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Abstract

We study the behaviour of the solutions of the stationary diffusion equa-
tion as a function of a possibly rough (L8-) diffusivity. This includes the
boundary behaviour of the solution maps, associating to each diffusivity the
solution corresponding to some fixed source function, when the diffusivity
approaches infinite values in parts of the medium. Inn-dimensions,n ¥ 1,
by assuming a weak notion of convergence on the set of diffusivities, we
prove the strong sequential continuity of the solution maps. In 1-dimension,
we prove a stronger result, i.e., the unique extendability of the map of so-
lution operators, associating to each diffusivity the corresponding solution
operator, to a sequentially continuous map in the operator norm on a set con-
taining ‘diffusivities’ assuming infinite values in parts of the medium. In
this case, we also give explicit estimates on the convergence behaviour of
the map.
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1 Motivation

Numerical methods for the diffusion equation with rough coefficients have been
studied extensively [3, 4, 5, 12, 13, 14, 16] in the preconditioning (multigrid,
domain decomposition, and related iterative methods) literature starting the early
eighties and still continue to be an active area of research in various precondition-
ing efforts [20, 21]. This article came about out of a need of deeper understanding
of the performance of preconditioners and their connectionto the underlying PDE.

In a recent article [2], the first author constructed a new preconditioning strategy
with rigorous justification which is comparable to algebraic multigrid. It is shown
in [2] that analytical tools such as singular perturbation analysis gives valuable in-
sight about the asymptotic behavior of the solution of the underlying PDE, hence,
provides feedback for preconditioner construction.

According to experience, the performance of a preconditioner depends essentially
on the degree to which the preconditioner operator approximates the underlying
operator. Then, the fundamental need is to explain the effectiveness of the pre-
conditioner and to justify that rigorously. In that respect, one can view the tools
in this article as steps towards adding tools to the arsenal of methods of analysis
for rigorous justification at the interface of preconditioning and operator theory.
Direct connections from the results here to preconditioning will be the subject for
future research.

2 Introduction

The diffusion equation
Bu

Bt
� div p p graduq � f (2.0.1)

describes general diffusion processes, including the propagation of heat, and flows
through porous media. Hereu is the density of the diffusing material,p is the
diffusivity of the material, and the functionf describes the distribution of ‘sources’
and ‘sinks’. This paper focuses on stationary solutions of (2.0.1) satisfying

� div p p graduq � f . (2.0.2)

For instance, the fictitious domain method and composite materials are sources of
rough coefficients; see the references in [14]. Important current applications deal
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with composite materials whose components have nearly constant diffusivity, but
vary by several orders of magnitude. In composite material applications, it is quite
common to idealize the diffusivity by a piecewise constant function and also to
consider limits where the values of that function approach zero or infinity in parts
of the material.

Results of such study were given first by J. L. Lions [15]. In his lecture notes,
he considers the limit of the solution of (2.0.2) where the limit is associated to
a one-parameter family of piecewise constant diffusivities approaching zero on
a subdomain. The same piecewise constant one-parametric approach was used
in [4, 13], but with diffusivities approaching infinity on a subdomain. The limi-
tation of the one-parametric approach is its dependence on the particular approxi-
mating sequence. To the knowledge of the authors, this paperis the first to address
these questions in the necessary generality. Hence, we consider general fami-
lies of diffusivities that are not necessarily piecewise constant. In addition, due
to the atomistic structure of matter, the physical treatment of diffusion involves
regular (C8-) diffusivity. It is unclear to what extent the idealization of diffusiv-
ity by piecewise constant coefficients has the capability tocapture the underlying
physics. Mathematically, the severe contrast in diffusivity should be represented
by a regular function whose size is changing drastically over small distances in
interface regions. In this paper, we demonstrate that the assumption of piecewise
constant diffusivities is meaningful by showing a continuous dependence of the
solutions on the diffusivity.

Furthermore, the diffusion equation is meaningless if the ‘diffusivity’ is infinite
or zero in regions of the material. Physics requires nowherevanishing diffusivity
in the interior of the material. As a consequence, only the relative size of diffusiv-
ities should be significant. Therefore, physically, one might expect that both types
of the above limits are equivalent, but mathematically there are differences. The
limit of the solution as diffusivity approaches infinite values exists. However, only
the limit of the scaled solution exists as diffusivity approaches zero values (see
Example4.0.11for both cases). That is why, we choose to work with diffusivity
approaching infinity. We will refer these cases as ‘asymptotic cases’.

Also, the treatment in [4, 13] considers only limits on specific parts of the ma-
terial. In this connection, it should also be remarked that,although (2.0.1), (2.0.2)

3



are linear equations, in general, their solutions depend non-linearly on the coeffi-
cients.

For the treatment of these questions, we use methods from operator theory. For
this, we use a common approach to give (2.0.1) a well-defined meaning that, in a
first step, represents the diffusion operator

� div p grad (2.0.3)

as a densely-defined positive self-adjoint linear operatorAp in a suitable Hilbert
space. As a result, (2.0.2) is represented by the equation

Apu � f ,

wheref is an element of the Hilbert space, andu is from the domain,DpApq, of
Ap. 1

Specifically, we treat the classL of diffusivities p P L8pΩq that are almost ev-
erywhere¥ ε onΩ for someε ¡ 0, whereΩ � R

n, n P N
�, is some non-empty

open subset. By use of Dirichlet boundary conditions, it definesAp as an oper-
ator in the complex Hilbert spaceL2

C
pΩq. For non-smoothp, the domain ofAp

depends heavily onp. This fact significantly complicates the study of sequences
of functions ofAp.

In this paper, we turn to a first-order formulation of (2.0.2) which is often referred
as mixed formulation in the discretization literature [7]. The first-order formula-
tion was popularized in the least squares finite element community by the so-called
FOSLS pioneering paper [9]. Here, we provide the self-adjointness of the corre-
sponding operator̂Ap in a Hilbert space. The key property of̂Ap is that its domain,
DpÂpq, is independent ofp. This property is exploited in establishing the conti-
nuity of the solutionsA�1

p f as a function ofp. Moreover,Âp remains defined for
the asymptotic cases when (2.0.1), (2.0.2) are ill-defined. This fact is used in the
study of the asymptotic cases.

1 After that, the abstract theory of strongly continuous one-parameter semigroups of operators can
be used to associate a rigorous formulation of a well-posed initial value problem to (2.0.1) [6, 10,
17]. In this,Ap becomes the infinitesimal generator of time evolution. Thislast step will not be
detailed here.

