
RETRACTIONS TO PSEUDOFORESTS

TOMÁS FEDER† , PAVOL HELL‡ , PETER JONSSON§ , ANDREI KROKHIN¶, AND

GUSTAV NORDH‖

Abstract. For a fixed graph H, let Ret(H) denote the problem of deciding whether a given
input graph is retractable to H. We classify the complexity of Ret(H) when H is a graph (with loops
allowed) where each connected component has at most one cycle, i.e., a pseudoforest. In particular,
this result extends the known complexity classifications of Ret(H) for reflexive and irreflexive cycles
to general cycles. Our approach is mainly based on algebraic techniques from universal algebra that
have previously been used for analyzing the complexity of constraint satisfaction problems.

Key words. Retraction, Computational Complexity, Universal Algebra, Constraint Satisfaction

AMS subject classifications. 05C15, 08A70, 68R10

1. Introduction. We consider finite, undirected graphs without multiple edges,
but with loops allowed. For a graph G, V (G) (E(G)) denotes the set of vertices (edges)
of G. A graph without loops is called irreflexive, a graph in which every vertex has a
loop is called reflexive, and graphs that are neither irreflexive nor reflexive are called
partially reflexive.

A homomorphism f of a graph G to a graph H is a mapping f : V (G) → V (H)
satisfying the following condition: if uv ∈ E(G), then f(u)f(v) ∈ E(H). For a fixed
graph H, the homomorphism problem Hom(H) asks whether a graph G admits a
homomorphism to H. For instance, if H is Kn (the complete irreflexive graph on
n vertices), then Hom(H) is precisely the n-colouring problem. The complexity of
Hom(H) is known for all graphs [9]; Hom(H) NP-complete if H is irreflexive and
non-bipartite, otherwise it is in P.

We study a certain generalization of homomorphisms in this article: let G,H be
graphs such that H is an induced subgraph of G. A retraction r of G to H is a
homomorphism of G to H satisfying r(h) = h for every vertex h ∈ V (H). For a fixed
graph H, the retraction problem Ret(H) asks whether a given graph G (having H
as an induced subgraph) admits a retraction to H. Retractions and the retraction
problem have been intensively studied in graph theory, cf. [10].

In particular, the complexity of Ret(H) when H is a reflexive cycle, an irreflexive
cycle, or a graph on at most four vertices is known, cf. [6, 7, 16]. Hence, what remains
to be done in order to complete the classification of Ret(H) when H is a cycle, is to
classify the complexity of Ret(H) when H is a partially reflexive cycle on 5 or more
vertices. In Section 4 we prove that Ret(H) is NP-complete for all partially reflexive
cycles H on 5 or more vertices. In Section 5 we extend the classification of Ret(H)
to cover all graphs H in which each connected component has at most one cycle.
Such graphs are called pseudoforests and can also be characterized as those graphs

†268 Waverley St., Palo Alto, CA 94301, USA, tomas@theory.stanford.edu
‡School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

pavol@cs.sfu.ca
§Department of Computer and Information Science, Linköpings Universitet, SE-581 83

Linköping, Sweden, petej@ida.liu.se
¶Department of Computer Science, South Road, Durham DH1 3LE, UK,

andrei.krokhin@durham.ac.uk
‖Laboratoire d’Informatique de l’X, École Polytechnique, 91128 Palaiseau, Cedex, France

nordh@lix.polytechnique.fr

1

2 RETRACTIONS TO PSEUDOFORESTS

that have neither the butterfly (two triangles sharing one vertex) nor the diamond
(K4 with one edge removed) as minors. Our main result is the following complexity
classification of Ret(H) for all pseudoforests H.

• Ret(H) is NP-complete when the looped vertices in a connected component
of H induce a disconnected graph, H contains a cycle on at least 5 vertices,
H contains a reflexive 4-cycle, or H contains an irreflexive 3-cycle.

• Ret(H) is in P for all other pseudoforests H.
Our proof techniques are based on the algebraic approach for classifying the com-

plexity of the constraint satisfaction problem (Csp) [4, 5, 11]. The Csp problem can
be seen as a homomorphism problem on general relational structures as will be ex-
plained in Section 2.2. The homomorphism problem to fixed finite target structures
H (denoted Csp(H)) has been intensively studied.

Since Hom(H) and Ret(H) are special cases of Csp(H), the algebraic approach
can also be applied to these problems. In fact, Bulatov [2] recently gave a short and
simplified proof of the dichotomy for Hom(H) using the algebraic approach, and very
recently, Barto et al. [1] used this approach to solve some long standing open questions
on the complexity digraph homomorphisms.

Feder and Vardi [8] conjectured that there is a dichotomy (between P and NP-
complete) for the complexity of Csp(H) (in terms of the relational structures H). This
conjecture is still open despite intensive research, although some special cases have
been settled, cf. [3]. Feder and Vardi [8] also proved that Csp(H) has a dichotomy
if and only if Ret(H) has a dichotomy (see also [6, 15] for more information on this
connection). Hence, giving a complexity classification of Ret(H) for all graphs H is
probably a very challenging problem.

