letp € L. The spectrunw (A) of A satisfies
o(A) c[?/C ), (4.0.7)

wherej € {1,...,n}is such than; # 0 andC > 0 is such thap < C a.e. onf.
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Proof. For this, letj € {1,...,n} be such thah; # 0. Foru € D(A), it follows
that

(ulAwy, = (V| (1/p) Vitw)y,, = C7H Va3, = ¢ C7H ul3

whereC' > 0 is such thatp < C a.e. on{). Hence it follows the validity of
(4.0.7). O

5 Properties of a first order operator connected to the dif-
fusion operator

As indicated by Examplé.0.11], for non-smooth diffusivitie®, the condition that
pVyu € Wé(Q) in the definition of the domain ofl leads to a strong dependence
of that domain on the diffusivity. This fact poses an obstdol the study of the
map, associating to every diffusivity € £ the corresponding operatot—!, by

the notion of strong resolvent convergence, s&8, Yolume I, Section VIII.7],
[11, Section VIII, §1]. By use of the following vector partialféirential operator

of the first orderA, this problem can be circumvented. Its domain is indepen-
dent of the diffusivity. The connection of the resolvents4find A is given in
Theorem5.0.2Q

Definition 5.0.15. Letp € L*(2). We define the densely-defined, linear operator
A Wee() x D(Vo®) = LA(Q) x (LA(Q))" in LA(Q) x (LA())" by

A~

A(“v q) = (VO*CL un _ﬁq)
for every (u, q) € Wi () x D(Vo*).
Theorem 5.0.16.The operatotd is self-adjoint.

Proof. The statement is a consequence of Lentfaa O

The following gives a characterization of the kerneldfIn particular, the result
implies thatA is bijective for diffusivities fromZ.

Theorem 5.0.17.Letp € L™(£2) be a.e. positive. Then
ker A = {0} x (ker Vo* nker T7') ,
whereT; € L(LZ(S),L4(92)) denotes the maximal multiplication operator in

L%(Q) that is associated t@

12



Proof. *’: Let g € ker Vo* nker T7. Then(0, q) € D(A) and
Vo'q=0, —pg=0.

Hence it follows that0, ¢) € ker A.
"D’ Let (u,q) € ker A. Then

Vo q=0, Vyu—pg=0 (5.0.8)
and hence

0="{q[Vu—=0q)y, ={q|Vuwu)y, —{q|Dq)s,
= (Vo*qlu), — |7"%q 124

The last implies that

|2,7l = _”ﬁ |2,n .

q € ker T;W )

whereTy» € L(LA(S), L(©)) denotes the maximal multiplication operator in
L2(0) that is associated /2, and hence also that

qeker T .

Further, by 6.0.9-2), it follows that

Vit =0 .
The last implies that
VQ*un =0
and hence by Theore0.14thatu = 0. O

The following example shows that the kernel.bfis non-trivial if 7 vanishes on
some open subset 6. The vanishing op on non-empty subsets ©fcorresponds
to the asymptotic cases mentioned in the introduction.

Example 5.0.18.In the following, we givey € Ci°(R™,R™) n ker Vp* for n > 2.
For this, leth be an element of ;°(R) with support contained if—-1, 1]. In addi-
tion, leta be a non-zero antisymmetric x n-matrix. We defing € C°(R", R")

by

h(l=?) <
q(z) := 5 Z QT je;
ij=1
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forallz = (x1,...,2,) € R™ Then

3195 ) — h(Jaf?) Y] agasa; =0

i=1 0 ij=1

forallz = (x1,...,z,) € R" and hence € ker Vj*.

The following lemma prepares the subsequent theorem whiahates the size of
the gap around in the spectrum ofd and gives a representation of the resolvent
of A in terms of the resolvent of, i.e., 6.0.9. The main tool in the proof is the
Closed Graph Theorem in the form of see Theorem 3.1.6]in |

Lemma5.0.19.Letp € £, o(A) the spectrum of4, A < min{c(A)} andA) :=
A— A\ Then

() VA3t e LILE(Q), (L2(Q)"),
(i) A'Vo* = (VA )%,
(iii) D(AY?) = Wi () andAY? : Wi () — L2(%) is continuous,

(iv) Vi,A,'Vo* is a positive self-adjoint element &f((LZ())", (L2(Q2))").