4



Specifically, forp P L and by assuming a weak notion of convergence inL,
we show that the maps that associatep to the operatorA�1

p and�p∇A�1
p , re-

spectively, are strongly sequentially continuous, see Theorem5.0.21and Corol-
lary 5.0.22. In particular, this shows in these cases that the approximation by dis-
continuous coefficients to physical diffusivity is indeed meaningful. In addition,
for the casen � 1 and bounded open intervals ofR, we show stronger results that
include also the asymptotic cases, except that where the asymptotic ‘diffusivity’
is almost everywhere infinite on the interval. In this case, the maps that associate
p̄ to the operatorA�1

1{p̄
and�p1{p̄q∇A�1

1{p̄
, respectively, have unique extensions

to sequentially continuous maps in the operator norm on the set of a.e. positive
elements ofL8pΩqzt0u, see Corollary6.0.26, 6.0.27. In addition, an explicit es-
timate of the convergence behaviour of the maps is given, seeTheorem6.0.25. It
is still an open problem, whether the last results are generalizable to dimensions
n ¥ 2.

3 Basic notation

Mainly, this section introduces basic notation. In particular, an operator theoretic
definition of Sobolev spaces is given that is based on weak derivative operators,
instead of distributions. In such formulation, the completeness of the Sobolev
spaces is an obvious consequence of the cussedness of these operators. Also, we
give some basic results that are connected to this formulation. For the convenience
to the reader, corresponding proofs are given in the appendix.

General Assumption 3.0.1.In the following, letn P N
� andΩ be a non-empty

open subset ofRn.

We follow common usage and do not differentiate between a function f which is
almost everywhere defined (with respect to a chosen measure)on some set and
the associated equivalence class consisting of all functions which are almost ev-
erywhere defined on that set and differ fromf only on a set of measure zero. The
following definitions need to be understood in this sense.

Definition 3.0.2. (ComplexLp-spaces)

(i) For p ¡ 0, the symbolLp
C
pΩq denotes the vector space of all complex-

valued measurable functionsf which are a.e. defined onΩ and such that
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|f |p is integrable with respect to the Lebesgue measurevn. For every such
f , we define theLp-norm}f}p corresponding tof by

}f}p :�

�

»

Ω

|f |p dvn

1{p

.

In addition, for the special casep � 2, we define a scalar productx | y
2

on
L2
C
pΩq by

xf |gy
2
:�

»

Ω

f�g dvn ,

for all f, g P L2
C
pΩq. Here� denotes complex conjugation onC. As a

consequence,x | y
2

is antilinear in the first argument and linear in its second.
This convention will be used for sesquilinear forms in general.

(ii) L8
C
pΩq denotes the vector space of complex-valued measurable bounded

functions onΩ. For everyf P L8
C
pΩq, we define

}f}
8

:� sup
xPΩ

|f pxq| .

(iii) For everyk P N
� andf, g P pL2

C
pΩqqk, we define

xf |gy
2,k :�

ķ

j�1

xfj|gjy2 , }f}2,k :�

�

ķ

j�1

}fj}
2
2

�1{2

.

Definition 3.0.3. (Weak derivatives and Sobolev spaces) We define

(i) for every multi-indexα P N
n the densely-defined linear operatorB α in

L2
C
pΩq by

B

α :� p�1q|α|.

�

C8

0 pΩ,Cq Ñ L2
CpΩq, f ÞÑ

B

αf

Bxα




�

,

where� denotes the adjoint operation and

|α| :�

ņ

j�1

αj .
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(iii) for every k P N the Sobolev spaceW k
C
pΩq of orderk by

W k
CpΩq :�

£

αPNn,|α|¤k

DpB α
q .

Equipped with the scalar product

x , yk : pW k
CpΩqq

2
Ñ C ,

defined by
xf, gyk :�

¸

αPNn,|α|¤ k

xB

αf |B αgy
2

for all f, g P W k
C
pΩq, W k

C
pΩq becomes a Hilbert space.

(iv) W k
0,CpΩq as the closure ofC8

0
pΩ,Cq in pW k

C
pΩq,~~kq, where~~k denotes

the norm that is induced onW k
C
pΩq by x , yk.

We note that

Lemma 3.0.4. (Partial integration )

xf |B ekgy
2
� �xB

ekf |gy
2

(3.0.4)

for all pf, gq P W 1
0,CpΩq�W 1

C
pΩq andk P N

�, whereek denotes thek-th canonical
unit vector ofRn.

The next defines gradient operators.

Definition 3.0.5. (Gradient operators) We define thepL2
C
pΩqqn-valued densely-

defined linear operators inL2
C
pΩq

∇0 : C
8

0 pΩ,Cq Ñ pL2
CpΩqq

n , ∇w : W 1
CpΩq Ñ pL2

CpΩqq
n

by

∇0f :�

t�
Bf

Bx1
, . . . ,

Bf

Bxn




, ∇wg :� t
pB

e1g, . . . , B engq

for all f P C8

0
pΩ,Cq andg P W 1

C
pΩq.

Then the following holds.

Lemma 3.0.6. (Adjoints of gradient operators)

p∇0
�

q

�

� ∇w

�

�

W 1

0,C
pΩq

,

�

∇w

�

�

W 1

0,C
pΩq




�

� ∇0
� . (3.0.5)
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4 Basic properties of the diffusion operator

This section provides the basis of the paper. It defines the diffusion operator as
operator inL2

C
pΩq and gives basic properties.

Definition 4.0.7. Let p̄ : Ω Ñ R be measurable and such that1{p̄ is a.e. defined
onΩ. We define the linear operatorA : DpAq Ñ L2

C
pΩq in L2

C
pΩq by

DpAq :� tu P W 1
0,CpΩq : p1{p̄q∇wu P Dp∇0

�

qu

and
Au :� ∇0

�

p1{p̄q∇wu

for everyu P DpAq.

Diffusion operators corresponding to diffusivities from the following large subset
L of L8pΩq will turn out to be densely-defined self-adjoint linear operators.

Definition 4.0.8. We define the subsetL of L8pΩq to consist of those elements̄p
for which there are realC1, C2 satisfyingC2 ¥ C1 ¡ 0 and such thatC1 ¤ p̄ ¤

C2 a.e. onΩ. Note that the last also implies that1{p̄ P L and in particular that
1{C2 ¤ 1{p̄ ¤ 1{C1 a.e. onΩ.

The next proves the self-adjointness of diffusion operators corresponding to diffu-
sivities fromL. For this, so called ‘form methods’ from operator theory areused.
For these methods, see [11].

Theorem 4.0.9.Let p̄ P L. ThenA is a densely-defined linear self-adjoint opera-
tor inL2

C
pΩq.

Proof. For this, we define a positive Hermitian sesquilinear forms : pW 1
0,CpΩqq

2
Ñ

C by
spu, vq :� x∇wu | p1{p̄q∇wvy2,n

for all u, v P W 1
0,CpΩq. Thenx | ys : pW

1
0,CpΩqq

2
Ñ C, defined by

xu|vys :� spu, vq � xu|vy
2

for everyu, v P W 1
0,CpΩq, defines a scalar product onW 1

0,CpΩq with induced norm
} }s : W

1
0,CpΩq Ñ R given by

}u}2s � x∇wu | p1{p̄q∇wuy2,n � }u}22
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for all u P W 1
0,CpΩq. In particular,s is closable. For the proof, letu1, u2, . . . be a

Cauchy sequence inpW 1
0,CpΩq, } }sq and such that

lim
νÑ8

}uν}2 � 0 .

