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Abstract

Let d = d1 ≤ d2 ≤ · · · ≤ dn be a non-decreasing sequence of n positive integers,
whose sum is even. Let Gn,d denote the set of graphs with vertex set [n] = {1, 2, . . . , n}
in which the degree of vertex i is di. Let Gn,d be chosen uniformly at random from
Gn,d. It will be apparent from Section 4.3 that the sequences we are considering will
all be graphic. We give a condition on d under which we can show that whp Gn,d

is Hamiltonian. This condition is satisfied by graphs with exponential tails as well
those with power law tails.

1 Introduction

Let d = d1 ≤ d2 ≤ · · · ≤ dn be a fixed non-decreasing sequence of n positive integers, whose
sum is even. Let Gn,d denote the set of graphs with vertex set V = [n] = {1, 2, . . . , n} in
which the degree of vertex i is di. Let Gn,d be chosen uniformly at random from Gn,d. It
will be apparant from Section 4.3 that the sequences we are considering will all be graphic.
When di = r for i ∈ [n] then this models a random r-regular graph Gn,r and there is a
large literature on this subject. We refer the reader to the survey by Wormald [15] for an
excellent summary. By now we know much about the structure of random regular graphs.

For general d, less is known. In many, but not all, cases we can estimate |Gn,d|; see Bender
and Canfield [2], McKay and Wormald [9, 10]. We have the configuration model to study
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them, Bollobás [3]. We know something of their connectivity properties, Molloy and Reed
[12, 13] and Cooper [5]. (See also Cooper and Frieze [6] for the connectivity properties of
random digraphs with a fixed degree sequence). They have been used in the context of
massive graph models of telephone networks and the WWW, Aiello, Chung and Lu [1].

In a previous paper [7] we studied the chromatic number of Gn,d. Let

Dk = dn + dn−1 + · · ·+ dn−k+1

be the sum of the k largest degrees.

Let d denote the average degree and let

M1 = Dn = dn and M2 =

n∑

i=1

di(di − 1) ≤ ∆M1 where ∆ = dn.

We proved the following:

Theorem 1 [7]

1. Suppose that there exist constants 1/2 < α < 1, ǫ, K > 0 and ω = ω(n) → ∞ such
that

(a)
Dt ≤ Kdn(t/n)α (1)

for t ≤ ǫn.

(b)
∆5 ≤M2/ω. (2)

Then there exists b1 dependent only on α, ǫ,K such that whp1

χ(Gn,d) ≤ b1
d

ln d
.

2. Suppose only that ∆4 ≤ M1/ω (a weaker condition than 1(b)), then there exists b2
such that whp

χ(Gn,d) ≥ b2
d

ln d
.

Condition 1(b) is required for the use the results of [11]. We will make the same assumption
when we deal with Hamiltonicity. It may be possible to prove our results under the less
stringent conditions of [10], but there are difficulties, as will be pointed to later.

1A sequence of events En, n ≥ 0 is said to occur with high probability (whp) if limn→∞ Pr(En) = 1.
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It is natural to ask whether there many types of degree sequences that satisfy the conditions
of the first part of the theorem. It is easy to see that regular graphs are included. In [7]
we showed that degree sequences satisfying (1) are important. We considered those with
power law and exponential tails and showed that they satisfied the conditions of Theorem
1:

Power Law Tails: For integer ℓ ≥ 1 we let νℓ denote the number of vertices of degree
ℓ. Our assumption is that there are some constants A > 0 and ζ > 3 such that for
ℓ ≥ (A/ǫ)1/(ζ−1)

νℓ ≤






0 ℓ ≤ 1

⌊Adℓ−ζn⌋ 2 ≤ ℓ ≤ n1/5/ lnn

0 ℓ > n1/5/ lnn

.

Here we have α = ζ−2
ζ−1

> 1/2.

Exponential Tails: For some constants A > 0 and 0 < ǫ ≪ ζ < 1 we have for ℓ ≥
⌊log1/ζ(Ad/ǫ)⌋

νℓ ≤ Adζℓn.

Note that whp the degree sequence of Gn,p, p = c/n, c constant, satisfies this condition.