Proof. ‘(). Since A € C\o(A), A, is densely-defined, linear and bijective.
Further, Ay is self-adjoint and strictly positive. As a consequencetsfself-
adjointness,A, is in particular closed. Further, according to Lemfa.g the
restriction ofV,, to W(},C(Q) is a closed linear operator ib%(©2) with values in
(LZ(22))". SinceD(A) c W;(Q) it follows from the closed graph theorem,
e.g., see Theorem 3.16 i]][ the existence of' € [0, o) such that

IV fllz;n < CJANS 2

forall f € D(A). As a consequence, it follows for evefye L2 () that

IVw A o < CIAVAT fll2 = C | f]12

and hence tha@,, A" € L(L2(Q), (LA(Q)").
(i): A, 'Vo* is a densely-defined, linear operator(ib(€))" with values in
LZ(Q). Further, it follows forf € LZ(€2) that

(FIAVIN O )y = (A V0 0Dy = (VAL f ),

14



for everyq € D(V*) and hence thaf € D((A;lvo*)*) as well as that
(A'Vo*)* f = VAL f

As a consequence,
(A 'Vo*)* = VAt

In particular, 45!V * is closable and

A 'Vo* = (VA )R

‘(iii)’: In a first step, we prove the statement for the case- 0. For this, we note
that, as a consequence of Theoré®.14 0 < min{c(A)}. Further, we note that
D(A)is a coreA/2. For instance, this follows by Theorem 3.1.9 &).[Hence
D(A) is dense in the Banach spad@(A'/?), | | 412), where

1/2
1Lz = [ 113+ 1AY2 73]
for every f € D(A'/?). Further, it follows forf € D(A) that

JAY2F3 = CFLAS Yy =V | (1/D) Vil Do = s(f.F)

where the real numbels;, C> and the sesquilinear formare as in the proof of
Theorem4.0.9 and hence that

min{1, 1/Co} |1} < 152 < max{1,1/C1} || £} -

As a consequence, the restrictions|df .2 and || ||, to D(A) are equivalent.
Since D(A) is dense in(D(AY?), | | 412), it follows for f € D(AY?) the exis-
tence of a sequencg, f,... in D(A) such that

Tim (£, — flaz = 0.

Since the inclusion of D(A'Y2), || 41,2) into L() is continuous, this implies
also that

lim |f, — fl2=0.

V—00

Since the restrictions df | 412 and|| ||, to D(A) are equivalent, it follows that
f1, f2,... is a Cauchy sequence W&C(Q) and hence convergent to soryies
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W3 (). Since the embedding dWl(€2), || [|1) into LZ(£2) is continuous, it
follows also that

Gim [, — Fla=0
and hence that = f € W#(Q). Further, it follows that
min{1, 1/Co} || FIIF < |£1%/2 < max{1,1/C1} || £}

and hence thdt | 51> and the restriction of ||, to D(A'/?) are equivalent. Since
according to the proof of Theoret0.9 D(A) is a dense subspace (cWO{(C(Q),

Il ll1), we conclude thaD(A'Y2) = Wi () and thatd'/2 : Wi (Q) — LZ(Q)
is continuous. From this, we conclude that statement oaﬁibollbws. For this, let
A € R\o(A) such thatA > max{0, \}. SinceR\c(A) is open, such\ exists. We

note thatD(A) is a core also for4§/ ? andA}\/ ?. For instance, this follows by The-

orem 3.1.9 in §]. HenceD(A) is dense in the Banach spac(e!B(Aip), Il 172,
A

D(AY? h
(DAL [ 4v2), where
1/2 1/2 1/2 1/2
11,422 = [IF1Z + 1AV 3] gl 412 == [lgl3 + |AY 91312,
forall f € D(AY?) andg € D(A}/*). Further, it follows for everyf € D(A) that
1/2