2. Preliminaries.

2.1. Graphs and retractions. Let G be an arbitrary graph x ∈ V (G), and
X ⊆ V (G). We write G|X and G − x to denote the subgraphs induced by X and
V (G) \ {x}, respectively. We let loop(G) denote the set of vertices with loops, i.e.,
loop(G) = {x ∈ V (G) | xx ∈ E(G)} and we let NG(x) denote the neighborhood
of x in G, i.e., NG(x) = {y ∈ V (G) | xy ∈ E(G)}. We will drop the subscript
whenever there is no risk of ambiguity. We generalize neighborhoods as follows:
NG(X) =

⋃
y∈X N(y), N1

G(x) = NG(x), and Nk
G(x) = NG(Nk−1

G (x)) when k > 1.
Proposition 2.1 ([16]). If H is a graph and H ′ an induced subgraph of H, such

that H retracts to H ′. Then Ret(H ′) is polynomial-time reducible to Ret(H).
Corollary 2.2. If H is a graph such that a, b ∈ V (H) are distinct and N(a) ⊆

N(b), then there is a polynomial-time reduction from Ret(H − a) to Ret(H).
Proof. Follows directly from the fact that N(a) ⊆ N(b) implies that H retracts

to H − a together with Proposition 2.1.
Lemma 2.3. If H is a graph such that a, b ∈ V (H) are distinct and N(a) = N(b),

then Ret(H − a) and Ret(H) are polynomial-time equivalent.
Proof. The reduction from Ret(H−a) to Ret(H) follows from Corollary 2.2. For

the other direction, let G be a graph containing H as an induced subgraph. Construct
from G a graph G′ containing H − a as an induced subgraph by identifying a to b. If
r is a retraction from G to H then r′, defined as:

• r′(x) = r(x) if r(x) 6= a; and
• r′(x) = b if r(x) = a

is a retraction from G′ to H − a. Conversely if r′ is a retraction from G′ to H − a,
then r defined as:

• r(x) = r′(x) for all x ∈ G′; and

T. FEDER, P. HELL, P. JONSSON, A. KROKHIN, AND G. NORDH 3

• r(a) = a
is a retraction from G to H. Hence, G retracts to H if and only if G′ retracts to
H − a.

It has been observed before that when studying the complexity of Ret(H), it is
sufficient to consider connected graphs H.

Proposition 2.4 ([16]). Let H be a graph with connected components H1, . . . ,Hn.
Then Ret(H) is in P if Ret(Hi) is in P for all components Hi, and Ret(H) is NP-
complete if Ret(Hi) is NP-complete for some component Hi.

2.2. Constraint satisfaction, retraction, and polymorphisms. For a more
extensive treatment we refer the reader to [4, 5]. The constraint satisfaction problem
(Csp) can be equivalently defined in a number of ways. For our purposes, though, it
is convenient to define it as a homomorphism problem. A vocabulary is a finite set of
relational symbols R1, . . . , Rn – each of them have a fixed arity ar(Ri). A relational
structure over the vocabulary R1, . . . , Rn is a structure H = (H;RH

1 , . . . , RH
n) where H

is a non-empty set (called the universe of H) and each RH
i is a relation on H with arity

ar(Ri). Let G = (G;RG
1 , . . . , RG

n) and H = (H;RH
1 , . . . , RH

n) be relational structures
over the vocabulary R1, . . . , Rn. A homomorphism from G to H is a mapping f : G →
H such that, for every relation RG of G and every tuple (a1, . . . , am) ∈ RG , we have
(f(a1), . . . , f(am)) ∈ RH. A relation of the form Ca = {(a)}, that is, a unary relation
containing only one tuple, is called a constant relation. If H = (H;R1, . . . , Rn) is a
relational structure, then Hc denotes the structure (H;R1, . . . , Rn, Ch(h ∈ H)).

Let H be a relational structure over a vocabulary R1, . . . , Rn. In the constraint
satisfaction problem with target structure H, denoted Csp(H), the question is, given a
structure G over the same vocabulary, whether there exists a homomorphism from G to
H. Obviously, a graph H can be treated as a relational structure H = (V (H);E(H)).
Thus, Hom(H) and Csp(H) (with H = (V (H);E(H))) are equivalent problems. We
have the following relation between Csp(H) and Ret(H).

Proposition 2.5 ([6]). Ret(H) and Csp(Hc) (with H = (V (H);E(H))) are
polynomial-time equivalent problems for all graphs H.

It is well-known that adding to a relational structure H relations derived using
certain rules does not change the complexity of the associated Csp [11]. To exemplify
this, let Γ be an arbitrary finite set of relations on some finite domain D. Now, let us
consider relations derivable from Γ by primitive positive formulas (pp-formulas).

Definition 2.6. The set 〈Γ〉 consists of all relations that can be expressed using
1. relations from Γ together with the binary equality relation on D,
2. conjunction, and
3. existential quantification.

