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The KdV/KP-I limit of the Nonlinear Schrödinger equation

D. Chiron∗ & F. Rousset.†

Abstract

We justify rigorously the convergence of the amplitude of solutions of Nonlinear-Schrödinger
type Equations with non zero limit at infinity to an asymptotic regime governed by the Korteweg-
de Vries equation in dimension 1 and the Kadomtsev-Petviashvili I equation in dimensions 2
and more. We get two types of results. In the one-dimensional case, we prove directly by energy
bounds that there is no vortex formation for the global solution of the NLS equation in the
energy space and deduce from this the convergence towards the unique solution in the energy
space of the KdV equation. In arbitrary dimensions, we use an hydrodynamic reformulation of
NLS and recast the problem as a singular limit for an hyperbolic system. We thus prove that
smooth Hs solutions exist on a time interval independent of the small parameter. We then pass
to the limit by a compactness argument and obtain the KdV/KP-I equation.

1 Introduction

We consider the n-dimensional nonlinear Schrödinger equation

i
∂Ψ

∂τ
+

1

2
∆zΨ = Ψf(|Ψ|2) Ψ = Ψ(τ, z) : R+ × R

n → C. (NLS)

This equation is used as a model in nonlinear Optics (see for instance [19]) and in superfluidity and
Bose-Einstein condensation (see, e.g. [23], [10], [13]).

We assume that, for some ρ0 > 0, f(ρ20) = 0, so that Ψ ≡ ρ0 is a particular solution of (NLS).
We are interested in solutions Ψ of (NLS) such that |Ψ| ≃ ρ0. In the sequel, we take ρ0 = 1, the
general case follows changing Ψ for Ψ̃ ≡ ρ−1

0 Ψ and f̃(R) ≡ f(ρ20R). Then, from now on, we consider
smooth nonlinearities f ∈ C∞(R,R) such that

f(1) = 0, f ′(1) > 0 (1)

and will be interested in situations where |Ψ| ≃ 1. Note that this means thanks to (1) that we shall
study the equation in a defocusing regime. A typical example of nonlinearity is simply f(R) = R−1
for which (NLS) is termed the Gross-Pitaevskii equation. Equation (NLS) is an Hamiltonian flow
associated to the Ginzburg-Landau type energy (when it makes sense)

E(Ψ) ≡ 1

2

∫

Rn

|∇zΨ|2 + F
(

|Ψ|2
)

dz,

where F (R) ≡ 2

∫ R

1
f(r) dr.
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1.1 KdV and KP-I asymptotic regimes for NLS

In a suitable scaling corresponding to |Ψ| ≃ 1, the dynamics for the amplitude of Ψ converges,
in dimension n = 1, to the Korteweg-de Vries equation

2∂tv + k v∂xv −
1

4c2
∂xxxv = 0, (KdV)

and in dimensions n ≥ 2 to the Kadomtsev-Petviashvili - I equation

∂x

(

2∂tv + kv∂xv −
1

4c2
∂3xv
)

+∆⊥v = 0 (KP-I)

where v = v(t,X) ∈ R, X = (x, x⊥) ∈ R × R
n−1. The coefficients c and k are related to the

nonlinearity f by

c ≡
√

f ′(1) and k ≡ 6 +
2

c2
f ′′(1). (2)

Note that the KP-I equation reduces to the KdV equation if v does not depend on x⊥.
The formal derivation of this regime is as follows. First, we consider a small parameter ε, and

rescale time and space according to

t = cε3τ, X1 = x = ε(z1 − cτ), Xj = ε2zj , j ∈ {2, ..., n}, Ψ(τ, z) = ψε(t,X). (3)

The nonlinear Schrödinger equation for ψε reads now

icε3
∂ψε

∂t
− icε∂xψ

ε +
ε2

2
∂2xψ

ε +
ε4

2
∆⊥ψ

ε = ψεf(|ψε|2), X = (x, x⊥) ∈ R× R
n−1. (4)

We shall use the following ansatz for ψε

ψε(t,X) =
(

1 + ε2Aε(t,X)
)

exp
(

iεϕε(t,X)
)

(5)

where the amplitude Aε ∈ R is assumed to be of order 1 and the real phase ϕε ∈ R is also assumed
to be of order 1. The ansatz (3), (5) mean that we study a weak amplitude wave propagating to
the right in a long wave regime and that this wave is slowly modulated in the transverse direction
thanks to (3). Note that the occurence of the KdV or KP equation as enveloppe equations in such
regimes is expected. We refer for example to [2] and references therein for the derivation of these
equations from the water-waves system.

By plugging (5) in (4) and by separating real and imaginary parts, we can rewrite (4) as the
system















































ε2c∂tA
ε − c∂xA

ε + ε2∂xA
ε∂xϕ

ε +
1

2

(

1 + ε2Aε
)

∂2xϕ
ε + ε4∇⊥A

ε · ∇⊥ϕ
ε

+
ε2

2

(

1 + ε2Aε
)

∆⊥ϕ
ε = 0

ε2c∂tϕ
ε − c∂xϕ

ε − ε2
∂2xA

ε

2
(

1 + ε2Aε
) − ε4

∆⊥A
ε

2
(

1 + ε2Aε
) +

ε2

2

(

∂xϕ
ε
)2

+
ε4

2
|∇⊥ϕ

ε|2

+
1

ε2
f
(

(1 + ε2Aε)2
)

= 0.

(6)
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Now, assuming that Aε → A and ϕε → ϕ as ε → 0, we formally obtain from the two equations of
the above system that

− c∂xA+
1

2
∂2xϕ = 0, −c∂xϕ+ 2f ′(1)A = 0. (7)

Note that we have used that f(1) = 0 and thus that f
(

(1 + ε2Aε)2
)

≃ 2ε2f ′(1)A at leading order.

In (7) and from the definition (2) of c, the first equation is just − 1

2c
times the derivative of the

second equation with respect to x, hence, we have found for the limit the constraint

2cA = ∂xϕ. (8)

To get the limit equation satisfied by A, we can add the first equation in (6) and
1

2c
times the

derivative of the second equation with respect to x in order to cancel the most singular term. This
yields the equation

c∂t
(

Aε +
1

2c
∂xϕ

ε
)

− 1

4c
∂x

( ∂2xA
ε

1 + ε2Aε

)

+
1

2

(

1 + ε2Aε
)

∆⊥ϕ
ε +

c

ε4
∂x
(

Q(ε2Aε)
)

+
{

∂xA
ε∂xϕ

ε +
1

2
Aε∂2xϕ

ε +
1

4c
∂x
(

(∂xϕ
ε)2
)

+
1

2c

[

f ′(1) + 2f ′′(1)
]

∂x
(

(Aε)2
)

}

=
ε2

4c
∂x

( ∆⊥A
ε

(

1 + ε2Aε
)

)

− ε2

4c
∂x
(

|∇⊥ϕ
ε|2
)

(9)

where
c2Q(r) ≡ f

(

(1 + r)2
)

− 2f ′(1)r −
(

f ′(1) + 2f ′′(1)
)

r2 = O(r3) r → 0.

Still on a formal level, if Aε → A and ϕε → ϕ as ε→ 0, this yields

2∂tA+
[

6 +
2

c2
f ′′(1)

]

A∂xA− 1

4c2
∂3xA+

1

2c
∆⊥ϕ = 0

by using the relation (8). Consequently, we have obtained the sytem











∂xϕ = 2cA

2∂tA+
[

6 +
2

c2
f ′′(1)

]

A∂xA− 1

4c2
∂3xA+

1

2c
∆⊥ϕ = 0

(10)

which is a reformulation of the KP-I equation. Note that in dimension 1, i.e. when n = 1, this
amounts to assume that all the functions involved in the derivation do not depend on x⊥, then the
equation for A in (10) just reduces to the KdV equation since ∆⊥ϕ = 0.

Finally, let us notice that because of the scaling (3), for the solution Ψ of the original (NLS)
equation with time-scale 1, the convergence to KdV or KP-I dynamics takes place for times of order
ε−3.

In dimension n = 1, the formal derivation of the KdV equation from the (NLS) equation in
this asymptotic regime is well-known in the physics literature (see, for example, [18]), and is useful
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in the stability analysis of dark solitons or travelling waves of small energy. In the case of the
Gross-Pitaevskii equation, for instance (that is for f(R) = R−1), the travelling waves are solutions
to (NLS) of the form Ψ(τ, z) = U(z − στ), so that U solves

− iσ∂zU +
1

2
∂zzU = U(|U |2 − 1), z ∈ R (11)

with the condition |U |(z) → 1 as z → ±∞. For this nonlinearity, explicit integration (see, e.g. [26])
gives for 0 < σ < 1 the nontrivial solution

Uσ(z) = σ − i
√

1− σ2 th
(

z
√

1− σ2
)

.

The small energy regime corresponds to σ ≃ 1, thus we set σ2 = 1− ε2, ε > 0 small, and we obtain

Uσ(z) = −iε th(εz) +
√

1− ε2 =

√

1− ε2

ch2(εz)
exp

(

iεϕε(εz)
)

,

with ϕε(εz) = −th(εz) + O(ε3), and we see that this corresponds to the ansatz (5) as ε → 0.
Furthermore, here, Aε = −1/ch2 does not depend on ε and is the soliton of the KdV equation
(c = 1, k = 6). Note that (11) is also often adimensionalized in the form

−iσ∂zU + ∂zzU = U(|U |2 − 1).

In this case the critical speed one, the speed of sound, is changed for
√
2.

In higher dimensions n = 2, 3, the convergence of the travelling waves to the Gross-Pitaevskii
equation (i.e. (NLS) with f(R) = R − 1) with speed ≃ 1 to a soliton of the KP-I equation is
formally derived in the paper [15], while in [3], this KP-I asymptotic regime for (NLS) in dimension
n = 3 is used to investigate the linear instability of the solitary waves of speed ≃ 1. On the
mathematical level, in dimension n = 2, the convergence of the travelling waves of speed ≃ 1 for
the Gross-Pitaevskii equation to a ground state of the KP-I equation is proved in [5].

Here we shall study the rigorous derivation of KdV/KP-I from (NLS) for arbitrary time depen-
dent solutions. All our results are in particular valid for the Gross-Pitaevskii equation f(R) = R−1.

In arbitrary dimension, we shall justify the KdV/KP-I limit by studying directly an hydrody-
namical formulation of (4) as a singular PDE limit as in [20], [12], [24]: we shall first prove the
existence of Hs solutions for (6) with s sufficiently large on an interval of time independent of ε and
then pass to the limit by a weak compactness argument. Thanks to the properties of the singular
operator in (6), we are able to pass to the limit for general initial data (i.e. ”ill-prepared” data in
the terminology of singular PDE limit), we need not assume that 2cAε − ∂xϕ

ε tends to zero at the
initial time in order to be compatible with the constraint (8).

When n = 1, we will be able to pass to the limit directly from the global solution of (NLS)
in the energy space towards the solution of KdV in the energy space without assuming additional
regularity of the initial data but with the assumption that the initial data are well-prepared in the
sense that ||∂xϕε

0 − 2cAε
0||L2/ε tends to zero.

