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SOLVING OPTIMIZATION-CONSTRAINED DIFFERENTIAL
EQUATIONS WITH DISCONTINUITY POINTS, WITH

APPLICATION TO ATMOSPHERIC CHEMISTRY

CHANTAL LANDRY∗, ALEXANDRE CABOUSSAT† , AND ERNST HAIRER‡

Abstract. Ordinary differential equations are coupled with mixed constrained optimization
problems when modeling the thermodynamic equilibrium of a system evolving with time. A par-
ticular application arises in the modeling of atmospheric particles. Discontinuity points are cre-
ated by the activation/deactivation of inequality constraints. A numerical method for the solution
of optimization-constrained differential equations is proposed by coupling an implicit Runge-Kutta
method (RADAU5), with numerical techniques for the detection of the events (activation and deacti-
vation of constraints). The computation of the events is based on dense output formulas, continuation
techniques and geometric arguments. Numerical results are presented for the simulation of the time-
dependent equilibrium of organic atmospheric aerosol particles, and show the efficiency and accuracy
of the approach.

Key words. Initial value problems, Differential-algebraic equations, Constrained optimization,
Runge-Kutta methods, Event detection, Discontinuity points, Computational chemistry.

AMS subject classifications. 65L05, 65L06, 65L80, 90C30, 80A30

1. Introduction. The microscopic modeling of the dynamics and chemical com-
position of atmospheric aerosol particles is a crucial issue when trying to simulate the
global climate forcing in three-dimensional air quality models [24]. The dynamic
computation of the gas-particle partitioning and liquid-liquid equilibrium for organic
particles introduces a coupling between the thermodynamic equilibrium of the particle
and the interactions between the particle and the surrounding gas.

A mathematical model for the computation of the gas-particle partitioning and
liquid-liquid equilibrium for organic atmospheric aerosol particles is presented. It
couples a system of ordinary differential equations with a mixed constrained global
optimization problem. A model problem can be written as follows: for p, q > 0, T > 0
and b0 given, find b : (0, T )→ Rp and x : (0, T )→ Rq satisfying

d

dt
b(t) = f(t,b(t),x(t)), b(0) = b0

x(t) = arg min
x̄
G(x̄)

s.t. c(x̄,b(t)) = 0, x̄ ≥ 0.

(1.1)

The first equation in (1.1) represents a stiff nonlinear system of ordinary differen-
tial equations where f is a smooth vector-valued function. The second part of (1.1)
corresponds to a global minimization problem subjected to l equality constraints
(c : Rq × Rp → Rl), and box constraints. The objective function G is non-convex,
nonlinear and uniquely depends on x. The equality constraints can be nonlinear
functions.
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2 C. LANDRY, A. CABOUSSAT AND E. HAIRER

The purpose of this article is to present an efficient numerical method that solves
optimization-constrained differential equations like (1.1). The system (1.1) is such
that as soon as an inequality constraint is activated or deactivated, the variable x
is ”truncated” and loses regularity. The numerical method has to accurately detect
and compute the times of activation and deactivation of constraints in order to (i)
compute the exact time of phase separation in the particle evolution and (ii) guarantee
the accuracy of the numerical approximation of the solution of (1.1).

If the number of active inequality constraints is fixed, the considered system can
be associated to a system of differential algebraic equations (DAE), by replacing the
minimization problem by its first order optimality conditions. In that case, since the
computation of the global minimum of energy is required, uniqueness is lost and the
solutions may bifurcate between branches of global optima, local optima or saddle-
points.

Efficient techniques to solve DAE systems relying on implicit Runge-Kutta meth-
ods have been developed in [4, 15, 16]. The determination of activation/deactivation
times corresponds to the detection of a discontinuity in the variables x, and re-
quires techniques for tracking of discontinuities, or event detection. The activa-
tion/deactivation of constraints adds/removes algebraic equations from the DAE sys-
tem.

A review of the detection of events in systems of ordinary differential equations or
differential-algebraic equations can be found in [9]. Typically the event is determined
by the zero of a state-dependent event function. Several procedures are based on the
construction of interpolation polynomials which are used to approximate the event
function and on the determination of a root of this approximation (see e.g., [10, 14,
25]). Since the interpolation polynomials are in general less accurate than the solution
approximation at the grid points, this procedure may lead to a loss of accuracy for the
integration beyond this point. We follow a new strategy that exactly computes the
discontinuity point, see [13]. It relies on the insertion of the fractional step size needed
to reach the discontinuity as a variable in the set of equations. Following [11, 13], the
proposed strategy is as follows:

1. Solution of the regular DAE system with a Runge-Kutta method;
2. Detection of discontinuity points (activation/deactivation of constraints);
3. Computation of the location and time of the discontinuity points;
4. Definition of the new DAE system and restart.

In Section 2, a mathematical model for the simulation of the dynamics of atmo-
spheric particles is introduced, based on optimization-constrained differential equa-
tions. The geometric interpretation of the problem as the dynamic computation of
the convex envelope of a non-convex function is detailed in Section 3. The numerical
solution of the DAE system is presented in Section 4, while numerical methods for the
tracking of discontinuities (activation and deactivation of inequality constraints) are
detailed in Section 5. In Section 6, numerical results are presented for atmospheric
organic particles to illustrate the efficiency and accuracy of the algorithm.

2. Optimization-Constrained Differential Equations. We are interested
in the dynamics and chemical phase behavior of atmospheric aerosol particles. A
single organic aerosol particle is considered and surrounded by a gas of same chemical
composition. The internal composition of the particle satisfies the minimum of its
internal energy, by enforcing phase partitioning between distinct liquid phases inside
the particle [2]. Chemical reactions do not occur and temperature and pressure are
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kept constant. The aim of the model is to accurately compute the time evolution of
the particle’s gas-particle partitioning and phase equilibrium.

Problem (1.1) can be seen as an ODE-constrained optimization problem with
an objective function involving sup-norms for instance (see e.g. problems arising in
control systems theory [26], or in PDE-constrained optimization [19]). The major
difficulty resides in the fact that the underlying energy G is minimized for a.e. t ∈
(0, T ) along the trajectory. However, in order to emphasize that the problem is a time-
evolutive problem under constraints and take advantage of its physical structure, it is
more convenient to consider the optimization problem as a component of the definition
of the fluxes of the ODE system.

Let (0, T ) be the interval of integration with T > 0. Let us denote by b(t) ∈ Rs
the composition vector of the s chemical components present in the particle at time
t ∈ (0, T ). Let us denote by p ≤ s the maximal number of possible liquid phases arising
at thermodynamic equilibrium [2] and define xα ∈ Rs and yα ∈ R, for α = 1, . . . , p
as the mole-fraction vectors in phase α and the total number of moles in phase α
respectively.