We note that

mint1, 1{C2u ~u~
2
1 ¤

1

C2

}∇wu}2,n � }u}22 ¤ }u}2s

¤

1

C1

}∇wu}2,n � }u}22 ¤ maxt1, 1{C1u ~u~
2
1 ,

whereC1, C2 P R satisfyC2 ¥ C1 ¡ 0 and are such thatC1 ¤ p̄ ¤ C2 a.e. onΩ,
and hence that} }s and the restriction of~ ~

1
to W 1

0,CpΩq are equivalent. Hence
it follows that

lim
νÑ8

}uν}s � 0 .

SincepW 1
0,CpΩq, } }sq is in particular complete, it follows thats coincides with its

closure. As a consequence, there is a unique densely-definedlinear self-adjoint
operatorA : DpAq Ñ L2

C
pΩq in L2

C
pΩq such thatDpAq is a dense subspace of

pW 1
0,CpΩq,~ ~1q and such that

xu|Auy
2
� spu, uq � x∇wu | p1{p̄q∇wuy2,n

for all u P DpAq. In particular,DpAq consists of allu P W 1
0,CpΩq for which there

is f P L2
C
pΩq such that

x f | . . . y
2

�

�

W 1

0,C
pΩq

� x p1{p̄q∇wu |∇w . . . y
2,n

�

�

W 1

0,C
pΩq

.

Further, ifu andf satisfy these requirements, then

Au � f .

Henceu P DpAq if and only if

p1{p̄q∇wu P D

��

∇w

�

�

W 1

0,C
pΩq




�




� Dp∇0
�

q

and in this case
Au � ∇0

�

p1{p̄q∇wu .
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Fig. 1: Graphs ofu from Example4.0.11as a function ofM .

For completeness, the next gives the proof that diffusion operators corresponding
to diffusivities fromL have a purely discrete spectrum, i.e., that their spectrum is a
discrete subset of the real numbers consisting of eigenvalues of finite multiplicity
and that there is a Hilbert basis consisting of eigenvectors. This result is not used
in the following.

Corollary 4.0.10. Let p̄ P L and, in addition,Ω be bounded. ThenA has a purely
discrete spectrum.

Proof. According to the proof of Theorem4.0.9, } }s : W 1
0,CpΩq Ñ R defines a

norm which is equivalent to the restriction of~ ~1 to W 1
0,CpΩq. Hence the closed

unit ball B in pW 1
0,CpΩq, } }sq is contained in a closed ball ofpW 1

0,CpΩq,~ ~1q.
The last is relatively compact inL2

C
pΩq. From this, it follows also thatB is rel-

atively compact inL2
C
pΩq. Hence it follows, see, e.g., [18] Vol. IV, that A has a

purely discrete spectrum.

Example 4.0.11.The following example illustrates the influence of discontinuities
of the diffusivity on the regularity of the elements inDpAq. Consider the case that
Ω � I :� p�1, 1q and a piecewise constant diffusivityp : I Ñ R given by

ppxq :�

$

'

&

'

%

1 if �1   x   �1{2

M if �1{2 ¤ x ¤ 1{2

1 if 1{2   x   1

10



for x P I, whereM ¡ 0. ThenAu � f , whereu : I Ñ R is defined by

upxq :�

$

'

&

'

%

p1� x2q{2 if �1   x ¤ �1{2

p1� 4x2 � 3Mq{p8Mq if �1{2   x   1{2

p1� x2q{2 if 1{2 ¤ x   1

andf is the constant function onI of value1. We note thatu 1 has no extension to
a continuous function onI if M � 1. In general, discontinuities in the diffusivity
cause low regularity of elements inDpAq. Also, see the concluding remarks.

There is a unique solutionuf to the equation

Auf � f

for everyf P L2
C
pΩq if and only if A is bijective or equivalently, if and only if0

is not part of the spectrum ofA. In general,A is not bijective. For instance, the
operatorA that is associated toΩ � R

n and the diffusivityppxq � 1 for every
x P R

n is not surjective. Below, we place a restriction onΩ that leads to bijective
diffusion operators.

General Assumption 4.0.12.In the following, we assume thatΩ is in addition
such that the following Poincare inequality is valid

} B

ejf }2 ¥ c }f}2 (4.0.6)

for somej P t1, . . . , nu and everyf P W 1
0,CpΩq, wherec ¡ 0. In the remainder,

suchc is considered chosen.

Remark 4.0.13.It is known thatΩ of the assumed type are not necessarily bounded.
For instance, every non-trivial open set, for which there isn P R

n
zt0u along with

real numbersa, b such that
a   x � n   b

for all x P Ω, is of this type.

In particular, the following proves that diffusion operators corresponding to diffu-
sivities fromL are bijective.

Theorem 4.0.14.Let p̄ P L. The spectrumσpAq of A satisfies

σpAq � r c2{C,8q , (4.0.7)

wherej P t1, . . . , nu is such thatnj � 0 andC ¡ 0 is such that̄p ¤ C a.e. onΩ.
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Proof. For this, letj P t1, . . . , nu be such thatnj � 0. Foru P DpAq, it follows
that

xu|Auy
2
� x∇wu | p1{p̄q∇wuy2,n ¥ C�1

}∇wu }
2
2,n ¥ c2 C�1

}u}22 ,

whereC ¡ 0 is such that̄p ¤ C a.e. onΩ. Hence it follows the validity of
(4.0.7).

5 Properties of a first order operator connected to the dif-
fusion operator

As indicated by Example4.0.11, for non-smooth diffusivitiesp, the condition that
p∇wu P W 1

C
pΩq in the definition of the domain ofA leads to a strong dependence

of that domain on the diffusivity. This fact poses an obstacle to the study of the
map, associating to every diffusivityp P L the corresponding operatorA�1, by
the notion of strong resolvent convergence, see, [18, Volume I, Section VIII.7],
[11, Section VIII, §1]. By use of the following vector partial differential operator
of the first orderÂ, this problem can be circumvented. Its domain is indepen-
dent of the diffusivity. The connection of the resolvents ofA andÂ is given in
Theorem5.0.20.

Definition 5.0.15. Let p̄ P L8pΩq. We define the densely-defined, linear operator
Â : W 1

0,CpΩq �Dp∇0
�

q Ñ L2
C
pΩq � pL2

C
pΩqqn in L2

C
pΩq � pL2

C
pΩqqn by

Âpu, qq :� p∇0
�q , ∇wu� p̄ q q

for everypu, qq P W 1
0,CpΩq �Dp∇0

�

q.

Theorem 5.0.16.The operatorÂ is self-adjoint.

