Monochromatic Boxes in Colored Grids

Joshua Cooper, Stephen Fenner, and Semmy Purewal

March 4, 2022

Abstract

A d-dimensional grid is a set of the form $R=\left[a_{1}\right] \times \cdots \times\left[a_{d}\right]$. A d dimensional box is a set of the form $\left\{b_{1}, c_{1}\right\} \times \cdots \times\left\{b_{d}, c_{d}\right\}$. When a grid is c-colored, must it admit a monochromatic box? If so, we say that R is c-guaranteed. This question is a relaxation of one attack on bounding the van der Waerden numbers, and also arises as a natural hypergraph Ramsey problem (viz. the Ramsey numbers of hyperoctahedra). We give conditions on the a_{i} for R to be c-guaranteed that are asymptotically tight, and analyze the set of minimally c-guaranteed grids.

1 Introduction

A d-dimensional grid is a set $R=\left[a_{1}\right] \times \cdots \times\left[a_{d}\right]$, where $[t]=\{1, \ldots, t\}$. For ease of notation, we write $\left[a_{1}, \ldots, a_{d}\right]$ for $\left[a_{1}\right] \times \cdots \times\left[a_{d}\right]$. The "volume" of R is $\prod_{i=1}^{d} a_{i}$. A d-dimensional box is a set of 2^{d} points of the form

$$
\left\{\left(x_{1}+\epsilon_{1} s_{1}, \ldots, x_{d}+\epsilon_{d} s_{d}\right) \mid \epsilon_{i} \in\{0,1\} \text { for } 1 \leq i \leq d\right\}
$$

with $s_{i} \neq 0$ for all $1 \leq i \leq d$. A grid R is (c, t)-guaranteed, if for all colorings $f: R \rightarrow[c]$, there are at least t distinct monochromatic boxes in R, i.e., boxes $B_{j} \subseteq R, j \in[t]$, so that $\left|f\left(B_{j}\right)\right|=1$. When $t=1$, we simply say that R is c-guaranteed. If R is not c-guaranteed, we say it is c-colorable. Clearly, whether a grid is (c, t)-guaranteed depends only on a_{1}, \ldots, a_{d}. Furthermore, if $b_{i} \geq a_{i}$ for all i such that $1 \leq i \leq d$, then $\left[b_{1}, \ldots, b_{d}\right]$ is c-guaranteed if $\left[a_{1}, \ldots, a_{d}\right]$ is. This ordering on d-tuples is sometimes called the dominance order, and we will denote it by \preceq. Then one may state the above observation as the fact that the set of c-guaranteed grids is an up-set in the $\left(\mathbb{N}^{d}, \preceq\right)$-poset. Hence, we have a full understanding of this family if we know the minimal c-guaranteed grids, an antichain in the \preceq order. (Note that any such antichain is finite, a wellknown fact in poset theory.) Call the set of minimal c-guaranteed grids $\mathcal{O}(c, d)$, the obstruction set for c colors in dimension d. We will focus our attention on monotone obstruction set elements, i.e., those grids for which $a_{1} \leq \cdots \leq a_{d}$,

[^0]since being c-guaranteed (or (c, t)-guaranteed) is invariant under permutations of the a_{j}.

The subject of unavoidable configurations in grids has connections with the celebrated Van der Waerden's and Szemerédi's Theorems. (See, for example, [2], [5], and [8.) Our results can be seen as belonging to hypergraph Ramsey theory, as follows. Let G be the complete d-partite d-uniform hypergraph with blocks of size a_{1}, \ldots, a_{d}. Then an edge of G can be identified with a vertex of $R=\left[a_{1}, \ldots, a_{d}\right]$ in the natural way. Under this correspondence, a c-coloring of R gives rise to a c-edge coloring of G, and boxes correspond precisely to subgraphs isomorphic to the "generalized octahedron" $K_{d}(2)$, the complete d-partite d uniform hypergraph with each block of size 2 . The generalized octahedra play an important and closely related role in the work of Kohayakawa, Rödl, and Skokan (7$]$) on hypergraph quasirandomness. (Among other interesting results, they show that, asymptotically, a random c-edge coloring of G has the fewest number of monochromatic $K_{d}(2)$'s possible.) We may translate each of our results into statements about the Ramsey numbers of hyperoctahedra-free d partite d-uniform graphs. For example, in Section 7, we give a family of upper bounds on the sizes of 3-dimensional grids which have a 2-coloring admitting no monochromatic box; this is equivalent to asking for the extremal tripartite 3 -uniform hypergraphs which are $\left(K_{3}(2), K_{3}(2)\right)$-Ramsey.

The present work is even more closely connected to the "Product Ramsey Theorem." Though the proof appears in [6, the statement appearing in (9] best illustrates the connection:

Theorem 1.1 (Product Ramsey Theorem). Let k_{1}, \ldots, k_{d} be nonnegative integers; let c and d be positive integers; and let m_{1}, \ldots, m_{d} be integers with $m_{i} \geq k_{i}$ for $i \in[d]$. Then there exists an integer $R=R\left(c, d ; k_{1}, \ldots, k_{d} ; m_{1}, \ldots, m_{d}\right)$ so that if X_{1}, \ldots, X_{d} are sets and $\left|X_{i}\right| \geq R$ for $i \in[d]$, then for every function $f:\binom{X_{1}}{k_{1}} \times \cdots \times\binom{ X_{d}}{k_{d}} \rightarrow[c]$, there exists an element $\alpha \in[c]$ and subsets Y_{1}, \ldots, Y_{d} of X_{1}, \ldots, X_{d}, respectively, so that $\left|Y_{i}\right| \geq m_{i}$ for $i \in[d]$ and f maps every element of $\binom{X_{1}}{k_{1}} \times \cdots \times\binom{ X_{d}}{k_{d}}$ to α.

This result ensures that the quantity $N(c, d)=R\left(c, d ; 1^{d} ; 2^{d}\right)$, which corresponds to the least R so that $[R]^{d}$ is c-guaranteed, is finite. A closer analysis of $N(c, d)$ - in fact, the more general $N(c, d, m)=R\left(c, d ; 1^{d} ; m^{d}\right)$ - appears in the manuscript [1] by Agnarsson, Doerr, and Schoen. They obtain asymptotic bounds on $N(c, d, m)$ that are valid for large m. Here, we examine instead the least nontrivial case of $m=2$, and consider grids which are not necessarily equilateral.

In the next section, we show that any grid of sufficiently small volume (approximately $c^{2^{d}-1}$) is c-colorable. The following section shows that the analysis is tight: there are grids of this volume which are c-guaranteed. Not all grids of sufficient volume are c-guaranteed, although Section 4 demonstrates that any grid all of whose lower-dimensional subgrids are sufficiently voluminous is indeed c-guaranteed. The next section gives a tight upper bound on the volume of minimally c-guaranteed grids, i.e., elements of the obstruction set. Section
[6] then addresses the question of how many obstructions there are. Finally, as mentioned above, Section 7 considers the case of $c=2$ and $d=3$, where some interesting computational questions arise. This extends work of the second two authors (4) for $d=2$ and $2 \leq c \leq 4$.