We say that R is pp-definable in H = (H;RH
1 , . . . , RH

n) if R ∈ 〈{RH
1 , . . . , RH

n }〉.
Proposition 2.7 ([11]). If R is pp-definable in H and Csp(R) is NP-complete,

then Csp(H) is NP-complete.
If R is a unary relation pp-definable in H, then R is called a subalgebra of H.
Proposition 2.8 ([2, 4]). Let H be a graph and H = (V (H);E(H)). Then, for

every v ∈ V (H), B = Nk
H(v) is a subalgebra of Hc and Ret(H) is NP-complete if

Ret(H|B) is NP-complete.
We will now consider polymorphisms and their relation to the complexity of

Csp(H). An n-ary operation f preserves an m-ary relation R (or f is a polymorphism
of R, or R is invariant under f) if, for any (a11, . . . , am1), . . . , (a1n, . . . , amn) ∈ R, the
tuple (f(a11, . . . , a1n), . . . , f(am1, . . . , amn)) belongs to R. Given a relational struc-
ture H = (H;RH

1 , . . . , RH
n), if f preserves every relation RH

i (1 ≤ i ≤ n) then we

4 RETRACTIONS TO PSEUDOFORESTS

say that f is a polymorphism of H. The set of all polymorphism of H is denoted
Pol(H). It is well known that if R is a relation that is pp-definable in H, then
Pol(H) ⊆ Pol(R) [12]. In particular, any subalgebra of H is preserved by all poly-
morphisms of H. Recall that an operation f : Dk → D is said to be idempotent if
f(d, . . . , d) = d for all d ∈ D. Hence, any operation in Pol(Hc) is idempotent.

Let F be a set of operations on D, B a subset of D and X an equivalence relation
on D such that every operation in F preserves B and X. Then F |B denotes {f |B | f ∈
F} where f |B is the restriction of f onto B, and F/X denotes {f/X | f ∈ F} where
f/X is the operation of on D/X defined as f/X(d1/X , . . . , dn/X) = (f(d1, . . . , dn))/X

for any d1, . . . , dn ∈ D.
Finally, we need some information about Pol(H) when H is a set of relations over

some two-element set {a, b} ⊆ D. To simplify the presentation we assume without
loss of generality from now on that D (and V (H)) is a subset of N. Let min and
max denote the standard binary minimum and maximum operations, let maj denote
the majority operation satisfying maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = y for
all x, y ∈ {a, b}, and define minor to be the minority operation minor(x, x, y) =
minor(x, y, x) = minor(y, x, x) = y for all x, y ∈ {a, b}. We say that an operation
f : Dk → D is a projection if f(x1, . . . , xk) = xi for all x1, . . . , xk ∈ D.

Theorem 2.9 ([4, 13, 14]). Let H be a finite relational structure, B a subalgebra
of Hc, and X an equivalence relation on B that is pp-definable in Hc such that B/X

consists of two elements (equivalence classes). Then, either ((Pol(Hc))|B)/X contains
projections only and Csp(Hc) is NP-complete, or ((Pol(Hc))|B)/X contains a min,
max, majority, or minority operation.

3. Retraction is hard for graphs with disconnected loops. In this section
we prove that Ret(H) is NP-complete if there is a connected component H ′ in H
such that the looped vertices in H ′ induce a disconnected graph.

We first recall the following easy result.
Proposition 3.1. Given relational structures G and H where the universe of

G is {g1, . . . , gn} and HOM(G,H) denote the set of all homomorphisms from G to
H, then the relation SG,H(g1, . . . , gn) = {(h(g1), . . . , h(gn)) | h ∈ HOM(G,H)} is
pp-definable in H (i.e., SG,H ∈ 〈H〉).

When we are interested in the relation SG,H we often refer to the relational struc-
ture G as a gadget.

Lemma 3.2. Let H be a connected graph such that H|loop(H) is not a connected
graph, then Ret(H) is NP-complete.

Proof. In this proof we often (implicitly) use the polynomial-time equivalence
between Ret(H) and Csp(Hc) (with H = (V (H);E(H))) from Proposition 2.5. As a
rule of thumb, we use the graph H when we are discussing graph properties, and we use
the corresponding relational structure Hc when we are interested in polymorphisms.

Let d be the minimum distance (in H) between any two vertices from different
components of H|loop(H). Let a, b be two vertices in different components of H|loop(H)

of distance d and consider the graph H ′ = H|Nd(a)∩Nd(b) (note that V (H ′) is a
subalgebra of Hc). It is obvious that H ′ is connected, H ′|loop(H′) is disconnected, and
any two vertices in different components of H ′|loop(H′) are at distance d .