Proof. The statement is a consequence of Lemma3.0.6.

The following gives a characterization of the kernel ofÂ. In particular, the result
implies thatÂ is bijective for diffusivities fromL.

Theorem 5.0.17.Let p̄ P L8pΩq be a.e. positive. Then

ker Â � t0u � p ker∇0
�

X ker T n
p̄ q ,

whereTp̄ P LpL2
C
pΩq, L2

C
pΩqq denotes the maximal multiplication operator in

L2
C
pΩq that is associated tōp.

12



Proof. ’�’: Let q P ker∇0
�

X ker T n
p̄ . Thenp0, qq P DpÂq and

∇0
�q � 0 , �p̄ q � 0 .

Hence it follows thatp0, qq P ker Â.
’�’: Let pu, qq P ker Â. Then

∇0
�q � 0 , ∇wu� p̄ q � 0 (5.0.8)

and hence

0 � x q |∇wu� p̄ q y
2,n � x q |∇wu y2,n � x q | p̄ q y

2,n

� x∇0
�q |u y

2
� } p̄1{2q }2,n � �} p̄1{2q }2,n .

The last implies that
q P ker T n

p̄1{2
,

whereTp̄1{2 P LpL2
C
pΩq, L2

C
pΩqq denotes the maximal multiplication operator in

L2
C
pΩq that is associated tōp1{2, and hence also that

q P kerT n
p̄ .

Further, by (5.0.8)-2), it follows that

∇wu � 0 .

The last implies that
∇0

�

∇wu � 0

and hence by Theorem4.0.14thatu � 0.

The following example shows that the kernel ofÂ is non-trivial if p̄ vanishes on
some open subset ofΩ. The vanishing of̄p on non-empty subsets ofΩ corresponds
to the asymptotic cases mentioned in the introduction.

Example 5.0.18.In the following, we giveq P C8

0
pR

n,Rn
q X ker∇0

� for n ¥ 2.
For this, leth be an element ofC8

0
pRq with support contained inr�1, 1s. In addi-

tion, letα be a non-zero antisymmetricn� n-matrix. We defineq P C8

0
pR

n,Rn
q

by

qpxq :�
hp|x|2q

2

ņ

i,j�1

αijxjei
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for all x � px1, . . . , xnq P R
n. Then

ņ

i�1

Bqi

Bxi
pxq � h 1

p|x|2q

ņ

i,j�1

αijxixj � 0

for all x � px1, . . . , xnq P R
n and henceq P ker∇0

�.

The following lemma prepares the subsequent theorem which estimates the size of
the gap around0 in the spectrum ofA and gives a representation of the resolvent
of Â in terms of the resolvent ofA, i.e., (5.0.9). The main tool in the proof is the
Closed Graph Theorem in the form of see Theorem 3.1.9 in [6].

Lemma 5.0.19.Let p̄ P L, σpAq the spectrum ofA, λ   mintσpAqu andAλ :�

A� λ. Then

(i) ∇wA
�1

λ P LpL2
C
pΩq, pL2

C
pΩqqnq ,

(ii) A�1

λ ∇0
�

� p∇wA
�1

λ q

�,

(iii) DpA
1{2

λ q � W 1
0,CpΩq andA1{2

λ : W 1
0,CpΩq Ñ L2

C
pΩq is continuous,

(iv) ∇wA
�1

λ ∇0
� is a positive self-adjoint element ofLppL2

C
pΩqqn, pL2

C
pΩqqnq.

Proof. ‘(i)’: Since λ P C zσpAq, Aλ is densely-defined, linear and bijective.
Further,Aλ is self-adjoint and strictly positive. As a consequence of its self-
adjointness,Aλ is in particular closed. Further, according to Lemma3.0.6, the
restriction of∇w to W 1

0,CpΩq is a closed linear operator inL2
C
pΩq with values in

pL2
C
pΩqqn. SinceDpAq � W 1

0,CpΩq it follows from the closed graph theorem,
e.g., see Theorem 3.16 in [6], the existence ofC P r0,8q such that

}∇wf}2,n ¤ C }Aλf}2

for all f P DpAq. As a consequence, it follows for everyf P L2
C
pΩq that

}∇wA
�1

λ f}2,n ¤ C }AλA
�1

λ f}2 � C }f}2

and hence that∇wA
�1

λ P LpL2
C
pΩq, pL2

C
pΩqqnq.

‘(ii)’: A�1

λ ∇0
� is a densely-defined, linear operator inpL2

C
pΩqqn with values in

L2
C
pΩq. Further, it follows forf P L2

C
pΩq that

x f |A�1

λ ∇0
�q y

2
� xA�1

λ f |∇0
�q y

2
� x∇wA

�1

λ f | q y
2,n

14



for everyq P Dp∇0
�

q and hence thatf P DppA�1

λ ∇0
�

q

�

q as well as that

pA�1

λ ∇0
�

q

�f � ∇wA
�1

λ f .

As a consequence,
pA�1

λ ∇0
�

q

�

� ∇wA
�1

λ .

In particular,A�1

λ ∇0
� is closable and

A�1

λ ∇0
�

� p∇wA
�1

λ q

� .

‘(iii)’: In a first step, we prove the statement for the caseλ � 0. For this, we note
that, as a consequence of Theorem4.0.14, 0   mintσpAqu. Further, we note that
DpAq is a coreA1{2. For instance, this follows by Theorem 3.1.9 in [6]. Hence
DpAq is dense in the Banach spacepDpA1{2

q, } }A1{2q, where

}f}A1{2 :�
�

}f}22 � }A1{2f}22
�1{2

for everyf P DpA1{2
q. Further, it follows forf P DpAq that

}A1{2f}22 � x f |Af y
2
� x∇wf | p1{p̄q∇wf y2,n � spf, f q ,

where the real numbersC1, C2 and the sesquilinear forms are as in the proof of
Theorem4.0.9, and hence that

mint1, 1{C2u ~f~
2
1 ¤ }f}2

A1{2 ¤ maxt1, 1{C1u ~f~
2
1 .

As a consequence, the restrictions of} }A1{2 and~ ~

1
to DpAq are equivalent.

SinceDpAq is dense inpDpA1{2
q, } }A1{2q, it follows for f P DpA1{2

q the exis-
tence of a sequencef1, f2, . . . in DpAq such that

lim
νÑ8

}fν � f}A1{2 � 0 .

Since the inclusion ofpDpA1{2
q, } }A1{2q into L2

C
pΩq is continuous, this implies

also that
lim
νÑ8

}fν � f}2 � 0 .