In this paper we study the Hamiltonicity of Gn,d. We prove the following:

Theorem 2 Suppose that there exist constants 1/2 < α < 1, ǫ, K > 0 and ω = ω(n)→∞
such that (1) and (2) hold. Suppose also that

A1 d1 ≥ K1d
1−1/4α for sufficiently large K1.

A2 d ≤ nγ, where γ is constant and γ < 2α−1
2α+1

.

A3 d is sufficiently large.

Then Gn,d is Hamiltonian whp.

2 Configurations

We will work initially in the configuration model and then show how our result can be
justified in the uniform model, i.e. Gn,d. Let W = [nd] be our set of points and let
Wi = [d1 + · · ·+ di−1 + 1, d1 + · · ·+ di], i ∈ [n], partition W . The function φ : W → [n] is
defined by w ∈ Wφ(w). Given a pairing F (i.e. a partition of W into m = dn/2 pairs) we
obtain a (multi-)graph GF with vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F .
Choosing a pairing F uniformly at random from among all possible pairings of the points
of W produces a random (multi-)graph GF .
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This model is valuable because of the following easily proven fact: Suppose G ∈ Gn,d. Then

Pr(GF = G | GF is simple) =
1

|Gn,d|
.

It follows that if G is chosen randomly from Gn,d, then for any graph property P

Pr(G ∈ P) ≤
Pr(GF ∈ P)

Pr(GF is simple)
. (3)

In the next section it will be useful to consider that F is constructed by taking a random
permutation ψ of W and then taking F = {ej = {ψ(2j − 1), ψ(2j)} : j = 1, 2, . . . , m}. We
can then for example use the following version of the Azuma-Hoeffding concentration in-
equality. Let random variable Z = Z(π) be such that if π′ is obtained from π by a single
inversion then |Z(π)− Z(π′)| ≤ ρ. Then

Pr(|Z −E(Z)| ≥ t) ≤ 2e−t2/mρ2

. (4)

For a proof, see for example Lemma 11 of [8].

3 Non-Hamiltonian Degree Sequences

We observe next that there are simple degree sequences for which Gn,d is non-Hamiltonian
whp.

Let ν = ⌈2n/3⌉ and let d1 = d2 = · · · = dν = h and dν+1 = dν+2 = · · · = dn = D for
some h,D independent of n. Let d = (νh + (n − ν)D)/n be the average degree. In the
configuration model we have Pr(GF is simple) = Ω(1).

Let F be chosen randomly. Suppose that D ≫ h. Let V1 = [ν] and V2 = [n] \ V1. Next let

Z1 = | {j ∈ V1 : j only has neighbours in V2} |.

Now

E(Z1) = ν
((n− ν)D)((n− ν)D − 1) · · · ((n− ν)D − h+ 1)

(dn− 1)(dn− 3) · · · (dn− 2h+ 1)
∼

2

3

(
D

D + 2h

)h

n.

An application of (4) can be used to show that Z1 ∼
2
3

(
D

D+2h

)h
n whp. Now choose D, h

such that
(

D
D+2h

)h
> 1

2
. Note that D = Lh2 for large L will suffice.

Then whp GF contains an independent subset inside V1 with more than |V2| vertices.
Clearly GF is non-Hamiltonian in this case.

It is important to see how the above degree sequence violates the conditions of Theorem 2.
We can choose K, ǫ, α such that (1) and (2) hold, but we will find that d1 = h is too small
to satisfy Condition A1 of the theorem when d is large.
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4 Proof of Theorem 2

We randomly and independently colour the elements of W Red, Blue and Yellow, each
with probability 1/3. We use this colouring of W to induce a colouring of the edges
of GF . The Red edges will form an expander. The Blue edges will be used to ensure
connectivity and the Yellow edges will be used to complete a Hamilton cycle. Let WR

be the set of Red elements and let F̂R = {e ∈ F : e ∩WR 6= ∅} be the set of edges that
are immediately coloured Red i.e. the edges for which at least one of its configuration
points is Red. Let ĜR = (V, F̂R) be the subgraph of GF induced by F̂R. For S ⊆ F and

i ∈ [n] let d(i, S) = | {e ∈ S : e ∩Wi 6= ∅} |. Then let V0 =
{
i : d(i, F̂R) ≤ d1/2

}
and let

FR = F̂R ∪ {e ∈ F : e ∩ V0 6= ∅} be the final set of Red GF edges. Let GR = (V, FR) be the
subgraph of GF induced by FR. Note that GR has minimum degree at least d1/2.