Denote the components of H ′|loop(H′) where a and b occur by Ba and Bb, re-
spectively. We now construct a gadget that can force a vertex in the instance to be
mapped only to Ba and Bb. Let Ka be the largest clique in H ′|V (H′)\loop(H′) such
that there is a vertex a′ in Ba to which every vertex in Ka is adjacent, and every
vertex in Ka is at distance d − 1 from at least one vertex in loop(H ′) \ V (Ba). Let

T. FEDER, P. HELL, P. JONSSON, A. KROKHIN, AND G. NORDH 5

Ka − ea

x y

xa ya

a′

Fig. 3.1. The gadget Ga (where a′ is additionally subject to the constraint Ca′ (a′)).

ea be a vertex in Ka and construct a clique on the vertices V (Ka − ea)∪ {a′, xa, ya},
where xa and ya are new vertices. Connect xa and ya to two new reflexive vertices x
and y, respectively, by irreflexive paths of length d− 1. Finally, force the vertex a′ to
be mapped to a′ in H ′ by the constraint Ca′(a′). Call the resulting gadget for Ga (see
Figure 3.1 for a pictorial description). The properties of Ga that we are interested
in is that there are homomorphisms h1, h2, h3 from Ga to H′c such that h1(x) ∈ Ba,
h1(y) ∈ Bb, h2(x) ∈ Bb, h2(y) ∈ Ba, h3(x) ∈ Ba, and h3(y) ∈ Ba, but there is no
homomorphism such that both x and y are mapped to components different from Ba.
The existence of the homomorphisms h1, h2, and h3 is easy to verify and there can be
no homomorphism mapping both x and y to components different from Ba, because
this would contradict the maximality of Ka since |V (Ka)| < |V (Ka − ea) ∪ {xa, ya}|.
However, note that it is possible that there are other homomorphisms mapping one
of x and y to Ba and the other to a component of H ′|loop(H′) different from both Ba

and Bb.

Now, construct the corresponding gadget Gb analogously. Finally, glue these
gadgets together by identifying the x and y vertices in Ga to the x and y vertices
in Gb and call the resulting gadget for Gab. By the reasoning above there are two
homomorphisms h1 and h2 from Gab to H′c such that h1(x) ∈ Ba, h1(y) ∈ Bb,
h2(x) ∈ Bb, h2(y) ∈ Ba, but there is no homomorphism mapping x or y to components
in H ′|loop(H′) different from Ba and Bb (and there is no homomorphism mapping
both x and y to the same component in H ′|loop(H′)). Hence, considering the relation
SGab,H′c(x, y, . . .) and existentially quantifying over all variables except x, shows that
there is a subalgebra B of Hc such that B ⊆ V (Ba) ∪ V (Bb), B ∩ V (Ba) 6= ∅, and
B ∩ V (Bb) 6= ∅.

We now define an equivalence relation on B by constructing a simple gadget GX

consisting of two reflexive vertices r1 and r2 that are connected by a reflexive path
of length max{|V (Ba)|, |V (Bb)|}. Considering the relation SGX ,H′c|B (r1, r2, . . .) and
existentially quantifying over all variables except r1, r2 gives us an equivalence relation
X on B having equivalence classes Ba ∩B and Bb ∩B. Since B is a subalgebra of Hc

and X is an equivalence relation pp-definable in Hc such that B/X consists of two
elements a and b (with a ∈ Ba ∩ B and b ∈ Bb ∩ B) we can apply Theorem 2.9.

Again consider the gadget Gab and the relation SGab,H′c(x, y, . . .) and existentially
quantify all variables except x and y, resulting in binary relation Rab which obviously
is pp-definable in Hc. Recall from the definition of Gab that Rab contains tuples
(a, b), (b, a) such that a, b ∈ B and a/X 6= b/X , but no tuple (a′, b′) such that a′/X =

6 RETRACTIONS TO PSEUDOFORESTS

b′/X . Now consider ((Pol(Rab))|B)/X . If ((Pol(Rab))|B)/X contains a max or min
operation f |B/X , then f |B/X((a/X , b/X), (b/X , a/X)) = (c/X , c/X) contradicting the
fact that there are no tuples (a′, b′) ∈ Rab such that a′/X = b′/X . Since Rab is pp-
definable in Hc we have ((Pol(Hc))|B)/X ⊆ ((Pol(Rab))|B)/X , and it follows that
((Pol(Hc))|B)/X does not contain any min or max operation.

Recall the clique Ka and let k = |V (Ka)|. Construct a new clique K on ver-
tices v0, v1, . . . , vk+1, where v0 is looped and the rest are all irreflexive. Join each
vi in v1, . . . vk+1 to a looped vertex zi by an irreflexive path of length d − 1. In
order to force the vertices z2, . . . , zk+1 to be mapped to the same component in
H ′|loop(H′) we connect them all by reflexive paths of length |loop(H ′)|. Call the
resulting gadget for GK . There are homomorphisms h1, . . . , h4 from GK to H′c such
that (h1(v0), h1(z1), h1(z2)) ∈ V (Ba) × V (Ba) × V (Ba), (h2(v0), h2(z1), h2(z2)) ∈
V (Ba) × V (Bb) × V (Ba), (h3(v0), h3(z1), h3(z2)) ∈ V (Ba) × V (Ba) × V (Bb), and
(h4(v0), h4(z1), h4(z2)) ∈ V (Bb) × V (Bb) × V (Bb). But there is no homomorphism h
from GK to H′c such that (h(v0), h(z1), h(z2)) ∈ V (Ba) × V (Bb) × V (Bb), since the
clique v1, . . . , vk+1 has cardinality k + 1 which would contradict the maximality of K
which has cardinality k.