Hfllj;/g = |A°FI3 + 1£13 = CF1A, + I£13

= (FlAND, + 153+ (A =N f]5 = Hfllle/g + (A= N[5
and hence that

|f ijz > |f IIlem

as well as that

2 <1+ (A=) 2.
12 < 1+ WIF 2
SinceD(A) is dense in the Banach spacﬁéE(Ai/z), Il 422) and(D(A/l\ﬂ), 1 41/2),
A
it follows that ’

D(AY?) = D(AY?)
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as well as the equivalence of the normsAi/g and | HA}\/Q. In particular, this im-
plies that

D(4;?) = D(A'?)
and the equivalence of the norrﬂ\#Ai/z and|| | 412. By this, the statement (ii)

follows from the corresponding statement of (ii) for the dpkcase that = 0.
‘(iv)": In a first step, we conclude that

VoA, P € LLA(Q), (LA (Q)") .

As a consequence of the analogous propertiesl;ngi/2 is densely-defined,
linear, self-adjoint and bijective. Sincei/ % s seIf—adjoint,Ai/ s in particular
closed. Further, according to LemraD.§ the restriction ofV,, to Wolv(c(Q) is
a closed linear operator ihZ(Q2) with values in(L(92))". SinceD(Ai/z) =
W&C(Q), it follows from the closed graph theorem, e.g., see The@d@ in [g],
the existence of’ € [0, c0) such that

IV flom < C1AY2 £,

forall f e D(Ai/z). As a consequence, it follows for evefye L2 () that
—1/2 1/2 ,—1/2
VA3 flom < C1A2 AL 12 = €1 f e

and hence tha‘i7uﬂ4;1/2 € L(LA(Q), (LA(2))™). In a second step, we conclude
that

APV0* € L((LA ()", LA(9)) .

A;l/QVO* is a densely-defined, linear operato(irf. (2))" with values inLZ (€2).
Further, it follows forf € LZ(€2) that

CFIATYAY0 0 )y = (ATPF IV )y = (Vudy P f L0y,
for everyq € D(V*) and hence thaf € D((A;l/zvo*)*) as well as that
(A, P90%)* f = VA, P
As a consequence,

(A7 Po*)* = v,47 7
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In particular,Agl/zvo* is closable and

APV = (VAP e L(LR(Q)", L2(Q) -
Further, we note that
VATV  f = Vi AT ATV f = Ve AT (VW AT ) f
for every f € D(V(*). Hence it follows thatiAXIVo* is a positive self-adjoint
element ofL((L(2))", (LA(2))") . O

By help of the previous lemma, we can now estimate the sizeeofiap around
in the spectrum ofl and give a representation of the resolventah terms of the
resolvent of4, i.e., 6.0.9.

Theorem 5.0.20.Letp € L, C1,C5 € R satisfy(Cy > (7 > 0 and be such that
C1 < p < Cya.e. o). Further, letj € {1,...,n} be such thah; # 0. Then the
interval

Ji=(=C1, Z/(c+Ca))

is contained in the resolvent set 4f In particular for\ € .J, (A — X) ! is given
by
(A=XN7!(f,9) =
((Aps =271 + (A, =N TV pag, (5.0.9)
—pAg + PAVul(dp, = N7 + maValAp, =) V" pag)

for all (f,g) € LA(Q) x (LA(2))", wherepy := p + \,py := 1/, and A, is
the operator corresponding #iq according to Definitiort.0.7.

Proof. For this, let\ € J. Then,
0<A+CI<Pp+ALSA+Cy

andp, := p + A € L. Further, we denote by, the operator corresponding i
according to Definitiont.0.7. As a consequence of Theoreht.14 the spectrum
of Ay, — \is contained in the interval

[2(A+Co)™! =\ o0) ,
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The inequality
EN+C) T =A>0

is equivalent to

2 2
<A+%> —%:/\(/\+C’2)<02.