Fix a configuration F . We first observe that with Bin(n, p) being the binomially distributed
random variable with parameters n and p,

Pr(i ∈ V0 | F ) ≤ Pr

(
Bin

(
di,

4

9
+

di

M1 − di

)
≥
di

2

)
,

where the di

M1−di
term accounts for the degree loss due to loops. Thus by Chernoff bounds,

E(|V0| | F ) ≤
n∑

i=1

e−di/200.

Now changing the colour of an element of W changes |V0| by at most 2 and so it follows
from Azuma’s inequality that for any t > 0,

Pr

(
|V0| ≥

n∑

i=1

e−di/200 + t

∣∣∣∣F
)
≤ e−t2/2dn.

So we see that whp,
|V0| ≤ n0 = ne−d1/200 + (dn logn)1/2. (5)

4.1 Expansion of GR

For X ⊆ F and S ⊆ [n] let NX(S) be the set of vertices which are not in S, but have a
GX neighbour in S where GX = ([n], X). We abbreviate NFR

(S) to NR(S). Our aim is to
prove

Lemma 1
Whp |NR(S)| ≥ 2|S| for all S ⊆ [n], |S| ≤ s1 (6)
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where
s1

n
= min

{(
d1

32dK2e1+20/d1

)2α−1−20/d1

, (2K)−1/α, ǫ

}

. (7)

At this point we remark that if K1 is sufficiently large then Condition A1 of Theorem 2
implies

s2
1d

2
1 ≥ 2000dn2. (8)

This inequality is enough to verify (17) below.

Proof
Case 1: |S| ≤ s0 where

s0 = (12dK2e1+20/d1)−1/(2α−1−20/d1)n.

Let ES be the event that S contains at least d1|S|/20 edges in GF . Let dS =
∑

i∈S di. Then

Pr




⋃

|S|≤s0

ES



 ≤
s0∑

s=3

∑

|S|=s

(
dS

d1s/10

)
(d1s/10)!

(d1s/20)!2d1s/20

(
1

dn− d1s/10

)d1s/20

(9)

≤
s0∑

s=3

∑

|S|=s

d
d1s/10
S

(d1s/20)!2d1s/20

(
1

dn− d1s/10

)d1s/20

≤
s0∑

s=3

∑

|S|=s

(
d2

Se

d1s/10
×

1

dn− d1s/10

)d1s/20

≤
s0∑

s=3

(
n

s

)(
12K2d2n2(s/n)2αe

d1sdn

)d1s/20

≤
s0∑

s=3

(( s
n

)2α−1−20/d1 12dK2e1+20/d1

d1

)d1s/20

= o(1). (10)

Assume that EX does not occur for |X| ≤ s0. GR is a subgraph of GF and so we can
assume the corresponding event does not happen in GR. Now suppose that |S| ≤ s0/3 and
|T | < 2|S| where T = NR(S). Let p, q be the number of Red GF edges contained in S and
from S to T respectively. Then 2p+ q is equal to the total Red degree of S. Thus,

2p+ q ≥ d1|S|/2 and p ≤ d1|S|/20. (11)

But this implies that p+ q ≥ 9d1|S|/20 > d1|S ∪ T |/20, a contradiction.

Remark 1 Suppose that we delete a set of edges with no vertex being incident to more
than 20 and we add a set of edges with no vertex being incident to more than 25 of these.
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Then (11) would become 2p+ q ≥ (d1−40)|S|/2 and p ≤ (d1 +500)|S|/20. But this implies
that p+ q ≥ (9d1− 900)|S|/20 > (d1 + 500)|S ∪ T |/20, and we get the same contradiction.
This remark will be used in translating our result from configurations to Gn,d. We will use
a switching argument that whp involves the deletion (and addition) of o(s0) edges.

Case 2: s0/3 ≤ |S| ≤ s1.
Note first that d1 ≫ log d by assumption and we can then see from Condition A2 of Theorem
2 that |V0| ≤ n0 = o(s0). We will assume therefore from now on that s0/3 ≥ 100|V0|.