The mass transfer between the particle and the surrounding gas is modeled by
ordinary differential equations, whereas the phase partitioning inside the particle re-
sults from the global minimization of the Gibbs free energy of the particle. Thus the
problem is: find b,xα : (0, T )→ Rs++ and yα : (0, T )→ R+, α = 1, . . . , p satisfying:

d

dt
b(t) = f(b(t),x1(t), . . . ,xp(t)), b(0) = b0

{xα(t), yα(t)}pα=1 = argmin
{x̄α,ȳα}pα=1

p∑
α=1

ȳα g(x̄α) (2.1)

s.t. eT x̄α = 1, x̄α > 0, ȳα ≥ 0, α = 1, . . . , p,
p∑

α=1

ȳαx̄α = b(t),

where b0 is a given initial composition-vector and e = (1, . . . , 1)T . The function
g ∈ C∞(Rs++) is the molar Gibbs free energy function [2] where R++ denotes the set
of positive real numbers. The major property of g is to be a homogeneous function
of degree one and satisfying limxi→0

∂g
∂xi

= −∞ and xT∇g(x) = g(x), ∀x ∈ Rs++.
The vector-valued function f is the flux between the particle and the surrounding
media and is a non-linear function of b and xα. Actually, the flux f depends only on
the variables xα for which the index α is such that yα > 0. It can be expressed as
f = C(b(t)) (b(t)−D exp (∇g(xα(t)))), for any α ∈ A, where C is a function of b(t),
D is a constant, both depending on the chemical properties of the aerosol particle.
The chemical description of f can be found e.g. in [1, 24].

The first equality constraints in (2.1) are the normalization relations that follow
from the definition of the mole-fraction vector xα. The last equality constraint ex-
presses the mass conservation among the liquid phases. The inequality constraints
illustrate the non-negativity of the number of moles in the liquid phases. If yα(t) > 0,
the liquid phase α is present at thermodynamic equilibrium in the particle at time t.
Otherwise, if yα(t) = 0, the liquid phase α is not present at equilibrium.

System (2.1) couples ordinary differential equations and a mixed constrained
global minimization problem, with a non-convex nonlinear objective function. The
variables yα and xα lose regularity when one variable yα(t) > 0 vanishes (activa-
tion of an inequality constraint) or, conversely, when one variable yα(t) = 0 becomes
strictly positive (deactivation of an inequality constraint). The goal of this article is to
present a numerical algorithm for the simulation of (1.1), and (2.1), with an accurate
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determination of the activation/deactivation of inequality constraints.

3. Geometric Interpretation. A geometric interpretation of (2.1) is useful
to understand the dynamics of the system and design efficient numerical techniques.
First let us consider the optimization problem solely with a fixed point b. If {yα,xα}pα=1

is the solution of the minimization problem for b, then for any c > 0, {cyα,xα}pα=1

is the solution of the minimization problem for the point cb. Therefore, without loss
of generality, it is assumed that eTb = 1 in this section. The hereafter interpretation
follows [2] and starts with the projection of the optimization problem on a reduced
space of lower dimension.

Let ∆′s be defined by ∆′s = {x ∈ Rs|eTx = 1, x ≥ 0} and, for r = s − 1,
∆r = {z ∈ Rr|eT z ≤ 1, z ≥ 0}. The unit simplex ∆r can be identified with ∆′s via
the mapping Π : ∆r → ∆′s such that z → x = es + Zez, where es is the canonical
basis vector and ZTe = (Ir,−e) with Ir the r× r identity matrix. Let g̃ = g oΠ. Then
g̃ belongs to the function space E given by

E = {g̃ ∈ C∞(int∆r) | g̃ ∈ C0(∆r), ∂g̃(z) = ∅ for z ∈ ∂∆r},
where ∂g̃(z) represents the subdifferential of g̃ at z.

Let P be the projection from Rs to Rr defined by P (x1, . . . , xr, xs) = (x1, . . . , xr),
and denote zα = Pxα for α = 1, . . . , p, and d = Pb. The minimization problem in
(2.1) is equivalent after projection to

min
{yα, zα}pα=1

p∑
α=1

yαg̃(zα),

s.t. yα ≥ 0, α = 1, . . . , p,
p∑

α=1

yαzα = d,
p∑

α=1

yα = 1. (3.1)

Since the domain of g̃ is ∆r, the condition zα ∈ ∆r does not need to be included as
constraint in (3.1). Problem (3.1) consists of the determination of the convex envelope
of g̃ at point d [2]. The following result is a direct consequence of the Carathéodory’s
theorem.

Theorem 3.1. For every d ∈ ∆r, the minimum of (3.1) is conv g̃(d), the value
of the convex envelope of g̃ at d. Moreover, one has convg̃(d) =

∑p
α=1 yαg̃(zα) for

some convex combination d =
∑p
α=1 yαzα,

∑p
α=1 yα = 1, yα ≥ 0, α = 1, . . . , p. The

point (yα, zα)α=1,...,p ∈ R(r+1)p is called a phase splitting of d.
A phase splitting is called stable if yα > 0 for all α = 1, . . . , p and zα are distincts.

Note that any phase splitting can be transformed into a stable phase splitting by
considering the subset {zα : yα > 0}. Let us define the sets of indices A = {α ∈
{1, . . . , p} | yα = 0} and I = {α ∈ {1, . . . , p} | yα > 0}. The set A represents the set
of indices of the active constraints, and I is the set of inactive constraints. Let pA,
resp. pI , be the cardinal of A, resp. I, such that pA + pI = p. Hence (yIα, z

I
α)α∈I is

a stable phase splitting of d if (yα, zα)α=1,...,p is a phase splitting of d.
Remark 3.1. In the sequel an exponent I, resp. A, is added to the variables yα

and xα to specify that α ∈ I, resp. A. For instance, the expression yIα stands for
all yα with α ∈ I. Moreover the notation α = 1, . . . , pI is considered equivalent to
∀α ∈ I.

The following result states the existence and uniqueness of the stable phase split-
ting for a given d and characterizes the geometrical structure of conv g̃(d). The proof
of this result can be found in [22].
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Theorem 3.2. There exists a residual set R of E such that for any function
g̃ ∈ R, every d ∈ ∆r has a unique stable phase splitting. More precisely, there
exists a unique (pI − 1)-simplex

∑
(d) = conv (zI1 , . . . , z

I
pI ) with pI ≤ s such that

conv g̃(d) =
∑pI

α=1 y
I
αg̃(zIα) with the barycentric representation d =

∑
α∈I y

I
αzIα,∑

α∈I y
I
α = 1 and yIα > 0, ∀α ∈ I.

For a given d ∈ int∆r, the (pI − 1)-simplex
∑

(d) is called the phase simplex of
d. The domain ∆r can be separated in different areas according to the size of all
possible phase simplexes, and is called a phase diagram.

The Gibbs tangent plane criterion (see e.g. [20]) states that a (pI − 1)-simplex∑
(d) = conv (zI1 , . . . , z

I
pI ) is a phase simplex if and only if there exist multipliers

η ∈ Rr and γ ∈ R such that

∇g̃(zIα) + η = 0, ∀α ∈ I, (3.2)
g̃(zIα) + ηT zIα + γ = 0, ∀α ∈ I, (3.3)
g̃(z) + ηT z + γ ≥ 0, ∀z ∈ ∆r. (3.4)

Geometrically, the affine hyperplane tangent to the graph of g̃ at (zIα, g̃(zIα)), ∀α ∈ I
lies entirely below the graph of g̃. This hyperplane is called the supporting tangent
plane.

