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A GENERALIZED-LAGUERRE-FOURIER-HERMITE
PSEUDOSPECTRAL METHOD FOR COMPUTING THE DYNAMICS

OF ROTATING BOSE-EINSTEIN CONDENSATES

WEIZHU BAO∗, HAILIANG LI† , AND JIE SHEN ‡

Abstract. A time-splitting generalized-Laguerre-Fourier-Hermite pseudospectral method is pro-
posed for computing the dynamics of rotating Bose-Einstein condensates (BECs) in two and three
dimensions. The new numerical method is based on the following: (i) the use of a time-splitting
technique for decoupling the nonlinearity; (ii) the adoption of polar coordinate in two dimensions,
and resp. cylindrical coordinate in three dimensions, such that the angular rotation term becomes
constant coefficient; and (iii) the construction of eigenfunctions for the linear operator by properly
scale the generalized-Laguerre, Fourier and Hermite functions. The new method enjoys the follow-
ing properties: (i) it is explicit, time reversible and time transverse invariant; (ii) it conserves the
position density and is spectrally accurate in space and second-order or fourth-order accurate in
time; and (iii) it solves the problem in the original whole space instead of in a truncated artificial
computational domain. The method is also extended to solve the coupled Gross-Pitaevskii equations
for the dynamics of rotating two-component and spin-1 BECs. Extensive numerical results for the
dynamics of BECs are reported to demonstrate the accuracy and efficiency of the new method for
rotating BECs.
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sate, angular momentum rotation, time-splitting, energy, condensate width.
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1. Introduction. Since the realization of Bose-Einstein condensation (BEC) of
alkali atoms and hydrogen in dilute bosonic atomic gases [3, 16], much attention
has been focused on its dynamical phenomena associated with superfluidity [34, 32,
18, 14, 2, 44]. A remarkable feature of superfluids is the appearance of quantized
vortices [34, 38, 1, 37, 33, 24, 28]. In fact, quantized vortices have a long history
that begins with the study of liquid Helium and superconductors. Their appearance
is viewed as a typical signature of superfluidity which describes a phase of matter
characterized by the complete absence of viscosity. In other words, if placed in a
closed loop, superfluids can flow endlessly without friction. Different research groups
have obtained quantized vortices in BEC experimentally, e.g. the JILA group [34], the
ENS group [32, 33] and the MIT group [37]. Several experimental methods of vortex
creation are currently in use for studying BEC, including phase imprinting [34], cooling
of a rotating normal gas [21], and conversion of spin angular momentum into orbital
angular momentum by reversal of the magnetic bias field in an Ioffe-Pritchard trap
[44, 29, 30]. It is expected that more complicated vortex clusters can be created in the
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future, e.g. with further developments of the phase-imprinting method. Such states
and their dynamics would enable various opportunities, ranging from investigating the
properties of random polynomials [15] to using vortices in quantum memories [25].
The recent experimental and theoretical advances in exploration of quantized vortices
in BEC have spurred great excitement in the atomic physics and computational and
applied mathematics communities, and renewed interest in studying superfluidity.

In this paper, we consider a rotating Bose-Einstein condensate (BEC) in an ex-
ternal trapping potential Vt(x, y, z) = 1

2mb

(
ω2

xx2 + ω2
yy2 + ω2

zz2
)

+ Wt(x, y, z) with
ωx, ωy and ωz the trap frequencies in x-, y- and z-direction, respectively, mb the
mass of BEC atoms, and Wt(x, y, z) a real-valued function. We assume that the in-
teraction strength within the BEC is U0, given by U0 = 4π~2as/mb with as being
the s-wave scattering length. For temperatures well below the critical temperature of
the BEC, the dynamics of the rotating BEC is well described by the dimensionless
Gross-Pitaevskii equation (GPE) with an angular momentum rotation term in the
d−dimensions (d = 2, 3) [36, 18, 14, 5]:

i∂tψ(x, t) =
[
−1

2
∆ + V (x)− ΩLz + βd|ψ(x, t)|2

]
ψ(x, t), x ∈ Rd, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Rd.

(1.1)

Here, ψ = ψ(x, t) is the dimensionless wave function; V (x) is the dimensionless ex-
ternal trapping potential; βd = β for d = 3, and βd = β

√
γz/2π for d = 2 with

β = 4πNas

a0
characterizing the inter-atomic interaction in terms of the total number

of particles N in the condensate, the s-scattering wave length as and the dimen-
sionless length unit a0; Ω is the dimensionless angular momentum rotation speed;
Lz = −i(x∂y−y∂x) = i(y∂x−x∂y) = −i∂θ is the dimensionless z-component angular
momentum with (r, θ, z) the cylindrical coordinates when d = 3, and (r, θ) the polar
coordinates when d = 2. We split the trapping potential into two parts, i.e.

(1.2) V (x) = Vs(x) + W (x), x ∈ Rd,

where Vs(x) is the radial and cylindrical symmetric part when d = 2 and d = 3,
respectively,

(1.3) Vs(x) =
1
2

{
γ2

r (x2 + y2) = γ2
rr2, d = 2,

γ2
r (x2 + y2) + γ2

zz2 = γ2
rr2 + γ2

zz2, d = 3,

with r =
√

x2 + y2 and γx = ωx

ω , γy = ωy

ω , γz = ωz

ω , γr = min{γx, γy} with
ω = min{ωx, ωy, ωz}; and W (x) is the rest of the external trapping potential.

The above dimensionless quantities in three dimensions (3D) are obtained by
scaling the length by the harmonic oscillator length a0 =

√
~/ωmb, the time by

ω−1 and the energy by ~ω. In fact, the two-dimensional (2D) GPE can be viewed
as a quasi-3D experimental setup with a strong confinement in the z-direction, i.e.
ωx ≈ ωy and ωz À ωx [13]. Two important invariants of (1.1) are the normalization
of the wave function [36, 5]

(1.4) N(ψ) =
∫

Rd

|ψ(x, t)|2dx ≡
∫

Rd

|ψ(x, 0)|2dx = N(ψ0) = 1, t ≥ 0

and the energy

Eβ,Ω(ψ) =
∫

Rd

[
1
2
|∇ψ|2 + [Vs(x) + W (x)] |ψ|2 +

βd

2
|ψ|4 − Ω Re(ψ̄Lzψ)

]
dx

≡ Eβ,Ω(ψ0), t ≥ 0,(1.5)
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where f̄ and Re(f) denote the conjugate and the real part of the function f , respec-
tively. For well-posedness and dynamical laws of the GPE (1.1), we refer to [5, 22].

In order to study effectively the dynamics of rotating BEC, it is important to
design an efficient and accurate numerical method for solving the problem (1.1). For
nonrotating BEC, i.e. Ω = 0 in (1.1), many efficient and spectrally accurate numerical
methods were proposed in the literatures (cf. [6, 7, 10, 35] and the references therein).
For rotating BEC, i.e. Ω 6= 0 in (1.1), the angular momentum rotation term introduces
new numerical difficulties which have to be properly tackled. Recently, Bao et al. [5]
presented an efficient and accurate method based on the adoption of polar coordinates
in 2D and cylindrical coordinates in 3D so as to make the coefficient of the angular
momentum rotation term constant; Bao and Wang [12] proposed an efficient and
spectrally accurate method based on properly using the alternating direction implicit
(ADI) technique for the coupling of the angular momentum term. For rotating BEC
in the strong repulsive interaction and/or rapid rotation regime, i.e. βd À 1 and/or
|Ω| = O(1) in (1.1), due to the appearance of quantized vortex lattices, multiscale
structures appear in the solution of the GPE (1.1) [17, 14, 13, 26]. In this case,
most of the numerical methods for rotating BEC have some drawbacks: (i) Often
the original whole space is truncated to an artificial computational domain with an
artificial boundary condition (usually homogeneous Dirichlet boundary conditions are
used). How to choose an appropriate bounded computational domain is a difficulty
task in practice: if it is too large, the computational resource is wasted; if it is too
small, the boundary effect will lead to wrong numerical solutions. (ii) The method in
[5] uses polar coordinates in 2D and cylindrical coordinates in 3D such that the angular
momentum rotation term becomes constant coefficient, but the method is only second
or fourth order accurate in the radial direction. On the other hand, the method in
[12] is of spectral accuracy in space, but it decouples the angular momentum rotation
term into two steps which may cause some problems in rapid rotating regime, i.e.
|Ω| ≈ 1.