If we existentially quantify all variables except v0, z1, and z2 in the relation
SGK ,H′c(v0, z1, z2, . . .) we get the ternary relation RK . Now, by the reasoning above
RK contains tuples (a1, a2, a3), (a4, b1, a5), (a6, a7, b2), and (b3, b4, b5) with ai/X =
a/X (1 ≤ i ≤ 7) and bi/X = b/X (1 ≤ i ≤ 5), but not any tuple (a′, b′, b′′) with
a′/X = a/X and b′/X = b′′/X = b/X . Considering ((Pol(RK))|B)/X , just as in the
case of min and max, it is easy to see that ((Pol(RK))|B)/X does not contain any
majority or minority operation, and thus neither does ((Pol(Hc))|B)/X . Hence, as a
consequence of Theorem 2.9 we get that Ret(H) is NP-complete.

4. Cycles. Here we classify the complexity of Ret(H) when H is a cycle.
Theorem 4.1. Let H be an n-cycle on vertices V (H) = {0, . . . , n − 1}, n ≥ 5,

with loops on {0, . . . ,m}, m < n − 1. Then, Ret(H) is NP-complete.
We get the following result by combining this theorem with Lemma 3.2 and

previously known results for reflexive cycles, irreflexive cycles, and graphs on at most
four vertices, cf. Vikas [16].

Corollary 4.2. Let H be a cycle. Then Ret(H) is in P if H is a 3-cycle
having at least one reflexive vertex, or if H is a 4-cycle having at least one irreflexive
vertex and H|loop(H) connected. Otherwise Ret(H) is NP-complete.

To prove Theorem 4.1, we consider the relational structure Hc = (V (H);E(H),
{(v)} (v ∈ V (H))) (instead of H). This change of viewpoint is allowed by Propo-
sition 2.5. We prove the result by exhibiting a 2-element subalgebra B of Hc such
that (Pol(Hc))|B consists of projections only. By Theorem 2.9 it then follows that
Csp(Hc) is NP-complete. The subalgebra we choose is B = N(n − 1) = {0, n − 2};
by Proposition 2.8, this is indeed a subalgebra. From Theorem 2.9 we know that
(Pol(Hc))|B either only consists of projections, or it contains at least one min, max,
majority, or minority operation. We proceed by showing that (Pol(Hc))|B does not
contain any of the four operations above.

Let ⊕ and ⊖ denote addition and subtraction modulo n, respectively. We need
to extend the notion of two vertices being neighbours in a graph to lists of vertices.
We say that (a1, . . . , an) and (b1, . . . , bn) are neighbours in Hn if ai ∈ NH(bi) for all
1 ≤ i ≤ n.

Lemma 4.3. If f(x, y) is a binary polymorphism of Hc such that f(0, n − 2) = 0
then f(x⊕2, x) = x⊕2 for all x. Similarly, if f(n−2, 0) = 0 then f(x, x⊕2) = x⊕2

T. FEDER, P. HELL, P. JONSSON, A. KROKHIN, AND G. NORDH 7

for all x.

Proof. Assume that f(a⊕2, a) = a⊕2 for some a. Since (a⊕1, a⊖1) is a neighbour
of both (a ⊕ 2, a) and (a, a) in H2, it follows that f(a ⊕ 1, a ⊖ 1) is a neighbour of
both f(a ⊕ 2, a) and f(a, a) in H. Since f(a ⊕ 2, a) = a ⊕ 2 and f(a, a) = a (because
f is idempotent), we have f(a ⊕ 1, a ⊖ 1) ∈ N(a ⊕ 2) ∩ N(a) = {a ⊕ 1}. The lemma
follows by induction.

Lemma 4.4. If f(x, y) is a binary polymorphism of Hc such that f(0, n⊖2) = n⊖2
then f(0, x) = x for all x. Similarly, if f(n⊖ 2, 0) = n⊖ 2 then f(x, 0) = x for all x.

Proof. Since (0, n⊖1) is a neighbour of both (0, 0) and (0, n⊖2) in H2, it follows
that f(0, n ⊖ 1) = n ⊖ 1. Assume the lemma is false and let a ∈ {0, . . . , n ⊖ 1} be
the largest element such that f(0, a) = a, but f(0, a ⊖ 1) 6= a ⊖ 1. Since (0, a) and
(0, a⊖1) are neighbours in H2, it follows that f(0, a⊖1) ∈ N(a)\{a⊖1} ⊆ {a, a⊕1}.
Let k = ⌊a⊖1

2 ⌋. Then 0, a ⊖ 1 ∈ Nk(k), but a, a ⊕ 1 6∈ Nk(k). Since n ≥ 5 and f
preserves Nk(k), it follows that f(0, a ⊖ 1) 6∈ {a, a ⊕ 1} which is a contradiction.