A point d ∈ int ∆r is said to be a single-phase point if and only if conv g̃(d) =
g̃(d); the following result holds:

Theorem 3.3. Consider d ∈ int∆r and
∑

(d) = conv(zI1 , . . . , z
I
pI ) the phase

simplex of d. Then for all α ∈ I, zIα ∈ int∆r and conv g̃(zIα) = g̃(zIα).

The graph of g (and therefore of g̃) depends on the chemical components present
in the aerosol, but is always composed of r+1 convex regions lying in the neighborhood
of the vertices of ∆r. For organic aerosols the maximum number of convex regions
is equal to s. Let us consider the case of an aerosol made of 2 chemical components.
Thereby s = 2, r = 1 and ∆r is the interval [0, 1]. A generic representation of g̃ is
given in Figure 3.1. For the points d considered on the left and right graphs, the
value of the convex envelope of g̃ at point d is equal to the value of g̃ at point d and
conv g̃(d) = g̃(zα). This implies that the stable phase splitting of d is given by (y, z)
with pI = 1, z = d and y = 1, and that d is a single-phase point.

On the central graph of Figure 3.1 the convex envelope of g̃ considered at points d
is no longer superposed with g̃ but follows the segment given by [g̃(z1), g̃(z2)]. Hence
the minimum of (3.1) is given by conv g̃(d) = y1g̃(z1) + y2g̃(z2), the stable phase
splitting of d is (y1, z1, y2, z2) with pI = 2 and y1 + y2 = 1, and the phase simplex of
d is equal to conv (z1, z2) where the vertices z1 and z2 are single-phase points.

Each single-phase point is associated to a convex region of g̃. We denote by ∆r,α

the part of ∆r that corresponds to the convex region of g̃ associated to zα, and by
∆
′

s,α the image of ∆r,α through Π. The sizes of the convex regions of the energy
function g cover many orders of magnitude (see [2])

In Figure 3.1 the supporting tangent plane is drawn for all considered d. It can be
observed that every hyperplane lies below the graph of g̃ as the Gibbs tangent plane
criterion states. When d is a single-phase point, the tangent plane is in contact with
g̃ at the point (z, g̃(z)) solely. When the phase simplex of d is given by conv (z1, z2)
the tangent plane touches g̃ at (z1, g̃(z1)) and (z2, g̃(z2)).

Let us consider the case where b (and therefore d) evolves in time. The points
b(t) are no longer supposed to be normalized. According to previous theory the points

1
eTb(t)

b(t) lie in ∆s and the points d(t) represent the projection of 1
eTb(t)

b(t) onto the
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Fig. 3.1. Geometric representation of the dynamic computation of the convex envelope. For a
sequence of times t1 < t2 < t? < t3 < t4 < t† < t5 < t6, the vector d(t) moves from left to right.
The supporting tangent plane follows the tangential slope at point d(t). Deactivation occurs at time
t? when the tangent plane (dashed line) touches the graph of g̃; Activation occurs at time t† when
the tangent plane (dashed line) gets released from the graph of g̃.

simplex ∆r. The time evolution of b is governed by the differential equation of (2.1)
and requires the time-dependent computation of the stable phase simplex

∑
(d(t)).

The activation/deactivation of constraints therefore corresponds to a change of di-
mension of the corresponding phase simplex

∑
(d(t)). In particular, the deactivation

of a constraint can be interpreted as a new tangential contact between the supporting
tangent plane and the graph of the function g̃.

Figure 3.1 shows the motion of the supporting tangent plane in one dimension of
space, when the point b goes from left to right. When the tangent plane becomes in
contact with the right convex region, one constraint is deactivated and the phase sim-
plex’ size increases by one (pI = 1 becomes pI = 2). Reciprocally, when the tangent
plane leaves contact with the graph of g̃, the size of the phase simplex decreases by
one (pI = 2 becomes pI = 1 again).

Remark 3.2. Even if we work with g and the variables xα and b, it is more
convenient to represent to projections g̃, zα and d. For that reason the figures in the
remainder of this article always illustrate g̃ and the projected variables zα and d, but
the notations g, xα and b are kept in the text and on the forthcoming figures.

4. Numerical Method for Differential-Algebraic Equations. This section
is devoted to the solution of (1.1), resp. (2.1), with a fixed number of active inequality
constraints. In this case, the regularity of the variables b(t) and x(t) is guaranteed
and one can prove the local existence and uniqueness of a continuously differentiable
solution (following e.g. [23]).

In [6], (1.1) has been solved with a monolithic first order implicit Euler scheme. A
fixed-point approach, together with a classical Crank-Nicolson scheme for the ordinary
differential part has been used in [7], to obtain a second order accurate scheme. A new
approach is presented here and based on the fifth-order accurate RADAU5 method
[16], where discontinuities are treated using the ideas of [13]. In this way there is no
loss in accuracy when passing through a discontinuity (cf. Section 5 below). For a
robust and reliable simulation a certain accuracy is required, and experience shows
that order two (as for Crank-Nicolson) is often too low. Our choice of an implicit
Runge-Kutta method is further motivated by the fact that the differential equation
is stiff. Explicit integrators would suffer from severe step size restrictions.

By replacing the minimization problem by its first order optimality conditions
(Karush-Kuhn-Tucker (KKT) conditions), (1.1) becomes



OPTIMIZATION-CONSTRAINED DIFFERENTIAL EQUATIONS 7

d

dt
b(t) = f(t,b(t),x(t)), b(0) = b0,

0 = ∇G(x(t)) +∇xc(x(t),b(t))λ(t)− θ(t),

0 = c(x(t),b(t)),

0 = xiθi, ∀i = 1, . . . , q,

(4.1)

together with xi ≥ 0, θi ≥ 0, i = 1, . . . , q, where λ(t) are the multipliers associated
to the equality constraints, and θ(t) = (θ1(t), . . . , θq(t)) are the multipliers associated

to the inequality constraints x ≥ 0. Let YT (t) =
(
bT (t),xT (t),λT (t),θ(t)

)
be the

N -vector, N = p+ q+ l+ q that contains all the unknowns of (4.1). When discarding
the inequalities xi ≥ 0 and θi ≥ 0, the system (4.1) can be written as

M
dY
dt

(t) = F(Y(t)), M =
(

I 0
0 0

)
(4.2)

where the function F is the right hand side of (4.1) and I is the p× p identity matrix.
Under the second order necessary conditions corresponding to the optimal problem
in (1.1), the linear independence constraint qualification (LICQ), and the strict com-
plementarity conditions [21], (4.2) is a DAE system of index 1 that is solvable.

When considering (2.1) in particular, this minimization problem consists of the
computation of the convex envelope [2]. If a constraint ᾱ is active (i.e. if yᾱ(t) = 0),
then the variables yᾱ and xᾱ are removed from the optimization algorithm without
affecting the solution. This step is necessary to ensure that the DAE system remains
solvable, of index 1 and similar to (4.2) [2]. When considering only the inactive
constraints, (2.1) becomes:

d

dt
b(t) = f(b(t),xIα(t)), b(0) = b0,

{yIα(t),xIα(t)}α∈I(t) = arg min
{ȳα,x̄α}α∈I(t)

∑
α∈I(t)

ȳα g(x̄α), (4.3)

s.t. eT x̄α = 1, x̄α > 0, ȳα > 0, α ∈ I(t),
∑
α∈I(t)

ȳαx̄α = b(t).