Throughout the present manuscript, unless we explicitly say otherwise, we use the notations $x=O(y)$ and $y=\Omega(x)$ to mean that there is a function $F: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that $x \leq F(d) y$. That is, x is bounded by y times a number that only depends on d. (Naturally, $x=\Theta(y)$ means that $x=O(y)$ and $x=\Omega(y)$, and notation $x=o(y)$ is defined analogously.) In general, x and y will depend on c, d, and perhaps other quantities.

2 All small grids are c-colorable

Define $V(c, d)$ to be the largest integer V so that every d-dimensional grid R with volume at most V is c-colorable. Below, we show that $V(c, d)$ is $\Theta\left(c^{2^{d}-1}\right)$.

Theorem 2.1.

$$
V(c, d)=\Omega\left(c^{2^{d}-1}\right)
$$

In fact, $V(c, d)>c^{2^{d}-1} / e 2^{d}$, where $e=2.718 \ldots$ is Napier's constant.
Proof. We apply the Lovász Local Lemma (see, e.g., [3), which states the following. Suppose that A_{1}, \ldots, A_{t} are events in some probability space, each of probability at most p. Let G be a "dependency" graph with vertex set $\left\{A_{i}\right\}_{i=1}^{t}$, i.e., a graph so that, whenever a set S of vertices induces no edges in G, then S is a mutually independent family of events. Then $\mathbf{P}\left(\bigwedge_{i=1}^{t} \overline{A_{i}}\right)>0$ if $e p(\Delta+1) \leq 1$, where $\Delta=\Delta(G)$ is the maximum degree of G.

Now, suppose $R=\left[a_{1}, \ldots, a_{d}\right]$ is a grid of volume V, and we color the points of R uniformly at random from $[c]$. Enumerate all boxes in R as B_{1}, \ldots, B_{t}. Define A_{i} to be the event that B_{t} is monochromatic in this random coloring. Clearly, we may take G to have an edge between A_{i} and A_{j} whenever $B_{i} \cap B_{j} \neq \emptyset$. The degree of a vertex A_{i} is then the number of boxes $B_{j}, j \neq i$, which intersect B_{i}. Since we may specify the list of all such boxes by choosing one of the 2^{d} points of B_{i}, and then choosing the d coordinates of its antipodal point, $\operatorname{deg}_{G}\left(A_{i}\right)$ is at most

$$
2^{d} \prod_{i=1}^{d}\left(a_{i}-1\right)-1<2^{d} \prod_{i=1}^{d} a_{i}-1=2^{d} V-1
$$

(The outermost -1 here reflects the fact that B_{i} may be excluded among these choices.) The probability of each A_{i} is the same: $p=c^{-2^{d}+1}$. Therefore,

$$
e p(\Delta+1)<e c^{-2^{d}+1} 2^{d} V
$$

which is ≤ 1 whenever $V \leq c^{2^{d}-1} / e 2^{d}$.

3 Some large grids are c-guaranteed

Theorem 3.1. Fix c, d, define $R=\left[a_{1}, \ldots, a_{d}\right]$, and let $M=\prod_{i}\binom{a_{i}}{2}$ denote the total number of boxes in R. For $\min \left\{a_{1}, \ldots, a_{d}\right\} \rightarrow \infty, R$ is $(c, M(1+$ $\left.o(1)) / c^{2^{d}-1}\right)$-guaranteed.

Theorem 3.1 follows quickly from the next lemma, whose extra strength we will need later.

Lemma 3.2. Suppose $c \geq 1$. For $d \geq 1$ and integers $a_{1}, \ldots, a_{d} \geq 2$, let $M=$ $\prod_{i=1}^{d}\binom{a_{i}}{2}$. The grid $R=\left[a_{1}, \ldots, a_{d}\right]$ is $\left(c, M \Delta_{d} / c^{2^{d}-1}\right)$-guaranteed provided $\Delta_{1}, \ldots, \Delta_{d}>0$, where $\Delta_{j}, 0 \leq j \leq d$, is given by the recurrence

$$
\begin{aligned}
\Delta_{0} & =1 \\
\Delta_{j} & =\Delta_{j-1}^{2}\left(1-\frac{\frac{c^{2 j-1}}{\Delta_{j-1}}-1}{a_{j}-1}\right)
\end{aligned}
$$

Proof. We proceed inductively. Suppose $d=1$, let $f:\left[a_{1}\right] \rightarrow[c]$ be a c-coloring, and define

$$
\gamma_{i}=\left|f^{-1}(i)\right|
$$

to be the number of points colored $i, 1 \leq i \leq c$. Then the number N of monochromatic boxes in f is exactly

$$
N=\sum_{i=1}^{c}\binom{\gamma_{i}}{2}=\frac{1}{2} \cdot \sum_{i=1}^{c}\left(\gamma_{i}^{2}-\gamma_{i}\right)=\frac{1}{2} \cdot\left(\sum_{i=1}^{c} \gamma_{i}^{2}-a_{1}\right)
$$

Applying Cauchy-Schwarz,

$$
\begin{aligned}
N & \geq \frac{\left(\sum_{i=1}^{c} \gamma_{i}\right)^{2}}{2 c}-\frac{a_{1}}{2}=\frac{a_{1}^{2}}{2 c}-\frac{a_{1}}{2} \\
& =\frac{a_{1}\left(a_{1}-c\right)}{2 c}=\frac{1}{c}\binom{a_{1}}{2} \frac{a_{1}-c}{a_{1}-1}=\frac{1}{c}\binom{a_{1}}{2} \Delta_{1}
\end{aligned}
$$

Now, suppose the statement is true for dimensions $<d+1$, and consider a coloring $f:\left[a_{1}, \ldots, a_{d+1}\right] \rightarrow[c]$. Consider the a_{d+1} colorings f_{j} of the d dimensional grid $\left[a_{1}, \ldots, a_{d}\right]$ induced by setting the last coordinate to j, i.e.,

$$
f_{j}\left(x_{1}, \ldots, x_{d}\right)=f\left(x_{1}, \ldots, x_{d}, j\right)
$$