The aim of this paper is to develop a method which enjoys the combined advan-
tages of the numerical methods in [5] and [12]. That is to say, the method is explicit
and of spectral accurate in space, and it adopts polar coordinates in 2D and cylindrical
coordinates in 3D. We shall present such an efficient and spectrally accurate numerical
method for discretizing the GPE in (1.1) by applying the time-splitting technique for
decoupling the nonlinearity, adopting polar coordinates in 2D and cylindrical coordi-
nates in 3D such that the angular rotation term becomes constant coefficient and using
the properly scaled generalized-Laguerre, Fourier and Hermite functions as spectral
basis.

The paper is organized as follows. In the next section, we preset a time-splitting
pseudospectral method based on the scaled generalized-Laguerre, Fourier and Hermite
functions for computing the dynamics of rotating BEC in 2D and 3D. In section 3,
the numerical method is extended to coupled Gross-Pitaevskii equations (CGPEs)
for the dynamics of rotating two-component and spin-1 BEC. In section 4, we report
numerical results on the dynamics of rotating BEC to demonstrate the efficiency and
accuracy of our new numerical methods. Finally, some concluding remarks are drawn
in Section 5.

2. Time-splitting generalized-Laguerre-Fourier-Hermite pseudospectral
method. In this section we present a second-order time-splitting generalized-Laguerre-
Fourier-Hermite pseudospectral method for the problem (1.1) in 2D and 3D by using
polar and cylindrical coordinates, respectively.
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2.1. Time-splitting. Denoting

B⊥φ =
[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+

1
2
γ2

r (x2 + y2)− ΩLz

]
φ,(2.1)

Bzφ =
[
−1

2
∂2

∂z2
+

1
2
γ2

zz2

]
φ,(2.2)

Aφ =
[
W (x) + βd|φ|2

]
φ, Bφ =

{
B⊥φ d = 2,
(B⊥ + Bz)φ d = 3,

(2.3)

then the GPE in (1.1) becomes

(2.4) i∂tψ(x, t) = Aψ + Bψ, x ∈ Rd, t > 0.

For a given time step ∆t > 0, let tn = n∆t, n = 0, 1, 2, . . . , and ψn := ψn(x) be the
approximation of ψ(x, tn). A second-order symplectic time integrator [41, 6, 7] for
(2.4) is as follows

(2.5) ψ(1) = e−i ∆t
2 Aψn, ψ(2) = e−i∆t Bψ(1), ψn+1 = e−i ∆t

2 Aψ(2).

Thus the key for an efficient implementation of (2.5) is to solve efficiently the following
two subproblems:

(2.6) i∂tψ(x, t) = Aψ(x, t) =
[
W (x) + βd|ψ(x, t)|2]ψ(x, t), x ∈ Rd,

and

i∂tψ(x, t) = Bψ(x, t) =
[
−1

2
∆ + Vs(x)− ΩLz

]
ψ(x, t), x ∈ Rd,

lim
|x|→+∞

ψ(x, t) = 0.
(2.7)

The decaying condition in (2.7) is due to the external trapping potential and it is
necessary for satisfying the normalization (1.4).

Multiplying (2.6) by ψ(x, t), we find that the ODE (2.6) leaves |ψ(x, t)| invariant
in time t [6, 7]. Hence for t ≥ ts (ts is any given time), (2.6) becomes

(2.8) i∂tψ(x, t) =
[
W (x) + βd|ψ(x, ts)|2

]
ψ(x, t), t ≥ ts, x ∈ Rd,

which can be integrated exactly, i.e.

(2.9) ψ(x, t) = e−i[W (x)+βd|ψ(x,ts)|2](t−ts)ψ(x, ts), t ≥ ts, x ∈ Rd.

Thus, it remains to find an efficient and accurate scheme for (2.7). Since B is a linear
operator, it is most convenient to use its eigenfunctions as spectral basis functions.
Thanks to (2.3), we only need to find eigenfunctions of the linear operators B⊥ and
Bz. Below we shall construct suitable spectral basis functions by properly scale the
Hermite functions, generalized Laguerre functions and Fourier series which are eigen-
function of B so that e−i∆t Bψ can be exactly evaluated in phase space, which is
necessary for the final scheme to be time reversible and time transverse invariant.
Here, the only time discretization error of the corresponding time-splitting method
(2.5) is the splitting error, which is second-order in ∆t. Furthermore, the scheme is
explicit, time reversible, and time transverse invariant, and as we shall show below,
it also conserves the normalization in time discretization.

Remark 2.1. It is straightforward to design high-order, e.g. fourth-order, sym-
plectic time integrator for (2.4) [45, 10, 43]. The details are omitted here for brevity.
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2.2. Generalized-Laguerre-Fourier pseudospectral method for rotating
BEC in 2D. In the 2D case, we use the polar coordinates (r, θ), and write the
solutions of (2.7) as ψ(r, θ, t) . Therefore, for t ≥ ts (ts is any given time), (2.7)
collapses to

i∂tψ(r, θ, t) =
[
− 1

2r

∂

∂r

(
r

∂

∂r

)
− 1

2r2

∂2

∂θ2
+

1
2
γ2

rr2 + iΩ∂θ

]
ψ(r, θ, t)

:= B⊥ψ(r, θ, t),
ψ(r, θ + 2π, t) = ψ(r, θ, t), 0 < r < ∞, 0 < θ < 2π,

lim
r→∞

ψ(r, θ, t) = 0.

(2.10)

The normalization (1.4) collapses to

(2.11) ‖ψ(·, t)‖2 =
∫ ∞

0

∫ 2π

0

|ψ(r, θ, t)|2r drdθ =
∫ ∞

0

∫ 2π

0

|ψ0(r, θ)|2r drdθ = 1.

Note that it can be shown, similarly as for the Poisson equation in a 2D disk [39, 19,
20], that the problem (2.10) admits a unique solution without any condition at the
pole r = 0.

We now construct the eigenfunctions of the linear operator B⊥ in (2.10). For any
fixed m (m = 0,±1,±2, . . . ) and g(r), we have

B⊥
(
g(r)eimθ

)
=

[
− 1

2r

∂

∂r

(
r

∂

∂r

)
− 1

2r2

∂2

∂θ2
+

1
2
γ2

rr2 + iΩ∂θ

] (
g(r)eimθ

)

= eimθ

[
− 1

2r

d

dr

(
r

d

dr

)
+

m2

2r2
+

1
2
γ2

rr2 −mΩ
]

g(r)

:= B|m|
r (g(r)) eimθ −mΩ g(r)eimθ,(2.12)

where

(2.13) B|m|
r g(r) =

[
− 1

2r

d

dr

(
r

d

dr

)
+
|m|2
2r2

+
1
2
γ2

rr2

]
g(r).

This immediately suggests us to construct eigenfunctions of the linear operator Bm
r

for any fixed m (m = 0, 1, 2, . . . ). To this end, we recall below the definition and
properties of the generalized Laguerre polynomials.

For any fixed m (m = 0, 1, 2, . . . ), let L̂m
k (r) (k = 0, 1, 2, . . . ) be the generalized-

Laguerre polynomials of degree k satisfying [40, 11, 19, 20]

(2.14)
(

r
d2

dr2
+ (m + 1− r)

d

dr

)
L̂m

k (r) + k L̂m
k (r) = 0, k = 0, 1, 2, . . . ,

(2.15)
∫ ∞

0

rm e−r L̂m
k (r) L̂m

k′(r) dr = Cm
k δkk′ , k, k′ = 0, 1, 2, . . . ,

where δkk′ is the Kronecker delta and

Cm
k = Γ(m + 1)

(
k + m

k

)
=

m∏

j=1

(k + j), k = 0, 1, 2, . . . .
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We define the scaled generalized-Laguerre functions Lm
k by

(2.16) Lm
k (r) =

γ
(m+1)/2
r√

πCm
k

rm e−γrr2/2 L̂m
k (γrr

2).