Proof. [Of Theorem 4.1]

Case 1. f(0, n ⊖ 2) = f(n ⊖ 2, 0) = 0, i.e., f is the min function on {0, n ⊖ 2}
By Lemma 4.3, we have f(m,m⊕ 2) = f(m⊕ 2,m) = m⊕ 2 (recall that m is the last
vertex with a loop). Then f(m,m ⊕ 1) = m ⊕ 1 because it must a neighbour of both
f(m,m) = m and f(m,m⊕2) = m⊕2. Similarly, we have f(m⊕1,m) = m⊕1. Hence,
since (m,m⊕1) and (m⊕1,m) are neighbours in H2, we have (m⊕1,m⊕1) ∈ E(H)
which is a contradiction with the fact that m ⊕ 1 is not looped.

Case 2. f(0, n⊖ 2) = f(n⊖ 2, 0) = n⊖ 2, i.e., f is the max function on {0, n⊖ 2}
By Lemma 4.4, we have f(0, n ⊖ 1) = f(n ⊖ 1, 0) = n ⊖ 1.

Since (0, n⊖1) and (n⊖1, 0) are neighbours, we have (n⊖1, n⊖1) ∈ E(H) which
contradicts the fact that n ⊖ 1 is not looped.

Case 3. f is a majority operation on {0, n ⊖ 2}.
Consider the operation g(x, y) = f(x, x, y) on V . This is a polymorphism of Hc. Note
that g(n⊖ 2, 0) = f(n⊖ 2, n⊖ 2, 0) = n⊖ 2. By applying Lemma 4.4 to g, we obtain
that f(x, x, 0) = g(x, 0) = x for all x. Consider the operation g′(x, y) = f(x, y, 0).
This operation is a polymorphism of Hc because it is idempotent and 0 is a reflexive
vertex. Moreover, it satisfies the conditions of Case 1, so we are done.

Case 4. f is a minority operation on {0, n ⊖ 2}.
Since f(0, 0, n⊖2) = n⊖2, we get f(0, 0, x) = x by applying Lemma 4.4 to f(x, x, y).
So we have f(0, 0, n⊖1) = n⊖1. Similarly, f(0, n⊖1, 0) = n⊖1. Since (n⊖1, n⊖1) 6∈
E(H), we get a contradiction.

Hence, (Pol(Hc))|B consists of projections only and by Theorem 2.9 we get that
Csp(Hc) is NP-complete, which by Proposition 2.5 allows us to conclude that Ret(H)
is NP-complete.

5. Pseudotrees. Recall that a pseudotree is a connected graph containing at
most one cycle. We will now prove the following theorem.

Theorem 5.1. Let H be a pseudotree. If H|loop(H) is disconnected or if H
contains a cycle on C ⊆ V (H) such that Ret(H|C) is NP-complete, then Ret(H)
is NP-complete. Otherwise, Ret(H) is in P.

The proof is divided into two parts: in Section 5.1, we study a special type of
pseudotrees that we call balloons, and we present the complete proof in Section 5.2.

5.1. Balloons. A balloon H is an irreflexive cycle with a pendant path such that
the only vertex in H having a loop is the unique leaf, see Figure 5.1. The aim of this
section is to prove the complexity of Ret(H) for all balloons.

8 RETRACTIONS TO PSEUDOFORESTS

0

2

3

5

1

6 4

n−1

n+m−2n n+1 n+2 n+m−1

Fig. 5.1. Balloon: Bn,m

We denote the ballon having an irreflexive n-cycle (n ≥ 3) with a pendant path
of length m (m ≥ 1), where only the leaf vertex is looped, by Bn,m. The vertices in
the cycle are numbered {0, . . . , n− 1}, i (1 < i < n− 1) is adjacent to i + 1 and i− 1,
0 is adjacent to n−1 and the m vertices in the path are numbered {n, . . . , n+m−1}
where n is adjacent to 0 and n + m − 1 is looped.

Lemma 5.2. Ret(B6,m) is NP-complete for all m ≥ 1.
Proof. Consider the subalgebra A = N(3) = {2, 4} of B6,m. We show that

(Pol(B6,m))|A does not contain any max, min, majority, or minority operation.
Case 1: max operation. We assume that f |A is the max operation. Since (5, 1) is

a neighbour of both (4, 2) and (0, 0) we have f(5, 1) ∈ N(4) ∩ N(0) = {5}. Similarly,
f(1, 3) = 3 since (1, 3) is a neighbour of both (2, 4) and (2, 2), so f(1, 3) ∈ N(4) ∩
N(2) = {3}. With similar arguments we have f(0, 2) = 2, and using this result we get
f(5, 1) = 1, since (5, 1) is a neighbour of both (0, 0) and (0, 2). This is a contradiction
since we cannot have f(5, 1) = 5 and f(5, 1) = 1, so (Pol(B6,m))|A does not contain
max.