Let $\gamma_{i}(B)$, for a box $B \subset\left[a_{1}, \ldots, a_{d}\right]$ and $i \in[c]$, denote the number of j so that $\left.f_{j}\right|_{B} \equiv i$. Then the number N of monochromatic $(d+1)$-dimensional boxes in f is

$$
N=\sum_{i} \sum_{B}\binom{\gamma_{i}(B)}{2}
$$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \sum_{i} \sum_{B}\left(\gamma_{i}(B)^{2}-\gamma_{i}(B)\right) \\
& \geq \frac{\left(\sum_{B} \sum_{i} \gamma_{i}(B)\right)^{2}}{2 M c}-\frac{1}{2} \cdot \sum_{B} \sum_{i} \gamma_{i}(B) \\
& =\frac{\left(\sum_{B} \sum_{i} \gamma_{i}(B)\right)^{2}-M c \sum_{B} \sum_{i} \gamma_{i}(B)}{2 M c}
\end{aligned}
$$

where $M=\prod_{i=1}^{d}\binom{a_{i}}{2}$. Since, by the inductive hypothesis, f_{j} induces at least $M \Delta_{d} / c^{2^{d}-1}$ monochromatic boxes,

$$
\sum_{i} \sum_{B} \gamma_{i}(B) \geq \frac{a_{d+1} M \Delta_{d}}{c^{2^{d}-1}}
$$

so that

$$
\begin{aligned}
N & \geq \frac{a_{d+1}^{2} M^{2} \Delta_{d}^{2} / c^{2^{d+1}-2}-a_{d+1} M^{2} \Delta_{d} c / c^{2^{d}-1}}{2 M c} \\
& =\frac{a_{d+1} M\left(a_{d+1} \Delta_{d}^{2}-c^{2^{d}} \Delta_{d}\right)}{2 c^{2^{d+1}-1}} \\
& =\frac{M}{c^{2^{d+1}-1}}\binom{a_{d+1}}{2} \frac{a_{d+1} \Delta_{d}^{2}-c^{2^{d}} \Delta_{d}}{a_{d+1}-1} \\
& =\frac{\prod_{i=1}^{d+1}\binom{a_{i}}{2}}{c^{2^{d+1}-1}} \cdot \Delta_{d}^{2}\left(\frac{a_{d+1}-c^{2^{d}} / \Delta_{d}}{a_{d+1}-1}\right) \\
& =\frac{\prod_{i=1}^{d+1}\binom{a_{i}}{2} \Delta_{d+1}}{c^{2^{d+1}-1}} .
\end{aligned}
$$

Proof of Theorem 3.1. Fix $c, d \geq 1$. It is clear by induction on j that for all $1 \leq j \leq d$, as $\min \left\{a_{1}, \ldots, a_{d}\right\} \rightarrow \infty, \Delta_{j}=1+o(1)$, and so in particular, $\Delta_{j}>0$ if $\min \left\{a_{1}, \ldots, a_{d}\right\}$ is large enough.

Note that, in the notation of Lemma 3.2 if $\Delta_{1}, \ldots, \Delta_{d}>0$, then $\left[a_{1}, \ldots, a_{d}\right]$ is not c-colorable. Therefore we may conclude the following.

Corollary 3.3. In the notation of Lemma 3.2, let $\Gamma_{j}, 0 \leq j \leq d$, be given by the recurrence

$$
\begin{aligned}
\Gamma_{0} & =1 \\
\Gamma_{j} & =\Gamma_{j-1}^{2}\left(1-\frac{c^{2^{j-1}} / \Gamma_{j-1}}{a_{j}-1}\right)=\Gamma_{j-1}\left(\Gamma_{j-1}-\frac{c^{2^{j-1}}}{a_{j}-1}\right)
\end{aligned}
$$

If $\Gamma_{1}, \ldots, \Gamma_{d}>0$, then $\left[a_{1}, \ldots, a_{d}\right]$ is c-guaranteed.

Proof. Assume $\Gamma_{1}, \ldots, \Gamma_{d}>0$. A routine induction shows that $\Gamma_{j} \leq \Delta_{j}$ for $0 \leq j \leq d$.

Lemma 3.4. In the notation of Lemma 3.2. let ε_{j} be given by the recurrence

$$
\begin{aligned}
& \varepsilon_{0}=0 \\
& \varepsilon_{j}=2 \varepsilon_{j-1}+\frac{c^{2^{j-1}}}{a_{j}-1}
\end{aligned}
$$

If $\varepsilon_{d}<1$, then $\left[a_{1}, \ldots, a_{d}\right]$ is c-guaranteed.
Proof. Clearly, $0=\varepsilon_{0}<\varepsilon_{1}<\varepsilon_{2}<\cdots<\varepsilon_{d}$, and so by assumption $\varepsilon_{i}<1$ for all $i \in[d]$. An induction on i shows that $\Gamma_{i} \geq 1-\varepsilon_{i}$ for $0 \leq i \leq d$: This is clearly true for $i=0$. Suppose $i<d$ and $\Gamma_{i} \geq 1-\varepsilon_{i}$. Then setting $\eta:=c^{2^{i}} /\left(a_{i+1}-1\right)$ and noting that $\Gamma_{i} \geq 0$, we have

$$
\begin{equation*}
\Gamma_{i+1}=\Gamma_{i}\left(\Gamma_{i}-\eta\right) \geq \Gamma_{i}\left(1-\varepsilon_{i}-\eta\right) \tag{1}
\end{equation*}
$$

The term in the parentheses is positive:

$$
1-\varepsilon_{i}-\eta \geq 1-2 \varepsilon_{i}-\eta=1-\varepsilon_{i+1}>0
$$

by assumption. Thus continuing (1) and using the inductive hypothesis again,

$$
\Gamma_{i}\left(1-\varepsilon_{i}-\eta\right) \geq\left(1-\varepsilon_{i}\right)\left(1-\varepsilon_{i}-\eta\right) \geq 1-2 \varepsilon_{i}-\eta=1-\varepsilon_{i+1}
$$

Motivated by the preceding lemma, for every $c, d \geq 1$ and $\operatorname{grid} R=\left[a_{1}, \ldots, a_{d}\right]$ with $a_{i} \geq 2$ for all $i \in[d]$, we define

$$
\varepsilon_{c}(R):=\sum_{i=1}^{d} 2^{d-i} \frac{c^{2^{i-1}}}{a_{i}-1}
$$

Lemma 3.5. If $R=\left[a_{1}, \ldots, a_{d}\right]$ is not c-guaranteed, then $\varepsilon_{c}(R) \geq 1$.
Proof. We let $\varepsilon_{j}:=\varepsilon_{c}\left(\left[a_{1}, \ldots, a_{j}\right]\right)=\sum_{i=1}^{j} 2^{j-i} c^{2^{i-1}} /\left(a_{i}-1\right)$ for all j with $0 \leq j \leq d$, and notice that the ε_{j} satisfy the recurrence in Lemma 3.4

Corollary 3.6. For any fixed $d \geq 1$ and $c \geq 2$, if n is least such that $[n]^{d}$ is c-guaranteed, then $n<(d+2) c^{2^{d-1}}$. Furthermore,

$$
2^{-d} e^{-1}<\frac{V(c, d)}{c^{2^{d}-1}}<(d+2)^{d} 2^{d(d-1) / 2}
$$

Proof. If we take $a_{j}=(d+1) 2^{d-j} c^{2^{j-1}}+1$ for all $1 \leq j \leq d$, then $\varepsilon_{c}(R)=$ $d /(d+1)<1$. The second result now follows from the fact that

$$
\prod_{j=1}^{d} a_{j}<\prod_{j=1}^{d}(d+2) 2^{d-j} c^{2^{j-1}}
$$

$$
\begin{aligned}
& =(d+2)^{d} 2^{\sum_{j=1}^{d}(d-j)} c^{\sum_{j=1}^{d} 2^{j-1}} \\
& =(d+2)^{d} 2^{\sum_{j=1}^{d-1} j} c^{\sum_{j=0}^{d-1} 2^{j}} \\
& =(d+2)^{d} 2^{d(d-1) / 2} c^{2^{d}-1} .
\end{aligned}
$$

The first result follows by taking $n:=a_{d}$.