1.2 KdV asymptotic regime for (NLS) in the energy space

We first focus on the description of our result in the one dimensional case n = 1, and work only
in the energy space for (NLS) and the H1 energy space for KdV. The Cauchy problem for (NLS)
is not standard because of the condition at infinity |ψ| → 1 (see [9], [27], [8]) which is expected in
order to give a meaning to the energy E(Ψ). We have the following:
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Theorem 1 ([27]) There exists E0 > 0 such that for every Ψ0 ∈ H1
loc(R) verifying E(Ψ0) ≤ E0,

and |Ψ0|(z) → 1 as |z| → +∞, there exists a unique solution Ψ to (NLS) such that Ψ − Ψ0 ∈
C
(

R+,H
1(R)

)

. Moreover, E
(

Ψ(t)
)

= E(Ψ0) for t ≥ 0.

This Theorem is not exactly formulated under this form in [27] (Theorem III.3.1). Nevertheless,
as we shall see in Lemma 1, if E(Ψ) ≤ E0 is sufficiently small, then we can write Ψ = ρeiφ with

||∂xρ||L2 + ||ρ− 1||L∞ + ||∂xφ||L2

sufficiently small and hence we can indeed use [27] (Theorem III.3.1).

It is also known that the Cauchy problem for the KdV equation1 [16] is well-posed in the energy
space:

Theorem 2 ([16]) We consider the Cauchy problem for the KdV equation

2∂tv + k v∂xv −
1

4c2
∂xxxv = 0, v|t=0 = v0.

If v0 ∈ H1(R), then there exists a unique solution of the KdV equation satisfying v ∈ C
(

R+,H
1(R)

)

and ∂xv ∈ L4
loc

(

R+, L
∞(R)

)

.

Note that it is possible to prove the well-posedness of KdV in spaces of much lower regularity than
H1 (see [17] for example) but we shall not use these results here.

Our first result relates the solution of (NLS) obtained in Theorem 1 in the scaling (3) and the
solution of KdV obtained in Theorem 2:

Theorem 3 (n = 1) Assume that (Aε
0)0<ε<1 ∈ H1 and (ϕε

0)0<ε<1 ∈ Ḣ1 enjoy the uniform esti-
mate

M ≡ sup
0<ε<1

{

∣

∣

∣

∣Aε
0

∣

∣

∣

∣

H1 +
1

ε

∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2

}

< +∞ (12)

and that
Aε

0 → A0 in L2 as ε→ 0.

Consider the initial datum
ψε
0 =

(

1 + ε2Aε
0

)

exp
(

iεϕε
0

)

(13)

for (4), and let ψε ∈ ψε
0 + C(R+,H

1) be the associated solution to (4)(given by Theorem 1).
Then, there exists ε0 > 0, depending only on M , such that, for 0 < ε ≤ ε0, there exist two

real-valued functions ϕε, Aε ∈ C(R+ ×R,R) such that (Aε, ϕε)|t=0 = (Aε
0, ϕ

ε
0), and

ψε =
(

1 + ε2Aε
)

exp
(

iεϕε
)

(14)

with 1 + ε2Aε ≥ 1
2 . Furthermore, as ε→ 0, we have the convergence

Aε → A in C([0, T ],Hs), ∂xϕ
ε → 2cA, in C([0, T ], L2)

for every s < 1 and every T > 0, where A is the solution of KdV with initial value A0.

1Here, it might happen that k = 0, in which case the KdV equation reduces to the so-called (linear) Airy equation
2∂tv −

1

4c2
∂
3
xv = 0 and the Cauchy problem is then trivial to solve.

5



Let us emphasize that the initial data are well-prepared (see (8)) in the sense that

∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2 = O(ε). (15)

Under a stronger assumption on the preparedness of the initial data, namely

∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2 = o(ε), (16)

one can reach the convergence in H1 for the amplitude (see Theorem 7 in Subsect. 2.5). This
assumption will not be needed when we work with more regular data as in Theorem 4 below.
Finally, note that the usual assumption of well-prepared data for a singular system (see [20] for
example) like (6) in order to get that ∂tA

ε = O(1) would be that

∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2 = O(ε2).

Consequently, we note that our assumptions (15) and even (16) are weaker.
Related results are obtained in [6] for the Gross-Pitaevskii equation (f(R) = R − 1) by using

different methods, namely the complete integrability of the equation through the conservation of
higher order energies.

The strategy of the proof is as follows. By using the conservation of the energy and of the
momentum

P =
1

2

∫

R

(

iΨ, ∂zΨ
)

dz

(actually one of its variants since P is not well-defined for functions which tend to 1 at infinity),
we shall prove that one can write

ψε =
(

1 + ε2Aε
)

exp
(

iεϕε
)

,

with 1 + ε2Aε ≥ 1
2 and the uniform bounds

sup
0<ε<ε0, t∈R+

{

∣

∣

∣

∣Aε
∣

∣

∣

∣

H1 +
1

ε

∣

∣

∣

∣∂xϕ
ε − 2cAε

∣

∣

∣

∣

L2

}

< +∞.

The H1 bound on Aε will provide compactness in space. Then we shall get compactness in time
by using the properties of the singular part of the equation (6) namely properties of the transport
equation with high speeds















∂tA
ε − 1

ε2
∂x
(

Aε − uε
)

= Sε
A

∂tu
ε − 1

ε2
∂x
(

uε −Aε
)

= Sε
u.

(17)

This will allow to extract a subsequence which converges strongly in L2
loc(R+ × R) towards the

solution of the KdV equation. Finally we shall prove that we actually have a better convergence
which is in particular global in space as stated in the theorem.
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1.3 KdV and KP-I asymptotic regimes for smooth initial data

In arbitrary dimension, we will work with Hs norms and local in time smooth solutions in Hs,
with s sufficiently large.

Our first result is:

Theorem 4 Let n ≥ 1 and let s such that s > 1 +
n

2
. Assume that

Ms ≡ sup
0<ε<1

∣

∣

∣

∣

(

Aε
0, ∂xϕ

ε
0, ε∇⊥ϕ

ε
0

)∣

∣

∣

∣

Hs+1 < +∞ (18)

and consider the initial datum for (4)

ψε
0 =

(

1 + ε2Aε
0

)

exp
(

iεϕε
0

)

.

Then, there exist T > 0 and 0 < ε0 < 1, depending on Ms, such that, for 0 < ε ≤ ε0, there exists a
unique solution ψε to (4) with ψε

|t=0 = ψε
0 such that ψε − ψε

0 ∈ C
(

[0, T ],Hs+1
)

. Furthermore, there

exist two real-valued functions Aε ∈ C
(

[0, T ],Hs+1
)

and ϕε ∈ C
(

[0, T ], Ḣs+1
)

∩ C
(

[0, T ]× R
n) such

that (Aε, ϕε)|t=0 = (Aε
0, ϕ

ε
0) and, for 0 ≤ t ≤ T ,

ψε =
(

1 + ε2Aε
)

exp
(

iεϕε
)

, 1 + ε2Aε ≥ 1/2 (19)

and
sup

0<ε<ε0, t∈[0,T ]

{

∣

∣

∣

∣Aε
∣

∣

∣

∣

Hs+1(Rn)
+
∣

∣

∣

∣

(

∂xϕ
ε, ε∇⊥ϕ

ε
)∣

∣

∣

∣

Hs(Rn)

}

< +∞. (20)

The important result in Theorem 4 is the qualitative information that there exists a uniform time
T for which the representation (19) and the uniform bounds (20) hold.

To prove Theorem 4 we shall rewrite (4) as a hydrodynamical equation. As in [11], we shall use
a modified Madelung transform where we allow the amplitude to be complex. This allows to get an
hydrodynamic system with a much simpler structure than (6). It is a first order hyperbolic system
with a singular perturbation made of a skew-symmetric zero order term and a skew-symmetric
second order term. The uniform time existence for the obtained system will then follow from
uniform Hs estimates as in the works [20], [11], [24].

In the recent work [4], the linear wave regime for the Gross-Pitaevskii equation is investigated.
This regime occurs for larger data on a shorter time. In this regime the equivalent of Theorem 4 is
obtained in [4]. The proof in [4] is different from ours since the the uniform bounds are obtained
through the study of a different hydrodynamical system (namely the one obtained by the standard
Madelung transform).

The next step will be the study of the convergence towards solutions of the KP-I equation of
the solutions constructed in Theorem 4.

Note that for A0 inH
s with s > 1+n/2, the Cauchy problem for the KP-I equation is well-posed:

there exists a unique local in time Hs solution. Note that it is actually known to be well-posed in
spaces of much lower regularity [14], [22]. Moreover, in dimension n = 2, the solutions are global
in time whereas in dimension n = 3, the solution of KP-I may blow-up (in H1) in finite time (see
[21]).

Our first convergence result is:

7



Theorem 5 Under the assumptions of Theorem 4, if moreover there holds

(Aε
0, ∂xϕ

ε
0, ε∇⊥ϕ

ε
0) → (A0, ∂xϕ0, 0) in L2. (21)

Let A be the solution of the KP-I equation

∂x

(

2∂tA+ kA∂xA− 1

4c2
∂3xA

)

+∆⊥A = 0

with initial value A/t=0 =
1

2

(

A0 +
1

2c
∂xϕ0

)

∈ Hs+1. Then, we have the weak convergences, as

ε→ 0,
Aε ⇀ A ∂xϕ

ε ⇀ 2cA weakly in L2
(

[0, T ] × R
n
)

and the strong convergence

1

2

(

Aε +
1

2c
∂xϕ

ε
)

→ A in L2
(

[0, T ],Hσ(Rn)
)

∀ σ < s.

Note that the result of Theorem 5 holds for smooth but ill-prepared initial data in the sense
that they do not satisfy the constraint (8). We shall actually get in the proof of Theorem 5 a
stronger type of convergence. Namely, we get that ∂xA

ε and (∂xxϕ
ε)/2c converge strongly to ∂xA

in L2
loc(0, T,H

m
loc) for every m < s if n ≥ 2 and that Aε and (∂xϕ

ε)/2c converge strongly to A in
L2
loc(0, T,H

m+1
loc ) if n = 1.

Finally, for slightly well prepared data, we are able to recover global strong convergence in
space:

Theorem 6 Under the same assumptions as in Theorem 4 and 5, i.e. (18) and (21), we assume
moreover that

(n = 1)
∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2 → 0 as ε→ 0,

(n ≥ 2)
∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2 = O(ε), ||∇⊥ϕ
ε
0||L2 = O(1). (22)

Then, we have the convergences, as ε→ 0,

Aε → A strongly in C([0, T ],Hm), ∂xϕ
ε → 2cA strongly in C([0, T ],Hm−1)

for every m < s+1. Furthermore, if n ≥ 2, there exists K > 0 such that, for 0 ≤ t ≤ T , 0 < ε < ε0,

∫

Rn

|∇⊥ϕ
ε|2 dX ≤ K. (23)

We emphasize that in dimensions n ≥ 2, the hypothesis in the last theorem is stronger than in

dimension n = 1 in order to ensure the bound for

∫

Rn

|∇⊥ϕ
ε|2 dX . Moreover, in dimension n = 1,

(22) is weaker than the hypothesis in Theorem 3.
The paper is organized as follows. Section 2 is devoted to the proof of Theorem 3, section 3.1

is devoted to the Proof of Theorem 4. The proofs of Theorems 5, 6 are finally given in sections 3.2,
3.3.
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2 Proof of Theorem 3

We shall split the proof in many steps. In the first step we prove that the modulus of a solution
of (NLS) remains away from zero if its energy is sufficiently small so that it can be written as (14)
and we prove that one can define a variant of the momentum which is well-defined. Then we shall
use the energy and the momentum to get uniform H1 × Ḣ1 estimates for (Aε, ϕε). The third step
will be the study of the system (17) in order to get compactness in time. Finally, the last part will
be devoted to the passage to the limit in the equation.