The last is equivalent to
cz cz
e+ o g <A<yerF oo

C

2 2 2
024_&__2: ¢ > ¢
V 4 2 /62+%§+% c+Cy

cz G
— C2+I—7$—CQ$—01.

Hence it follows thatd;, — A is self-adjoint, strictly positive and bijective. We
define the bounded linear operaf®re L(LZ(Q) x (L (Q))™, LA(Q) x (LA(Q))™)
by

We note that

and that

B(f,9) == (A5, — N7 + (A5, — M)~ 1Vo* pag,
—pag + PaVau(Ap, — N) 1 + paVuw(Ap, — ) TV0" pag)

for all (f,g) € LZ(2) x (LZ(2))", wherep, := 1/p) € L®(Q). Further, we
define the subspade of L4(Q2) x (LA(2))" by

D= {(f.g) € LA() x (LA()" : pag € D(Vo")} -

We note that the subspace

{Prg : g€ CF(Q,C)}

of L4(Q) is dense inLZ%(€2). For the proof, letf € L4(Q2). Sincep, € L*(Q),
paf € LZ(9). Further, since’s° (2, C) is dense inL2(2), there exists a sequence
f1, f2, .. In CP(Q,C) such that

lim [[f, —pafl2=0.
V—00
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Since for every € N*

1Dafy — fl2 = 1Da(fo —oaf)l2 < |PAllwol fo —rfll2

it follows that
Tim [prfy = fl2 =0

Hence it follows also thab is dense inLZ(2) x (LZ(2))". Further, for(f, g) €
D, it follows that B(f, g) € D(A) and that

Vo*[=pag + 2aVw(Ap, = A) ' f + paVu(Ap, — N7 1V* pag]

~M(Apy, = N) M+ (Ap, — V)TV pag ]

= —V0*Pag + Apy (Ap, — N7+ Ap, (Ap, —A) ' Vo" pag
—AAp, =N =AM Ap, =N gl = f

and that

Vi [(Ap, =X + (Ap, — V)TV pag ]
— Al —Pag + PaVu(Ap, — N) ' f + AV (Ap, — X1V pag]
= Vw(AﬁA - /\)_1f + Vw(AﬁA - /\)_1V0*p>\g

9= VulAp, =N f = Vuldp, =NV mrg =9 .

Hence it follows that R
Further, sinceD is dense inLZ(Q) x (L&(Q))™, for (f,g) € LA(2) x (LA ()",
there is a sequendéi, g1), (f2, g2), ... in D that is convergent tof, g). SinceB

is bounded, thq corresponding sequeBg¢¢1, g1), B(f2,92),... IS cAonvergent to

B(f,g). SinceA is in particular closed, it follows thaB(f, g) € D(A) and that
(A= NB(f,9) = (f.9) . (5.0.11)

Therefore,A — X is surjective and hence also bijective. O

By help of the previous theorem, the next result follows bglaation of a well-
known criterion for the strong resolvent convergence ofiseges of self-adjoint
operators.
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Theorem 5.0.21.Let py, ps2, ... be a uniformly bounded sequencedrior which
there ise > 0 such thatp, > ¢ for all v € N* and which converges a.e. pointwise
on to p, € L. In addition, letd;, A, ... be the associated sequence of self-
adjoint linear operators and., be the self-adjoint linear operator associated to
Pso. Then

s—lim A;! = flo_ol .