Plugging (2.16) into (2.14) and (2.15), a tedious but simple computation [11, 10] leads
to

Bm
r Lm

k (r) =
[
− 1

2r

d

dr

(
r

d

dr

)
+

m2

2r2
+

1
2
γ2

r r2

]
Lm

k (r)

= [γr(2k + m + 1)]Lm
k (r),(2.17)

(2.18) 2π
∫ ∞

0

Lm
k (r) Lm

k′(r) r dr = δkk′ .

Hence {Lm
k }∞k=0 are eigenfunctions of the linear operator Bm

r .
For any fixed m (m = 0,±1,±2, . . . ), we derive from the above that

B⊥
(
L
|m|
k (r) eimθ

)
=

(
B|m|

r L
|m|
k (r)

)
eimθ −mΩ L

|m|
k (r) eimθ

= [γr(2k + |m|+ 1)−mΩ]
(
L
|m|
k (r)eimθ

)

= µkm L
|m|
k (r)eimθ, k = 0, 1, 2, . . . .(2.19)

where

(2.20) µkm = γr(2k + |m|+ 1)−mΩ, k = 0, 1, 2, . . . .

This immediately implies that {L|m|k (r) eimθ, k = 0, 1, · · · , m = 0,±1,±2, · · · } are
eigenfunctions of the linear operator B⊥.

For fixed even integer M > 0 and integer K > 0, let XKM = span{L|m|k (r) eimθ :
k = 0, 1, . . . , K, m = −M/2,−M/2 + 1, . . . ,−1, 0, 1, . . . , M/2− 1}. The generalized-
Laguerre-Fourier spectral method for (2.10) is to find ψKM (r, θ, t) ∈ XKM , i.e.

(2.21) ψKM (r, θ, t) =
M/2−1∑

m=−M/2

[
eimθ

K∑

k=0

ψ̂km(t)L|m|k (r)

]
, 0 ≤ r < ∞, 0 ≤ θ ≤ 2π,

such that

i
∂ψKM (r, θ, t)

∂t
=

[
− 1

2r

∂

∂r

(
r

∂

∂r

)
− 1

2r2

∂2

∂θ2
+

1
2
γ2

rr2 + iΩ∂θ

]
ψ(r, θ, t)

= B⊥ψKM (r, θ, t), 0 < r < ∞, 0 < θ < 2π.(2.22)

Noting that limr→∞ L
|m|
k (r) = 0 for k = 0, 1, 2, . . . and m = 0,±1,±2, . . . [40]; hence,

limr→∞ ψKM (r, θ, t) = 0 is automatically satisfied. In addition, the expansions in
r- and θ-directions for (2.21) don’t commute. Plugging (2.21) into (2.22), thanks
to (2.19), noticing the orthogonality of the Fourier series, for k = 0, 1, . . . , K and
m = −M/2,−M/2− 1, . . . ,−1, 0, 1, . . . , M/2− 1, we find

(2.23) i
dψ̂km(t)

dt
= µkm ψ̂km(t) = [γr(2k + |m|+ 1)−mΩ] ψ̂km(t).
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The above linear ODE can be integrated exactly and the solution is given by

(2.24) ψ̂km(t) = e−iµkm(t−ts) ψ̂km(ts), t ≥ ts.

Plugging (2.24) into (2.21), we obtain the solution of (2.22) as

ψKM (r, θ, t) = e−i(t−ts)B⊥ψKM (r, θ, ts)

=
M/2−1∑

m=−M/2

[
eimθ

K∑

k=0

e−iµkm(t−ts) ψ̂km(ts)L
|m|
k (r)

]
, t ≥ ts,(2.25)

with

(2.26) ψ̂km(ts) =
1
2π

∫ 2π

0

[
e−imθ

∫ ∞

0

ψKM (r, θ, ts)L
|m|
k (r)r dr

]
dθ.

The above procedure is not suitable in practice due to the difficulty to compute the
integrals in (2.26). We now present an efficient implementation by choosing ψ0

KM (r, θ)
as the interpolation of ψ(r, θ, 0) on a suitable grid, and approximating (2.26) (for all
m) by a quadrature rule on this grid.

For each fixed m, it is clear that the optimal quadrature rule, hence the colloca-
tion points, for the r-integral in (2.26) depends on m [11]. Since we need take the
Fourier transform in the azimuthal direction too, thus, we have to use the same set of
collocation points for all m to form a tensorial grid in the (r, θ) domain. Therefore, let
{r̂j}K+M/2

j=0 be the Laguerre-Gauss points [40, 39]; i.e. they are the K +M/2+1 roots

of the standard Laguerre polynomial L̂0
K+M/2+1(r) := L̂K+M/2+1(r). Let {ω̂j}K+M/2

j=0

be the corresponding weights associated with the generalized-Laguerre-Gauss quadra-
ture [40, 39]; i.e., we have

(2.27)
∫ ∞

0

f(r)e−rdr =
K+M/2∑

j=0

f(r̂j)ω̂j , ∀f ∈ P2K+M+1,

where P2K+M+1 are the space of polynomials of degree less or equal than 2K +M +1.
Hence, for k, k′ = 0, 1, . . . , K, |m| ≤ M/2, we have

(2.28)
K+M/2∑

j=0

ω̂j(r̂j)m L̂m
k (r̂j)√
Cm

k

L̂m
k′(r̂j)√
Cm

k′
=

∫ ∞

0

rm e−r L̂m
k (r)√
Cm

k

L̂m
k′(r)√
Cm

k′
dr = δkk′ .

We then define the scaled generalized-Laguerre-Gauss points and weights by

(2.29) rj =

√
r̂j

γr
, ωj =

π ω̂j er̂j

γr
, j = 0, 1, . . . , K + M/2.

We derive from (2.16) and (2.28) that

K+M/2∑

j=0

ωj Lm
k (rj) Lm

k′(rj) =
K+M/2∑

j=0

π ω̂j er̂j

γr
Lm

k

(√
r̂j/γr

)
Lm

k′

(√
r̂j/γr

)

=
K+M/2∑

j=0

ω̂j(r̂j)m L̂m
k (r̂j)√
Cm

k

L̂m
k′(r̂j)√
Cm

k′

= δkk′ , k, k′ = 0, 1, . . . , K, |m| ≤ M/2.(2.30)
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Note that the computation of the weights {ωj} from (2.29) is not a stable process for
large K and M . However, they can be computed in a stable way as suggested in the
Appendix of [39].

Let θs = 2sπ
M (s = 0, 1, · · · ,M − 1). For any given set of values {ψjs, 0 ≤ j ≤

K + M/2; 0 ≤ s ≤ M − 1}, we can define a unique function ψ in XKM interpolating
this set, i.e.,

ψ(r, θ) =
M/2−1∑

m=−M/2

K∑

k=0

ψ̂km L
|m|
k (r)eimθ such that

ψ(rj , θs) = ψjs, 0 ≤ j ≤ K + M/2; 0 ≤ s ≤ M − 1.

(2.31)

By using the discrete orthogolarity relation (2.30) for the scaled generalized Laguerre
functions and the discrete Fourier orthogolarity relation

(2.32)
1
M

M−1∑
s=0

eikθse−ik′θs = δk,k′ , |k| ≤ M/2,

we find that

(2.33) ψ̂km =
1
M

M−1∑
s=0


e−imθs

K+M/2∑

j=0

ωj ψjs L
|m|
k (rj)


 ,

and that
(2.34)

‖ψ‖2 :=
∫ 2π

0

∫ ∞

0

|ψ|2r dr dθ = 2π

M/2−1∑

m=−M/2

K∑

k=0

|ψ̂km|2 =
2π

M

K+M/2∑

j=0

M−1∑
s=0

|ψjs|2ωj .