4 Hereditarily large grids are c-guaranteed

It is possible for grids of arbitrarily large volume to be c-colorable. Indeed, one need only have one of the dimensions be at most c, and then color the grid with this coordinate. However, if we require that each lower dimensional sub-grid be sufficiently voluminous, then the whole grid is c-colorable. This statement is made precise by the following theorem.

Theorem 4.1. Fix $d>0$, and define $C_{j}=\left(d 2^{d}\right)^{\frac{3}{2}\left(3^{j-1}-1\right)}$ for $j \geq 1$. For all integers $c \geq 1$ and $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{d}$, if $\prod_{i=1}^{j} a_{i}>C_{j} c^{\left(3^{j}-1\right) / 2}$ for all $j \in[d]$, then $\left[a_{1}, \ldots, a_{d}\right]$ is c-guaranteed.

We require a lemma and a bit of notation: If $R=\left[a_{1}, \ldots, a_{d}\right]$ and $1 \leq j<d$, let R_{j} denote $\left[a_{1}, \ldots, a_{j}\right]$ and let \bar{R}_{j} denote $\left[a_{j+1}, \ldots, a_{d}\right]$. Note that, if R is c guaranteed, then R_{j} is as well. Indeed, if $f: R_{j} \rightarrow[c]$ is a c-coloring of R_{j}, then the function $g: R \rightarrow[c]$ defined by $g\left(x_{1}, \ldots, x_{d}\right)=f\left(x_{1}, \ldots, x_{j}\right)$ is a c-coloring of R. We will also make repeated use of the following easily verified fact: For every integer $j \geq 0, j \cdot 2^{j-1} \leq\left(3^{j}-1\right) / 2$ and $j \cdot 2^{j}+1 \leq 3^{j}$.

Lemma 4.2. Let $c \geq 1$, let $R=\left[a_{1}, \ldots, a_{d}\right]$ be a grid, and let $j \in[d-1]$. Define

$$
c^{\prime}:=c \cdot \prod_{i=1}^{j}\binom{a_{i}}{2} \leq 2^{-j} \cdot c \cdot \prod_{i=1}^{j} a_{i}^{2} .
$$

If R_{j} is c-guaranteed and \bar{R}_{j} is c^{\prime}-guaranteed, then R is c-guaranteed.
Proof. Assume that R_{j} is c-guaranteed and that \bar{R}_{j} is c^{\prime}-guaranteed. Suppose that $f: R \rightarrow[c]$ is a c-coloring. Consider the coloring $g: \bar{R}_{j} \rightarrow\left[c^{\prime}\right]$ that assigns the pair (B, s) to the point \mathbf{v}, B being an arbitrary choice of j-dimensional box colored monochromatically by $f_{j}: R_{j} \rightarrow[c]$, where $f_{j}\left(x_{1}, \ldots, x_{j}\right)=f\left(x_{1}, \ldots, x_{j}, \mathbf{v}\right)$, and s being its color. (Note that R_{j} is c-guaranteed, so such a B always exists.) Then g is a c^{\prime}-coloring, because there are exactly c^{\prime} many different (B, s). Since \bar{R}_{j} is c^{\prime}-guaranteed, g colors some $(d-j)$-dimensional box B_{1} monochromatically, with color $\left(B_{2}, s\right)$. But then $B_{2} \times B_{1}$ is a d-dimensional box monocolored by f with color s.

Proof of Theorem 4.1. The statement is clearly true when $d=1$ since $C_{1}=1$. Suppose $d>1$ and the statement is true for all $d^{\prime}<d$. Let $R=\left[a_{1}, \cdots, a_{d}\right]$ be a monotone grid satisfying the hypothesis of the theorem.

Case 1: $\varepsilon_{c}(R)<1$. The result follows immediately from Lemma 3.5.

Case 2: $\varepsilon_{c}(R) \geq 1$. Then there is some $j \in[d]$ such that $2^{d-j} c^{2^{j-1}} /\left(a_{j}-1\right) \geq$ $1 / d$, i.e.,

$$
a_{j} \leq d 2^{d-j} c^{2^{j-1}}+1<d 2^{d-j+1} c^{2^{j-1}}
$$

Since $j 2^{j} \leq 3^{j}-1$ for all integers $j \geq 1$,

$$
\prod_{i=1}^{j} a_{i} \leq \prod_{i=1}^{j} a_{j}<d^{j} 2^{j(d-j+1)} c^{j^{j-1}} \leq d^{j} 2^{j(d-j+1)} c^{\left(3^{j}-1\right) / 2}
$$

and so for all $k \in[d-j]$,

$$
\prod_{i=1}^{k} a_{j+i}>\frac{C_{j+k}}{d^{j} 2^{j(d-j+1)}} c^{\left(3^{j+k}-1\right) / 2-\left(3^{j}-1\right) / 2} \geq \frac{C_{j+k}}{d^{j} 2^{j(d-j+1)}} c^{3^{j}\left(3^{k}-1\right) / 2}
$$

Let $c^{\prime}=d^{2 j} 2^{2 j(d-j+1)} c^{3^{j}} .\left(\right.$ Note that $c^{\prime} \geq c \cdot \prod_{i=1}^{j} a_{i}^{2}$.) Then for all $k \in[d-j]$,

$$
\begin{aligned}
\prod_{i=1}^{k} a_{j+i} & >\frac{C_{j+k}}{d^{j} 2^{j(d-j+1)}}\left(\frac{c^{\prime}}{d^{2 j} 2^{2 j(d-j+1)}}\right)^{\left(3^{k}-1\right) / 2} \\
& =\frac{\left(d 2^{d}\right)^{\frac{3}{2}\left(3^{j+k-1}-1\right)}}{\left(d 2^{d-j+1}\right)^{j 3^{k}}} c^{\prime\left(3^{k}-1\right) / 2} \\
& \geq\left(d 2^{d}\right)^{\frac{3}{2}\left(3^{j+k-1}-1\right)-j 3^{k}} c^{\prime\left(3^{k}-1\right) / 2} \\
& \geq\left(d 2^{d}\right)^{\frac{3}{2}\left(3^{j+k-1}-1\right)-\left(3^{j}-1\right) 3^{k} / 2} c^{\prime\left(3^{k}-1\right) / 2}
\end{aligned}
$$