Since the restrictions of} }A1{2 and~ ~

1
to DpAq are equivalent, it follows that

f1, f2, . . . is a Cauchy sequence inW 1
0,CpΩq and hence convergent to somēf P

15



W 1
0
pΩq. Since the embedding ofpW 1

C
pΩq,~ ~1q into L2

C
pΩq is continuous, it

follows also that
lim
νÑ8

}fν � f̄ }2 � 0

and hence thatf � f̄ P W 1
0 pΩq. Further, it follows that

mint1, 1{C2u ~f~
2
1 ¤ }f}2

A1{2 ¤ maxt1, 1{C1u ~f~
2
1

and hence that} }A1{2 and the restriction of~ ~

1
toDpA1{2

q are equivalent. Since
according to the proof of Theorem4.0.9, DpAq is a dense subspace ofpW 1

0,CpΩq,

~ ~1q, we conclude thatDpA1{2
q � W 1

0,CpΩq and thatA1{2 : W 1
0,CpΩq Ñ L2

C
pΩq

is continuous. From this, we conclude that statement of (ii)as follows. For this, let
Λ P RzσpAq such thatΛ ¡ maxt0, λu. SinceRzσpAq is open, suchΛ exists. We

note thatDpAq is a core also forA1{2

λ andA1{2

Λ
. For instance, this follows by The-

orem 3.1.9 in [6]. HenceDpAq is dense in the Banach spacespDpA
1{2

λ q, } }
A

1{2

λ

q,

pDpA
1{2

Λ
q, } }

A
1{2

Λ

q, where

}f}
A

1{2

λ

:�
�

}f}22 � }A
1{2

λ f}22
�1{2

, }g}
A

1{2

Λ

:�
�

}g}22 � }A
1{2

Λ
g}22

�1{2
,

for all f P DpA
1{2

λ q andg P DpA
1{2

Λ
q. Further, it follows for everyf P DpAq that

}f}2
A

1{2

λ

� }A
1{2

λ f}22 � }f}22 � xf |Aλfy2 � }f}22

� xf |AΛfy2 � }f}22 � pΛ� λq}f}22 � }f}2
A

1{2

Λ

� pΛ� λq}f}22

and hence that

}f}2
A

1{2

λ

¥ }f}2
A

1{2

Λ

as well as that

}f}2
A

1{2

λ

¤ r1� pΛ� λqs }f}2
A

1{2

Λ

.

SinceDpAq is dense in the Banach spacespDpA
1{2

λ q, } }
A

1{2

λ

q andpDpA1{2

Λ
q, } }

A
1{2

Λ

q,

it follows that
DpA

1{2

λ q � DpA
1{2

Λ
q

16



as well as the equivalence of the norms} }

A
1{2

λ

and} }
A

1{2

Λ

. In particular, this im-

plies that
DpA

1{2

λ q � DpA1{2
q

and the equivalence of the norms} }
A

1{2

λ

and } }A1{2 . By this, the statement (ii)

follows from the corresponding statement of (ii) for the special case thatλ � 0.
‘(iv)’: In a first step, we conclude that

∇wA
�1{2

λ P LpL2
CpΩq, pL

2
CpΩqq

n
q .

As a consequence of the analogous properties ofAλ, A1{2

λ is densely-defined,

linear, self-adjoint and bijective. SinceA1{2

λ is self-adjoint,A1{2

λ is in particular
closed. Further, according to Lemma3.0.6, the restriction of∇w to W 1

0,CpΩq is

a closed linear operator inL2
C
pΩq with values inpL2

C
pΩqqn. SinceDpA1{2

λ q �

W 1
0,CpΩq, it follows from the closed graph theorem, e.g., see Theorem3.16 in [6],

the existence ofC P r0,8q such that

}∇wf}2,n ¤ C }A
1{2

λ f}2

for all f P DpA
1{2

λ q. As a consequence, it follows for everyf P L2
C
pΩq that

}∇wA
�1{2

λ f}2,n ¤ C }A
1{2

λ A
�1{2

λ f}2 � C }f}2

and hence that∇wA
�1{2

λ P LpL2
C
pΩq, pL2

C
pΩqqnq. In a second step, we conclude

that
A
�1{2

λ ∇0
�

P LppL2
CpΩqq

n, L2
CpΩqq .

A
�1{2

λ ∇0
� is a densely-defined, linear operator inpL2

C
pΩqqn with values inL2

C
pΩq.

Further, it follows forf P L2
C
pΩq that

x f |A
�1{2

λ ∇0
�q y

2
� xA

�1{2

λ f |∇0
�q y

2
� x∇wA

�1{2

λ f | q y
2,n

for everyq P Dp∇0
�

q and hence thatf P DppA
�1{2

λ ∇0
�

q

�

q as well as that

pA
�1{2

λ ∇0
�

q

�f � ∇wA
�1{2

λ f .

As a consequence,
pA

�1{2

λ ∇0
�

q

�

� ∇wA
�1{2

λ .
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In particular,A�1{2

λ ∇0
� is closable and

A
�1{2

λ ∇0
�

� p∇wA
�1{2

λ q

�

P LppL2
CpΩqq

n, L2
CpΩqq .

Further, we note that

∇wA
�1

λ ∇0
�f � ∇wA

�1{2

λ A
�1{2

λ ∇0
�f � ∇wA

�1{2

λ p∇wA
�1{2

λ q

�f

for everyf P Dp∇0
�

q. Hence it follows that∇wA
�1

λ ∇0
� is a positive self-adjoint

element ofLppL2
C
pΩqqn, pL2

C
pΩqqnq .

By help of the previous lemma, we can now estimate the size of the gap around0
in the spectrum ofA and give a representation of the resolvent ofÂ in terms of the
resolvent ofA, i.e., (5.0.9).

Theorem 5.0.20.Let p̄ P L, C1, C2 P R satisfyC2 ¥ C1 ¡ 0 and be such that
C1 ¤ p̄ ¤ C2 a.e. onΩ. Further, letj P t1, . . . , nu be such thatnj � 0. Then the
interval

J :� p�C1 , c
2
{pc� C2q q

is contained in the resolvent set ofÂ. In particular forλ P J , pÂ � λq�1 is given
by

pÂ� λq�1
pf, gq �

�

pAp̄λ � λq�1f � pAp̄λ � λq�1∇0
� pλg ,

�pλg � pλ∇wpAp̄λ � λq�1f � pλ∇wpAp̄λ � λq�1∇0
� pλg

	

(5.0.9)

for all pf, gq P L2
C
pΩq � pL2

C
pΩqqn, wherep̄λ :� p̄ � λ, pλ :� 1{p̄λ, andAp̄λ is

the operator corresponding tōpλ according to Definition4.0.7.

Proof. For this, letλ P J . Then,

0   λ� C1 ¤ p̄� λ ¤ λ� C2

andp̄λ :� p̄� λ P L. Further, we denote byAp̄λ the operator corresponding tōpλ
according to Definition4.0.7. As a consequence of Theorem4.0.14, the spectrum
of Ap̄λ � λ is contained in the interval

�

c2pλ� C2q
�1

� λ,8
�

,

18



The inequality
c2pλ� C2q

�1
� λ ¡ 0

is equivalent to
�

λ�
C2

2


2

�

C2
2

4
� λpλ� C2q   c2 .