We can now describe the second-order time-splitting generalized-Laguerre-Fourier
pseudospectral (TSGLFP2) method for the GPE (1.1) with d = 2 as follows:

Let ψ0
js = ψ0(rj , θs) for 0 ≤ j ≤ K +M/2 and 0 ≤ s ≤ M−1. For n = 0, 1, 2, · · · ,

we compute ψn+1
js (0 ≤ j ≤ K + M/2, 0 ≤ s ≤ M − 1) by

ψ
(1)
js = e−i[W (rj ,θs)+β2|ψn

js|2]∆t/2ψn
js,

ψ
(2)
js =

M/2−1∑

m=−M/2

[
eimθs

K∑

k=0

e−iµkm∆t ψ̂(1)
km L

|m|
k (rj)

]
,

ψn+1
js = e−i[W (rj ,θs)+β2|ψ(2)

js |2]∆t/2ψ
(2)
js ,

(2.35)

where {ψ̂(1)
km} are the expansion coefficients of ψ(1) given by (2.33).

Lemma 2.1. The TSGLFP2 method (2.35) is normalization conserving, i.e.

(2.36) ‖ψn‖2 ≡ ‖ψ0‖2, ∀n ≥ 1.

Proof. One derives immediately from (2.35) that ‖ψ(1)‖2 = ‖ψn‖2 and ‖ψn+1‖2 =
‖ψ(2)‖2. By using (2.30), (2.32) and (2.33), we find

‖ψ(2)‖2 =
2π

M

M−1∑
s=0

K+M/2∑

j=0

|ψ(2)
js|2ωj =

2π

M

M−1∑
s=0

K+M/2∑

j=0

|ψ(1)
js|2ωj = ‖ψ(1)‖2.
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Therefore, we have ‖ψn+1‖2 = ‖ψn‖2 for all n ≥ 0.
It is clear that the memory requirement of this scheme is O ((K + M/2)M), and

the computational cost per time step is O (M(K + M/2)(K + M/2 + lnM)).

2.3. Generalized-Laguerre-Fourier-Hermite pseudospectral method for
rotating BEC in 3D. In the 3D case, by using the cylindrical coordinates (r, θ, z),
we can write the solutions of (2.7) as ψ(r, θ, z, t). Therefore, for t ≥ ts (ts is any given
time), (2.7) collapses to

i∂tψ(r, θ, z, t) =
1
2

[
−1

r

∂

∂r

(
r

∂

∂r

)
− 1

r2

∂2

∂θ2
− ∂2

∂z2
+ γ2

rr2 + γzz
2 + 2iΩ∂θ

]
ψ,

= (B⊥ + Bz)ψ(r, θ, z, t) = B ψ(r, θ, z, t),
ψ(r, θ + 2π, z, t) = ψ(r, θ, z, t), 0 < r < ∞, 0 < θ < 2π, z ∈ R,

lim
r→∞

ψ(r, θ, z, t) = 0, −∞ < z < ∞, t ≥ ts.

(2.37)

The normalization (1.4) collapses to

‖ψ(·, t)‖2 =
∫ ∞

−∞

∫ ∞

0

∫ 2π

0

|ψ(r, θ, z, t)|2r drdθdz

=
∫ ∞

−∞

∫ ∞

0

∫ 2π

0

|ψ0(r, θ, z)|2r drdθdz = 1.(2.38)

We now consider Bz in (2.2). To this end, let Hl(z) (l = 0, 1, 2, . . . ) be the
standard Hermite polynomials of degree l satisfying [40, 10, 11, 31, 42]

(2.39) H ′′
l (z)− 2z H ′

l(z) + 2l Hl(z) = 0, z ∈ R, l = 0, 1, 2, . . . ,

(2.40)
∫ ∞

−∞
Hl(z) Hl′(z) e−z2

dz =
√

π 2l l! δll′ , l, l′ = 0, 1, 2, . . . .

As in [10, 11], we define the scaled Hermite functions

(2.41) hl(z) = e−γzz2/2 Hl (
√

γzz) /
√

2l l!(γz/π)1/4, z ∈ R.

It is clear that lim|z|→∞ hl(z) = 0.
Plugging (2.41) into (2.39) and (2.40), a simple computation shows

(2.42) Bzhl(z) = −1
2
h′′l (z) +

1
2
γ2

zz2hl(z) = λl hl(z), z ∈ R, l ≥ 0,

(2.43)
∫ ∞

−∞
hl(z) hl′(z) dz = δll′ , l, l′ = 0, 1, 2, . . . ;

where

(2.44) λl =
(

l +
1
2

)
γz, l = 0, 1, 2, . . . .

Hence {hl}∞l=0 are eigenfunctions of the linear operator Bz in (2.2).
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Finally, for any fixed m (m = 0,±1,±2, . . . ), we derive from the above that

B
(
L
|m|
k (r) eimθ hl(z)

)
= (B⊥ + Bz)

(
L
|m|
k (r) eimθ hl(z)

)

= hl(z)B⊥
(
L
|m|
k (r) eimθ

)
+ L

|m|
k (r) eimθ Bzhl(z)

= µkm L
|m|
k (r) eimθ hl(z) + λl L

|m|
k (r) eimθ hl(z)

= (µkm + λl)L
|m|
k (r) eimθ hl(z).(2.45)

Hence, {L|m|k (r) eimθ hl(z), k, l = 0, 1, · · · , m = 0,±1,±2, · · · } are eigenfunctions of
the linear operator B = B⊥ + Bz defined in (2.3) for d = 3.

For fixed even integer M > 0 and integers K > 0 and L > 0, let

YKML = span{L|m|k (r) eimθ hl(z) : 0 ≤ k ≤ K, −M/2 ≤ m ≤ M/2− 1, 0 ≤ l ≤ L}.
The generalized-Laguerre-Fourier-Hermite spectral method for (2.37) is:
find ψMKL(r, θ, z, t) ∈ YKML, i.e.

(2.46) ψKML(r, θ, z, t) =
L∑

l=0


hl(z)

M/2−1∑

m=−M/2

(
eimθ

K∑

k=0

ψ̂kml(t)L
|m|
k (r)

)


such that

i
∂ψKML

∂t
=

1
2

[
−1

r

∂

∂r

(
r

∂

∂r

)
− 1

r2

∂2

∂θ2
− ∂2

∂z2
+ γ2

rr2 + γ2
zz2 + 2iΩ∂θ

]
ψKML,

= (B⊥ + Bz)ψKML, 0 < r < ∞, 0 < θ < 2π, z ∈ R.(2.47)

Plugging (2.46) into (2.47), thanks to (2.45), noticing the orthogonality of the Fourier
series, we find

(2.48) i
dψ̂kml(t)

dt
= (µkm + λl) ψ̂kml(t), t ≥ ts.

Similar as the 2D case, the above linear ODE can be integrated exactly, we obtain
the solution of (2.47) as

ψKML(r, θ, z, t) = e−i(t−ts)(B⊥+Bz)ψKML(r, θ, z, ts)

=
L∑

l=0


hl(z)

M/2−1∑

m=−M/2

(
eimθ

K∑

k=0

e−i(µkm+λl)(t−ts) ψ̂kml(ts) L
|m|
k (r)

)
 ,

(2.49)

where
(2.50)

ψ̂kml(ts) =
1
2π

∫ ∞

−∞

[
hl(z)

∫ 2π

0

(
e−imθ

∫ ∞

0

ψKML(r, θ, z, ts) L
|m|
k (r)r dr

)
dθ

]
dz.

As in the 2D case, we need to approximate the above integral by a suitable
quadrature rule. Let {ẑp}L

p=0 be the Hermite-Gauss points, i.e., they are the L + 1
roots of the Hermite polynomial HL+1(z), and let {ω̂z

p}L
p=0 be the associated Hermite-

Gauss quadrature weights [40]. Then, we have

(2.51)
∫ ∞

−∞
f(z)e−z2

dz =
L∑

p=0

f(ẑp)ω̂z
p , ∀f ∈ P2L+1,
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which implies that

L∑
p=0

ω̂z
p

Hl(ẑp)

π1/4
√

2l l!