because $j \leq\left(3^{j}-1\right) / 2$ for all $j \geq 1$. Continuing the computation,

$$
\begin{aligned}
\prod_{i=1}^{k} a_{j+i} & >\left(d 2^{d}\right)^{\frac{3}{2}\left(3^{j+k-1}-1\right)-\left(3^{j}-1\right) 3^{k} / 2} c^{\prime\left(3^{k}-1\right) / 2} \\
& =\left(d 2^{d}\right)^{\frac{3}{2}\left(3^{j+k-1}-1-3^{j+k-1}+3^{k-1}\right)} c^{\prime\left(3^{k}-1\right) / 2} \\
& =\left(d 2^{d}\right)^{\frac{3}{2}\left(3^{k-1}-1\right)} c^{\prime\left(3^{k}-1\right) / 2} \\
& =C_{k} c^{\left(3^{k}-1\right) / 2}
\end{aligned}
$$

Therefore $\bar{R}_{j}=\left[a_{j+1}, \ldots, a_{d}\right]$ is c^{\prime}-guaranteed by the inductive hypothesis. (It is easy to see that the C_{j} 's are increasing in d, so taking $d^{\prime}=d-j$ causes no problem here.) Since R_{j} is also c-guaranteed by the inductive hypothesis, we may apply Lemma 4.2 to conclude that R is c-guaranteed.

5 Upper bounds on the volume of obstruction grids

Before proceeding, we introduce the following notation. For $d \geq 1$ and any monotone grid $R=\left[a_{1}, \ldots, a_{d}\right]$ where $a_{d}>1$, we let R^{-}denote the monotone
grid obtained from R by subtracting one from a_{j}, where $j \in[d]$ is least such that $a_{j}=a_{d}$. Note that if R is monotone and $R \in \mathcal{O}(c, d)$, then R is c-guaranteed but R^{-}is not c-guaranteed.

The next theorem gives an asymptotic upper bound on the volume $\prod_{i=1}^{d} a_{i}$ of any grid $\left[a_{1}, \ldots, a_{d}\right] \in \mathcal{O}(c, d)$.

Theorem 5.1. For every $d \geq 1$ and every grid $R=\left[a_{1}, \ldots, a_{d}\right] \in \mathcal{O}(c, d)$,

$$
\prod_{i=1}^{d} a_{i}=O\left(c^{\left(3^{d}-1\right) / 2}\right)
$$

The theorem follows immediately from the following lemma:
Lemma 5.2. For every $d \geq 1$, every $c \geq 2$, and every monotone grid $R=$ $\left[a_{1}, \ldots, a_{d}\right] \in \mathcal{O}(c, d)$, there is a set $P \subseteq[d]$ such that

1. $d \in P$,
2. $\prod_{i=1}^{\ell} a_{i}=O\left(c^{\left(3^{\ell}-1\right) / 2}\right)$ for every $\ell \in P$, and
3. For every $k \in[d]$,

$$
a_{k}=O\left(c^{3^{j} \cdot 2^{\ell-j-1}}\right)
$$

where ℓ is the least element of P that is $\geq k$, and j is the biggest element of P that is $<k$ ($j=0$ if there is no such element).
(We call the elements of P pinch points for R.)
Proof. Let $d \geq 1$ and $c \geq 2$ be given, and let $R=\left[a_{1}, \ldots, a_{d}\right] \in \mathcal{O}(c, d)$ be a monotone grid. Then R is c-guaranteed, and thus R_{j} is also c-guaranteed for all $1 \leq j \leq d$. Since $R \in \mathcal{O}(c, d)$, we have that R^{-}is not c-guaranteed, and thus $\varepsilon_{c}\left(R^{-}\right) \geq 1$. This in turn implies that there is some largest $\ell \in[d]$ such that

$$
2^{d-\ell} \frac{c^{2^{\ell-1}}}{a_{\ell}-2} \geq \frac{1}{d}
$$

(Note that the denominator is positive, because $a_{\ell} \geq a_{1} \geq c+1 \geq 3$ since R is c-guaranteed.) Thus,

$$
\begin{equation*}
a_{\ell} \leq d 2^{d-\ell} \cdot c^{2^{\ell-1}}+2 \leq(d+2) 2^{d-\ell} \cdot c^{2^{\ell-1}} \tag{2}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\prod_{i=1}^{\ell} a_{i} \leq\left(a_{\ell}\right)^{\ell} \leq\left((d+2) 2^{d-\ell}\right)^{\ell} \cdot c^{\ell \cdot 2^{\ell-1}} \leq\left((d+2) 2^{d-1}\right)^{d} \cdot c^{\left(3^{\ell}-1\right) / 2} \tag{3}
\end{equation*}
$$

which implies that ℓ satisfies Condition 2 of the lemma. We will make ℓ the least element of P, noticing that Equation (2) and the monotonicity of R imply that a_{k} satisfies Condition 3 of the lemma for all $k \in[\ell]$ (with $j=0$).

If $\ell=d$, then we let $P=\{\ell\}=\{d\}$ and we are done.
Otherwise, $\ell<d$. Note that $R^{-}=R_{\ell} \times\left(\bar{R}_{\ell}\right)^{-}$up to a possible permutation of the coordinates. Recall also that R_{ℓ} is c-guaranteed, but R^{-}is not. It follows from Lemma 4.2 that $\left(\bar{R}_{\ell}\right)^{-}$is not c^{\prime}-guaranteed, where

$$
c^{\prime}:=c \cdot \prod_{i=1}^{\ell}\binom{a_{i}}{2}=O\left(c \cdot\left(\prod_{i=1}^{\ell} a_{i}\right)^{2}\right)
$$

The bound in Equation (3) gives $c^{\prime}=O\left(c^{3^{\ell}}\right)$.
We thus have $\varepsilon_{c^{\prime}}\left(\left(\bar{R}_{\ell}\right)^{-}\right) \geq 1$, and so there is some largest m with $\ell<m \leq d$ such that

$$
2^{d-m} \frac{\left(c^{\prime}\right)^{2^{m-\ell-1}}}{a_{m}-2} \geq \frac{1}{d-\ell}
$$

which gives

$$
\begin{align*}
a_{m} & \leq(d-\ell) 2^{d-m} \cdot\left(c^{\prime}\right)^{2^{m-\ell-1}}+2 \tag{4}\\
& \leq(d-\ell+2) 2^{d-m} \cdot\left(c^{\prime}\right)^{2^{m-\ell-1}} \tag{5}\\
& =O\left(c^{3^{\ell} \cdot 2^{m-\ell-1}}\right) \tag{6}
\end{align*}
$$