12
V—00

Proof. By application of Lebesgue’s dominated convergence timepiiefollows
that X R
1}1_1330 HA,/(’U,, q) - AOO(U7Q)H =0 )

for all (u,q) € LA(Q) x (LA(Q))", where|| | denotes the norm olZ(£2) x
(LZ(2))™. From this, the statement follows from a well-known criterfor strong
resolvent convergence of a sequence of self-adjoint lioparators, e.g., see part
(i) of Theorem 9.16 in19]. O

Corollary 5.0.22. Let p1, po, . . . be a uniformly bounded sequencedrior which
there is= > 0 such thatp,, > ¢ for all v € N* and which converges a.e. pointwise
on ) to p, € L. In addition, letA;, A, ... be the associated sequence of self-
adjoint linear operators and,, be the self-adjoint linear operator associated to
Pw- Finally, letf € L4(Q). Then

lim [A,1f = AL 2 = lim |p VA, f = PV Ay flan =0, (5.0.12)
wherep, := 1/p, for everyr € N* andpy, := 1/pe.
Proof. By Theorem5.0.2], it follows that

lim A>'(f,0) = AZM(f,0) ,

V—00
where A;, A, ... is the associated sequence of self-adjoint linear operator
P1, Po, . .. andAy is the self-adjoint linear operator associated.tblence 5.0.12
follows by Theorenb.0.2Q O

6 The one-dimensional case

In the special cases th&tis given by a non-empty bounded open intervalRof
A~1 can be explicitly calculated. This is somewhat surprisimges in this case
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the correspondingd is a Sturm-Liouville operator and the standard method of
calculating its inverse, e.g., see Theorem 8.26 8}, [seems not directly applicable
for generalp € £. Still, by a direct calculation ofi—!, one can give an explicit
expression ofA ! by using 6.0.9.

Theorem 6.0.23.Leta,b € R such thata < b andQ2 := I := (a,b). Further,
letp € L*(€2)\{0} be a.e. positive. Thed is bijective and has a purely discrete
spectrum. In particulard ! is given by

(u,q) := A" '(f.9)

for every(f,g) € (L4(1))?, where
|| sty du] 10y

u(z) = Lx 9(y) dy + f [ }
[ | sty - | o) )

w191 [ o) dy {jb[ y a
o) == [ 1w s+ iy {fb[

for everyz € I. Also, A~! satisfies

[ ] sty - o) )

Yy a

JAT < 2(b—a) |pIT (1 +[P]h)* -
Proof. For this, we define the derivative operator
Dy : CP(I, C) — L&(I)

by D;f := f' forevery f € C;°(I, C). In a first step, we prove an auxiliary
result. For this, leff € L2 (I) andh € C(I,C) be defined by

) = | " f(y) dy

for everyx € I. Further, letp € C°(1,C). By Fubini’s theorem and change of
variables, it follows that

b

h*(x) o' (x) do = Jb [

a

(| Droy, = (", = |

a

f ¢ (@) f*(y) dy] dx

a
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= f o' (2) f*(y) dady
{(z,y)eER?:a<z<bra<y<z}

-| o' () F*(s) ddy
{(z,y)eR?:a<y<bAy<a<b}

[

and hence that

b

b
f o' (x)f*(y) dw] dy = —f o) f*(y)dy = —{f @)y

y a

he Wi(I) andDih = —f .

With the help of the previous auxiliary result, we proceedhr proof of the
lemma. For this, we define for evety, g) € (LZ(I))?, a correspondindg3(f, g) =

(u,q) by

o) = a0(e) + ¢ u(e) = [ L) +P0)(a0(w) + 0N dy

a

where

T b
i) = [ f)dy, ei= 1ol [ T9) + pu)anto) 1 dy

for everyx € I. By help of the auxiliary result above, it follows thét, q) €
(WE(I) n C(I,C)) x D(D}) and that
Dig=f, -Dju—pqg=9g+pg—pg=g .

In addition,

b
up = f [9(y) +D(y)(q0(y) + )] dy
b

b
=j (9(v) +p(y>qo(y>>dy+cf Ply)dy = 0.

a a

As a consequence,
Ug =up =0 .