Hl′(ẑp)

π1/4
√

2l′ l′!
=

∫ ∞

−∞

Hl(ẑp)

π1/4
√

2l l!

Hl′(ẑp)

π1/4
√

2l′ l′!
e−z2

dz

= δll′ , 0 ≤ l, l′ ≤ L.

(2.52)

We then define the scaled Hermite-Gauss points and weights by

(2.53) zp =
ẑp√
γz

, ωz
p =

ω̂z
p eẑ2

p

√
γz

, p = 0, 1, 2, . . . , L.

We derive from (2.41) and (2.52) that

L∑
p=0

ωz
p hl(zp) hl′(zp) =

L∑
p=0

ω̂z
p eẑ2

p

√
γz

hl (ẑp/
√

γz) hl′ (ẑp/
√

γz)

=
L∑

p=0

ω̂z
p

Hl(ẑp)

π1/4
√

2l l!

Hl′(ẑp)

π1/4
√

2l′ l′!

= δll′ , l, l′ = 0, 1, . . . , L.(2.54)

Similarly, care must be taken when computing the weights {ωz
p} for large L (cf.

the Appendix of [39]).
For any given set of values {ψjsp, 0 ≤ j ≤ K + M/2; 0 ≤ s ≤ M − 1; 0 ≤ p ≤ L},

we can define a unique function ψ in YKML interpolating this set, i.e.,

ψ(r, θ, z) =
M/2−1∑

m=−M/2

K∑

k=0

L∑

l=0

ψ̂kml L
|m|
k (r)eimθhl(z) such that

ψ(rj , θs, zp) = ψjsp, 0 ≤ j ≤ K + M/2; 0 ≤ s ≤ M − 1; 0 ≤ p ≤ L.

(2.55)

By using the discrete orthogonality relations (2.30), (2.32) and (2.54), we find
that

(2.56) ψ̂kml =
1
M

L∑
p=0


hl(zp)ωz

p

M−1∑
s=0


e−imθs

K+M/2∑

j=0

ωj ψjsp L
|m|
k (rj)





 ,

and that

‖ψ‖2 :=
∫ ∞

−∞

∫ ∞

0

∫ 2π

0

|ψ(r, θ, z)|2r dθdrdz

= 2π

M/2−1∑

m=−M/2

K∑

k=0

L∑

l=0

|ψ̂kml|2 =
2π

M

K+M/2∑

j=0

M−1∑
s=0

L∑
p=0

|ψjsp|2ωjω
z
p .

(2.57)

Then the second-order time-splitting generalized-Laguerre-Fourier-Hermite pseu-
dospectral (TSGLFHP2) method for the GPE (1.1) with d = 3 is as follows:
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Let ψ0
jsp = ψ0(rj , θs, zp) for 0 ≤ j ≤ K + M/2, 0 ≤ s ≤ M − 1 and 0 ≤ p ≤ L.

For n = 0, 1, · · · , we compute ψn+1
jsp by

ψ
(1)
jsp = e−i[W (rj ,θs,zp)+β3|ψn

jsp|2]∆t/2ψn
jsp,

ψ
(2)
jsp =

L∑

l=0


hl(zp)

M/2−1∑

m=−M/2

(
eimθs

K∑

k=0

e−i(µkm+λl)∆t ψ̂(1)
kml L

|m|
k (rj)

)
 ,

ψn+1
jsp = e−i[W (rj ,θs,zp)+β3|ψ(2)

jsp|2]∆t/2ψ
(2)
jsp,

(2.58)

where {ψ̂(1)
kml} are the expansion coefficients of ψ(1) given by (2.56).

Following a similar procedure as in the proof of Lemma 2.1, we can prove the
following:

Lemma 2.2. The TSGLFHP2 method (2.58) is normalization conserving, i.e.

‖ψn‖2 = ‖ψ0‖2, ∀n ≥ 1.

The memory requirement of this scheme is O ((K + M/2)ML), and the compu-
tational cost per time step is O (ML(K + M/2)(L + K + M/2 + lnM)).

3. Extension to rotating two-component and spin-1 BEC. The numeri-
cal methods TSGLFP2 for 2D, and resp. TSGLFHP2 for 3D, introduced above for
GPE with an angular momentum rotation term, can be extended to coupled Gross-
Pitaevskii equations (CGPEs) for the dynamics of rotating two-component and spin-1
BEC.

3.1. For rotating two-component BEC. Consider the dimensionless CGPEs
with an angular momentum rotation term and an external driving field for the dy-
namics of rotating two-component BEC in d-dimensions (d = 2, 3) [36, 46, 4]

i∂tψ1(x, t) =
[
−1

2
∆ + V1(x)− ΩLz + β11|ψ1|2 + β12|ψ2|2

]
ψ1 − λψ2,

i∂tψ2(x, t) =
[
−α

2
∆ + V2(x)− ΩLz + β21|ψ1|2 + β22|ψ2|2

]
ψ2 − λψ1,

ψ1(x, 0) = ψ
(0)
1 (x), ψ2(x, 0) = ψ

(0)
2 (x), x ∈ Rd.

(3.1)

Here, Ψ = Ψ(x, t) := (ψ1(x, t), ψ2(x, t))T is the dimensionless wave function of the
rotating two-component BEC, V1(x) and V2(x) are the dimensionless external trap-
ping potentials, α = m1

m2
> 0 with m1 and m2 the atomic masses of the two species, Ω

is the dimensionless angular velocity of the rotating laser beam, λ is the dimension-
less effective Rabi frequency describing the strength of the external driving field, and
βjl = 2πNajl(mj+ml)m1

a0mjml
(j, l = 1, 2) with N the total number of particles in the two-

component condensate, ajl = alj (j, l = 1, 2) the s-wave scattering length between the
jth and lth component and a0 =

√
~/ωm1 is the dimensionless length unit. Again,

we split the external trapping potentials into two parts:

(3.2) V1(x) = Vs(x) + W1(x), V2(x) = αVs(x) + W2(x), x ∈ Rd,

where Vs(x) defined in (1.3) is the radial and cylindrical symmetric part when d = 2
and d = 3, respectively; and W1(x) and W2(x) are the rest parts of the external
trapping potentials.
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Two important invariants of (3.1) are the normalization of the wave function
[46, 4]

N(Ψ) =
∫

Rd

‖Ψ(x, t)‖2dx =
∫

Rd

2∑

j=1

|ψj(x, t)|2dx

≡
∫

Rd

2∑

j=1

|ψ(0)
j (x)|2dx = N(Ψ(0)) = 1, t ≥ 0(3.3)

with Ψ(0) = (ψ(0)
1 , ψ

(0)
2 )T , and the energy per particle

Eβ,Ω(Ψ) =
∫

Rd

[
2∑

j=1

(
Vj(x)|ψj |2 − Ω Re(ψ̄jLzψj) +

2∑

l=1

βjl

2
|ψj |2|ψl|2)

)

+
1
2
|∇ψ1|2 +

α

2
|∇ψ2|2 − 2λ Re(ψ̄1ψ2)

]
dx ≡ Eβ,Ω(Ψ(0)), t ≥ 0.(3.4)

In addition, if there is no external driving field, i.e. λ = 0 in (3.1), the density of each
component is also conserved, i.e.

(3.5) Nj(t) := N(ψj) =
∫

Rd

|ψj(x, t)|2dx ≡ ‖ψ(0)
j ‖2, t ≥ 0, j = 1, 2.