2.1 Preliminaries

For the regime of interest to us, the energy is small. In this case, we shall prove that the
modulus |Ψ| remains close to 1. A first useful remark is that since F ′(1) = 2f(1) = 0 and
F ′′(1) = 2f ′(1) = 2c2 > 0, we have for some δ ∈ (0, 1/2)

F (R) ≥ c2

2
(R − 1)2, |R− 1| ≤ δ (24)

and also
F (R) ≤ C(R− 1)2, |R− 1| ≤ δ (25)

for some C > 0.

Lemma 1 There exists E0 > 0, depending only on the nonlinearity f , such that if Ψ ∈ H1
loc(R)

verifies E(Ψ) < E0 and |Ψ|(z) → 1 for z → +∞, then
∣

∣

∣

∣ |Ψ|2 − 1
∣

∣

∣

∣

L∞(R)
≤ δ.

Note that for an initial value under the form (13), we have, since M is finite, that

E(ψε
0) ≤ Cε

(

∫

R

ε4(∂xA
ε
0)

2 + ε2(1 + ε2Aε
0)

2(∂xϕ
ε
0)

2 + ε2(Aε
0)

2 dx
)

≤ Cε3

where C depends only on M . Consequently, since the energy is conserved, we can indeed use
Lemma 1 for ε sufficiently small to write the solution ψε of NLS given by Theorem 1 under the
form ψε = ρeiφ with φ ∈ H1

loc and |ρ2 − 1| ≤ 1/2. Note that ρ and φ depend on ε but we omit this
dependence in our notation.

Proof of Lemma 1. Since |Ψ|(z) → 1 for z → +∞, we have

∀z ∈ R,
(

|Ψ|2(z) − 1
)2

= −4

∫ +∞

z
|Ψ|
(

|Ψ|2 − 1
)

∂z|Ψ|, (26)

and we can define the maximal interval I = [a,+∞) such that
∣

∣|Ψ|2 − 1
∣

∣ ≤ δ in I. Then,

∫

I

∣

∣∂z|Ψ|
∣

∣

2
+
c2

2

(

|Ψ| − 1
)2
dz ≤

∫

R

|∂zΨ|2 + F
(

|Ψ|2
)

dz = 2E(Ψ).

As a consequence, by (26) and Cauchy-Schwarz,

∣

∣

∣

∣ |Ψ|2 − 1
∣

∣

∣

∣

2

L∞(I)
≤ 4

√
1 + δ|| |Ψ2| − 1||L2(I) ·

∣

∣

∣

∣∂z|Ψ|
∣

∣

∣

∣

L2(I)
≤ K0E(Ψ),

9



where K0 depends only on f . The result follows from an easy continuation argument, taking
E0 ≡ δ2/K0. �

Next, we recall that the Schrödinger flow also formally preserves the momentum, that should
be defined by

P =
1

2

∫

R

(

iΨ, ∂zΨ
)

dz.

However, this quantity does not make sense as a Lebesgue integral for a map Ψ which is just of
finite energy with |Ψ| → 1 at infinity. Notice that if Ψ = ρ exp(iφ), then

P =
1

2

∫

R

ρ2∂zφ dz.

Variants of the momentum P are also formally conserved by the Schrödinger equation (NLS),
namely

1

2

∫

R

(

i(Ψ− 1), ∂zΨ
)

dz if Ψ → 1 at infinity

and
1

2

∫

R

(

ρ2 − 1
)

∂zφ dz.

This last integral has the advantage to be a Lebesgue integral if Ψ ∈ H1
loc(R) satisfies

E(Ψ) < +∞, |Ψ|(x) → 1 as x→ +∞ and
∣

∣ |Ψ|2 − 1
∣

∣ ≤ δ,

since then
1

2

∫

R

(

ρ2 − 1
)

∂zφ dz =
1

2

∫

R

(

|Ψ|2 − 1
) Im(∂zΨ)

|Ψ| dz.

As we have seen in the remark after Lemma 1, in our regime, the map ψε satisfy the bound
∣

∣

∣

∣ |ψε|2 − 1
∣

∣

∣

∣

L∞(R)
≤ δ and hence, we have a well-defined momentum, if we take this last definition.

Finally, in view of the scaling (3), it is usefull to introduce a rescaled version of the energy. We
set

Eε(ψε) =
E(Ψ)

ε
=

1

2

∫

R

|∂xψε|2 + 1

ε2
F (|ψε|2) dx

=
1

2

∫

R

|∂xρ|2 + ρ2|∂xφ|2 +
1

ε2
F (ρ2) dx (27)

since ψε = ρeiϕ. In a similar way, we define a rescaled momentum

P ε(ψε) ≡ ε

2

∫

R

(

ρ2 − 1
)

∂xφ dx. (28)

Note that both quantities are conserved.

10



2.2 Uniform estimates

We shall prove the following:

Lemma 2 Under the assumptions of Theorem 3, there exists ε0 > 0, depending only on M , such
that, for 0 < ε ≤ ε0, there exist two real-valued functions ϕε, Aε ∈ C(R+ × R,R) such that
(Aε, ϕε)|t=0 = (Aε

0, ϕ
ε
0),

ψε =
(

1 + ε2Aε
)

exp
(

iεϕε
)

, 1 + ε2Aε ≥ 1

2

and

sup
0<ε<ε0, t∈R+

{

∣

∣

∣

∣Aε
∣

∣

∣

∣

H1 +
1

ε

∣

∣

∣

∣∂xϕ
ε − 2cAε

∣

∣

∣

∣

L2

}

< +∞.

Proof of Lemma 2.

The proof relies on the use of the conservation of Eε and P ε as noticed in [5]. In particular,
the quantity Eε − 2cP ε gives valuable information.

As we have already seen, we can write ψε = ρ exp(iφ) for some real-valued functions ρ ≥ 1/2
and φ in H1

loc(R). Note that
|∂xψε|2 = (∂xρ)

2 + ρ2(∂xφ)
2.

Next, we set

F (R) = c2
(

R− 1
)2

+ F3(R), with F3(1 + r) = O(r3), r → 0.

By using (27) and (28), this yields

Eε(ψε) =
1

2

∫

R

(∂xφ)
2 +

c2

ε2
(

ρ2 − 1
)2

+ (ρ2 − 1) · (∂xφ)2 + (∂xρ)
2 +

1

ε2
F3(ρ

2 − 1) dx (29)

and

Eε(ψε)− 2cP ε(ψε) =
1

2

∫

R

(

ρ2 − 1
)

(∂xφ)
2 + (∂xρ)

2 +
(

∂xφ−
c

ε
(ρ2 − 1)

)2
+

1

ε2
F3

(

ρ2 − 1
)

dx, (30)

where we have used the identity

(∂xφ)
2 +

c2

ε2
(ρ2 − 1)2 − 2c

ε
(ρ2 − 1)∂xφ =

(

∂xφ− c

ε
(ρ2 − 1)

)2
.

The proof of Lemma 2 is divided in 3 Steps. In the proof, K stands for a constant depending
only on f and M .

Step 1: We first prove the following expansions for Eε(ψε
0) and E

ε(ψε
0)− 2cP ε(ψε

0) as ε→ 0:

Eε(ψε
0) =

ε2

2

∫

R

4c2(Aε
0)

2 + (∂xϕ
ε
0)

2 dx+O(ε4) = 4c2ε2
∫

R

A2
0 dx+ o(ε2) +O(ε4)

and
Eε(ψε

0)− 2cP ε(ψε
0) ≤ Kε4.

11



This follows from (29) and (30) with ρ = 1 + ε2Aε
0 and φ = εϕε

0. Indeed, from the uni-
form bound in H1 for Aε

0, we immediately infer by Sobolev embedding H1(R) ⊂ L∞(R) that
||Aε

0||L∞ ≤ K and |ψε
0| = |1 + ε2Aε

0| ∈ [1/2, 2] for 0 < ε < ε0 sufficiently small, depending on M .
Moreover, ρ2 − 1 = 2ε2Aε

0 + OL∞(R)(ε
4). Since |F3(R)| ≤ K|R − 1|3 for 0 ≤ R ≤ 2, we have

|F3(ρ
2 − 1)| ≤ Kε6(Aε

0)
2, and the expansion for the energy follows. Concerning the expansion for

Eε(ψ
ε
0)− 2cPε(ψ

ε
0), it suffices to use the assumption ||∂xϕε

0 − 2cAε
0||2L2 ≤M2ε2.

Step 2: We shall prove that for every t ∈ R+,

∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)
≤ Kε2.

This will be a consequence of the conservation of energy and momentum. Let t ∈ R+. We first

infer from (30) a better estimate for

∫

R

(∂xρ)
2 dx. Since ρ ≥ 1/2, we have, on the one hand,

∣

∣

∣

∫

R

(ρ2 − 1)(∂xφ)
2 dx

∣

∣

∣
≤ 4
∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)

∫

R

ρ2(∂xφ)
2 dx ≤ Kε2

∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)
, (31)

and on the other hand, in view of |ρ2 − 1| ≤ δ, F3(r) = O(r3) as r → 0 there holds

∣

∣

∣

∫

R

1

ε2
F3

(

ρ2 − 1
)

dx
∣

∣

∣
≤ K

∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)

∫

R

1

ε2
(

ρ2 − 1
)2
dx ≤ Kε2

∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)
. (32)

Since Eε and P ε do not depend on time, inserting (31) and (32) into (30) yields

Kε4 ≥ Eε(ψε)− 2cP ε(ψε) ≥ 1

2

∫

R

(∂xρ)
2 dx−

∣

∣

∣

∫

R

(ρ2 − 1)(∂xφ)
2 dx

∣

∣

∣
−
∣

∣

∣

∫

R

1

ε2
F3

(

ρ2 − 1
)

dx
∣

∣

∣

≥ 1

2

∫

R

(∂xρ)
2 dx−Kε2

∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)
,

so that
∫

R

(∂xρ)
2 dx ≤ Kε4 +Kε2

∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)
. (33)

We now write, since ρ = |ψε| → 1 as |x| → +∞,

(

ρ2 − 1
)2
(x) = −4

∫ +∞

x
ρ
(

ρ2 − 1
)

∂xρ ≤ Cε
√

Eε(ψε)
(

∫

R

(∂xρ)
2 dx

)1/2

by Cauchy-Schwarz inequality. From the above estimate (33) and letting

ηε ≡
1

ε2
∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)
,

we obtain
ε4η2ε ≤ Kε2

√

ε4 + ε4ηε,

that is
η2ε ≤ K

√

1 + ηε.
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This estimate provides immediately the result

ηε =
1

ε2

∣

∣

∣

∣ρ2 − 1
∣

∣

∣

∣

L∞(R)
≤ K.

We then set

Aε ≡ 1

ε2
(ρ− 1) and ϕε ≡ φ

ε
.

Step 3: We finally prove that

||Aε||H1(R) ≤ K, ||∂xϕε||L2(R) ≤ K and ||2cAε − ∂xϕ
ε||L2(R) ≤ Kε. (34)

Indeed, from Step 2, (31) and (32) imply

∣

∣

∣

∫

R

(ρ2 − 1)(∂xφ)
2 dx

∣

∣

∣
≤ Kε4 and

∣

∣

∣

∫

R

1

ε2
F3

(

ρ2 − 1
)

dx
∣

∣

∣
≤ Kε4.