From the last, it follows also that € Wolv(c(l). For the proof, letp € C*(R) be
such that

p((=0,0]) = {0}, »([L,0)) = {1} , Ranp < [0,1] .
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Such a function is easy to construct. kot N*, we definep, € C*(R) by

pu(x) = p(r(z—a)b—-z)-1)

for everyx € I. Then it follows for every € N* satisfyingy > b — a andz € 1
that
(2) = 0 ifzel\(a+v2b—v2)
vt = 1 if(x—a)(b—x) =201

and hence thap, € C{°(I,R) as well as Rafy, ) [0, 1]. In particular,
[(z—a)(b—z)p,)(z)]

via+b)(z—a)(b—z) o' (v(z—a)(b—z)—1)]

v(a+b)(z—a)(b—=z) e X (el (z—a) (b—z)<2/v} (2)

(a+b)- ”‘pIHOO "X {zeli(z—a)(b—z)<2/v} ()

for all x € I. An application of Lebesgue’s dominated convergence #radeads
to

(z
<3
<3
<6

: 1 * _ D* — 1 * f_ TY)*® _
lim [ u—ulz = lim [Dfg,u—Diulz = lim |, Dfu+@u—Diulz = 0.
Hence it follows that: € W(}’(C(I) and further thatu, ¢) € D(A) and

AB(f,9) = A(u,q) = (f,9) -
Further, we conclude by Fubini’s theorem that

e =—lpl;" | " g0 dy + 1517 | ' 5) [ | i) dy} di

a a

= lal;! {Lb Ubﬁ(ﬂs) dw]f(y) dy — Jbg(y) dy} :

This implies that y “
a(@) = - j " f ) dy + 117 { j b [ j " 5@) d:c]ﬂy) dy — j 4 dy}

for everyz € I. Further, again by Fubini’s theorem, it follows that

xT

u(w) = | "oy dy + | " P aoly) dy + ¢ | #tray

a a a
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~[atway+ [t | [ s an| aws e [ pway

: : [ du]f(y) dy a

= fg(y)der f [ )
w191 [ pan { [ |

for everyz € I. In addition, by Hoelder’s inequality, we conclude that
u(@)| < 2(b—a) 2 [[pl1 |f]2 + lgl2] < 2(b =)' (1 + [p]h) |(f,9)]
la(@)] < (b= a)' 2 [2]f ]2 + |27 9] ]
<2(b—a) [l (1+ [2lh) [(f,9)]2
for everyz € I. The last implies

lulz <2 (b—a) (1+p10) [(£, )]+ lal2 <20 —a) [pIT" (1+[2]1) (£, 9)]2

and

| ' 5() dx]f(y) a- | e dy}

y a

[(w, )l <20 = a) |17 (1 + [5]1)* I(f. 9)]l2 -

As consequence, by L2 (I))* — (LA(1))2, (f,g9) — B(f,g)), there is defined a
compact bounded linear operatBr Since

AB(f,9) = (f.9)

for every(f, g) € (LZ(I))?, the bijectivity of A follows as well as thafl ! = B.
Finally, sinceA ! is compactA has a purely discrete spectrum. O

Corollary 6.0.24. Leta, b, p as in Theoren®.0.23 ThenU,.(0), where
ri=2"1b—a)" i (1 + |p)7%

is contained in the resolvent set 4f
Proof. For this, let\ € U,.(0). Then

A-X=(1-XAHA.
By help of the previous Theoref0.23 it follows that

AL AT < Al < 1

and hence thatl — X is bijective. O
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Theorem 6.0.25.Leta, b € R such thata < b and(2 := I := (a,b). Further, let
p1,p2 € L*(2)\{0} be a.e. positive and;, A» be the corresponding operators.
Then

. A 2(b — o
it =41 < 20 (2 gl + o+ ) el
Proof. Proceeds by direct calculation. O

Corollary 6.0.26. Leta, b € R such thats < b and{) := I := (a,b). Further, let
P € L*(Q2)\{0} be a.e. positive. Let;,po,... be a sequence of a.e. positive
elements of.*(€2)\{0} such that

lim Py — paof1 =0 .
V—>00

In addition, letA;, A,, ... be the associated sequence of self-adjoint linear opera-
tors andA., be the self-adjoint linear operator associated.to Then

lim |4, = A =0.