Similar as for the case of single-component BEC, for n = 0, 1, 2, . . . , from time
t = tn = n∆t to t = tn+1 = tn + ∆t, the CGPEs (3.1) can be solved in two splitting
steps. One first solves

i∂tψ1(x, t) =
[
−1

2
∆ + Vs(x)− ΩLz

]
ψ1 − λψ2 = Bψ1 − λψ2,

i∂tψ2(x, t) =
[
α

(
−1

2
∆ + Vs(x)

)
− ΩLz

]
ψ2 − λψ1 = B̃ψ2 − λψ1, x ∈ Rd,

(3.6)

for the time step of length ∆t, followed by solving

i∂tψ1(x, t) =
[
W1(x) + β11|ψ1|2 + β12|ψ2|2

]
ψ1,

i∂tψ2(x, t) =
[
W2(x) + β21|ψ1|2 + β22|ψ2|2

]
ψ2, x ∈ Rd,

(3.7)

for the same time step. For t ∈ [tn, tn+1], the nonlinear ODE system (3.7) leaves
|ψ1(x, t)| and |ψ2(x, t)| invariant, and thus can be integrated exactly. For simplicity,
we present below only the extension for the scheme TSGLFP2 in 2D with α = 1. The
others can be done in a similar way and we omit the details here for brevity.

The second-order time-splitting generalized-Laguerre-Fourier pseudospectral (TS-
GLFP2) method for the CGPEs (3.1) with d = 2 is as follows:

Let (ψ0
1)js = ψ

(0)
1 (rj , θs) and (ψ0

2)js = ψ
(0)
2 (rj , θs) for 0 ≤ j ≤ K + M/2 and
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0 ≤ s ≤ M − 1. For n = 0, 1, 2, · · · , we compute (ψn+1
1 )js and (ψn+1

2 )js by

(ψ(1)
1 )js = e−i[W1(rj ,θs)+β11|(ψn

1 )js|2+β12|(ψn
2 )js|2]∆t/2(ψn

1 )js,

(ψ(1)
2 )js = e−i[W2(rj ,θs)+β21|(ψn

1 )js|2+β22|(ψn
2 )js|2]∆t/2(ψn

2 )js,

(ψ(2)
1 )js =

M/2−1∑

m=−M/2

[
eimθs

K∑

k=0

e−iµkm∆t

[
cos(λ∆t) (ψ̂(1)

1 )km + i sin(λ∆t) (ψ̂(1)
2 )km

]
L
|m|
k (rj)

]
,

(ψ(2)
2 )js =

M/2−1∑

m=−M/2

[
eimθs

K∑

k=0

e−iµkm∆t

[
i sin(λ∆t) (ψ̂(1)

1 )km + cos(λ∆t) (ψ̂(1)
2 )km

]
L
|m|
k (rj)

]
,

(ψn+1
1 )js = e−i[W1(rj ,θs)+β11|(ψ(2)

1 )js|2+β12|(ψ(2)
2 )js|2]∆t/2(ψ(2)

1 )js,

(ψn+1
2 )js = e−i[W2(rj ,θs)+β21|(ψ(2)

1 )js|2+β22|(ψ(2)
2 )js|2]∆t/2(ψ(2)

2 )js;

where (ψ̂(1)
1 )km and (ψ̂(1)

2 )km are the generalized-Laguerre-Fourier transform coeffi-
cients of ψ

(1)
1 and ψ

(1)
2 given by (2.33).

Using the same argument as in the proof of Lemma 2.1, we can prove the following:
Lemma 3.1. The above TSGLFP2 method for rotating two-component BEC is

normalization conserving, i.e.

(3.8) ‖Ψn‖2 :=
∫ ∞

0

∫ 2π

0

2∑

j=1

|ψn
j (r, θ)|2r dθdr ≡ ‖Ψ0‖2, n ≥ 1.

In addition, if there is no external driving field, i.e. λ = 0 in (3.1), the density of
each component is also conserved, i.e.

(3.9) ‖ψn
j ‖2 :=

∫ ∞

0

∫ 2π

0

|ψn
j (r, θ)|2r dθdr ≡ ‖ψ0

j ‖2, n ≥ 1, j = 1, 2.

3.2. For rotating spin-1 BEC. Consider the dimensionless CGPEs with an
angular momentum rotation term for the dynamics of rotating spin-1 BEC in d-
dimensions (d = 2, 3) [23, 8]

i∂tψ1(x, t) = [H + W1(x) + βnρ + βs(ρ1 + ρ0 − ρ−1)]ψ1 + βsψ̄−1ψ
2
0 ,

i∂tψ0(x, t) = [H + W0(x) + βnρ + βs(ρ1 + ρ−1)]ψ0 + 2βsψ−1ψ̄0ψ1,

i∂tψ−1(x, t) = [H + W−1(x) + βnρ + βs(ρ−1 + ρ0 − ρ1)]ψ−1 + βsψ
2
0ψ̄1,

ψj(x, 0) = ψ
(0)
j (x), x ∈ Rd, j = −1, 0, 1.

(3.10)

Here, Ψ = Ψ(x, t) := (ψ1(x, t), ψ0(x, t), ψ−1(x, t))T is the dimensionless wave function
of the rotating spin-1 BEC, H = − 1

2∆+Vs(x)−ΩLz with Vs(x) defined in (1.3), Ω is
the dimensionless angular velocity of the rotating laser beam, Wj(x) (j = −1, 0, 1) are
the rest of the external trapping potentials, ρj = ρj(x, t) := |ψj(x, t)|2 is the spatial
density of the hyperfine spin component mF = j (j = −1, 0, 1) and ρ = ρ1 + ρ0 + ρ−1

is the total density. βn = 4πN(a0+2a2)
as

and βs = 4πN(a2−a0)
as

are the dimensionless
mean-field and spin-exchange interaction constants, respectively, with N the total
number of particles in the spin-1 condensate, a0 and a2 the s-wave scattering length
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for scattering channel of total hyperfine spin 0 and 2, respectively, and as =
√
~/ωmb

the dimensionless length unit.
Three important invariants of (3.10) are the normalization of the wave function

[23, 8]

N(Ψ) =
∫

Rd

‖Ψ(x, t)‖2dx =
∫

Rd

1∑

j=−1

|ψj(x, t)|2dx

≡
∫

Rd

1∑

j=−1

|ψ(0)
j (x)|2dx = N(Ψ(0)) = 1, t ≥ 0,(3.11)

with Ψ(0) = (ψ(0)
1 , ψ

(0)
0 , ψ

(0)
−1)T , the total magnetization

M(Ψ) =
∫

Rd

[|ψ1(x, t)|2 − |ψ−1(x, t)|2] dx

≡
∫

Rd

[
|ψ(0)

1 (x)|2 − |ψ(0)
−1(x)|2

]
dx = M, t ≥ 0,(3.12)

with −1 ≤ M ≤ 1, and the energy per particle

Eβ,Ω(Ψ) =
∫

Rd

[
1∑

j=−1

(
1
2
|∇ψj |2 + (Vs(x) + Wj(x)) |ψj |2 − Ω Re(ψ̄jLzψj)

)

+
βn

2
|ρ0|2 +

βn + βs

2
(
ρ2
1 + ρ2

−1 + 2ρ0(ρ1 + ρ−1)
)

+ (βn − βs)ρ1ρ−1

+βs

(
ψ̄1ψ

2
0ψ̄1 + ψ−1ψ̄

2
0ψ1

)
]
dx

≡ Eβ,Ω(Ψ(0)), t ≥ 0.(3.13)

Unlike the TSGLFP2 method for GPE (1.1) and CGPEs (3.1), here it is advan-
tageous to split the CGPEs (3.10) into three subsystems. More precisely, we rewrite
(3.10) as

(3.14) i∂tΨ(x, t) = AΨ + BΨ + βsCΨ,

where

(3.15) A = diag {H, H, H}, B = diag {b1, b2, b3},

(3.16) C = C(Ψ) =




0 ψ̄−1 ψ0 0
ψ−1 ψ̄0 0 ψ̄0 ψ1

0 ψ0 ψ̄1 0


 ;

with

H = −1
2
∆ + Vs(x)− ΩLz, b1 = W1(x) + βnρ + βs(ρ1 + ρ0 − ρ−1),

b2 = W0(x) + βnρ + βs(ρ1 + ρ−1), b3 = W−1(x) + βnρ + βs(ρ−1 + ρ0 − ρ1)).