The last is equivalent to

�




c2 �
C2
2

4
�

C2

2
  λ  




c2 �
C2
2

4
�

C2

2
.

We note that



c2 �
C2
2

4
�

C2

2
�

c2
b

c2 �
C2

2

4
�

C2

2

¥

c2

c� C2

and that

�




c2 �
C2
2

4
�

C2

2
¤ �C2 ¤ �C1 .

Hence it follows thatAp̄λ � λ is self-adjoint, strictly positive and bijective. We
define the bounded linear operatorB P LpL2

C
pΩq�pL2

C
pΩqqn, L2

C
pΩq�pL2

C
pΩqqnq

by

Bpf, gq :� ppAp̄λ � λq�1f � pAp̄λ � λq�1∇0
� pλg ,

� pλg � pλ∇wpAp̄λ � λq�1f � pλ∇wpAp̄λ � λq�1∇0
� pλgq

for all pf, gq P L2
C
pΩq � pL2

C
pΩqqn, wherepλ :� 1{p̄λ P L8pΩq. Further, we

define the subspaceD of L2
C
pΩq � pL2

C
pΩqqn by

D :� tpf, gq P L2
CpΩq � pL2

CpΩqq
n : pλg P Dp∇0

�

qu .

We note that the subspace

tp̄λg : g P C8

0 pΩ,Cqu

of L2
C
pΩq is dense inL2

C
pΩq. For the proof, letf P L2

C
pΩq. Sincepλ P L8pΩq,

pλf P L2
C
pΩq. Further, sinceC8

0
pΩ,Cq is dense inL2

C
pΩq, there exists a sequence

f1, f2, . . . in C8

0
pΩ,Cq such that

lim
νÑ8

}fν � pλf}2 � 0 .
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Since for everyν P N
�

}p̄λfν � f}2 � }p̄λpfν � pλf q}2 ¤ }p̄λ}8}fν � pλf}2 ,

it follows that
lim
νÑ8

}p̄λfν � f}2 � 0 .

Hence it follows also thatD is dense inL2
C
pΩq � pL2

C
pΩqqn. Further, forpf, gq P

D, it follows thatBpf, gq P DpÂq and that

∇0
�

r�pλg � pλ∇wpAp̄λ � λq�1f � pλ∇wpAp̄λ � λq�1∇0
� pλg s

� λr pAp̄λ � λq�1f � pAp̄λ � λq�1∇0
� pλg s

� �∇0
�pλg �Ap̄λpAp̄λ � λq�1f �Ap̄λpAp̄λ � λq�1

∇0
� pλg

� λpAp̄λ � λq�1f � λpAp̄λ � λq�1
∇0

� pλg s � f

and that

∇w r pAp̄λ � λq�1f � pAp̄λ � λq�1∇0
� pλg s

� p̄λr�pλg � pλ∇wpAp̄λ � λq�1f � pλ∇wpAp̄λ � λq�1∇0
� pλg s

� ∇wpAp̄λ � λq�1f �∇wpAp̄λ � λq�1
∇0

� pλg

g �∇wpAp̄λ � λq�1f �∇wpAp̄λ � λq�1
∇0

� pλg � g .

Hence it follows that
pÂ� λqBpf, gq � pf, gq . (5.0.10)

Further, sinceD is dense inL2
C
pΩq � pL2

C
pΩqqn, for pf, gq P L2

C
pΩq � pL2

C
pΩqqn,

there is a sequencepf1, g1q, pf2, g2q, . . . in D that is convergent topf, gq. SinceB
is bounded, the corresponding sequenceBpf1, g1q, Bpf2, g2q, . . . is convergent to
Bpf, gq. SinceÂ is in particular closed, it follows thatBpf, gq P DpÂq and that

pÂ� λqBpf, gq � pf, gq . (5.0.11)

Therefore,Â� λ is surjective and hence also bijective.

By help of the previous theorem, the next result follows by application of a well-
known criterion for the strong resolvent convergence of sequences of self-adjoint
operators.
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Theorem 5.0.21.Let p̄1, p̄2, . . . be a uniformly bounded sequence inL for which
there isε ¡ 0 such that̄pν ¥ ε for all ν P N

� and which converges a.e. pointwise
on Ω to p̄

8

P L. In addition, letÂ1, Â2, . . . be the associated sequence of self-
adjoint linear operators and̂A

8

be the self-adjoint linear operator associated to
p̄
8

. Then
s� lim

νÑ8

Â�1
ν � Â�1

8

.

Proof. By application of Lebesgue’s dominated convergence theorem, it follows
that

lim
νÑ8

}Âνpu, qq � Â
8

pu, qq} � 0 ,

for all pu, qq P L2
C
pΩq � pL2

C
pΩqqn, where} } denotes the norm onL2

C
pΩq �

pL2
C
pΩqqn. From this, the statement follows from a well-known criterion for strong

resolvent convergence of a sequence of self-adjoint linearoperators, e.g., see part
(i) of Theorem 9.16 in [19].

Corollary 5.0.22. Let p̄1, p̄2, . . . be a uniformly bounded sequence inL for which
there isε ¡ 0 such that̄pν ¥ ε for all ν P N

� and which converges a.e. pointwise
on Ω to p̄

8

P L. In addition, letA1, A2, . . . be the associated sequence of self-
adjoint linear operators andA

8

be the self-adjoint linear operator associated to
p̄
8

. Finally, letf P L2
C
pΩq. Then

lim
νÑ8

}A�1
ν f �A�1

8

f}2 � lim
νÑ8

}pν∇wA
�1
ν f � p

8

∇wA
�1
8

f}2,n � 0 , (5.0.12)

wherepν :� 1{p̄ν for everyν P N
� andp

8

:� 1{p̄
8

.

Proof. By Theorem5.0.21, it follows that

lim
νÑ8

Â�1
ν pf, 0q � Â�1

8

pf, 0q ,

whereÂ1, Â2, . . . is the associated sequence of self-adjoint linear operators to
p̄1, p̄2, . . . andÂ

8

is the self-adjoint linear operator associated top̄. Hence (5.0.12)
follows by Theorem5.0.20.

6 The one-dimensional case

In the special cases thatΩ is given by a non-empty bounded open interval ofR,
Â�1 can be explicitly calculated. This is somewhat surprising since in this case
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the correspondingA is a Sturm-Liouville operator and the standard method of
calculating its inverse, e.g., see Theorem 8.26 in [19], seems not directly applicable
for generalp P L. Still, by a direct calculation of̂A�1, one can give an explicit
expression ofA�1 by using (5.0.9).