The solution of (2.1) is then equivalent to the solution of (4.3), together with yα(t) =
0, ∀α ∈ A(t). The particularity is that the variables xAα do not appear in (4.3)
and therefore are not updated in the computation of the convex envelope. The sole
condition on xAα is the normalization constraint eTxAα = 1.

Let λ ∈ Rs and ζα ∈ R, α ∈ I(t) be the Lagrangian multipliers associated to the
equality constraints in (4.3). We replace the minimization problem by its first order
optimality (KKT) conditions. By using the homogeneity property of g, one can show
that the variable ζα equals to 0 when α ∈ I(t). With some algebra, (4.3) becomes

d

dt
b(t) = f(b(t),xIα(t)), b(0) = b0,

0 = ∇g(xα(t)) + λ(t), α ∈ I(t),

0 = eTxα(t)− 1, α ∈ I(t),

0 =
∑
α∈I(t)

yα(t) xα(t)− b(t).

(4.4)
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The second equation means that the gradient of g at the points xα, α ∈ I, is always
equal to −λ and consequently ∇g(xα) = ∇g(xβ), ∀α, β ∈ I.

Replacing a non-convex optimization problem by its first order optimality con-
ditions does not necessarily guarantee the global optimality of the solution. For the
particular case of (2.1), sufficient conditions to obtain a global minimum to the point-
wise optimization problem have been given in [2] and in the references therein. As
long as the number of active constraints remains constant, the optimum at each time
t is in a neighborhood of the solution at another time in the near future. Thus it is
a good initial guess for any Newton method. By continuation, the model is therefore
able to track a branch of global minima provided that the trajectory started with the
global minimum at time t = 0.

Let YT (t) =
(
bT (t),xI,T1 (t), . . . ,xI,T

pI
(t), yI1 (t), . . . , yIpI (t),λT (t)

)
be a N -vector,

N = s+ spI + pI + s, that contains all the unknowns of (4.4). The system (4.4) can
therefore be written again as (4.2), where the function F is the right hand side of
(4.4) and the matrix I is the s× s identity matrix.

The system (4.2) is completed by the initial condition Y(0) = Y0. The first s
components of Y0 (related to the variable b) are given by the initial condition b0 in
(4.4). The initial value of the (algebraic) variables xα, yα and λ must satisfy the usual
consistency conditions, and are obtained as the solution of the minimization problem
in (2.1) for a given concentration-vector b0. As proposed in [2], there is a consistent
solution, that is obtained with a primal-dual interior-point method.

The system (4.2) is a system of differential-algebraic equations of index one, that
couples the differential variable b and the algebraic variables (xIα, y

I
α,λ). Such systems

are widely studied in the literature (see e.g. [5, 13, 15, 16]). A 3-stage implicit Runge-
Kutta method RADAU5 of order 5 [15, 16] is used here for the solution of (4.2).

Let bn, xnα, ynα, λn and Yn be approximations of b(tn), xα(tn), yα(tn), λ(tn)
and Y(tn), respectively, at time tn. With the notations of (4.2), a q-stage implicit
Runge-Kutta method is defined by

M(Zi −Yn) = hn

q∑
j=1

aij F(Zj), i = 1, . . . , q (4.5)

M(Yn+1 −Yn) = hn

q∑
j=1

cj F(Zj), (4.6)

where {aij} and {cj} are given prescribed coefficients, and hn = tn+1− tn. For stiffly
accurate methods such as RADAU5, ci = aqi for i = 1, . . . , q. The numerical solution
of (4.5)-(4.6) is then given by Yn+1 = Zq at each time step. Relation (4.5) forms a
nonlinear system of equations for the internal stages values Zi, i = 1, . . . , q. Details
concerning the implementation of RADAU5 methods can be found in [15, 16]. At
each time step, the initialization of the Newton method for the solution of (4.5)-(4.6)
with the global optimum at the previous time step encourages the computation of a
branch of global optima, as long as the number of active constraints does not change.

Since this Runge-Kutta method is a collocation method, it provides a cheap nu-
merical approximation to Y(tn + θhn) for the whole integration interval 0 ≤ θ ≤ 1.
The dense output approximation (collocation polynomial) computed at the nth step
tn is denoted by Un(tn + θhn). The collocation method based on Radau points is of
order 2q−1, and the dense output of order q. The error Un(tn+θhn) = Y(tn+θhn)
is therefore composed of the global error at tn plus the local error contribution which
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is bounded by O((hn)q+1). In the sequel, the dense output formula for specific com-
ponents of Y are used and the corresponding component is specified by its index. For
instance, the dense output for the variables yᾱ at tn is denoted by Un

yᾱ(tn + θhn) for
θ ∈ [0, 1].

As soon as the set of inactive constraints is fixed, the RADAU5 algorithm is used.
It yields the full order of accuracy (here, order 5) as long as the solution is sufficiently
regular. To guarantee this regularity, the step sizes are chosen carefully, so that
instants of discontinuity exactly coincide with points of the grid. An algorithmic
realization is presented in Section 5. The coupling of this algorithm with an efficient
procedure to compute any change in the set of inactive constraints allows to track the
activation/deactivation of constraints that correspond to discontinuity points. It also
allows to avoid the bifurcation between branches of local and global minima that may
arise when the activation or deactivation of a constraint is not accurately computed.

5. Tracking of Discontinuity Points. When an inequality constraint is ac-
tivated or deactivated, the variables yIα and xIα can lose their regularity (typically
when yIα is truncated to zero, its first derivative is discontinuous at the truncation
point). These discontinuity points have to be detected with accuracy [10, 11, 13, 14],
although the time at which the discontinuities occurs is not known in advance.

Following [11, 13], methods for the tracking of discontinuity points consist of two
steps: (i) the detection of the time interval [tn, tn+1] that contains the event; (ii) the
accurate computation of the event time. This two-steps procedure applied to (1.1),
and (2.1) resp., is detailed in the next sections.

5.1. Detection of Discontinuity Points. At each time step tn, the detection
of the activation/deactivation of a constraint is achieved by checking on the sign of a
particular quantity. In the sequel, the cases of the activation or the deactivation of a
constraint are distinguished.