Inserting this into (30) gives

∣

∣

∣

∣

∣

∣

1

ε2
(ρ2 − 1)

∣

∣

∣

∣

∣

∣

H1(R)
≤ K,

∫

R

(∂xφ)
2 dx ≤ Kε2 and

∫

R

(

∂xφ− c

ε
(ρ2 − 1)

)2
dx ≤ Kε4

and the conclusion follows. This finishes the proof of the Lemma. �

2.3 Properties of the wave operator

In the previous subsection, we have obtained uniform bounds which will provide (local) com-
pactness in space. We shall try now to obtain some compactness in time.

Lemma 3 Consider (Aε(t, x), uε(t, x)) a solution of the system















∂tA
ε − 1

ε2
∂x
(

Aε − uε
)

= Sε
A

∂tu
ε − 1

ε2
∂x
(

uε −Aε
)

= Sε
u,

(35)

with initial data
Aε

|t=0 = Aε
0, uε|t=0 = uε0

and assume that, for some σ ∈ N,

i) (Aε
0)0<ε<1 and (uε0)0<ε<1 are uniformly bounded in L2;

ii) (Sε
A)0<ε<1 and (Sε

u)0<ε<1 are uniformly bounded in L∞
(

R+,H
−σ(R)

)

.

Then, for every T > 0, R > 0,

(Aε)0<ε<1 and (uε)0<ε<1 are uniformly bounded in H
1

2

(

[0, T ],H−σ−1(−R,R)
)

.
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Proof of Lemma 3.

These bounds come from the fact that the speed
1

ε2
of the characteristics of the transport equation

is extremely large compared to the size of the space domain (−R,R).
We start the proof of Lemma 3 with the following lemma, where we take into account only the

initial data, and not the source terms.

Lemma 4 Consider (Aε(t, x), uε(t, x)) a solution of the system















∂tA
ε − 1

ε2
∂x

(

Aε − uε
)

= 0

∂tu
ε − 1

ε2
∂x

(

uε −Aε
)

= 0,

with initial data
Aε

|t=0 = Aε
0, uε|t=0 = uε0.

Assume that (Aε
0)0<ε<1, (u

ε
0)0<ε<1 are uniformly bounded in L2(R). Then for every T > 0, R > 0,

Aε and uε are uniformly bounded in H
1

2

(

[0, T ],H−1(−R,R)
)

.

Proof of Lemma 4. At first, we notice that

∂t
(

Aε + uε
)

= 0

and that

∂t
(

Aε − uε
)

− 2

ε2
∂x
(

Aε − uε
)

= 0. (36)

The resolution of these transport equations gives

Aε(t, x) + uε(t, x) = Aε
0(x) + uε0(x)

and
Aε(t, x)− uε(t, x) = Aε

0(x+ 2ε−2t)− uε0(x+ 2ε−2t). (37)

This immediately yields that

Aε + uε is uniformly bounded in H1
(

0, T, L2(R)
)

(38)

and hence by continuous injection, it is in particular bounded in H
1

2

(

0, T,H−1(−R,R)
)

.
Next, we shall study Aε − uε. From the explicit expression (37), we first get that

∫ T

0

∫ R

−R

∣

∣Aε − uε
∣

∣

2
(t, x) dxdt =

∫ T

0

∫ R

−R

∣

∣Aε
0 − uε0

∣

∣

2
(x+ 2ε−2t) dxdt.

Consequently, by using Fubini Theorem and then changing the variable t into τ = x + 2ε−2t, we
get

∫ T

0

∫ R

−R

∣

∣Aε − uε
∣

∣

2
(t, x) dxdt ≤ ε2

2

∫ R

−R
||Aε

0 − uε0||2L2(R) dx ≤ CRε2. (39)
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In the proof, C denotes a constant depending on R and the uniform bounds for (Aε
0)0<ε<1 and

(uε0)0<ε<1 in L2. We have thus in particular proven the uniform bound
∣

∣

∣

∣Aε − uε
∣

∣

∣

∣

L2(0,T,H−1(−R,R))
≤ Cε. (40)

To estimate the time derivative, it suffices to remark that (36) yields

∣

∣

∣

∣∂t
(

Aε − uε
)

(t, ·)
∣

∣

∣

∣

H−1(−R,R)
=

2

ε2

∣

∣

∣

∣∂x
(

Aε − uε
)

(t, ·)
∣

∣

∣

∣

H−1(−R,R)
≤ 2

ε2

∣

∣

∣

∣

(

Aε − uε
)

(t, ·)
∣

∣

∣

∣

L2(−R,R)
.

Hence, taking the L2 norm in time and using (39) gives

∣

∣

∣

∣∂t(A
ε − uε)

∣

∣

∣

∣

L2((0,T ),H−1(−R,R))
≤ C

ε
. (41)

Interpolating in time between (40) and (41), we deduce
∣

∣

∣

∣Aε − uε
∣

∣

∣

∣

H
1
2 ((0,T ),H−1(−R,R))

≤ C. (42)

The combination of (38) and (42) ends the proof. �

We shall now give the proof of Lemma 3. Since the system (35) is linear, we can write its solution
as the sum of the solution of the homogeneous system and the solution of the nonhomogeneous
system with zero initial data. Thanks to Lemma 4, we already know that the first term is uniformly
bounded inH

1

2 (0, T,H−1
loc ) and hence inH

1

2 (0, T,H−σ−1
loc ). Consequently, we can focus on the second

term. This means that we consider the solution of (35) with zero initial value.
We notice that

∂t(A
ε + uε) = Sε

A + Sε
u,

and we recall that the initial values are zero. Hence,

(

Aε + uε
)

(t) =

∫ t

0

(

Sε
A + Sε

u

)

(s) ds,

thus we immediately get that

Aε + uε is uniformly bounded in H1
(

0, T,H−σ(R)
)

. (43)

Similarly, since Aε − uε solves

∂t
(

Aε − uε
)

− 2

ε2
∂x
(

Aε − uε
)

= Sε
A − Sε

u (44)

with zero initial value, we infer

(Aε − uε)(t, x) =

∫ t

0

(

Sε
A − Sε

u

)(

s, x+ 2ε−2(t− s)
)

ds.

By assumption ii), Sε
A − Sε

u is uniformly bounded in L∞(R+,H
−σ), hence, using a standard char-

acterization of H−σ, σ ∈ N, there exists gε = (gε0, g
ε
1, ..., g

ε
σ) ∈ L∞

(

R+, L
2(R,Rσ+1)

)

such that

Sε
A − Sε

u =

σ
∑

j=0

∂jxg
ε
j .
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Furthermore, for any interval I,

∣

∣

∣

∣

(

Sε
A − Sε

u

)

(t, ·)
∣

∣

∣

∣

H−σ(I)
≤
∣

∣

∣

∣gε
∣

∣

∣

∣

L2(I,Rσ+1)
≤ C.

Here, C stands for a constant depending on R, T and the uniform bounds for (Aε
0, u

ε
0)0<ε<1 and

(Sε
A, S

ε
u)0<ε<1 in H−σ. As a consequence, we get from (44) that

∣

∣

∣

∣

(

Aε − uε
)

(t, ·)
∣

∣

∣

∣

2

H−σ(−R,R)
≤

(

∫ t

0

∣

∣

∣

∣gε
(

s, ·+ 2ε−2(t− s)
)∣

∣

∣

∣

L2(−R,R,Rσ+1)
ds
)2

≤ t

∫ t

0

∣

∣

∣

∣gε
(

s, ·+ 2ε−2(t− s)
)∣

∣

∣

∣

2

L2(−R,R,Rσ+1)
ds

and hence that
∫ T

0

∣

∣

∣

∣

(

Aε − uε
)

(t, ·)
∣

∣

∣

∣

2

H−σ(−R,R)
dt ≤ T

∫ T

0

∫ t

0

∫ R

−R

∣

∣gε
∣

∣

2(
s, x+ 2ε−2(t− s)

)

dxdsdt,

which we can rewrite, by using Fubini Theorem, as:

∫ T

0

∣

∣

∣

∣

(

Aε − uε
)

(t, ·)
∣

∣

∣

∣

2

H−σ(−R,R)
dt ≤ T

∫ R

−R

∫ T

0

∫ T

s

∣

∣gε
∣

∣

2(
s, x+ 2ε−2(t− s)

)

dtdsdx.

By changing t into τ = x+ 2ε−2(t− s), this yields

∫ T

0

∣

∣

∣

∣

(

Aε − uε
)

(t, ·)
∣

∣

∣

∣

2

H−σ(−R,R)
dt ≤ 1

2
Tε2

∫ R

−R

∫ T

0

∣

∣

∣

∣gε(s, ·)
∣

∣

∣

∣

2

L2(R)
dsdx ≤ Cε2.

We have thus proven that
∣

∣

∣

∣Aε − uε
∣

∣

∣

∣

L2(0,T,H−σ(−R,R))
≤ Cε, (45)

which implies in particular that

∣

∣

∣

∣Aε − uε
∣

∣

∣

∣

L2(0,T,H−σ−1(−R,R))
≤ Cε. (46)

To estimate ∂t(A
ε − uε), we infer from (44)

∣

∣

∣

∣∂t
(

Aε − uε
)∣

∣

∣

∣

H−σ−1(−R,R)
≤ 2

ε2
∣

∣

∣

∣∂x
(

Aε − uε
)∣

∣

∣

∣

H−σ−1(−R,R)
+
∣

∣

∣

∣Sε
A − Sε

u

∣

∣

∣

∣

H−σ−1(−R,R)

≤ 2

ε2

∣

∣

∣

∣Aε − uε
∣

∣

∣

∣

H−σ(−R,R)
+C,

which yields, for 0 < ε < 1 and in view of (45),

∣

∣

∣

∣∂t
(

Aε − uε
)∣

∣

∣

∣

L2(0,T,H−σ−1(−R,R))
≤ C

ε
. (47)

Interpolation in time between (46) and (47) yields

∣

∣

∣

∣Aε − uε
∣

∣

∣

∣

H
1
2 (0,T,H−σ−1(−R,R))

≤ C. (48)

To end the proof, it suffices to combine (43) and (48). �
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2.4 End of the proof of Theorem 3

Since ρε = 1 + ε2Aε ≥ 1/2 in R+ × R for 0 < ε < ε0, we may then rewrite (4) under the form
(6). In dimension 1, this reads



















ε2c∂tA
ε − c∂xA

ε + ε2∂xA
ε∂xϕ

ε +
1

2

(

1 + ε2Aε
)

∂xxϕ
ε = 0

ε2c∂tϕ
ε − c∂xϕ

ε − ε2
∂xxA

ε

2
(

1 + ε2Aε
) +

ε2

2

(

∂xϕ
ε
)2

+
1

ε2
f
(

(1 + ε2Aε)2
)

= 0,

(49)

and we wish to pass to the limit as ε→ 0. Let us define

uε ≡ 1

2c
∂xϕ

ε.

We shall first prove that the functions (Aε)0<ε<ε0 and (uε)0<ε<ε0 are strongly precompact in
L2
loc(R+ × R). Indeed, we may rewrite (49) as















∂tA
ε − 1

ε2
∂x
(

Aε − uε
)

= Sε
A

∂tu
ε − 1

ε2
∂x
(

uε −Aε
)

= Sε
u,

where














Sε
A ≡ −2uε∂xA

ε −Aε∂xu
ε

Sε
u ≡ −∂x

(

(uε)2
)

+ ∂x

( ∂xxA
ε

4c2(1 + ε2Aε)

)

− 1

ε4
∂x
(

f̃(ε2Aε)
)

and

f̃(r) ≡ 1

c2
f
(

(1 + r)2
)

− 2r = O(r2) as r → 0.