V—00

Proof. The statement is a simple consequence of Thed@rénz3 O

Corollary 6.0.27. Let a,b € R such thata < bandQ := I := (a,b) and f €
LZ(I). Further, letho, € L*(Q)\{0} be a.e. positive ang, 2, . .. be a sequence
in £ such that

lim |p, — Poof1 =0 .
V—00

In addition, letA;, A,,... be the sequence of self-adjoint linear operators that
is associated t@y,po,... andp, := 1/p, for v € N*. ThenA;' AL, ...
and—p; DA, —pa D¥AS?Y, ... are convergent irh(L2(I), L2(I)) to B,C €
L(L2(I),LA4(1)), respectively. In particulad? andC' are given by

[t du]f(y) dy

e = [ | y
+||poo|;lf f Ub P ] y)dy
0w =~ [ sy + Ipaly” Hf’ o) da )

for all z € I and everyf € LZ(I).
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Proof. The statement is a simple consequence of Thedégh?0and Theorem
6.0.23 O

7 Concluding remarks

It is unclear whether results similar to those of the presisaction can be ex-
pected to hold in dimensions greater thanAccording to Theoren®.0.17and
the subsequent example, and differently to the situatimméndimensiond is not
injective whenp vanishes on non-empty open subsets of the material. Heaoe th
does not seem to be an obvious candidate for a limit of a segueid ! that is
associated to a sequencedrapproaching such. Therefore, it is conceivable that
such limits show a wider variety of phenomena than those enddmension. This
problem deserves further study.

A final remark concerns the fact that it cannot be expectetgéaeral ‘elliptic
regularity theorems’ hold for operatosscorresponding to discontinuous diffusiv-
ities p as a consequence of the condition that every elemémm the domain of
such operator satisfigsV,,u € D(V{). For instance, the source functighin
Example4.0.11is in Wk (I) for everyk € N, butu = A=Lf ¢ W2(I), wherel is
the open interval—1,1) of R.

8 Appendix

In the following, proofs of the Lemmata 0.4 3.0.6from Section3 are given.

Lemma 8.0.28. (Partial integration)

<f|aek9>2 = _<aekf|9>2

forall (f,g) € Wy () x WE(Q) andk € N*, wheree;, denotes thé-th canonical
unit vector ofR".

Proof. For this, letk € N*. We define the sesquilinear form: Wy ~(Q) x
WE(Q) —» Chby
s(f:9) 1= ([0 gy + <0 flg),

for all (f,g) € Wi () x W(9). By the continuity oo, it follows the con-
tinuity of s and by partial integration that(f,g) = 0 for all f € C°(£2,C) and

27



f e C®(Q,C) n W(RQ). SinceCP(2,C) x ((CP(2,C) n WE(Q)) is dense
in Wol,(c(Q) x WL(£2), this implies the vanishing of and hence the validity of
(3.0.4 forall (f,g) € W(}’C(Q) x W(Q). O

Lemma 8.0.29. (Adjoints of gradient operators)

*
(%) = Vol @ (Vw|W&,C(m> -
Proof. SinceVy* is densely-defined, it follows that
(Vo™)* =Vo .
For f € D(V), there exists a sequengg fo, ... in C°(£2, C) such that

lim ||fl/ - f||2 =0 ) lim ”VOfV _vOfHZn = lim ”wazz - V(]f
V—00 V—00 V—00

lon =0.
Hence it follows thatf € WO{C(Q) and thatV, f = V,, f. As a consequence,
VO C vw‘WOl’C(Q) .
Further, forf € W(},(C(Q), there is a sequencg, f2,... in C°(€2, C) such that
lim ”fl, — f||2 =0 s lim ”V()fl, - wa”Q =0.
V—00 V—00

Hence it follows that o
(fsVwf) e G(Vo) -

As a consequence, -
Vw‘WOl’C(Q) c VO .

Finally, it follows the validity of 3.0.5 1). The validity of 38.0.5 2) is a simple
consequence 08(0.5 1) and the closedness 9} *. O
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