The Case of the Activation of an Inequality Constraint. This case corre-
sponds to the determination of the minimal time for the transition xi > 0 → xi = 0
in (1.1). When the number of active constraints is fixed and (4.2) is solved with
the RADAU5 method, the positiveness constraints on the variables x is temporarily
relaxed. The criterion to detect the presence of the activation of an inequality con-
straint is therefore to check at each time step tn+1 if there exists an index i = 1, . . . , q
such that xni > 0 and xn+1

i ≤ 0.
For the particular case of (2.1), the activation of an inequality constraint corre-

sponds to the minimal time t (discontinuity time) such that the transition yα(t) >
0 → yα(t) = 0 occurs. When the number of active constraints is fixed, the variables
yα may take negative values (which is a nonsense from a chemical point of view since
the quantity yα represents a number of moles). The criterion to detect the presence
of the activation of an inequality constraint is therefore to check at each time step
tn+1 if

∃ ᾱ ∈ I(tn+1) such that ynᾱ > 0 and yn+1
ᾱ < 0. (5.1)

In that case, there exists a time τ ∈ (tn, tn+1) for which the inequality constraint
is activated. Results about the RADAU5 method [13] ensures that activation of
constraints are not missed.

The Case of the Deactivation of an Inequality Constraint. This case
corresponds to the determination of the minimal time for the transition xi = 0→ xi >
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0 in (1.1). By strict complementarity condition, this is equivalent to working with the
dual variables θi, and looking for the minimal time for the transition θi > 0→ θi = 0.
The criterion to detect the presence of the deactivation of an inequality constraint is
therefore to check at each time step tn+1 if there exists an index i = 1, . . . , q such
that θni > 0 and θn+1

i ≤ 0.
For our particular problem, the variables θi do not appear explicitly. A deacti-

vation occurs when there exists an index ᾱ ∈ A such that yᾱ(t) = 0 → yᾱ(t) > 0.
However, the variables yᾱ and xᾱ, ᾱ ∈ A do not appear in (4.4) or (4.2) (the only
condition on xᾱ is the normalization condition eTxᾱ = 1). The criterion to ”add”
such variables into (4.2) for the next time step is therefore independent of the solution
of the differential-algebraic system at the previous time step.

As described in Section 3 and illustrated in Figure 5.1 (left), the deactivation
of a constraint occurs when the supporting tangent plane to the energy function g
becomes tangent to a new point on the graph of the function. The point b considered
in Figure 5.1 (left) is a single-phase point and the supporting tangent plane lies below
the graph. Suppose that b moves to the right until the area where both inequality
constraints are deactivated and the deactivation of the second constraint does not
occur. In that case b remains a single-phase point and the supporting tangent plane
is still defined by (b, g(b)). Such a situation is represented in Figure 5.1 (right).
The tangent plane crosses the graph of g in that case and the Gibbs tangent plane
criterion is therefore not satisfied. This fact is the indicator for the deactivation of an
inequality constraint.

Since the function g is known only point-wise, the intersection between the sup-
porting tangent plane and the graph of g cannot be computed analytically. However,
it is not necessary to compute this intersection, but only to find one point (x, g(x))
situated below the tangent plane. Let us sign the distance between (x, g(x)) and the
supporting tangent plane in such a way that the distance is said to be positive if
(x, g(x)) lies above the tangent plane, and negative if (x, g(x)) is below the tangent
plane. The points for which the distance can be negative are situated in the convex
areas associated to the active constraints ∆

′

s,α, α ∈ A. Since there is no condition on
xAα except eTxAα −1 = 0, let us define xAα such that (xAα , g(xAα )) is situated at minimal
distance from the supporting tangent plane. If we denote by dn(x) the signed distance
between (x, g(x)) and the supporting tangent plane at time tn, then the criterion to
detect the presence of the deactivation of an inequality constraint is to check at each
time step tn+1 if

∃ ᾱ ∈ A(tn+1) such that dn(xnᾱ) > 0 and dn+1(xn+1
ᾱ ) < 0, (5.2)

where xnᾱ, xn+1
ᾱ ∈ ∆

′

s,ᾱ are the points that respectively minimize dn(·) and dn+1(·) in
the convex area ∆

′

s,ᾱ. This distance corresponds to the dual variable θ in the generic
problem (4.1). In that case, there exists a time τ ∈ (tn, tn+1) for which the inequality
constraint is deactivated.

While results about the RADAU5 method [13] ensure that the activations of con-
straints are not missed, the detection of the deactivation of constraints relies on an
external, dual, argument, and there is no theoretical result that provides such a guar-
antee. For a given supporting tangent plane, the algorithm presented in Section 5.2
allows to determine the signed distance, together with the point xAα that satisfies the
minimal distance. The accurate computation of the signed distance, and therefore of
the criterion (5.2) is actually the only lack of complete robustness and reliability in
the algorithm. However, numerical experiments will show that this particular point
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Fig. 5.1. Deactivation of an inequality constraint: minimal distance criterion. Left: the tangent
plane of g at (bn, g(bn)) lies under g; Right: without detection of a deactivation of a constraint,
the tangent plane crosses the curve g.

can be controlled.

5.2. Computation of the Minimal Distance Criterion. Let us determine
first the equation describing the supporting tangent plane and the distance between
the plane and any points (x, g(x)), x ∈ Rs++. As described in Section 3 the support-
ing tangent plane is the affine hyperplane tangent to the graph of g at the points
(xα, g(xα)), α ∈ I. Since ∇g(xα) = ∇g(xβ), ∀α, β ∈ I, the normal vector to the
tangent plane is uniquely determined. The supporting tangent plane is then defined
by the set of points (x, xs+1) ∈ Rs+ × R satisfying

∇g(xα)T (xα − x) + xs+1 − g(xα) = 0,

where xα is any point for which α ∈ I.
Since ∇g(x)Tx = g(x), ∀x ∈ Rs++ the definition of the hyperplane is reduced to

−∇g(xα)Tx + xs+1 = 0. The vector xα being solution of the differential-algebraic
system (4.4), the relation λ = −∇g(xα) holds and the above equation becomes
λTx + xs+1 = 0. The signed distance of any point (x, g(x)) to the tangent plane is

thus given by d(x) = (λTx + g(x))/‖n‖2, where n =
(
−λT , −1

)T
. We consider in

practice the signed distance, again denoted by d, defined by d(x) = λTx + g(x).
Hence at each time step tn+1 of the time discretization algorithm, and for all

active constraints α ∈ A, the computation of the point xA,n+1
α ∈ ∆

′

s,α situated at
minimal distance from the tangent plane is given by the solution of the following
minimization problem

xA,n+1
α = arg min

x∈∆′
s,α

d(x) = arg min
x∈∆′

s,α

λn+1,Tx + g(x), (5.3)

where λn+1 is solution of the system (4.4) at time tn+1.
The distance function d possesses several local minima. Each xIα realizes a local

minimum such that d(xIα) = 0, while xAα realizes a local minimum in ∆
′

s,α. The
determination of xAα corresponds to finding the point located in ∆

′

s,α that realizes
the local minima of the distance function. The value of the objective function d(xAα )
indicates if deactivation occurs.

In the minimization problem (5.3) we search for x in ∆
′

s,α. One way to charac-
terize ∆

′

s,α is to impose a constraint to (5.3) that expresses the positive-definiteness
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of the Hessian matrix ∇2g(x). We consider here the minimization problem where the
sole constraint on x is eTx − 1 = 0 and the constraint x ∈ ∆

′

s,α is imposed weakly.
This relaxed problem is defined as follows

xA,n+1
α = arg min

x∈Rs
λn+1,Tx + g(x), s.t. eTx− 1 = 0. (5.4)

The KKT conditions relative to (5.4) lead to the nonlinear system:

∇g(x) + λn+1 + ζe = 0, eTx− 1 = 0, (5.5)

where ζ ∈ R is a Lagrangian multiplier associated to the equality constraint eTx− 1.
The unknowns are x and ζ, and the size of (5.5) is s+ 1, which is small by opposition
to the optimization problem arising in (4.3). However the small nonlinear system
(5.5) has to be solved at each time step and for all α ∈ A.