In order to use Lemma 3, we shall prove that for some constant K depending only on M , we
have

∣

∣

∣

∣Sε
A

∣

∣

∣

∣

L∞(H−2)
+
∣

∣

∣

∣Sε
u

∣

∣

∣

∣

L∞(H−2)
≤ K. (50)

We first note that, if t ∈ R+ and ζ ∈ C∞
c (R),

〈Sε
A(t), ζ〉 = − 〈uε(t)∂xAε(t), ζ〉+ 〈uε(t)Aε(t), ∂xζ〉

≤
∣

∣

∣

∣uε(t)
∣

∣

∣

∣

L2

∣

∣

∣

∣∂xA
ε(t)
∣

∣

∣

∣

L2

∣

∣

∣

∣ζ
∣

∣

∣

∣

L∞ +
∣

∣

∣

∣uε(t)
∣

∣

∣

∣

L2

∣

∣

∣

∣Aε(t)
∣

∣

∣

∣

L∞

∣

∣

∣

∣∂xζ
∣

∣

∣

∣

L2 .

Hence, by using the embedding H1(R) ⊂ L∞(R) and Lemma 2, we get:
∣

∣

∣

∣Sε
A(t)

∣

∣

∣

∣

H−1(R)
.
∣

∣

∣

∣uε(t)
∣

∣

∣

∣

L2

∣

∣

∣

∣Aε(t)
∣

∣

∣

∣

H1 ≤ K.

In a similar way, we have, for t ∈ R+ and ζ ∈ C∞
c (R),

〈Sε
u(t), ζ〉 =

∫

R

[

(uε)2 +
1

ε4
g(ε2Aε)− ε2(∂xA

ε)2

4c2(1 + ε2Aε)2

]

∂xζ +
∂xA

ε

4c2(1 + ε2Aε)
∂xxζ.

≤ K
([

∣

∣

∣

∣uε(t)
∣

∣

∣

∣

L2 +
∣

∣

∣

∣Aε(t)
∣

∣

∣

∣

2

L2 + ε2
∣

∣

∣

∣∂xA
ε(t)
∣

∣

∣

∣

2

L2

]

∣

∣

∣

∣∂xζ
∣

∣

∣

∣

L∞ +
∣

∣

∣

∣∂xA
ε(t)
∣

∣

∣

∣

L2

∣

∣

∣

∣∂xxζ
∣

∣

∣

∣

L2

)

,
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where we have used that f̃(r) = O(r2) as r → 0, and ε2||Aε||L∞ ≤ 1/2. Using again the embedding
H1(R) ⊂ L∞(R) and Lemma 2, this yields, for 0 < ε < ε0,

∣

∣

∣

∣Sε
u(t)

∣

∣

∣

∣

H−2(R)
. ||uε||2L2 + ||Aε||2H1 + ||Aε||H1 ≤ K.

Consequently, thanks to (50) and the fact that by our assumptions, Aε
0 and uε0 are uniformly

bounded in L2, we may apply Lemma 3 with σ = 2 and deduce that (Aε)0<ε<ε0 and (uε)0<ε<ε0

are uniformly bounded in H
1

2

loc(R+,H
−3
loc ). In particular, since (Aε)0<ε<ε0 is uniformly bounded in

L∞(R+,H
1) and in H

1

2

loc(R+,H
−3
loc ), we can use Corollary 7 of [25] to get that (Aε)0<ε<ε0 is strongly

compact in L2
loc(R+, L

2
loc) = L2

loc(R+ × R). Since, by Lemma 2, Aε − uε tends to zero strongly in
L∞(R+, L

2), we also get that (uε)0<ε<ε0 is strongly compact in L2
loc(R+, L

2
loc).

Let now A ∈ L2
loc(R+, L

2
loc) and 0 < εj → 0 as j → +∞ such that

Aεj converges to A strongly in L2
loc(R+, L

2
loc), and weakly in L2

loc(R+,H
1
loc); (51)

uεj converges to A in L2
loc(R+, L

2
loc). (52)

Note that the weak convergence of Aε just comes from the uniform H1 bound which comes from
Lemma 2.

The next step in the proof is to obtain that A is a weak solution to the KdV equation.

For that purpose, let us write from (49) the equation satisfied by Aεj + uεj in the weak form:

∫

R+×R

(

Aεj + uεj
)

∂tζ dtdx+

∫

R+×R

(

(uεj )2 +
1

ε4j
g(ε2jA

εj )−
ε2j(∂xA

εj)2

4c2(1 + ε2jA
εj )2

)

∂xζ dtdx

+

∫

R+×R

∂xA
εj

4c2(1 + ε2jA
εj )
∂xxζ dtdx+

∫

R+×R

(

− uεj∂xA
εjζ +Aεjuεj∂xζ

)

dtdx

=

∫

R

(

A
εj
0 + u

εj
0

)

ζ(0, x) dx

for every ζ ∈ C∞
c (R × R). One can pass to the limit easily in most of the terms by the strong

convergence. Moreover, we can use that

∫

R+×R

uεj∂xA
εjζ →

∫

R+×R

A∂xAζ

since uεj → A strongly and ∂xA
ε → ∂xA weakly. Since Aε is uniformly bounded in L∞(R+,H

1),
we have that

∣

∣

∣

∫

R+×R

ε2j (∂xA
εj)2

4c2(1 + ε2jA
εj )2

∂xζ dtdx
∣

∣

∣ ≤ Kε2j → 0.

Moreover, since

∫

R+×R

∂xA
εj

4c2(1 + ε2jA
εj )
∂xxζ dtdx =

∫

R+×R

∂xA
εj

4c2
∂xxζ dtdx− ε2j

∫

R+×R

Aεj∂xA
εj

4c2(1 + ε2jA
εj )
∂xxζ dtdx,
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we get that the first term converges to
∫

R+×R

∂xA

4c2
∂xxζ dtdx

by weak convergence and that the second term converges to zero because of the uniform bounds.
Therefore,

∫

R+×R

∂xA
εj

4c2(1 + ε2jA
εj )
∂xxζ dtdx→

∫

R+×R

∂xA

4c2
∂xxζ dtdx.

Finally, we write

f̃(r) =
[

1 +
2

c2
f ′′(1)

]

r2 +O(r3) as r → 0,

to infer
∫

R+×R

1

ε4j
f̃(ε2jA

εj)∂xζ dtdx→
[

c2 + 2f ′′(1)
]

∫

R+×R

A2∂xζ dtdx

Consequently, we finally obtain that A satisfies
∫

R+×R

(

2A∂tζ +
k

2
A2∂xζ +

1

4c2
∂xA∂xxζ

)

dtdx =

∫

R

2A0(x)ζ(0, x) dx,

which is the weak form of the KdV equation.

Next, by passing to the limit in the bound of Lemma 2, we get that A ∈ L∞
(

R+,H
1
)

. Moreover,
since it is a solution of the KdV equation, we deduce that

∂tA =
1

8c2
∂3xA− k

2
A∂xA ∈ L∞

(

R+,H
−2
)

.

Hence A ∈ Lip (R+,H
−2), and by interpolation in space, we get that A ∈ C0

b (R+,H
s) for any

0 ≤ s < 1.
We shall now prove that A = v the unique solution of the KdV equation given by Theorem 2.

This fact can be deduced from a general uniqueness theorem for the KdV equation [28]. Never-
theless, here, by using that the solution v given by Theorem [16] verifies the additional property
∂xv ∈ L4

loc(R+, L
∞), one can get that A = v by a very simple weak strong uniqueness argument.

Indeed, let us set θ ≡ A− v and observe that θ ∈ L∞
(

R+,H
1
)

∩ C0
b (R+,H

s) for 0 < s < 1 solves

2∂tθ −
1

4c2
∂3xθ = −kA∂xθ − kθ∂xv = −kθ∂xθ − kθ∂xv − kv∂xθ, θ|t=0 = 0.

Consequently, the standard L2 energy estimate for this equation gives

d

dt

∫

R

θ2 dx ≤ 2|k|||∂xv||L∞ ||θ||2L2

By the standard Gronwall inequality, this yields immediately that θ = 0, since θ|t=0 = 0, and
∂xv ∈ L4

loc(L
∞) ⊂ L1

loc(L
∞).

As a consequence of the uniqueness of the limit, the full sequence Aε converges to v as ε → 0
strongly in L2

loc(R+, L
2
loc) and weakly in L2

loc(R+,H
1
loc), where v is the H1-solution of the KdV
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equation of Theorem 2.

It remains to improve the convergence of Aε i.e. to prove that we actually have the local in
time global in space strong convergence, as ε→ 0,

Aε → v in C
(

[0, T ], L2
)

for every T > 0.

From Lemma 2 and the proof of Lemmas 4 and 3, we infer that

Aε + uε is uniformly bounded in L∞
(

R+, L
2
)

∩ Lip
(

R+,H
−2
)

.

In particular,

Aε + uε is uniformly bounded in C0,1/2
(

R+,H
−1
)

∩ L∞
(

R+, L
2
)

.

Since we already have that

Aε + uε → 2A = 2v in L2
loc

(

R+, L
2
loc

)

,

it follows by a new use of the Aubin Lions lemma that

Aε + uε → 2v in C0
loc

(

R+,H
−1
loc

)

. (53)

Consequently, we can write for every T > 0, R > 0,

sup
[0,T ]

||Aε − v||H−1(−R,R) ≤
1

2
sup
[0,T ]

(

||Aε + uε − 2v||H−1(−R,R) + ||Aε − uε||H−1(−R,R)

)

and since by Lemma 2, we have that Aε − uε → 0 in L∞(R+, L
2), this yields thanks to (53) that

Aε → v in C0
loc

(

R+,H
−1
loc

)

.

Let us now fix T > 0. We then prove that, as ε→ 0,

sup
[0,T ]

∣

∣〈Aε − v, v〉L2

∣

∣→ 0.

Indeed, let η > 0 be given. Since v ∈ C0
b

(

R+, L
2
)

, there exists R > 0 such that

sup
[0,T ]

∫

|x|≥R
v2 dx ≤ η2.

Next, with ζ ∈ C∞
c (−2R, 2R) such that ζ = 1 on [−R,R], we split

sup
[0,T ]

∣

∣〈Aε − v, v〉L2

∣

∣ ≤ sup
[0,T ]

∣

∣〈Aε − v, ζv〉L2

∣

∣+ sup
[0,T ]

∣

∣〈Aε − v, (1 − ζ)v〉L2

∣

∣.

The first term tends to 0 as ε → 0 since ζv ∈ Cb
(

R+,H
1
)

is compactly supported and Aε → v in
C0
loc

(

R+,H
−1
loc

)

. The second term is ≤ η sup[0,T ]

∣

∣

∣

∣Aε − v
∣

∣

∣

∣

L2 ≤ Kη, and the limit follows.
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Therefore,

sup
[0,T ]

∣

∣

∣

∣Aε − v
∣

∣

∣

∣

2

L2 = sup
[0,T ]

{

∣

∣

∣

∣Aε
∣

∣

∣

∣

2

L2 −
∣

∣

∣

∣v
∣

∣

∣

∣

2

L2 − 2〈Aε − v, v〉L2

}

= sup
[0,T ]

{

∣

∣

∣

∣Aε
∣

∣

∣

∣

2

L2 −
∣

∣

∣

∣v
∣

∣

∣

∣

2

L2

}

+ o(1). (54)

We now use that Eε(ψε) and I0(A) =
∫

R
A2 dx are independent of t, thus

∣

∣

∣

∣A(t)
∣

∣

∣

∣

2

L2 =
∣

∣

∣

∣A0

∣

∣

∣

∣

2

L2 (55)

and, using Lemma 2 and the same expansion as in Step 1 of the proof of Lemma 2, we infer

Eε
(

ψε(t)
)

=
ε2

2

∫

R

4c2
(

Aε(t)
)2

+
(

∂xϕ
ε(t)
)2
dx+O(ε4) = 4c2ε2

∫

R

(

Aε(t)
)2
dx+O(ε3).