Theorem 6.0.23.Let a, b P R such thata   b andΩ :� I :� pa, bq. Further,
let p̄ P L8pΩqzt0u be a.e. positive. Then̂A is bijective and has a purely discrete
spectrum. In particular,̂A�1 is given by

pu, qq :� Â�1
pf, gq

for everypf, gq P pL2
C
pIqq2, where

upxq �

» x

a

gpyq dy �

» x

a

�

» x

y

p̄puq du

�

f pyq dy

� }p̄}�1

1

» x

a

p̄pyq dy

"

» b

a

�

» b

y

p̄pxq dx

�

f pyq dy �

» b

a

gpyq dy

*

qpxq � �

» x

a

f pyq dy � }p̄}�1

1

"

» b

a

�

» b

y

p̄pxq dx

�

f pyq dy �

» b

a

gpyq dy

*

for everyx P I. Also, Â�1 satisfies

}Â�1
} ¤ 2 pb � aq }p̄}�1

1
p 1� }p̄}1q

2 .

Proof. For this, we define the derivative operator

DI : C
8

0 pI, Cq Ñ L2
CpIq

by DIf :� f 1 for everyf P C8

0
pI, Cq. In a first step, we prove an auxiliary

result. For this, letf P L2
C
pIq andh P CpĪ ,Cq be defined by

hpxq :�

» x

a

f pyq dy

for everyx P I. Further, letϕ P C8

0 pI,Cq. By Fubini’s theorem and change of
variables, it follows that

xh |DIϕ y2 � xh |ϕ 1

y

2
�

» b

a

h�pxqϕ 1

pxq dx �

» b

a

�

» x

a

ϕ 1

pxqf�pyq dy

�

dx
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�

»

tpx,yqPR2:a¤x¤b^a¤y¤xu

ϕ 1

pxqf�pyq dxdy

�

»

tpx,yqPR2:a¤y¤b^y¤x¤bu

ϕ 1

pxqf�pyq dxdy

�

» b

a

�

» b

y

ϕ 1

pxqf�pyq dx

�

dy � �

» b

a

ϕpyqf�pyq dy � �x f |ϕ y
2

and hence that
h P W 1

CpIq andD�

I h � �f .

With the help of the previous auxiliary result, we proceed inthe proof of the
lemma. For this, we define for everypf, gq P pL2

C
pIqq2, a correspondingBpf, gq �

pu, qq by

qpxq :� q0pxq � c , upxq :�

» x

a

r gpyq � p̄pyqpq0pyq � cqs dy ,

where

q0pxq :� �

» x

a

f pyq dy , c :� �}p̄}�1

1

» b

a

r gpyq � p̄pyqq0pyq s dy

for everyx P I. By help of the auxiliary result above, it follows thatpu, qq P
pW 1

C
pIq X CpĪ ,Cqq �DpD�

I q and that

D�

I q � f , �D�

I u� p̄q � g � p̄q � p̄q � g .

In addition,

ub �

» b

a

r gpyq � p̄pyqpq0pyq � cq s dy

�

» b

a

p gpyq � p̄pyqq0pyq q dy � c

» b

a

p̄pyq dy � 0 .

As a consequence,
ua � ub � 0 .

From the last, it follows also thatu P W 1
0,CpIq. For the proof, letϕ P C8

pRq be
such that

ϕp p�8, 0s q � t0u , ϕp r1,8q q � t1u , Ranϕ � r0, 1s .
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Such a function is easy to construct. Forν P N
�, we defineϕν P C8

pRq by

ϕνpxq :� ϕp νpx� aqpb� xq � 1 q

for everyx P I. Then it follows for everyν P N
� satisfyingν ¥ b� a andx P I

that

ϕνpxq �

#

0 if x P I z pa� ν�2, b� ν�2
q

1 if px� aqpb� xq ¥ 2 ν�1

and hence thatϕν P C8

0 pI,Rq as well as Ranpϕνq � r0, 1s. In particular,

| px� a qp b� x qϕ 1

νpxq |

¤ 3ν pa� bq px� a qp b� x q � |ϕ 1

p νpx� aqpb� xq � 1 q |

¤ 3ν pa� bq px� a qp b� x q � }ϕ 1

}

8

� χ
txPI:px�aqpb�xq¤2{νu

pxq

¤ 6 pa� bq � }ϕ 1

}

8

� χ
txPI:px�aqpb�xq¤2{νu

pxq

for all x P I. An application of Lebesgue’s dominated convergence theorem leads
to

lim
νÑ8

}ϕνu�u}2 � lim
νÑ8

}D�

Iϕνu�D�

Iu}2 � lim
νÑ8

}ϕνD
�

I u�ϕ 1

νu�D�

Iu}2 � 0 .

Hence it follows thatu P W 1
0,CpIq and further thatpu, qq P DpÂq and

ÂBpf, gq � Âpu, qq � pf, gq .

Further, we conclude by Fubini’s theorem that

c � �}p̄}�1

1

» b

a

gpyq dy � }p̄}�1

1

» b

a

p̄pxq

�

» x

a

f pyq dy

�

dx

� }p̄}�1

1

"

» b

a

�

» b

y

p̄pxq dx

�

f pyq dy �

» b

a

gpyq dy

*

.

This implies that

qpxq � �

» x

a

f pyq dy � }p̄}�1

1

"

» b

a

�

» b

y

p̄pxq dx

�

f pyq dy �

» b

a

gpyq dy

*

for everyx P I. Further, again by Fubini’s theorem, it follows that

upxq �

» x

a

gpyq dy �

» x

a

p̄pyq q0pyq dy � c

» x

a

p̄pyq dy
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�

» x

a

gpyq dy �

» x

a

p̄puq

�

» u

a

f pyq dy

�

du� c

» x

a

p̄pyq dy

�

» x

a

gpyq dy �

» x

a

�

» x

y

p̄puq du

�

f pyq dy

� }p̄}�1

1

» x

a

p̄pyq dy

"

» b

a

�

» b

y

p̄pxq dx

�

f pyq dy �

» b

a

gpyq dy

*

for everyx P I. In addition, by Hoelder’s inequality, we conclude that

|upxq| ¤ 2 pb� aq1{2 r }p̄}1 }f}2 � }g}2 s ¤ 2 pb� aq1{2 p 1� }p̄}1q }pf, gq}

|qpxq| ¤ pb� aq1{2
�

2 }f}2 � }p̄}�1

1
}g}2

�

¤ 2 pb� aq1{2 }p̄}�1

1
p 1� }p̄}1q }pf, gq}2

for everyx P I. The last implies

}u}2 ¤ 2 pb�aq p 1�}p̄}1q }pf, gq} , }q}2 ¤ 2 pb�aq }p̄}�1

1
p 1�}p̄}1q }pf, gq}2

and
}pu, qq} ¤ 2 pb� aq }p̄}�1

1
p 1 � }p̄}1q

2
}pf, gq}2 .