As shown in the previous section, the first subsystem i∂tΨ(x, t) = AΨ can be dis-
cretized in space by the generalized-Laguerre-Fourier method in 2D, and resp, the
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generalized-Laguerre-Fourier-Hermite method in 3D, and integrated in time exactly.
The second subsystem i∂tΨ(x, t) = BΨ is a nonlinear ODE system that leaves
|ψ1(x, t)|, |ψ0(x, t)| and |ψ−1(x, t)| invariant in time t, and thus can be integrated
exactly. The third subsystem i∂tΨ(x, t) = βs C(Ψ)Ψ is a nonlinear ODE system
which can not be solved exactly. We shall take the approach used in [9], namely
integrating it over the time integral [tn, tn+1] and then approximating the integral by
the second-order Runge-Kutta approximation [9],

Ψn+1 ≈ Ψ(tn+1) = e−iβs

∫ tn+1
tn

C(Ψ(τ)) dτ Ψ(tn)

≈ e−i∆tβs(C(Ψn)+C(Ψ(1)))/2 Ψn := e−i∆tβs D(Ψn) Ψn,(3.17)

where

Ψ(1) = Ψn − i∆t βs C(Ψn)Ψn := (ψ(1)
1 , ψ

(1)
0 , ψ

(1)
−1)T ,

D(Ψn) =
1
2

(
C(Ψn) + C(Ψ(1))

)
:=




0 d12 0
d̄12 0 d23

0 d̄23 0


 ,

with

d12 =
1
2

(
ψ̄n
−1ψ

n
0 + ψ̄

(1)
−1ψ

(1)
0

)
, d23 =

1
2

(
ψ̄n

0 ψn
1 + ψ̄

(1)
0 ψ

(1)
1

)
.

Since C(Ψ) is a Hermitian matrix, thus D(Ψn) is also a Hermitian matrix, following
[9], we can explicitly compute the approximation in (3.17) as

(3.18) Ψn+1 = e−i∆tβs D(Ψn) Ψn = P e−iβs∆t Λ P̄T Ψn,

where

Λ =




0 0 0
0 λ 0
0 0 −λ


 , P =

1√
2λ




√
2d23 d12 −d12

0 λ λ

−√2d12 d̄23 −d̄23


 ,

with

λ =
√
|d12|2 + |d23|2.

Therefore, we can use the second-order Strang splitting pseudospectal method (TS-
GLFP2) to solve (3.14). We omit the detailed algorithms here for brevity.

Using the same argument as in the proof of Lemma 2.1, noticing that D(Ψn) is a
Hermitian matrix, we can prove the following:

Lemma 3.2. The above TSGLFP2 method for rotating spin-1 BEC is normaliza-
tion conserving, i.e.

‖Ψn‖2 :=
∫ ∞

0

∫ 2π

0

1∑

j=−1

|ψn
j (r, θ)|2r dθdr

≡ ‖Ψ0‖2, n ≥ 1.(3.19)

Remark 3.1. Another way to discretize the third subproblem i∂tΨ(x, t) = βs C(Ψ)Ψ
is as following

(3.20) Ψn+1 = (I + i βs ∆t C(Ψn)/2)−1 (I − i βs ∆t C(Ψn)/2) Ψn,

where I is the 3 × 3 identity matrix. It is easy to show that this discretization is
normalization conserving and second-order in time, too.
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4. Numerical results. We now present some numerical results by using the nu-
merical methods introduced in previous sections to compute the dynamics of rotating
BEC. To quantify the numerical results of a solution ψ(x, t), we define the condensate
widths along the r- and z-axes as σr and σz by

(4.1) σ2
α =

∫

Rd

α2 |ψ(x, t)|2 dx, α = x, y, z; σ2
r = σ2

x + σ2
y,

and the angular momentum expectation which is a measure of the vortex flux by

(4.2) 〈Lz〉(t) :=
∫

Rd

ψ̄(x, t)Lzψ(x, t) dx = i

∫

Rd

ψ̄(x, t)(y∂x − x∂y)ψ(x, t) dx.

Example 1. Dynamics of a rotating BEC in 2D, i.e. we take d = 2, β2 = 100, Ω = 0.5
and W (x, y) = (γ2

y − γ2
x)y2/2 in (1.1). The initial data in (1.1) is chosen as

(4.3) ψ0(x, y) =
x + iy√

π
e−(x2+y2)/2, (x, y) ∈ R2.

We solve the problem by the scheme (2.35) with ∆t = 0.0005, M = 128 and K =
100. Figure 1 depicts time evolution of the normalization N(ψ), energy Eβ,Ω(ψ),
condensate width δr(t) and angular momentum expectation 〈Lz〉(t) for three sets of
parameters in (1.1): (i) γx = γy = 2 := γr, (ii) γx = γy = 0.8 := γr, and (iii)
γx = 0.8 := γr, γy = 1.2.

From Fig. 1, we can draw the following conclusions: (i) the normalization N(ψ)
and energy Eβ,Ω(ψ) are conserved well in the computation (cf. Fig. 1a&b); (ii) the
angular momentum expectation 〈Lz〉(t) is conserved when γx = γy (cf. Fig. 1d), i.e.
the trapping is radial symmetric, which again confirms the analytical results in [5];
(iii) the condensate width δr(t) is a periodic function when γx = γy (cf. Fig. 1c),
which again confirms the analytical results in [5].

Example 2. Dynamics of a rotating BEC in 3D, i.e. we take d = 3, β3 = β = 100,
Ω = 0.5 and W (x, y, z) = (γ2

y − γ2
x)y2/2 in (1.1). The initial data in (1.1) is chosen as

(4.4) ψ0(x, y, z) =
x + iy

π3/4
e−(x2+y2+z2)/2, (x, y, z) ∈ R3.

We solve the problem by the scheme (2.58) with ∆t = 0.0005, M = 128, K = 100
and L = 50. Figure 2 depicts time evolution of the energy Eβ,Ω(ψ), condensate
widths δr(t) and δz(t), and angular momentum expectation 〈Lz〉(t) for three sets of
parameters in the (1.1): (i) γx = γy = 2 := γr, γz = 0.8, (ii) γx = γy = 0.8 := γr,
γz = 2, and (iii) γx = 0.8 := γr, γy = 1.2, γz = 1.2.

From Fig. 2 and additional results not shown here for brevity, we can draw the
following conclusions: (i) the energy Eβ,Ω(ψ) and normalization N(ψ) are conserved
well in the computation (cf. Fig. 2a); (ii) the angular momentum expectation 〈Lz〉(t)
is conserved when γx = γy (cf. Fig. 2d), i.e. the trapping is cylindrical symmetric,
which again confirms the analytical results in [5]; (iii) the condensate widths δr(t) and
δz(t) are periodic functions with perturbations (cf. Fig. 2b&c), which again confirms
the analytical results in [5].

Example 3. Dynamics of a rotating two-component BEC in 2D, i.e. we take d = 2,
Ω = 0.5, γx = γy = 2 := γr, α = 1, W1(x) ≡ 2 and W2(x) ≡ 0 in (3.1). The initial
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Fig. 1. Time evolution of a few quantities for the dynamics of rotating BEC in 2D with three
sets of parameters: (a) normalization N(ψ), (b) energy Eβ,Ω(ψ), (c) condensate width δr(t), and
(d) angular momentum expectation 〈Lz〉(t).

data in (3.1) is chosen as

(4.5) ψ
(0)
1 (x, y) =

4(x + iy)
5
√

π
e−(x2+y2)/2, ψ

(0)
2 (x, y) =

3(x + iy)
5
√

π
e−(x2+y2)/2.

We solve the problem by our numerical method with ∆t = 0.0005, M = 128 and
K = 100. To additionally quantify the numerical results of a solution Ψ(x, t) =
(ψ1(x, t), ψ2(x, t))T , we define [4]

W1(t) = i

∫

Rd

[
ψ̄1(x, t)ψ2(x, t)− ψ1(x, t)ψ̄2(x, t)

]
dx,

W2(t) = i

∫

Rd

[
ψ̄1(x, t)ψ2(x, t) + ψ1(x, t)ψ̄2(x, t)

]
dx, t ≥ 0.