Note that the O(ε3) is uniform with respect to t ∈ R+. Since Eε
(

ψε(t)
)

= Eε
(

ψε
0

)

and the same
expansion holds at t = 0 (this is Step 1 in the proof of Lemma 2), we deduce

∫

R

(

Aε(t)
)2
dx =

∫

R

(

Aε
0

)2
dx+O(ε), (56)

where O(ε) is uniform with respect to t ∈ R+. Consequently, thanks to (54), (55), (56), we obtain
that

sup
[0,T ]

∣

∣

∣

∣Aε − v
∣

∣

∣

∣

2

L2 =
∣

∣

∣

∣Aε
0

∣

∣

∣

∣

2

L2 −
∣

∣

∣

∣A0

∣

∣

∣

∣

2

L2 + o(1),

and since Aε
0 → A0 in L2 by assumption, the result in L2 follows.

The proof of Theorem 3 is now complete, since the convergence of Aε in L∞
loc(R+,H

s), 0 < s < 1
follows by interpolation in space using the convergence in L∞

loc(R+, L
2) and the uniform bounds in

L∞(R+,H
1).

2.5 Convergence in H
1

In this subsection, we shall put a more restrictive assumption on the initial data, namely

∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2 = o(ε)

instead of O(ε) in order to get the strong convergence in H1 of the amplitude Aε.

Theorem 7 Under the assumptions of Theorem 3, if, at the initial time, we have the additional
assumptions

Aε
0 → A0 in H1

and
∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2 = o(ε), (57)

then
Aε → A in C0

loc

(

R+,H
1(R)

)

.
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Proof.

The idea follows the one in the end of the proof of Theorem 3, but relies on the conservation of

I1
(

A(t)
)

≡
∫

R

1

4c2
(∂xA)

2 +
k

3
A3 dx

for KdV and Eε

(

ψε(t)
)

− 2cP ε
(

ψε(t)
)

for (4). First, we expand to third order

F (R) = c2(R− 1)2 +
1

3
f ′′(1)(R − 1)3 + F4(R), with F4(1 + r) = O(r4), r → 0,

so that (30) becomes now

Eε(ψ)−2cP ε(ψ) =
1

2

∫

R

(

ρ2−1
)

(∂xφ)
2+(∂xρ)

2+
(

∂xφ−
c

ε
(ρ2−1)

)2
+
f ′′(1)

3ε2
(

ρ2−1
)3
+

1

ε2
F4

(

ρ2−1
)

dx.

Since ∂xϕ
ε
0 − 2cAε

0 = O(ε) in L2 by assumption, we infer
∫

R

(

∂xϕ
ε
0 − 2cAε

0 − cε2(Aε
0)

2
)2

dx =

∫

R

(

∂xϕ
ε
0 − 2cAε

0

)2
dx+O(ε3) = o(ε2),

using the hypothesis (57). Therefore, at time t = 0, we infer, as in Step 1 of the proof of Lemma
2, that

Eε(ψε
0)− 2cP ε(ψε

0) =
ε4

2

∫

R

2Aε
0

(

∂xϕ
ε
0

)2
+ (∂xA

ε
0)

2 +
8f ′′(1)

3
(Aε

0)
3 dx

+
ε2

2

∫

R

(

∂xϕ
ε
0 − 2cAε

0 − cε2(Aε
0)

2
)2

dx+O(ε6)

=
ε4

2

∫

R

(∂xA
ε
0)

2 + 8
[

c2 +
f ′′(1)

3

]

(Aε
0)

3 dx+ o(ε4)

= 2c2ε4I1
(

Aε
0

)

+ o(ε4) = 2c2ε4I1
(

A0

)

+ o(ε4),

since Aε
0 → A0 in H1(R) ⊂ L3(R). Similarly, given t ∈ R+ and using Lemma 2, we have

Eε
(

ψε(t)
)

− 2cP ε
(

ψε(t)
)

= 2c2ε4I1
(

Aε(t)
)

+
ε2

2

∫

R

(

∂xϕ
ε(t)− 2cAε(t)

)2
dx+O(ε5),

whereO(ε5) is uniform with respect to time. Since I1
(

A(t)
)

and Eε(ψε)−2cP ε(ψε) are independent
of time, this implies,

I1
(

A(t)
)

= I1
(

Aε(t)
)

+
1

4c2ε2

∫

R

(

∂xϕ
ε(t)− 2cAε(t)

)2
dx+ o(1) (58)

uniformly in time.
Now, let us study the term involving the L3-norm in I1. Let T > 0 be fixed. From Lemma

2, Aε is uniformly bounded in L∞(R+ × R). Moreover, we have proved in Step 4 that Aε → A in
C
(

[0, T ], L2
)

. As a consequence, Aε → A in C
(

[0, T ], L3
)

. Inserting this in (58) yields, uniformly
for t ∈ [0, T ],

∫

R

(

∂xA(t)
)2
dx =

∫

R

(

∂xA
ε(t)
)2
dx+

1

ε2

∫

R

(

∂xϕ
ε(t)− 2cAε(t)

)2
dx+ o(1). (59)
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We now consider

νε(T ) ≡ sup
[0,T ]

{

∣

∣

∣

∣∂xA
ε − ∂xA

∣

∣

∣

∣

2

L2 +
1

ε2

∣

∣

∣

∣∂xϕ
ε − 2cAε

∣

∣

∣

∣

2

L2

}

.

Since A ∈ C([0, T ],H1), arguing as in the end of the proof of Theorem 3, we infer

νε(T ) = sup
[0,T ]

{

∣

∣

∣

∣∂xA
ε
∣

∣

∣

∣

2

L2 −
∣

∣

∣

∣∂xA
∣

∣

∣

∣

2

L2 +
1

ε2
∣

∣

∣

∣∂xϕ
ε − 2cAε

∣

∣

∣

∣

2

L2

}

+ o(1).

Combining this with (59) gives νε(T ) = o(1) as desired. This ends the proof of Theorem 7.

3 The general n dimensional case

3.1 Proof of Theorem 4

It is more convenient to use a different hydrodynamic form of (NLS). As in [11], we shall seek
for a solution of (4) under the form

ψε =
(

1 + ε2aε(t,X)
)

eiεθ
ε(t,X), aε ∈ C, θε ∈ R, ε2|aε| ≤ 1

2
(60)

that is to say that we allow the amplitude to be complex at positive times. The reason for this
choice is that we can obtain an hydrodynamic equation for (aε, θε) which is much simpler. We shall
prove that aε and θε are well defined on [0, T ] for some T > 0 independent of ε and satisfy for
s > 1 + n/2 the uniform estimate

∣

∣

∣

∣aε(t)
∣

∣

∣

∣

Hs+1 +
∣

∣

∣

∣∂xθ
ε(t)
∣

∣

∣

∣

Hs+1 + ε
∣

∣

∣

∣∇⊥θ
ε(t)
∣

∣

∣

∣

Hs+1 ≤ C, ∀t ∈ [0, T ], ∀ε ∈ (0, ε0] (61)

for some C > 0 independent of ε.
Note that once this estimate is proven, the representation (19) and the estimate (20) immediately

follow. Indeed, for ε sufficently small, we get that |ψε| remains far from zero on [0, T ] and we have
the relations

Aε =
|1 + ε2aε| − 1

ε2
, ∂jϕ

ε = ∂jθ
ε +

ε

i

( ∂ja
ε

1 + ε2aε
− ∂jA

ε

1 + ε2Aε

)

1 ≤ j ≤ n (62)

from which we deduce by standard Sobolev-Gagliardo-Nirenberg-Moser estimates that
∣

∣

∣

∣Aε(t)
∣

∣

∣

∣

Hs+1 +
∣

∣

∣

∣∂xϕ
ε(t)
∣

∣

∣

∣

Hs + ε
∣

∣

∣

∣∇⊥ϕ
ε(t)
∣

∣

∣

∣

Hs ≤ C ∀t ∈ [0, T ], ∀ε ∈ (0, ε0]

for some C independent of ε since s > 1 + n/2.
Let us now write down the equation for (aε, θε). By plugging the anzatz (60) in (4), we get

icε3
(

ε2∂ta
ε + iε(1 + ε2aε)∂tθ

ε
)

− icε
(

ε2∂xa
ε + iε(1 + ε2aε)∂xθ

ε
)

+
ε2

2

(

ε2∆εaε + 2iε3∇εθε · ∇εaε + iε(1 + ε2aε)∆εθε − ε2(1 + ε2aε)|∇εθε|2
)

−(1 + ε2aε)f
(

|1 + ε2aε|2
)

= 0

where we use the notation

∇ε = (∂x, ε∂⊥)
t, ∆ε = ∇ε · ∇ε = ∂2x + ε2∆⊥.
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Since we allow the amplitude aε to be complex, we have some freedom to write down hydrodynamic
equations. As noticed in [11], it is convenient to split the above equation into the system



















∂ta
ε − 1

ε2
∂xa

ε +
1

c
∇εθε · ∇εaε +

1

2cε2
(1 + ε2aε)∆εθε =

i

2εc
∆εaε

∂tθ
ε − 1

ε2
∂xθ

ε +
1

2c
|∇εθε|2 + 1

cε4
f
(

|1 + ε2aε|2
)

= 0.

Consequently, by using the new unknown vε ≡ 1

2c
∇εθε, we get



















∂ta
ε − 1

ε2
∂xa

ε + 2vε · ∇εaε +
1

ε2
(1 + ε2aε)∇ε · vε = i

2εc
∆εaε

∂tv
ε − 1

ε2
∂xv

ε + 2vε · ∇εvε +
1

2c2ε2
f ′
(

|1 + ε2aε|2
)

(

2∇εRe aε + ε2∇ε|aε|2
)

= 0.

(63)

We add to this system the initial condition

aε(0,X) = Aε
0(X), vε(0,X) =

1

2c
∇εϕε

0(X). (64)

Consequently, we can set U ε ≡ (Re aε, Im aε, vε)t ∈ R
2+n, ∂ε = (∂x, ε∂⊥) and write the above

system under the abstract form:

∂tU
ε +

1

ε2
H(ε2U ε, ∂ε)U ε =

1

ε
L(∂ε)U ε (65)

where L(∂ε) is a constant coefficients second order differential operator

L(∂ε) ≡ 1

2c

(

J∆ε 0
0 0

)

, J =

(

0 −1
1 0

)

and H(ε2U ε, ∂ε) is a first order hyperbolic operator

H(ε2U ε, ∂ε) =
n
∑

k=1

Hk(ε2U ε)∂εk,

with symbol

H(ε2U ε, ξ) =

n
∑

k=1

Hk(ε2U ε)ξk =

(

(−ξ1 + 2ε2vε · ξ)I2 (e+ ε2aε)ξt
(

1 + g(ε2aε)
)

ξ
(

e+ ε2aε
)t (

− ξ1 + 2ε2vε · ξ
)

In

)

where

e ≡
(

1
0

)

and g is defined by the expansion:

1

c2
f ′(1 + 2(a, 1) + |a|2) = 1 + g(a), g(a) = O(|a|), |a| ≤ 1 (66)
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since f ′(1) = c2.
Note that the structure of (65) is much simpler than the one of the standard hydrodynamic

system for (Aε,∇εϕε)t that is obtained from (6) by the standard Madelung transform. Indeed, (65)
is a simple skew-symmetric constant coefficient perturbation of an hyperbolic system.