Problem (5.5) is solved with a Newton method and the corresponding Newton
system reads:(

∇2g(x) e
eT 0

)(
px

pζ

)
= −

(
∇g(x) + λn+1 + ζe

eTx− 1

)
, (5.6)

where px and pζ are the increments corresponding to the variables x and ζ.
Lemma 5.1. If x belongs to a convex region of g, (5.6) is solvable.
Proof. If x remains in a convex region of g, ∇2g(x) is symmetric positive definite

and the inertia theorem (see e.g. [12]) allows to conclude that the matrix of (5.6) is
invertible.

Following Lemma 5.1, the numerical algorithm for the solution of (5.6) must pay
attention to building a sequence of iterates that remains in the convex region ∆

′

s,α.
The initial guess of the Newton method is given either in a neighborhood of the vertices
of the simplex ∆

′

s (as the initial guesses of the interior-point method described in [2]),
or by the last iterate obtained in the convex region at the previous time step.

For each iterate xi of the Newton sequence, the sequence is re-initialized at xi−1 if
the Hessian ∇2g(xi) is not positive definite or if the point xi goes out of the simplex.
The Newton increments are controled with a step-size algorithm in order to ensure
that the iterates remain in the convex region ∆

′

s,α and that the Hessian remains
positive definite. More precisely, let cthres be a given threshold that corresponds to an
approximation of the distance between convex regions; if ‖(px, pζ)T ‖2 ≥ cthres, then
the Newton iterates are computed as(

xi+1

ζi+1

)
=
(

xi

ζi

)
+ αi

(
px

pζ

)
, αi =

cthres

‖(px, pζ)T ‖2 ∈ (0, 1]; (5.7)

otherwise the new iterate of Newton (xi+1, ζi+1)T is computed with αi = 1. This
procedure is only activated when det(∇2g(xi)) ≤ δ, where δ ' 100 − 102 captures
”flat” regions (by comparison, det(∇2g(xi)) can be as big as 1015 for such systems).
The points xi lying in the simplex ∆

′

s, the parameter cthres is initialized to 0.1. Since
the distance between the convex areas could be smaller than 0.1, the value of cthres

can be updated at each time step by computing the minimal distance between all xα,
α = 1, . . . , p.

Figure 5.2 illustrates the influence of the modification of the increments given by
(5.7) for the case r = 1. A 2-components chemical system composed of 1-hexacosanol
and pinic acid is considered. The simplex ∆1 is the segment [0, 1] (0 meaning 100%
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of pinic acid in the system). In this example the inactive constraint is situated on the
right and the active constraint is on the left.

The distance function d is represented with a bold curve, and the derivative ∇d
with a dashed curve, while the tangent lines for the determination of the next iterate
in the Newton method are in black straight lines. The black squares correspond to the
successive Newton iterates, x0 being the starting point. The black circles are therefore
the successive values g(xk), k = 0, . . . , i, i+1, . . .. In this example d contains only one
minimum that is d(xI,n+1

2 ) and the minimizer of d on ∆
′

1,1 is the right edge of ∆
′

1,1

where the Hessian of g becomes singular.
Figure 5.2 (left) shows the minimizing sequence obtained with the Newton method

without the adaptive step-length (5.7). The iterate xi+1 leaves the convex area ∆
′

1,1

and jumps to the convex area of the inactive constraint because the Newton sys-
tem is ill-conditioned around xi. Consequently the sequence converges to the global
minimizer and xA,n+1

1 is falsely set to xI,n+1
2 .

Figure 5.2 (right) illustrates the convergence of the sequence with step-length
modification. The iterate xi+1 is modified by (5.7) and its new value falls in the area
where the Hessian is not positive definite. The Newton method is then stopped and
xA,n+1

1 is set to xi which is situated near the local minimizer.
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Fig. 5.2. Left: Steps of the Newton algorithm for the computation of the point at minimal
distance to the tangent plane without the criterion on the increment (αi = 1). Right: same but with
the criterion on the increment.

At each iteration of the Newton method the distance is computed and the al-
gorithm is stopped if the distance is negative. Otherwise the algorithm stops if the
stopping criterion on the Euclidean norm of the residuals is smaller than a fixed
tolerance, or if a maximal number of iterations K is reached.

The converged iterate of the Newton method serves as the initial guess of the
Newton method for the next time step, i.e. a classical continuation method for the
computation of the point at minimal distance of the tangent plane is used (see e.g.
[3, 8]). The algorithm for the computation of the minimal distance is summarized as
follows:

Algorithm 5.1. At each time step tn+1 and for each inequality constraint such
that α ∈ A(tn), initialize x0 = xnα and ζ0 = ζn. Then, for i = 1, . . . ,K

(i) Build and solve the system (5.6) to obtain pix and piζ .
(ii) Compute xi = xi−1 + αipix and ζi = ζi−1 + αip

i
ζ with (5.7).

(iii) If ∇2g(xi) is not positive definite, or xi does not belong to the simplex ∆
′

s, or
if Newton does not converge, STOP and set xn+1

α = xi−1.
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(iv) If the distance to the supporting tangent plane is negative, if the stopping crite-
rion is satisfied, or if i = K, STOP. If xi is not colinear to another xα, then
set xn+1

α = xi; otherwise, set xn+1
α = x0.

5.3. Computation of the Discontinuity Point. Let us assume in the follow-
ing that an inequality constraint is activated/deactivated in the time interval [tn, tn+1].
The computation of the exact time of discontinuity follows [13] and introduces the
partial time step as an (unknown) additional variable, together with the additional
event function equation.

Let us denote by W the function describing the event location. This function
depends directly on the dense output Un defined on the interval [tn, tn+1]. Let us
denote by τ ∈ [tn, tn+1] the time τ = tn + hn, which is the root of the function W .
The problem corresponds therefore to finding (Yn+1 , hn), satisfying:

M(Zi −Yn) = hn

q∑
j=1

aij F(Zj), ∀i = 1, . . . , q, (5.8)

M(Yn+1 −Yn) = hn

q∑
j=1

cj F(Zj), (5.9)

W (Un(tn + hn)) = 0. (5.10)

Following [13], a splitting algorithm is advocated, that couples the RADAU5 algorithm
together with a bisection method. It is summarized as follows.

Algorithm 5.2. At each time step tn such that an activation/deactivation is
detected in [tn, tn+1], consider the system (5.8)-(5.10) and solve it as follows:

(i) compute (hn)0 = θhn as the root of W (Un(tn + θhn)) = 0, where Un(t) is the
dense output obtained from the solution of (5.8)-(5.9);

(ii) for k = 0, 1, . . . until convergence
(a) solve (5.8)-(5.9) with hn = (hn)k; this yields a dense output Un

k (tn +
θ(hn)k) for θ ∈ [0, 1];

(b) with Un replaced by Un
k , compute (hn)k+1 with a bisection method applied

to (5.10);
(iii) terminate the iterations with a step of (5.8)-(5.9).