Case 2: min operation. Analogous to Case 1.
Case 3: majority operation. Assume that f |A is the majority operation. Since

(3, 5, 1) is a neighbour of both (2, 4, 2) and (4, 4, 2) we have f(3, 5, 1) ∈ N(2)∩N(4) =
{3}. Now, (1, 3, 3) is a neighbour of both (2, 4, 4) and (2, 2, 2), so f(1, 3, 3) ∈ N(4) ∩
N(2) = {3}. Using f(1, 3, 3) = 3 and analogous arguments to those above, we
get f(0, 2, 2) = 2. Again repeating the argument and using f(0, 2, 2) = 2 we get
f(5, 1, 1) = 1, and finally using f(5, 1, 1) = 1 we get that f(4, 0, 0) = 0. Now, since
(3, 5, 1) is a neighbour of (4, 0, 0) we have a contradiction because 3 /∈ N(0). Thus,
(Pol(B6,m))|A does not contain the majority function.

Case 4: minority operation. Analogous to the majority case.
Now we present the complexity classification of Ret(Bn,m).
Lemma 5.3. Let Bn,m be a balloon. If n = 4, i.e., the length of the cycle is 4,

then Ret(Bn,m) is in P and, otherwise, Ret(Bn,m) is NP-complete.
Proof. Assume that the cycle has length 4. Then, there exists two vertices a, b

on the cycle satisfying N(a) = N(b). By Lemma 2.3, Ret(B4,m) and Ret(B4,m − a)
are polynomial-time equivalent problems. Since B4,m −a is a path with a single loop,
Ret(B4,m − a) and Ret(B4,m) are in P [7].

As for hardness, we first note that Vikas [16] proved that Ret(B3,1) is NP-
complete. Moreover, we know from Lemma 5.2 that Ret(B6,m) is NP-complete for
all m ≥ 1. We now show that Ret(Bn,m) is NP-complete in the remaining cases,
i.e., when n = 3 and m > 1, n = 5, and n ≥ 7. Given the graph Bn,m, construct the

T. FEDER, P. HELL, P. JONSSON, A. KROKHIN, AND G. NORDH 9

N j(k)

0

2

4

k

n−4

n−2

n+1 n+3 n+m−3 n+m−1 n+m−2 n+2

n

1

3

5

n−3

n−1

Fig. 5.2. The reflexive graph H when n is even.

0

n−2

3

1

n

n+m−2

n+m−1

n+m−3

2

n−3

n−1

n+1

n+2

n+4

n+3 H ′

Fig. 5.3. The reflexive graph H when n is odd.

reflexive graph H such that V (H) = V (Bn,m) and E(H) is defined by the following
pp-formula:

E(H)(x, y) ≡pp ∃zE(x, z) ∧ E(z, y)

where E is the edge relation of Bn,m. Since H is pp-definable from Bn,m it follows
from Proposition 2.7 that Ret(Bn,m) is NP-complete if Ret(H) is NP-complete.
The graph H has different properties depending on whether n is even or odd (see
Figures 5.2 and 5.3) so the proof is divided into two parts.

Case 1: n is even (see Figure 5.2). All vertices of H are looped, the even vertices
in {0, . . . , n−1} form a cycle (2i is adjacent to 2(i+1) and 2(i−1)), n−2 is adjacent

10 RETRACTIONS TO PSEUDOFORESTS

to 0, and the only vertex adjacent to this cycle is n+1 which is adjacent to 0. Let k be
the largest even number ≤ n/2 and j = ⌊n/4⌋, then H|Nj(k) (i.e., the graph induced
(in H) by the vertices in N j(k)) is the reflexive n/2-cycle for which the retraction
problem is NP-complete (remember that n ≥ 8). Thus, by Proposition 2.8 we get
that Ret(H) is NP-complete.

Case 2: n is odd (see Figure 5.3). All vertices of H are looped, 2i is adjacent to
2(i − 1) and 2(i + 1) (where 0 < i < (n − 1)/2), 2j + 1 is adjacent to 2j − 1 and
2j + 3 (for 0 < j < (n − 3)/2), 0 is adjacent to n − 2 and 1 is adjacent to n − 1,
so the vertices in {0, . . . , n − 1} form a reflexive cycle. Similarly for the vertices
j ∈ {n + 2, . . . , n + m− 1} we have that j is adjacent to j + 2 and j − 2, n is adjacent
to 1 and n − 1, n + 1 is adjacent to 0, and n + m − 1 is adjacent to n + m − 2. Now
consider the graph H ′ induced (in H) by the even vertices in {0, . . . , n − 1} together
with all the vertices in {n, . . . , n + m − 1}. It is easy to see that H ′ is the reflexive
⌈n/2⌉+m-cycle for which retraction is NP-complete (remember that n ≥ 5, or n = 3
and m ≥ 2). Now, the graph H retracts to H ′ by the retraction defined below.

• r(i) = i for all i ∈ V (H ′),
• r(i) = n − i for all i ∈ V (H) \ V (H ′).

Hence, by Proposition 2.1 we get that Ret(H) is NP-complete.