Note that the difficulties du to the presence of vacuum which arise in the study of NLS with
solutions which tends to zero at infinity ([1], [7] are not present here. The above system can be
easily symmetrized by using

S(ε2U ε) =

(

I2 0
0 1

1+g(ε2aε)

)

which is positive. Indeed, we have

S(ε2U ε)L(∂ε) =
1

2c

(

J∆ε 0
0 0

)

which is a skew symmetric operator:

(

Sε(ε2U ε)L(∂ε)V, V
)

= 0, ∀V ∈ H2(Rn) (67)

where we use the notation (·, ·) for the L2(Rn) scalar product. Moreover, we also have that

S(ε2U ε)H(ε2U ε, ξ) =





(−ξ1 + 2ε2vε · ξ)I2 (e+ ε2aε)ξt

ξ
(

e+ ε2aε
)t 1

1 + g(ε2aε)

(

− ξ1 + 2ε2vε · ξ
)

In





is symmetric for every ξ ∈ R.
The local existence and uniqueness of a smooth solution U ε ∈ C([0, T ε),Hs+1) for this system

is classical. Moreover, let us define

T ε
∗ = sup

{

T ∈ [0, T ε), ∀t ∈ [0, T ], |ε2aε|L∞ ≤ 1

2
, ||U ε||Hs+1 < +∞

}

.

We shall prove that T ε
∗ is bounded from below by a positive number when ε tends to zero. This

will be achieved by proving Hs+1 estimates uniform in ε.
Note that for t ≤ T ε

∗ , the symmetrizer S(ε2U ε) is well defined and verifies

(

S(ε2U ε)V, V
)

≥ c0||V ||2L2 , ∀t ∈ [0, T ε
∗ ], ∀V ∈ L2(Rn) (68)

for some c0 > 0 independent of ε. Moreover, thanks to an integration by parts, we also have for
some C > 0 independent of ε that

∣

∣

(

S(ε2U ε)H(ε2U ε, ∂ε)V, V
)∣

∣ ≤ Cε2
∣

∣

∣

∣∇U ε
∣

∣

∣

∣

L∞

∣

∣

∣

∣V
∣

∣

∣

∣

2

L2 , ∀t ∈ [0, T ε
∗ ] (69)

for every V ∈ H1(Rn).
We can now easily perform for s > 1+n/2 an Hs+1 estimate for (65). Indeed, for every α ∈ N

n,
|α| ≤ s+ 1, we have

∂t∂
αU ε +

1

ε2
H(ε2U ε, ∂ε)∂αU ε − 1

ε
L(∂ε)∂αU ε +

1

ε2
[

∂α,H(ε2U ε, ∂ε)
]

U ε = 0 (70)
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By the standard tame Gagliardo-Nirenberg-Moser estimate, we get that
∣

∣

∣

∣

∣

∣

1

ε2
[

∂α,H(ε2U ε, ∂ε)
]

U ε
∣

∣

∣

∣

∣

∣

L2
≤ C

∣

∣

∣

∣U ε
∣

∣

∣

∣

W 1,∞

∣

∣

∣

∣U ε
∣

∣

∣

∣

Hs+1 , ∀t ∈ [0, T ε
∗ ]. (71)

From now on C is a number independent of ε which may change from line to line.
By using (67), (69), (71), we get the energy estimate:

d

dt

(1

2

(

S(ε2U ε)∂αU ε, ∂αU ε)
)

≤ C
(

ε2||∂tU ε||L∞ +
∣

∣

∣

∣U ε
∣

∣

∣

∣

W 1,∞

)

∣

∣

∣

∣U ε
∣

∣

∣

∣

2

Hs+1 , ∀t ∈ [0, T ε
∗ ].

By using (65), we get that

∣

∣

∣

∣∂tU
ε
∣

∣

∣

∣

L∞ ≤ C
( 1

ε2
∣

∣

∣

∣U ε
∣

∣

∣

∣

W 1,∞ +
1

ε

∣

∣

∣

∣U ε
∣

∣

∣

∣

W 2,∞

)

.

Consequently, we can integrate in time and use (68) to get

∣

∣

∣

∣U ε(t)
∣

∣

∣

∣

2

Hs+1 ≤ C
(

∣

∣

∣

∣U ε
0

∣

∣

∣

∣

2

Hs+1 +

∫ t

0

∣

∣

∣

∣U ε
∣

∣

∣

∣

W 2,∞

∣

∣

∣

∣U ε(τ)
∣

∣

∣

∣

2

Hs+1 dτ
)

. (72)

Finally, by using the Sobolev embedding Hs+1 ⊂W 2,∞ for s > 1 + n/2, we find in a classical way
from (72) that T ε

∗ > T > 0 for every ε ∈ (0, ε0) for some ε0 sufficiently small. We refer for example
to [20], [12], [24] for more details. This ends the proof of Theorem 4.

3.2 Proof of Theorem 5

We shall now study the convergence towards the KP-I equation. We could pass to the limit directly
from (63). Nevertheless, to make a link more clear with the first part of the paper and the formal
derivation, we shall pass to the limit directly from the standard hydrodynamic equation (6). As
already explained in the beginning of the proof, we can deduce from the representation (60) and
the bounds (61) that the smooth representation (19) with the uniform bounds (20) hold on [0, T ].
Consequently, we already have

∣

∣

∣

∣Aε(t)
∣

∣

∣

∣

Hs+1 +
∣

∣

∣

∣uε(t)
∣

∣

∣

∣

Hs ≤ C, ∀t ∈ [0, T ], ∀ε ∈ (0, ε0) (73)

for s > 1 + n/2, where (Aε, uε = 1
2c∇εϕε) solves the system



















∂tA
ε − 1

ε2
∂xA

ε +
1

ε2
∇ε · uε + 2uε · ∇εAε +Aε∇ε · uε = 0

∂tu
ε − 1

ε2
∂xu

ε +
1

ε2
∇εAε + 2uε · ∇εuε +

1

ε2
g(ε2Aε)∇εAε =

1

4c2
∇ε
( ∆εAε

1 + ε2Aε

)

.

(74)

Note that ∇ε × uε = 0, hence, we obtain in particular that

∂xu
ε
⊥ = ε∇⊥u

ε
1. (75)

We can apply ∂x to the first equation and the first line of the second equation in (74) to get
the system:















∂t∂xA
ε +

1

ε2
∂x
(

∂xu
ε
1 − ∂xA

ε
)

= SεA

∂t∂xu
ε
1 +

1

ε2
∂x
(

∂xA
ε − ∂xu

ε
1

)

= Sεu,

(76)
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where

SεA ≡ −∂x
(

2uε · ∇εAε +Aε∇ε · uε
)

− 1

ε
∂x∇⊥ · uε⊥

Sεu ≡ −∂x
(

2uε · ∇εuε1 +
1

ε2
g(ε2Aε)∂1A

ε
)

+
1

4c2
∂xx

( ∆εAε

1 + ε2Aε

)

.

By using (75) and the Hs+1 bound (73) which holds for s > 1 + n/2 ≥ 3/2, we get the uniform
estimate

∣

∣

∣

∣(SεA,S
ε
u)
∣

∣

∣

∣

H−2 ≤ C, ∀t ∈ [0, T ], ∀ε ∈ (0, ε0]

for some C > 0.
Consequently, from the proof of Lemma 3 (it suffices to integrate also with respect to the

transverse variable), we get that: ∂xA
ε and ∂xu

ε
1 are uniformly bounded in H

1

2 (0, T,H−3
loc ) and also

(see (45)) that
∂xA

ε − ∂xu
ε
1 = O(ε) in L2(0, T,H−2

loc ). (77)

Consequently, we can use again the relative compactness criterion of [25] and (73) to get that ∂xA
ε

is strongly compact in L2(0, T,Hm
loc) and ∂xu

ε
1 in L2(0, T,Hm−1

loc ) for every m < s. Note that since
s > 1, one can choose m > 1. Consequently, the way to recover the weak form of the KP-I or KdV
equation will be very close to what was done in the proof of Theorem 3. We can take a subsequence
εj → 0 such that

∂xA
εj → ∂xA strongly in L2

(

0, T,Hm
loc

)

, ∂xu
εj
1 → ∂xu1 strongly in L2

(

0, T,Hm−1
loc

)

,

Aεj → A weakly in L2
(

0, T,Hs+1
)

, uεj → u weakly in L2
(

0, T,Hs
)

and moreover, from (77), we also have

A = u1 for almost every t ∈ [0, T ], X ∈ R
n. (78)

As in the proof of Theorem 3, the above properties are sufficient to pass to the limit in the weak
form of the equation satisfied by ∂xA

ε + ∂xu
ε
1. Indeed, by using (75), we get from (74) that

∫

[0,T ]×Rn

∂x
(

Aεj + u
εj
1

)

∂tζ +
(

2u
εj
1

(

∂xA
εj + ∂

εj
x u

εj
1

)

+Aεj∂xu
εj
1 +

1

ε2j
g(ε2jA

εj)∂xA
εj
)

∂xζ

−
∫

[0,T ]×Rn

∆⊥u
εj
1 ζ +

1

4c2

∫

[0,T ]×Rn

∂xxA
εj∂xxζ =

∫

Rn

∂x
(

A
εj
0 + (u0)

εj
1

)

ζ(0,X) dX +Rεj

for every ζ ∈ C∞
c (R× R

n), where thanks to the uniform bound (73), we have

|Rεj | ≤ Cεj.

We can easily pass to the limit in the above formulation by using that in the nonlinear terms one
converges strongly and one weakly. We thus get by using again an expansion of g(ε2Aε), that

∫

[0,T ]×Rn

(

2∂xA∂tζ + kA∂xA∂xζ −∆⊥Aζ +
1

4c2
∂xxA∂xxζ

)

dtdX =

∫

Rn

∂x
(

A0 + (u0)1
)

ζ(0,X) dX

which is the weak form of the KP-I equation (or KdV)

∂x

(

2∂tA+ kA∂xA− 1

4c2
∂3xA

)

+∆⊥A = 0
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with initial value

A|t=0 =
1

2

(

A0 +
1

2c
∂xϕ0

)

.

Furthermore, thanks to the uniqueness of Hs solutions, s > 1 + n/2 for the KP-I equation, we
get that the full sequence Aε, ∂xϕ

ε converges.
Note that in dimension 1, we can get compactness in time by writting directly that















∂tA
ε +

1

ε2
∂x
(

uε1 −Aε
)

= Sε
A,

∂tu
ε
1 +

1

ε2
∂x
(

Aε − uε1
)

= Sε
u

with
∣

∣

∣

∣(Sε
A, S

ε
u)
∣

∣

∣

∣

H−1 ≤ C, ∀t ∈ [0, T ], ∀ε ∈ (0, ε0]

for some C > 0 since the apparently singular term ε−1∇⊥ ·uε⊥ is absent in dimension 1. Then we can
finish as in the proof of Theorem 3. Thus we get in particular that Aε converges strongly towards A
in L2(0, T,Hm+1

loc ) (for n ≥ 2 we have only proven the strong convergence in L2(0, T,Hm
loc) for ∂xA

ε).

In the general n-dimensional case, it remains to show that, if uε⊥ = ε∇⊥ϕ
ε → 0 in L2, then

1

2

(

Aε + uε1
)

→ A in L2
(

[0, T ], L2
)

.