The convergence criterion is based on the difference between 2 successive step
lengths (hn)k, i.e. |(hn)k+1 − (hn)k| < ε, where ε is a given prescribed tolerance.

The addition of the time step as an unknown in (5.8)-(5.10) [13] allows to avoid
the numerical error due to the dense output formula and to recover the full accuracy
of the method. Furthermore the choice of the splitting algorithm for the solution
of (5.8)-(5.10) allows for a simple implementation. The event function W is defined
explicitly in the sequel for the cases of an activation and a deactivation.

The Case of the Activation of a Constraint. A constraint is activated if
there exists ᾱ ∈ I(tn) such that corresponds to ynᾱ > 0 and yn+1

ᾱ < 0. Hence a natural
definition for W is W (Un(tn + hn)) = Un

yᾱ(tn + hn) where Un
yᾱ is the component of

Un relative to the variable yᾱ.

The Case of the Deactivation of a Constraint. When there exists ᾱ ∈ A(tn)
such that the distance between (xn+1

ᾱ , g(xn+1
ᾱ )) and the supporting tangent plane

defined by the normal vector λn+1 is negative, set

W (Un(tn + hn)) = g(xλ
ᾱ(tn + hn)) + Un,T

λ (tn + hn) xλ
ᾱ(tn + hn) (5.11)

with eTxλ
ᾱ(tn + hn)− 1 = 0,
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where Un
λ is the subvector of Un relative to the variable λ and xλ

ᾱ is the point that
minimizes the distance to the supporting tangent plane defined by the normal vector
Un

λ(tn+hn). The expression of W resumes the definition of the distance d, but unlike
in (5.4) Un

λ(tn + hn) is also an unknown in (5.11). Hence during the bisection steps
of Algorithm 5.2 for each Un

λ(tn + θ(hn)k) the minimization problem (5.4) is solved
with Un

λ(tn + θ(hn)k) instead of λn+1 in order to determine xλ
ᾱ.

After the computation of the activation or deactivation time, all variables in Y
are reinitialized to their value at time t = τ thanks to (iii) in Algorithm 5.2. The
differential-algebraic system (4.4) (or (4.2)) is then updated by moving the index
ᾱ from the set I(τ) into the set A(τ) or vice-versa. The complete algorithm is
summarized as follows:

Algorithm 5.3 (Summary of Complete Algorithm). For a fixed number of
active inequality constraints, solve (4.2) with the RADAU5 algorithm. At each time
step tn+1:

(i) Verify if one (or several) inactive constraint has to be activated. If so, stop
RADAU5 and compute the activation time τ with the Algorithm 5.2.

(ii) Verify if one (or several) active constraint has to be deactivated. If so, stop
RADAU5 and compute the deactivation time τ with the Algorithm 5.2.

(iii) Determine the minimal time τ among all events detected, update the set of active
constraints and the new size of (4.2). Restart the time-discretization scheme
RADAU5 at t = τ .

In the case when several events appear during the same time interval, the method
detects the event with the smallest event time, compute the corresponding event,
and restart the time-stepping procedure before computing the second event during
the next time step. The adaptive time step procedure allows to avoid (as much as
possible) the presence of several events in one time step.

Remark 5.1. When r > 1, the computation of the point satisfying the minimal
distance to the supporting tangent plane in Algorithm 5.1 depends on the topology of
the energy function g. In order to improve the robustness of the algorithm and avoid
to miss a deactivation time, the number of active constraints obtained by the RADAU5
algorithm may be compared with the number of actual active constraints computed by
using the interior-point method described in [2]. The robust version of the algorithm
returns back a few time steps when a mismatch is detected.

6. Numerical Results. Numerical results are presented for various space di-
mensions r (corresponding to a chemical system of r+ 1 = s components). Graphical
results are given for low dimensions, while the computational cost of the algorithm is
studied for larger dimensions. The numerical parameters typically used are as follows:
δ = 10, K = 7, cthres = 0.1, ε = 10−7 and for the RADAU5 method the absolute and
relative error tolerances are respectively equal to 10−13 and 10−7.

6.1. Numerical Results in One Dimension. The chemical system composed
of pinic acid (C9H14O4) and 1-hexacosanol (C26H54O) at temperature 298.15 [K] and
pressure 1 [atm] is considered (r + 1 = 2) as an example of two-components system.

Figure 6.1 (left) shows the time evolution of the vector b on the phase diagram
∆1. For more visibility the approximations bn are lying on an axis situated just
above the phase diagram. The approximations are represented by grey diamonds for
the region where one inequality constraint is inactive, and black diamonds are for the
regions where both constraints are inactive. The initial point b0 is situated in the
left convex region of the phase diagram and one constraint is inactive (y1 > 0 and
y2 = 0), then bn moves from left to right. The corresponding iterates g(bn), moving
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on the convex envelope of g, and the corresponding supporting tangent planes are
also represented.

The time evolution of bn, n = 0, 1, . . . with their distinction between grey and
black follows the phase diagram correctly. First approximations are single-phase
points, and the corresponding tangent planes are tangent to the curve g at only one
point and lie below g. When b comes closer to the deactivation the tangent planes
come near a second contact point with g. At the moment of the deactivation the sup-
porting plane is tangent to g at 2 points (x1 = 0.0665672398 and x2 = 0.463349192).
These two points are accurate approximations of the points situated at the bound-
aries of the area on ∆1 where both constraints are inactive. A zoomed-in view of
the deactivation on g is proposed in Figure 6.1 (middle). After the deactivation the
points g(bn) follow the convex envelope of g. Furthermore the tangent planes touch
g at two points and are superposed with the convex envelope of g. Figure 6.1 (right)
illustrates the time evolution of y1 and y2, and exhibits a discontinuity of the deriva-
tives at time t = 0.3725[s] when the second inequality constraint is deactivated, for
both of the variables.

0.0666 0.2 0.3 0.4633 0.6 0.7 0.8 0.9 1.0

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

pinic acid 1−hexacosanol

g

bn ∆1

0 0.0666 0.2

−0.1

−0.05

pinic acid

g

g(bn)

0 0.3725 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−7

time [s]

nu
m

be
r 

of
 m

ol
es y1

y2

Fig. 6.1. Deactivation of an inequality constraint for a two-components system. Left: evolution
of b, the corresponding supporting tangent plane evolves until making contact with the graph of g.
Middle: zoomed-in view of deactivation on g, the points g(b) follow the convex envelope of g. Right:
evolution of y1 and y2, exhibiting discontinuities in the derivatives at the deactivation time.

Figure 6.2 uses the same notations as in Figure 6.1 to illustrate the time evolution
of b (left), and y1 and y2 (right) when one inequality constraint is activated, namely
when b moves from the middle of ∆1 to the extreme right of the phase diagram. The
point bn for which the activation occurs is situated on the frontier of ∆1 between the
area of 2 inactive constraints and the one with only one inactive constraint. After the
activation, the tangent planes get released from g and remain below g.