(4.6)

Figure 3 depicts time evolution of the total density N(t) := N(Ψ), density of each
component Nj(t) = N(ψj) (j = 1, 2), and W1(t) and W2(t) for four sets of parameters
in (3.1): (i) β11 = β12 = β22 = 100, λ = 0, (ii) β11 = 100, β12 = 80, β22 = 120, λ = 0,
(iii) β11 = β12 = β22 = 100, λ =

√
3, (iv) β11 = 100, β12 = 80, β22 = 120, λ =

√
3.

From Fig. 3 and our additional numerical results omitted here for brevity, we can
draw the following conclusions: (i) the density of each component N1(t) and N2(t) are
periodic functions when β11 = β12 = β22 (cf. Fig. 3c), which confirms the analytical
results in [4, 46]; (ii) W1(t) and W2(t) are periodic functions when β11 = β12 = β22
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Fig. 2. Time evolution of a few quantities for the dynamics of rotating BEC in 3D with three
sets of parameters: (a) energy Eβ,Ω(ψ), (b) condensate width δr(t), (c) condensate width δz(t), and
(d) angular momentum expectation 〈Lz〉(t).

(cf. Fig. 3a&c), which confirms the analytical results in [4, 46]; (iii) the normalization
N(Ψ) and energy Eβ,Ω(Ψ) are conserved well in the computation; (iv) the angular
momentum expectation 〈Lz〉(t) is conserved when γx = γy, i.e. the trapping is radial
symmetric, which again confirms the analytical results in [4, 46].

Example 4. Interaction of two vortex pairs and dipoles in a rotating BEC in 2D, i.e.
we take d = 2, β2 = 100, Ω = 0.5, γx = γy = 1 := γr and W (x) ≡ 0 in (1.1). The
initial data in (1.1) is chosen as

Case I. Interaction of two vortex pairs, i.e.

ψ0(x, y) = C ((x− x0) + iy) ((x + x0) + iy) (x + i(y − y0)) (x + i(y + y0)) e−(x2+y2)/2,

Case II. Interaction of two vortex dipoles, i.e.

ψ0(x, y) = C ((x− x0) + iy) ((x + x0) + iy) (x− i(y − y0)) (x− i(y + y0)) e−(x2+y2)/2,

where the constant C is chosen such that ‖ψ0‖2 =
∫
R2 |ψ0(x, y)|2dxdy = 1 and we

take x0 = y0 = 1.25.

We solve the problem by the scheme (2.35) with ∆t = 0.0005, M = 128 and
K = 150. Figure 4 shows the density ρ(x, t) = |ψ(x, t)|2 and the phase S(x, t) (with
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Fig. 3. Time evolution of a few quantities for the dynamics of a rotating two-component BEC
in 2D with four sets of parameters: (a) for case (i) β11 = β12 = β22 = 100, λ = 0, (b) for case (ii)
β11 = 100, β12 = 80, β22 = 120, λ = 0, (c) for case (iii) β11 = β12 = β22 = 100, λ =

√
3, and (d)

for case (iv) β11 = 100, β12 = 80, β22 = 120, λ =
√

3.

ψ =
√

ρ ei S) of the wave function at different times for case I, and Figure 5 shows
similar results for case II.
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Fig. 4. Contour plots of the density |ψ(x, y, t)|2 (row (a)) and phase S(x, y, t) (row (b))
of the wave function (with ψ = |ψ| eiS) over the dimensionless domain [−5, 5] × [−5, 5] for
the interaction of two vortex pairs, i.e. Case I, in a rotating BEC in 2D at different times
t = 0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0 (in the order of from left to right and from top to bottom).

From Figs. 4&5, we can draw the following conclusions: (i) In case I, we initially
have two vortex pairs with winding number or index m = 1 and they are located at
(±x0, 0) and (0,±y0). When time t evolves, the two vortex pairs rotate clockwise (cf.
Fig. 4) and they never collide and annihilate. (ii) In case II, we initially have two
vortex dipoles and they are located at (±x0, 0) (with index m = 1) and (0,±y0) (with
index m = −1). When time t evolves, the two vortex dipoles rotate clockwise (cf. Fig.
5) and they annihilate simultaneously at t = t1 ≤ 3.0. (iii) In both cases, after t = t0
(t0 < 1.5 in case I and t0 < 1.0 in case II), several vortex dipoles are generated near
the boundary of the condensate and they propagate into the condensate and interact
and annihilate with each other (cf. Figs. 4b, 5b). (iv) During the dynamics, vortices
are always generated or annihilated in vortex dipoles and thus keep the angular mo-
mentum expectation unchanged. This is due to that the trap is radial symmetric and
thus the angular momentum expectation is a conserved quantity [5]. (v). From the
two cases, we can see that the interaction of vortex pairs and dipoles in rotating BEC
can be very interesting and complicated.
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Fig. 5. Contour plots of the density |ψ(x, y, t)|2 (row (a)) and phase S(x, y, t) (row (b)) of
the wave function over the dimensionless domain [−5, 5]× [−5, 5] for the interaction of two vortex
dipoles, i.e. Case II, in a rotating BEC in 2D at different times t = 0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0
(in the order of from left to right and from top to bottom).

Example 5. Dynamics of vortex lattices in a rotating BEC in 2D, i.e. we take d = 2,
β2 = 1000, Ω = 0.9, W (x, y) = (γ2

y − γ2
x)y2/2 in (1.1). The initial data in (1.1) is

chosen as

(4.7) ψ0(x, y) = Ce−(x2+y2)/8
25∏

j=1

x− xj + i(y − yj)√
(x− xj)2 + (y − yj)2

,

where the constant C is chosen such that ‖ψ0‖2 =
∫
R2 |ψ0(x, y)|2dxdy = 1. Here we

initially have a vortex lattice consisting of 25 vortices with winding number m = 1 and
their centers uniformly located at a 5× 5 lattice over [−2, 2]2. We solve the problem
by the scheme (2.35) with ∆t = 0.0001, M = 256 and K = 180. Figure 6 shows
the density ρ(x, t) = |ψ(x, t)|2 and the phase S(x, t) of the wave function at different
times for γx = γy = 1 := γr, and Figure 7 shows similar results for γx = 1 := γr and
γy = 2.0.

The results in Figs. 6&7 show that the dynamics of vortex lattice in rotating
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Fig. 6. Contour plots of the density |ψ(x, y, t)|2 (row (a)) and phase S(x, y, t) (row (b)) of the
wave function over the dimensionless domain [−8, 8] × [−8, 8] for the dynamics of a vortex lattice
under radial symmetric external trapping, i.e. γx = γy = 1 := γr in a rotating BEC in 2D at
different times t = 0, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6, 2.0 (in the order of from left to right and from top to
bottom).

BEC may be very complicated and interesting and they also demonstrate the high
resolution of our method.

5. Concluding remarks. We developed a new generalized-Laguerre-Fourier in
2D, and resp. generalized-Laguerre-Fourier-Hermite in 3D, pseudospectral method to
discretize the GPE with an angular momentum rotation term for the dynamics of ro-
tating BEC. The new method adopts polar coordinates in 2D, and resp. cylindrical co-
ordinates in 3D, such that the angular momentum rotation term in the GPE becomes
constant coefficient. The new method is based on appropriately scaled generalized-
Laguerre, Fourier and Hermite functions and a time-splitting technique to decouple
the nonlinearity in the GPE. Hence, it is spectrally accurate in space, second-order or
fourth-order accurate in time, explicit, time reversible and time transverse invariant.
In addition, the new method has an additional important advantage, i.e. it solves the
problem in the whole space instead of in a truncated bounded artificial computational
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Fig. 7. Contour plots of the density |ψ(x, y, t)|2 (row (a)) and phase S(x, y, t) (row (b)) of the
wave function over the dimensionless domain [−8, 8] × [−8, 8] for the dynamics of a vortex lattice
under asymmetric external trapping, i.e. γx = 1 := γr and γy = 2.0, in a rotating BEC in 2D at
different times t = 0, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6, 2.0 (in the order of from left to right and from top to
bottom).

domain.
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