Indeed, the convergences in L2
(

[0, T ],Hσ
)

for 0 ≤ σ < s will then follow by interpolation on space
using the bounds (20).

We recall that the scaled energy writes

Eε(ψε) =
1

2

∫

Rn

|∂xψε|2 + ε2|∇⊥ψ
ε|2 + 1

ε2
F
(

|ψε|2
)

dX,

and we recall the expansion to second order

F (R) = c2
(

R− 1
)2

+ F3(R), with F3(1 + r) = O(r3), r → 0.

Moreover, we have, on [0, T ],

ψε = ρε exp
(

iεϕε
)

, ρε = 1 + ε2Aε,

and using that for 1 ≤ j ≤ n, |∂jψ|2 = ε4(∂jA
ε)2 + ε2(ρε)2(∂jϕ

ε)2, we infer as in the proof of
Lemma 2 the following equality:

Eε(ψε) =
ε2

2

∫

Rn

(∂xϕ
ε)2 +

c2

ε4
(

(ρε)2 − 1
)2

+
(

(ρε)2 − 1
)

· (∂xϕε)2 + ε2(∂xA
ε)2 dX

+
1

2

∫

Rn

ε4(ρε)2|∇⊥ϕ
ε|2 + ε2|∇⊥ρ

ε|2 + 1

ε2
F3

(

(ρε)2 − 1
)

dX (79)

=
ε2

2

∫

Rn

(∂xϕ
ε)2 + 4c2(Aε)2 + ε2|∇⊥ϕ

ε|2 dX +O(ε4) (80)
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uniformly on [0, T ]. To get the last line, we have used (20), which yields that ||Aε||L∞ ≤ K, hence
||(ρε)2 − 1||L∞ ≤ Kε2,

∣

∣

∣

∫

Rn

(

(ρε)2 − 1
)

(∂xϕ
ε)2 dX

∣

∣

∣ ≤ Kε2 and
∣

∣

∣

∫

Rn

1

ε2
F3

(

(ρε)2 − 1
)

dx
∣

∣

∣ ≤ Kε4.

Furthermore, we may define (if n ≥ 2) the momentum in the x direction by

P ε
(

ψε
)

≡ ε

2

∫

Rn

(

(ρε)2 − 1
)

∂xϕ
ε dX

for maps ψε = ρεeiεϕ
ε

with ρε = |ψε| ≥ 1/2. In view of the bounds (20), |ψε| ≥ 1/2 on [0, T ] (for
0 < ε ≤ ε0), hence ψ

ε has a well-defined momentum, which is independent of t ∈ [0, T ]. Morever,
there holds, uniformly on [0, T ],

P ε(ψε) =
ε

2

∫

Rn

(

(ρε)2 − 1
)

∂xϕ
ε dX =

ε2

2

∫

Rn

(

2Aε + ε2(Aε)2
)

∂xϕ
ε dX

= ε2
∫

Rn

Aε∂xϕ
ε dX +O(ε2). (81)

As a consequence, in view of (20),

Eε(ψε) + 2cP ε(ψε) = 2c2ε2
∫

Rn

(

Aε + uε1
)2

+ |uε⊥|2 dX +O(ε4)

uniformly on [0, T ]. At the initial time t = 0, we have

Eε(ψε
0) + 2cP ε(ψε

0) = 2c2ε2
∫

Rn

(

Aε
0 + (uε0)1

)2
+ |(uε0)⊥|2 dX +O(ε4),

hence, by conservation of Eε(ψε) + 2cP ε(ψε) for 0 ≤ t ≤ T ,
∫

Rn

(

Aε(t) + uε1(t)
)2

+
∣

∣uε⊥(t)
∣

∣

2
dX =

∫

Rn

(

Aε
0 + (uε0)1

)2
+
∣

∣(uε0)⊥
∣

∣

2
dX +O(ε2), (82)

uniformly for t ∈ [0, T ]. We consider now

νε ≡
∫ T

0

∣

∣

∣

∣Aε + uε1 − 2A
∣

∣

∣

∣

2

L2 +
∣

∣

∣

∣uε⊥
∣

∣

∣

∣

2

L2 dt.

Expansion gives

νε =

∫ T

0

∣

∣

∣

∣Aε + uε1
∣

∣

∣

∣

2

L2 +
∣

∣

∣

∣uε⊥
∣

∣

∣

∣

2

L2 − 4
∣

∣

∣

∣A
∣

∣

∣

∣

2

L2 dt− 4

∫ T

0
〈Aε + uε1 − 2A,A〉L2 dt.

One can show exactly as in the end of subsect. 2.4 that since A ∈ C
(

[0, T ], L2
)

and Aε, uε1 converge
to A weakly in L2([0, T ], L2

loc), then
∫ T

0
〈Aε + uε1 − 2A,A〉L2 dt→ 0 as ε→ 0.

Moreover, since the L2 norm of the solution A of KP-I does not depend on time,
∣

∣

∣

∣2A(t)
∣

∣

∣

∣

L2 =
∣

∣

∣

∣2A|t=0

∣

∣

∣

∣

L2 =
∣

∣

∣

∣A0 + (u0)1
∣

∣

∣

∣

L2 .

Hence, by using (82), we find after an integration in time that

νε = T
(

∣

∣

∣

∣Aε
0 + (uε0)1

∣

∣

∣

∣

2

L2 −
∣

∣

∣

∣A0 + (u0)1
∣

∣

∣

∣

2

L2 +
∣

∣

∣

∣(uε0)⊥
∣

∣

∣

∣

2

L2

)

+ o(1).

Thanks to our assumption (21), we thus get νε → 0 as required.
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3.3 Proof of Theorem 6

To use the assumption (22) in order to get the convergence in stronger norms, we will follow the
lines of the proof of Lemma 2. From (79), we infer

Eε(ψε)− 2cP ε(ψε) =
ε2

2

∫

Rn

(

(ρε)2 − 1
)

(∂xϕ
ε)2 + ε2(∂xA

ε)2

+
(

∂xϕ
ε − c

ε2
(

(ρε)2 − 1
)

)2
+ ε2(ρε)2|∇⊥ϕ

ε|2 dX (83)

+
1

2

∫

Rn

ε6|∇⊥A
ε|2 + 1

ε2
F3

(

(ρε)2 − 1
)

dX.

Let
δε ≡

∣

∣

∣

∣∂xϕ
ε
0 − 2cAε

0

∣

∣

∣

∣

L2

which tends to zero by assumption. As in the proof of Lemma 2, we have thanks to (22) in the
case n ≥ 2 the following upper bounds

Eε(ψε
0) =

ε2

2

∫

Rn

4c2(Aε
0)

2 + (∂xϕ
ε
0)

2 dX +O(ε4) = 4c2ε2
∫

Rn

A2
0 dX + o(ε2) ≤ Kε2 (84)

and
Eε(ψε

0)− 2cP ε(ψε
0) ≤ Kε4 + ε2(δε)2.

Note that here, we have used that
∣

∣

∣

∣

∣

∣
∂xϕ

ε
0−

c

ε2
(

(ρε0)
2−1

)

∣

∣

∣

∣

∣

∣

L2
=
∣

∣

∣

∣∂xϕ
ε
0−2cAε

0−cε2(Aε
0)

2
∣

∣

∣

∣

L2 ≤
∣

∣

∣

∣∂xϕ
ε
0−2cAε

0

∣

∣

∣

∣

L2+cε
2
∣

∣

∣

∣(Aε
0)

2
∣

∣

∣

∣

L2 ≤ δε+Kε2.

As a consequence, since Eε(ψε) and P ε(ψε) do not depend on time,

Kε4 + ε2(δε)2 ≥ Eε
(

ψε(t)
)

− 2cP ε
(

ψε(t)
)

≥ ε4

2

∫

Rn

(∂xA
ε)2 + (ρε)2|∇⊥ϕ

ε|2 dX +
ε2

2

∫

Rn

(

∂xϕ
ε − c

ε2
(

(ρε)2 − 1
)

)2
dX (85)

− 1

2

∣

∣

∣

∫

Rn

(

(ρε)2 − 1
)

(∂xϕ
ε)2 dX

∣

∣

∣−
∣

∣

∣

∫

Rn

1

2ε2
F3

(

ρ2 − 1
)

dX
∣

∣

∣

≥ ε4

2

∫

Rn

(ρε)2|∇⊥ϕ
ε|2 dX +

ε2

2

∫

Rn

(

∂xϕ
ε − c

ε2
(

(ρε)2 − 1
)

)2
dX −Kε4. (86)

This gives the estimate

sup
0≤t≤T

∫

Rn

(

∂xϕ
ε − c

ε2
(

(ρε)2 − 1
)

)2
dX ≤ Kε2 + 2(δε)2 → 0 as ε→ 0 (87)

in all dimensions n ≥ 1.
Furthermore, in dimension n ≥ 2, since δε = O(ε), we also get from (86) that

∫

Rn

(ρε)2|∇⊥ϕ
ε|2 dX ≤ K.

Thus, we have obtained (23) since ρε ≥ 1/2.
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From (74), Aε + uε1 solves

∂t
(

Aε + uε1
)

+ 2uε · ∇ε
(

Aε + uε1
)

+ (k − 5)Aε∂xA
ε +Aε∇ε · uε +∆⊥ϕ

ε = ∂x

(∆εAε

4c2ρε

)

.

In view of the the Hs bounds (20) in Theorem 4, and possibly (23) if n ≥ 2, we then infer

∣

∣

∣

∣Aε + uε1
∣

∣

∣

∣

C([0,T ],Hs)
≤ K and

∣

∣

∣

∣∂t
(

Aε + uε1
)∣

∣

∣

∣

L∞([0,T ],H−1)
≤ K. (88)

This implies, by Aubin-Lions’s Lemma (see, e.g., [25]), that for any 0 ≤ σ < s, Aε+uε1 is precompact
in C

(

[0, T ],Hσ
loc

)

. From (87), we know that

∂xϕ
ε − 2cAε = 2c

(

uε1 −Aε
)

→ 0 in C
(

[0, T ], L2
)

.

Combining this with the Hs bounds (20), this yields, by interpolation, for 0 ≤ σ < s,

∂xϕ
ε − 2cAε = 2c

(

uε1 −Aε
)

→ 0 in C
(

[0, T ],Hσ
)

.

In particular,
Aε → A and ∂xϕ

ε → 2cA in C
(

[0, T ],Hσ
loc

)

.

We can now prove that, as ε→ 0,

Aε → A in C
(

[0, T ], L2
)

.

Indeed, we may follow the lines of the end of the proof of Theorem 3 in Sect. 2.4 since thanks to
(20), (23) (if n = 2, 3) and (87), the expansion

Eε(ψε) =
ε2

2

∫

Rn

4c2
(

Aε(t)
)2

+
(

∂xϕ
ε(t)
)2
dX +O(ε4) = 4c2

∫

Rn

(

Aε(t)
)2
dX + o(ε2)

holds uniformly for 0 ≤ t ≤ T and I0
(

A(t)
)

= ||A(t)||2L2 = ||A0||2L2 do not depend on t ∈ [0, T ].
Notice indeed that in this case, the initial datum for KP-I is

A|t=0 =
1

2

(

A0 +
1

2c
∂xϕ0

)

= A0.

From the Hs bounds (20) and by interpolation in space, we finally get that

∀ 0 ≤ σ < s Aε → A in C
(

[0, T ],Hσ+1
)

and ∂xϕ
ε → 2cA in C

(

[0, T ],Hσ
)

.
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