For the volume of R_{m}, we get

$$
\begin{aligned}
\prod_{i=1}^{m} a_{i} & =\prod_{i=1}^{\ell} a_{i} \cdot \prod_{i=\ell+1}^{m} a_{i} \\
& \leq\left(\prod_{i=1}^{\ell} a_{i}\right) \cdot\left(a_{m}\right)^{m-\ell} \\
& =O\left(c^{\left(3^{\ell}-1\right) / 2}\right) \cdot O\left(c^{3^{\ell} \cdot(m-\ell) \cdot 2^{m-\ell-1}}\right) \\
& =O\left(c^{\left(3^{\ell}-1\right) / 2} \cdot c^{3^{\ell} \cdot\left(3^{m-\ell}-1\right) / 2}\right) \\
& =O\left(c^{\left(3^{m}-1\right) / 2}\right)
\end{aligned}
$$

We make ℓ and m the two least elements of P, and the last calculation shows that $m \in P$ satisfies Condition 2. Further, since $a_{k} \leq a_{m}$ for all k such that $\ell<k \leq m$, Condition 3 is also satified for all these a_{k} by Equations (4)-(6).

If $m=d$, then we let $P=\{\ell, m\}$ and we are done. Otherwise, we repeat the argument above using m instead of ℓ to obtain an n with $m<n \leq d$ such that ℓ, m, and n being the least three elements of P satisfies Conditions 2 and 3 of the lemma, and so on until we arrive at d, whence we set $P:=\{\ell, m, n, \ldots, d\}$.

The next proposition shows that the bounds in Lemma 5.2 are asymptotically tight.

Proposition 5.3. For $c \geq 2$, there is an infinite sequence $\left\{\mu_{j}(c)\right\}_{j=1}^{\infty}$ of positive integers such that

1. $\mu_{j}(c) \geq 1+2^{\left(1-3^{j-1}\right) / 2} \cdot c^{3^{j-1}}$ for all $j \in \mathbb{Z}^{+}$, and
2. for all $d \geq 1$, the grid $\left[\mu_{1}(c), \ldots, \mu_{d}(c)\right] \in \mathcal{O}(c, d)$ with pinch point set $P=[d]$.

Proof. For all $c \geq 2$, define

$$
\begin{aligned}
\mu_{1}(c) & :=1+c \\
\mu_{2}(c) & :=1+c \cdot\binom{c+1}{2} \\
& \vdots \\
\mu_{j+1}(c) & :=1+c \cdot \prod_{i=1}^{j}\binom{\mu_{i}(c)}{2}, \\
& \vdots
\end{aligned}
$$

Fix $c \geq 2$ and let μ_{j} denote $\mu_{j}(c)$ for short. A routine induction on j shows (11). For the inductive step, noting that $\sum_{i=0}^{j-1} 3^{i}=\left(3^{j}-1\right) / 2$, we have

$$
\begin{aligned}
\mu_{j+1} & =1+c \cdot \prod_{i=1}^{j}\binom{\mu_{i}}{2} \\
& \geq 1+\frac{c}{2^{j}} \prod_{i=1}^{j}\left(\mu_{i}-1\right)^{2} \\
& \geq 1+\frac{c}{2^{j}} \prod_{i=1}^{j} \frac{c^{2 \cdot 3^{i-1}}}{2^{3^{i-1}-1}} \\
& =1+\frac{c^{3^{j}}}{2^{\left(3^{j}-1\right) / 2}}
\end{aligned}
$$

For (2), we use induction on $d \geq 1$ to show separately that

1. $\left[\mu_{1}, \ldots, \mu_{d}\right]$ is c-guaranteed, and
2. $\left[\mu_{1}, \ldots, \mu_{d}\right]$ is not $(c, 2)$-guaranteed (i.e., there is a coloring $\left[\mu_{1}, \ldots, \mu_{d}\right] \rightarrow$ $[c]$ that monocolors exactly one box).

Clearly $\left[\mu_{1}\right]=[1+c]$ is c-guaranteed by the Pigeonhole Principle. Now let $d \geq 2$ and assume that $\left[\mu_{1}, \ldots, \mu_{d-1}\right]$ is c-guaranteed. Then letting $c^{\prime}=c \cdot \prod_{i=1}^{d-1}\binom{\mu_{i}}{2}$, we have $\mu_{d}=1+c^{\prime}$, and hence $\left[\mu_{d}\right]$ is c^{\prime}-guaranteed. But then, $\left[\mu_{1}, \ldots, \mu_{d}\right]$ is c-guaranteed by Lemma 4.2 (letting $j=d-1$).

Now for claim (2). For $d=1$, clearly the coloring $\left[\mu_{1}\right] \rightarrow[c]$ mapping $j \mapsto(j \bmod c)+1$ has exactly one monochromatic 1-dimensional box, namely,
$(1 ; c)=\{1, c+1\}$. Now let $d \geq 2$ and assume claim (2) holds for $d-1$, i.e., there is a coloring $\left[\mu_{1}, \ldots, \mu_{d-1}\right] \rightarrow[c]$ that monocolors exactly one box. We will call such a coloring minimal. This generates exactly $\prod_{i=1}^{d-1}\binom{\mu_{i}}{2}$ many boxes in $\left[\mu_{1}, \ldots, \mu_{d-1}\right]$. For each of these boxes B and for each color s, we can find a minimal coloring that monocolors B with s by permuting the order of the hyperplanes along each axis and by permuting the colors. Thus there are exactly $c^{\prime}=c \cdot \prod_{i=1}^{d-1}\binom{\mu_{i}}{2}$ many distinct minimal colorings. We overlay these c^{\prime} many colorings to obtain a coloring of $\left[\mu_{1}, \ldots, \mu_{d-1}, c^{\prime}\right]$ with no monochromatic d-boxes. We then duplicate the first $(d-1)$-dimensional layer to arrive at a c-coloring of $\left[\mu_{1}, \ldots, \mu_{d-1}, 1+c^{\prime}\right]=\left[\mu_{1}, \ldots, \mu_{d}\right]$. This coloring has only one monocolored d-box: the box corresponding to the duplicated layer of unique monocolored $(d-1)$-boxes. This shows Item (2).

It follows from claim (2) that $\left[\mu_{1}, \ldots, \mu_{d-1}, \mu_{d}-1\right]$ is not c-guaranteed for any $d \geq 1$, since we can remove a single hyperplane from the only monocolored d-box in some minimal coloring of $\left[\mu_{1}, \ldots, \mu_{d-1}, \mu_{d}\right]$ to leave a coloring of [$\mu_{1}, \ldots, \mu_{d-1}, \mu_{d}-1$] without any monochromatic $(d-1)$-boxes. From this it easily follows that $\left[\mu_{1}, \ldots, \mu_{d}\right] \in \mathcal{O}(c, d)$, because $\left[\mu_{1}, \ldots, \mu_{j-1}, \mu_{j}-1\right.$] is not c-guaranteed, and hence $\left[\mu_{1} \ldots, \mu_{j-1}, \mu_{j}-1, \mu_{j+1}, \ldots, \mu_{d}\right]$ is not c-guaranteed, for any $j \in[d]$.