Figure 6.3 finally illustrates the difficulty in computing the minimal distance be-
tween the graph of g and the supporting tangent plane. The distance function d is
represented by a black curve, whereas the iterations of the Newton method are black
diamonds and denoted by xi. The left figure shows the distance function when b is
far away from the deactivation. In this instance, the distance function is convex and
admits one unique (global) minimum, namely the contact point of the supporting tan-
gent plane and the graph of the function. The Newton sequence is stopped since xi+1

goes out of its convex region, and xA,far = xi. When b gets closer from the disconti-
nuity time, at time tn the distance function is stretched and a local minimum appears
(see middle figure). The Newton sequence described in Algorithm 5.1 converges to
the local minimum. At time tn+1 (right figure), the Newton sequence converges to
a point with negative distance to the tangent plane, allowing the detection of the
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Fig. 6.2. Activation of an inequality constraint for a two-components system. Left: evolution of
b; the corresponding supporting tangent plane evolves after leaving the contact with the left convex
region on the graph of g. Right: evolution of y1 and y2, exhibiting discontinuities in the derivatives
at the activation time.

deactivation. This point is a good approximation of the deactivation point.
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6.2. Numerical Results in Two Dimensions. The chemical system com-
posed of pinic acid (C9H14O4), 1-hexacosanol (C26H54O) and water (H2O) at tem-
perature 298.15 [K] and pressure 1 [atm] is considered (r + 1 = 3). The solution b
and its numerical approximation are represented on a two-dimensional simplex ∆2

[1, 17, 18]. The regions of the simplex with respectively one, two or three deactivated
constraints are numbered by 1, 2, 3 on the simplex.

Figure 6.4 illustrates the solution of one initial value problem. The initial com-
position b0 consists of 15% of pinic acid, 80% of 1-hexacosanol and 5% of water.
The initial time step is 0.1[s]. Figure 6.4 (left) shows two simulated trajectories of
b(t), one with tracking of discontinuities (grey line) and the other without tracking
(black line). The grey trajectory undergoes two deactivations and one activation of
constraints, whereas the black one stands for approximations bn that remain single-
phase points (branch of local minima) during the whole simulation.

Figure 6.4 (left) demonstrates that the tracking of such events strongly influences
the solution of the initial value problem. Figure 6.4 (middle) is a zoomed-in view on
the phase diagram that illustrates how the trajectories move away from each other
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after the first deactivation. At the end both trajectories converge to the unique sta-
tionary solution of the closed system. Figure 6.4 (middle) emphasizes the importance
to detect and compute the discontinuity points accurately.

Figure 6.4 (right) illustrates the (piecewise continuously differentiable) evolution
of yα, α = 1, . . . , p, the number of moles relative to each liquid phases xα present in
the aerosol. At t = 0, y1 = y2 = 0 and y3 > 0, and two constraints are activated
(i.e. the particle only contains the third liquid phase). Then constraints are acti-
vated/deactivated and the variables yα, α = 1, . . . , p present jumps of the derivatives
at each event.
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Fig. 6.4. Left: Evolution of b on the phase diagram of the particle without the tracking of the
discontinuity points (black line) and with the tracking (grey line); middle: zoomed-in view; right:
time evolution of the number of moles relative to each liquid phase present in the particle.

In the particular case when all yα(t) remain strictly positive, λ(t) is constant
and the tangent plane remains unchanged [2]. The solution computed by solving a
pure optimization problem is considered as the ”exact solution”. Similarly, solving
the pure optimization problem allows to accurately compute the boundaries of ∆2,
where all variables yα(t) are strictly positive. Due to the particular expression of the
fluxes f , the differential equations are decoupled from the optimization problem, and
the system of differential-algebraic equations is reduced to a system of linear ODEs.
The ”exact solution” is therefore the intersection of the trajectory b(t) with the linear
given interface.

Four different examples are considered starting all from the area on ∆2 and going
to one of the areas where only 2 constraints are inactive. Figure 6.5 illustrates the
error on the computation of activation points between the approximated and exact
solutions for each example. It shows that the error on both the time and location
of the activation is negligible, up to machine precision and algorithm tolerance, and
validate the accuracy of our algorithm.

6.3. Numerical Results in Higher Dimensions. When r is greater than 3,
the phase diagrams cannot be easily visualized. In this section we compare the CPU
times for different values of r. Table 6.1 summarizes the computational time for 6
examples (for r = 2, 3 and 17 resp.) that run on an Intel processor of 2.4 GHz.
The CPU times illustrate respectively the total time of execution, the time for the
detection of events, the time for the computation of the activation, the time spent in
going backwards in the trajectory, the time for the computation of the deactivation
and the total time for the detection and computation of the discontinuities. Table 6.1
shows that the larger r, the more expensive the tracking of discontinuity points (as
expected). However, the percentage of computational cost of the resulting cost for
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Fig. 6.5. Error on the computation of the activation/deactivation of inequality constraints:
the case of the activation of a constraint. Error on the location of activation ‖b(t?) − bn‖2 (left);
‖b(tn)− bn‖2 (middle) and error on the activation time |t? − τ | (right).

the tracking remains stable as r becomes larger. The time for the computation of
activations is negligible compared to the time for deactivations. For both cases the
number of iterations in the splitting algorithm 5.2 is equal to 3 in average and the
number of iterates for the bisection in the deactivation case is equal to 30 in average.

Table 6.1
Computational cost percentages of the algorithm for system with r + 1 = 3, 4, 18. Legend is as

follows: code: total time; detect: time for the detection of events; act.: computation of activation
time; backwards: time spend in going backwards in the trajectory for checking purposes; deact.:
computation of deactivation time; total disc.: total time for detection and computation of events.

detect act. backwards deact. total disc.
Ex. 1: r = 2 [%] 5.3 15.2 16.0 25.3 61.8
Ex. 2: r = 2 [%] 2.6 8.0 27.3 37.9
Ex. 3: r = 3 [%] 25.7 38.6 64.3
Ex. 4: r = 3 [%] 10.1 27.1 23.5 60.7
Ex. 5: r = 17 [%] 23.1 18.6 19.7 14.6 76
Ex. 6: r = 17 [%] 41.8 4.1 24.7 70.6

Ex. 1: 2 deactivations and 1 activation; Ex. 2: 1 deactivation; Ex. 3: 1 activation;
Ex. 4: 1 deactivation; Ex. 5: 1 deactivation and 3 activations; Ex. 6: 1 deactivation.

7. Conclusion. A numerical method for the simulation of differential equations
coupled with a global optimization problem has been presented. It allows to take
into consideration the activation/deactivation of inequality constraints that occurs at
unknown times. It couples an implicit Runge-Kutta method (RADAU5), with track-
ing techniques that rely on dense output formulas, nonlinear programming techniques
for non-convex constrained optimization and geometric considerations. Numerical re-
sults in the framework of atmospheric chemistry for the simulation of the dynamics of
organic aerosol particles have illustrated the accuracy and efficiency of the method.
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