As consequence, byppL2
C
pIqq2 Ñ pL2

C
pIqq2, pf, gq Ñ Bpf, gqq, there is defined a

compact bounded linear operatorB. Since

ÂBpf, gq � pf, gq

for everypf, gq P pL2
C
pIqq2, the bijectivity ofÂ follows as well as that̂A�1

� B.
Finally, sinceÂ�1 is compact,Â has a purely discrete spectrum.

Corollary 6.0.24. Let a, b, p̄ as in Theorem6.0.23. ThenUrp0q, where

r :� 2�1
pb� aq�1

}p̄}1 p 1 � }p̄}1q
�2 ,

is contained in the resolvent set ofÂ.

Proof. For this, letλ P Urp0q. Then

Â� λ � p1� λ Â�1
qÂ .

By help of the previous Theorem6.0.23, it follows that

|λ| � }Â�1
} ¤ |λ|{r   1

and hence that̂A� λ is bijective.
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Theorem 6.0.25.Let a, b P R such thata   b andΩ :� I :� pa, bq. Further, let
p̄1, p̄2 P L8pΩqzt0u be a.e. positive and̂A1, Â2 be the corresponding operators.
Then

}Â�1

1
� Â�1

2
} ¤

2pb� aq

}p̄1}1

�

2� }p̄1}1 � }p̄2}1 �
1

}p̄2}1




} p̄2 � p̄1}1 .

Proof. Proceeds by direct calculation.

Corollary 6.0.26. Let a, b P R such thata   b andΩ :� I :� pa, bq. Further, let
p̄
8

P L8pΩqzt0u be a.e. positive. Let̄p1, p̄2, . . . be a sequence of a.e. positive
elements ofL8pΩqzt0u such that

lim
νÑ8

}p̄ν � p̄
8

}1 � 0 .

In addition, letÂ1, Â2, . . . be the associated sequence of self-adjoint linear opera-
tors andÂ

8

be the self-adjoint linear operator associated top̄
8

. Then

lim
νÑ8

}Â�1
ν � Â�1

8

} � 0 .

Proof. The statement is a simple consequence of Theorem6.0.23.

Corollary 6.0.27. Let a, b P R such thata   b andΩ :� I :� pa, bq andf P

L2
C
pIq. Further, let̄p

8

P L8pΩqzt0u be a.e. positive and̄p1, p̄2, . . . be a sequence
in L such that

lim
νÑ8

}p̄ν � p̄
8

}1 � 0 .

In addition, letA1, A2, . . . be the sequence of self-adjoint linear operators that
is associated tōp1, p̄2, . . . and pν :� 1{p̄ν for ν P N

�. ThenA�1

1
, A�1

2
, . . .

and�p1D
�

IA
�1

1
,�p2D

�

IA
�1

2
, . . . are convergent inLpL2

C
pIq, L2

C
pIqq to B,C P

LpL2
C
pIq, L2

C
pIqq, respectively. In particular,B andC are given by

pBf qpxq �

» x

a

�

» x

y

p̄
8

puq du

�

f pyq dy

� }p̄
8

}

�1

1

» x

a

p̄
8

pyq dy

» b

a

�

» b

y

p̄
8

pxq dx

�

f pyq dy ,

pCf qpxq � �

» x

a

f pyq dy � }p̄
8

}

�1

1

» b

a

�

» b

y

p̄
8

pxq dx

�

f pyq dy

for all x P I and everyf P L2
C
pIq.
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Proof. The statement is a simple consequence of Theorem5.0.20and Theorem
6.0.23.

7 Concluding remarks

It is unclear whether results similar to those of the previous section can be ex-
pected to hold in dimensions greater than1. According to Theorem5.0.17and
the subsequent example, and differently to the situation inone dimension,̂A is not
injective whenp̄ vanishes on non-empty open subsets of the material. Hence there
does not seem to be an obvious candidate for a limit of a sequence ofÂ�1 that is
associated to a sequence inL approaching such̄p. Therefore, it is conceivable that
such limits show a wider variety of phenomena than those in one dimension. This
problem deserves further study.

A final remark concerns the fact that it cannot be expected that general ‘elliptic
regularity theorems’ hold for operatorsA corresponding to discontinuous diffusiv-
ities p as a consequence of the condition that every elementu from the domain of
such operator satisfiesp∇wu P Dp∇�

0
q. For instance, the source functionf in

Example4.0.11is in W k
C
pIq for everyk P N, butu � A�1f R W 2

C
pIq, whereI is

the open intervalp�1, 1q of R.

8 Appendix

In the following, proofs of the Lemmata3.0.4, 3.0.6from Section3 are given.

Lemma 8.0.28. (Partial integration )

xf |B ekgy
2
� �xB

ekf |gy
2

for all pf, gq P W 1
0,CpΩq�W 1

C
pΩq andk P N

�, whereek denotes thek-th canonical
unit vector ofRn.

Proof. For this, letk P N
�. We define the sesquilinear forms : W 1

0,CpΩq �

W 1
C
pΩq Ñ C by

spf, gq :� xf |B ekgy
2
� xB

ekf |gy
2

for all pf, gq P W 1
0,CpΩq �W 1

C
pΩq. By the continuity ofB ek , it follows the con-

tinuity of s and by partial integration thatspf, gq � 0 for all f P C8

0 pΩ,Cq and
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f P C8

pΩ,Cq X W 1
C
pΩq. SinceC8

0
pΩ,Cq � ppC8

pΩ,Cq X W 1
C
pΩqq is dense

in W 1
0,CpΩq � W 1

C
pΩq, this implies the vanishing ofs and hence the validity of

p3.0.4q for all pf, gq P W 1
0,CpΩq �W 1

C
pΩq.

Lemma 8.0.29. (Adjoints of gradient operators)

p∇0
�

q

�

� ∇w

�

�

W 1

0,C
pΩq

,

�

∇w

�

�

W 1

0,C
pΩq




�

� ∇0
� .

Proof. Since∇0
� is densely-defined, it follows that

p∇0
�

q

�

� ∇0 .

Forf P Dp∇0 q, there exists a sequencef1, f2, . . . in C8

0 pΩ,Cq such that

lim
νÑ8

}fν � f}2 � 0 , lim
νÑ8

}∇0fν �∇0f}2,n � lim
νÑ8

}∇wfν �∇0f}2,n � 0 .

Hence it follows thatf P W 1
0,CpΩq and that∇0f � ∇wf . As a consequence,

∇0 � ∇w

�

�

W 1

0,C
pΩq

.

Further, forf P W 1
0,CpΩq, there is a sequencef1, f2, . . . in C8

0 pΩ,Cq such that

lim
νÑ8

}fν � f}2 � 0 , lim
νÑ8

}∇0fν �∇wf}2 � 0 .

Hence it follows that
pf,∇wf q P Gp∇0 q .

As a consequence,
∇w

�

�

W 1

0,C
pΩq

� ∇0 .

Finally, it follows the validity of (3.0.5, 1). The validity of (3.0.5, 2) is a simple
consequence of (3.0.5, 1) and the closedness of∇0

�.
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