Finally, it is evident that all $j \in[d]$ are pinch points for $\left[\mu_{1}, \ldots, \mu_{d}\right]$. (It is interesting to note that $\left[\mu_{1}, \ldots, \mu_{d}\right]$ is the lexicographically first element of $\mathcal{O}(c, d)$.

6 Upper bound on the size of the obstruction set

It was shown in 4 that $|\mathcal{O}(c, 2)| \leq 2 c^{2}$. We give an asymptotic upper bound for $|\mathcal{O}(c, d)|$ for every fixed $d \geq 3$.

Theorem 6.1. For all $d \geq 3$,

$$
|\mathcal{O}(c, d)|=O\left(c^{\left(17 \cdot 3^{d-3}-1\right) / 2}\right)
$$

Proof. Fix $d \geq 3$. We give an asymptotic upper bound on the number of monotone grids in $\mathcal{O}(c, d)$. The size of $\mathcal{O}(c, d)$ is at most $d!$ times this bound, and so it is asymptotically equivalent. By Lemma 5.2, every grid $R \in \mathcal{O}(c, d)$ has a set P of pinch points. For each set $P \subseteq[d]$ such that $d \in P$, let $\#_{c}(P)$ be the number of monotone grids in $\mathcal{O}(c, d)$ having pinch point set P. There are 2^{d-1} many such P, so an asymptotic bound on $\max \left\{\#_{c}(P) \mid P \subseteq[d] \wedge d \in P\right\}$ gives the same asymptotic bound on $|\mathcal{O}(c, d)|$.

Fix a set $P \subseteq[d]$ such that $d \in P$, and let $P=\left\{\ell_{1}<\ell_{2}<\cdots<\ell_{s}=d\right\}$, where $s=|P|$ and $\ell_{1}, \ldots, \ell_{s}$ are the elements of P in increasing order. For convenience, set $\ell_{0}:=0$. Lemma 5.2 says that for any monotone grid $R=$ $\left[a_{1}, \ldots, a_{d}\right] \in \mathcal{O}(c, d)$ having pinch point set P, for any $b \in[s]$, and for any k
such that $\ell_{b-1}<k \leq \ell_{b}$, we have $a_{k}=O\left(c^{e(b)}\right)$, where

$$
e(b):=3^{\ell_{b-1}} \cdot 2^{\ell_{b}-\ell_{b-1}-1}
$$

To bound $\#_{c}(P)$, we first note that for any choice of $1 \leq a_{1} \leq \cdots \leq a_{d-1}$, there can be at most one value of a_{d} such that $\left[a_{1}, \ldots, a_{d}\right] \in \mathcal{O}(c, d)$, because any two d-dimensional grids that share the first $d-1$ dimensions are comparable in the dominance order \preceq. Thus $\#_{c}(P)$ is bounded by the number of possible combinations of values of a_{1}, \ldots, a_{d-1}. From the bound on each a_{k} above, we therefore have

$$
\begin{aligned}
\#_{c}(P) & \leq\left(\prod_{b=1}^{s-1} \prod_{k=\ell_{b-1}+1}^{\ell_{b}} O\left(c^{e(b)}\right)\right) \cdot \prod_{k=\ell_{s-1}+1}^{d-1} O\left(c^{e(s)}\right) \\
& =O\left(\prod_{b=1}^{s-1}\left(c^{e(b)}\right)^{\ell_{b}-\ell_{b-1}}\right) \cdot O\left(\left(c^{e(s)}\right)^{d-1-\ell_{s-1}}\right) \\
& =O\left(c^{h_{1}+h_{2}}\right)
\end{aligned}
$$

where $h_{2}=e(s)\left(d-1-\ell_{s-1}\right)$ and

$$
\begin{aligned}
h_{1} & =\sum_{b=1}^{s-1} e(b)\left(\ell_{b}-\ell_{b-1}\right) \\
& =\sum_{b=1}^{s-1} 3^{\ell_{b-1}} \cdot 2^{\ell_{b}-\ell_{b-1}-1} \cdot\left(\ell_{b}-\ell_{b-1}\right) \\
& \leq \sum_{b=1}^{s-1} 3^{\ell_{b-1}} \cdot \frac{3^{\ell_{b}-\ell_{b-1}}-1}{2} \\
& =\frac{1}{2} \sum_{b=1}^{s-1}\left(3^{\ell_{b}}-3^{\ell_{b-1}}\right) \\
& =\frac{3^{m}-1}{2}
\end{aligned}
$$

where $m=\ell_{s-1}$. We also have

$$
\begin{aligned}
h_{2} & =3^{\ell_{s-1}} \cdot 2^{d-\ell_{s-1}-1} \cdot\left(d-1-\ell_{s-1}\right) \\
& =3^{m} \cdot 2^{d-m-1} \cdot(d-m-1)
\end{aligned}
$$

whence

$$
h_{1}+h_{2}=\frac{3^{m}-1}{2}+3^{m} \cdot 2^{d-m-1} \cdot(d-m-1) .
$$

So our bound on the exponent of c only depends on the value of m, which satisfies $0 \leq m<d$. It is more convenient to express $h_{1}+h_{2}$ in terms of $n:=d-m$, where $n \in[d]$:

$$
h_{1}+h_{2}=\frac{3^{d-n}-1}{2}+3^{d-n} \cdot 2^{n-1} \cdot(n-1)
$$

$$
=\frac{3^{d}}{2} \cdot \frac{1+2^{n}(n-1)}{3^{n}}-\frac{1}{2} .
$$

It is easy to check that $\left(1+2^{n}(n-1)\right) / 3^{n}$ is greatest (and thus $h_{1}+h_{2}$ is greatest) when $n=3$. It follows that

$$
\begin{aligned}
h_{1}+h_{2} & \leq \frac{3^{d}}{2} \cdot \frac{1+2^{3}(3-1)}{3^{3}}-\frac{1}{2} \\
& =\frac{17 \cdot 3^{d-3}-1}{2}
\end{aligned}
$$

which proves the theorem.
The first few values $\left(17 \cdot 3^{d-3}-1\right) / 2$ are given in the Figure 1

d	$\left(17 \cdot 3^{d-3}-1\right) / 2$
3	8
4	25
5	76
6	229

Figure 1: Table of upper bounds on e so that $|\mathcal{O}(c, d)|=O\left(c^{e}\right)$ for small d.

7 Three Dimensions and Two Colors

The following graph (Figure 2 generated using the Jmol module in SAGE) and table (Figure (3) display upper bounds for the smallest a_{3} so that $\left[a_{1}, a_{2}, a_{3}\right.$] is 2-guaranteed. All three graphical axes run from 3 to 130 ; the table includes only $3 \leq a_{1} \leq 12$ and $3 \leq a_{2} \leq 12$. We believe these values to be very close to the truth; indeed, we have matching lower bounds in many cases, and lower bounds that differ from the upper bounds by at most 2 in many more cases.