5.2. Main result. A leaf in a graph is a vertex a having at exactly one neighbour
(not counting itself). We categorize leaves into four classes depending on loops in
their neighborhoods: let a be a leaf and b its unique neighbour. If bb ∈ E(H) and
aa ∈ E(H), we say that a is of type (,); if bb 6∈ E(H) but aa ∈ E(H), then a is of
type (·,), and the remaining two classes are defined analogously.

Lemma 5.4. Let H be a connected graph such that |V (H)| ≥ 3 and a ∈ V (H) is
a leaf of type (,), (, ·), or (·, ·). Then, the problems Ret(H) and Ret(H − a)
are polynomial-time equivalent.

Proof. Let b be the unique neighbour of a and let c be a neighbour of b such that
a 6= c. We consider three cases depending on the type of a: if a is of type (,),
then N(a) = {a, b} ⊆ N(b) and the same holds if a is of type (, ·). If a is of type
(·, ·), then N(a) = {b} ⊆ N(c). In all these cases, there is a vertex a′ such that
N(a) ⊆ N(a′). Now, it follows from Corollary 2.2 that there is a polynomial-time
reduction from Ret(H − a) to Ret(H). For the reduction in the opposite direction,
let G be an arbitrary instance of Ret(H). As a consequence of NH(a) ⊆ NH(a′) we
have that G retracts to H if and only if there is a retraction r from G to H such that
a is the unique vertex in G that is mapped to a in H. Moreover, since a is a leaf in
H the set NG(a) \ {a} must be mapped to the vertex b = NH(a) \ {a} by r. Denote
by G′′ the graph resulting from identifying the vertices in NG(a) \ {a} to b. It should
be clear that G retracts to H if and only if G′′ retracts to H. Since a is a leaf in G′′

it is obvious that G′′ retracts to H if and only if G′′ − a retracts to H − a, and the
result follows.

We can now prove the main theorem of this article.
Proof. (of Theorem 5.1) If H|loop(H) is disconnected, then Ret(H) is NP-

complete by Lemma 3.2 so we assume henceforth that H|loop(H) is connected.
Apply Lemma 5.4 to H repeatedly until it is not applicable anymore; let H ′

be the resulting graph. Note that H ′|loop(H′) is still connected and that Ret(H)
and Ret(H ′) are polynomial-time equivalent problems. First, if H ′ is a tree, then
|V (H)| ≤ 2 (otherwise Lemma 5.4 can be applied) and Ret(H ′) is in P. Hence, H ′

contains a (unique) cycle. If H ′ is a cycle, then the complexity of Ret(H) follows
from Corollary 4.2.

T. FEDER, P. HELL, P. JONSSON, A. KROKHIN, AND G. NORDH 11

So we can assume that H ′ contains a cycle and at least one leaf. First of all,
H ′ does not contain any leaves of type (,), (, ·), or (·, ·) by its construction.
H ′ cannot contain two leaves of type (·,) since this would imply that H ′|loop(H′)

is disconnected. Thus, H ′ contains exactly one leaf a (which is of type (·,)). It
also follows that a is the only vertex in H ′ with a loop: if the neighbour of a has a
loop, then a is of type (,), and if a non-neighbour has a loop, then H ′|loop(H′) is
disconnected. In other words, H ′ is a balloon and the result follows from Lemma 5.3.

By combining Proposition 2.4 and Theorem 5.1 we have the following complexity
classification of Ret(H) for every pseudoforest H.

• Ret(H) is NP-complete when the looped vertices in a connected component
of H induce a disconnected graph, H contains a cycle on at least 5 vertices,
H contains a reflexive 4-cycle, or H contains an irreflexive 3-cycle.

• Ret(H) is in P for all other pseudoforests H.

REFERENCES

[1] L. Barto, M. Kozik, and T. Niven. Graphs, polymorphisms and the complexity of homo-
morphism problems. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC-08), pages 789–796, 2008.

[2] A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science, 349(1):31–39, 2005.
[3] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.

Journal of the ACM, 53(1):66–120, 2006.
[4] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the computational complexity of con-

straints using finte algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
[5] D. Cohen and P. Jeavons. Handbook of Constraint Programming, chapter 8: The complexity

of constraint languages. Elsevier, 2006.
[6] T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial

Theory, ser. B, 72:236–250, 1998.
[7] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combinatorica,

19:487–505, 1999.
[8] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and con-

straint satisfaction: a study through datalog and group theory. SIAM Journal on Com-
puting, 28(1):57–104, 1998.

[9] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory,
ser. B, 48:92–110, 1990.

[10] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, 2004.
[11] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the ACM,

44(4):527–548, 1997.
[12] R. Pöschel and L. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin, 1979.
[13] E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical

Studies, 5:1–122, 1941.
[14] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th ACM

Symposium on Theory of Computing (STOC-78), pages 216–226, 1978.
[15] N. Vikas. Compaction, retraction, and constraint satisfaction. SIAM Journal on Computing,

33(4):761–782, 2004.
[16] N. Vikas. A complete and equal computational complexity classification of compaction and

retraction to all graphs with at most four vertices and some general results. Journal of
Computer and System Sciences, 71:406–439, 2005.