A few different methods were applied to obtain these bounds. First, the values Δ_{j}, as in Section 3, were computed, and the least a_{3} so that $\Delta_{3}>0$ was recorded. In fact, this idea was improved slightly by applying the observation that, if some grid is $(2, t)$-guaranteed, then it is $(2,\lceil t\rceil)$-guaranteed. In some cases, this increases the value of Δ_{j}. Second, we used the simple observations that c-colorability is independent of the order of the a_{i}, and that $R \preceq R^{\prime}$ when R is c-guaranteed implies that R^{\prime} is c-guaranteed. Third, we applied the following lemma.

Lemma 7.1. If the grid $R=\left[a_{1}, \ldots, a_{d}\right]$ is (c, t)-guaranteed, then $R \times[\lfloor c M / t\rfloor+$ 1] is c-guaranteed, where $M=\prod_{j=1}^{d}\binom{a_{j}}{2}$

Proof. Note that $K=\lfloor c M / t\rfloor+1>c M / t$ and is integral. If we think of $R \times[K]$ as K copies of R, then any c-coloring of $R \times[K]$ restricts to $K c$ colorings of R. Since R is (c, t)-guaranteed, each of these c-colorings gives rise to

Figure 2: Graph of upper bounds on a_{3} so that $\left[a_{1}, a_{2}, a_{3}\right]$ is 2-guaranteed.

	3	4	5	6	7	8	9	10	11	12
3					127	85	73	68	67	67
4					127	85	73	68	67	67
5			101	76	53	47	46	46	40	37
6			76	76	53	47	46	46	40	37
7	127	127	53	53	53	46	40	37	34	33
8	85	85	47	47	46	45	40	37	34	33
9	73	73	46	46	40	40	37	34	31	30
10	68	68	46	46	37	37	34	33	31	30
11	67	67	40	40	34	34	31	31	30	28
12	67	67	37	37	33	33	30	30	28	28

Figure 3: Table of bounds on a_{3} so that $\left[a_{1}, a_{2}, a_{3}\right]$ is 2-guaranteed.
t monochromatic boxes. Hence, in K colorings, there are at least $t(\lfloor c M / t\rfloor+1)>$ $c M$ monochromatic boxes. Since there are only M total boxes in each copy of R, and any monochromatic box can only be colored in c different ways, there must be two identical boxes (in two different copies of R) which are monochromatic and have the same color. This is precisely a monochromatic $(d+1)$-dimensional box in $R \times[K]$.

Therefore, in order to obtain upper bounds on $\left[a_{3}\right]$ in the above table, we need to know the greatest t for which $\left[a_{1}\right] \times\left[a_{2}\right]$ is $(2, t)$-guaranteed. To that end, we define the following matrix:

Definition 7.2. Let M_{r} be the $2^{r} \times 2^{r}$ integer matrix whose rows and columns are indexed by all maps $f_{j}:[r] \rightarrow[2], 0 \leq j<2^{r}$. The (i, j)-entry of M_{r} is defined to be

$$
\binom{\left|f_{i}^{-1}(1) \cap f_{j}^{-1}(1)\right|}{2}+\binom{\left|f_{i}^{-1}(2) \cap f_{j}^{-1}(2)\right|}{2}
$$

Then define the quadratic form $Q_{r}: \mathbb{R}^{2^{r}} \rightarrow \mathbb{R}$ by $Q_{r}(\mathbf{v})=\mathbf{v}^{*} M_{r} \mathbf{v}$. Let $\delta_{r}=$ $\left(M_{r}(1,1), \ldots, M_{r}\left(2^{r}, 2^{r}\right)\right)$, the diagonal of M_{r}.

Proposition 7.3. Let t be the least value of $Q_{r}(\mathbf{v})-\mathbf{v} \cdot \delta_{r}$ over all nonnegative integer vectors $\mathbf{v} \in \mathbb{Z}^{2^{r}}$ with $\mathbf{v} \cdot \mathbb{1}=s$. Then $[r] \times[s]$ is (c, t)-guaranteed, and t is the minimum value so that this is the case.

Proof. Given a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{r}\right)$ satisfying the hypotheses, consider the $r \times s$ matrix A with v_{j} columns of type f_{j} for each $j \in[r]$. (We may identify f_{j} with a column vector in [2] ${ }^{r}$ in the natural way.) It is easy to see that $Q_{r}(\mathbf{v})-\delta_{r}$ exactly counts twice the number of monochromatic rectangles in A, thought of as a 2 -coloring of the grid $[r] \times[s]$.

We applied standard quadratic integer programming tools (XPress-MP) to minimize the appropriate programs. Fortunately, for the cases considered, the matrix M_{r} was positive semidefinite, meaning that the solver could use polynomial time convex programming techniques during the interior point search. We conjecture that this is always the case.

Conjecture 7.4. M_{r} is positive semidefinite for $r \geq 3$.
In particular, for $r=3$, the eigenvalues of M_{r} are 0,1 , and 4 , with multiplicities 2 , 4, and 2, respectively. For $4 \leq r \leq 9$, the eigenvalues are $0,2^{r-2}$, $2^{r-3}(r-2), 2^{r-2}(r-1)$, and $2^{r-4}\left(r^{2}-r+2\right)$, with multiplicities $2^{r}-r(r+1) / 2$, $r(r-1) / 2-1, r-1,1$, and 1 , respectively. We conjecture that this description of the spectrum is valid for all $r \geq 4$.

References

[1] G. Agnarsson, B. Doerr, T. Schoen, Coloring t-dimensional m-boxes. Discrete Math. 226 (2001), no. 1-3, 21-33.
[2] M. Axenovich, J. Manske, On monochromatic subsets of a rectangular grid, preprint.
[3] N. Alon, J. H. Spencer, The probabilistic method. Third edition. WileyInterscience (John Wiley \& Sons), New York, 2008.
[4] S. Fenner, W. Gasarch, C. Glover, S. Purewal, Rectangle Free Coloring of Grids, preprint.
[5] H. Furstenberg, Y. Katznelson, An ergodic Szemerdi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291.
[6] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey theory. Second edition. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1990.
[7] Y. Kohayakawa, V. Rödl, J. Skokan, Hypergraphs, quasi-randomness, and conditions for regularity. J. Combin. Theory Ser. A 97 (2002), no. 2, 307352.
[8] J. Solymosi, A note on a question of Erdős and Graham. Combin. Probab. Comput. 13 (2004), no. 2, 263-267.
[9] W. T. Trotter, Combinatorics and partially ordered sets. Dimension theory. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 1992.

[^0]: *Partially supported by NSF grant CCF-05-15269