Fix sets S, T with |T | = 2|S| = 2s and suppose that NR(S) ⊆ T . Now |V0| ≤ |S|/100 and

so if d̂S denotes the total degree of S in ĜR then d̂S ≥ 99d1s/200.

Let p, q be as above, but defined with respect to ĜR. At this point we remark that dS ≤
dn/2, which follows from (1) and the second term in the expression (7) for s1.

The probability S contains p edges of ĜR and there are q edges of ĜR from S to T is at
most

(12)(
dS

2p

)
(2p)!

p!2p

(
1

dn− 2p+ 1

)p(
Kdn(2s/n)α

dn− 2p

)q

≤
2(dn)2p+q(K(s/n)α)2p

p!2p(dn− 2p)p+q
(K(2s/n)α)q

≤ (K(s/n)α)
bdS2(1+α)q

(
dne

p

)p

≤ (K(s/n)α)
bdS2(1+α)q

(
2dne

d̂S

)bdS/2

≤

(( s
n

)2α−1 32K2de

d1

)bdS/2

.

Explanation for (12): We choose 2p members of W to make up the ĜR edges of S

in at most
(

dS

2p

)
ways. We choose a partition of these points into p pairs in (2p)!

p!2p ways.

The quantity 1/(dn− 2p + 1)p bounds the probability that these pairs exist in ĜR. Then
(dT/(dn − 2p))q bounds the probability that the remaining q points are paired in T . We
use (1) to bound dT . We use 2p+ q ≤ dS ≤ dn/2 to simplify the calculations.

So the probability that there exists such a pair S, T is at most

∑

p,q

s1∑

s=s0/3

(
n

s

)(
n

2s

)(( s
n

)2α−1 32K2de

d1

)d1s/5

(13)

≤ d2n2

s1∑

s=s0/3

(( s
n

)2α−1−20/d1 32K2de1+20/d1

d1

)d1s/5

= o(1).
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2

Remark 2 Replacing
(

n
2s

)
by
(

n
2.001s

)
in (13) allows us to claim that whp |NR(S)| ≥ 2|S|

in Case 2, even after deleting o(s0) edges. More precisely, the sum in (13) will evaluate
to o(1). Thus we see that whp |NR(S)| ≥ 2.001|S| for all s0/3 ≤ |S| ≤ s1. Then after
the deletion of o(s0) edges we will still have |NR(S)| ≥ 2|S| for all s0/3 ≤ |S| ≤ s1. This
remark will be used in translating our result from configurations to Gn,d. We will use a
switching argument that whp involves the deletion (and addition) of o(s0) edges.

Going back to our construction of GR, let F̂B denote the set of pairs {v, w} ∈ F in which v

and w are both coloured Blue and let FB =
{
e = {v, w} ∈ F̂B : φ(v), φ(w) /∈ V0

}
where φ

is defined in Section 2. Let WB =
⋃

e∈FB
e and VB = φ(WB) and note that FB is a random

pairing of WB. Now let

V1 = {i ∈ [n] : d(i, FB) ≤ d1/10} ⊆ V0 ∪NF (V0) ∪
{
i ∈ [n] : d(i, F̂B) ≤ d1/10

}
.

Arguing as for (5) we have that whp

|NF (V0)| ≤ nd1e
−d1/200 + (dn logn)1/2 and |

{
i ∈ [n] : d(i, F̂B) ≤ d1/10

}
| ≤ ne−d1/1800,

in which case we can assume that

|V1| ≤ 2nd1e
−d1/200 + 2(dn logn)1/2 ≤ s1. (14)

Definition 1 A graph G = (V,E) is called a (k, c)-expander if |N(U)| ≥ c|U | for every
subset U ⊆ V (G) of cardinality |U | ≤ k. (Here N(S) is the set of vertices which are not in
S, but have a neighbour in S).

We have shown that whp GR is an (s1, 2)-expander. Thus whp each component of GR has
size at least 3s1. We can now show that adding the extra edges FB will whp connect these
components and thus show that GRB = GR +FB is connected whp. We will need to prove
just a little more. Indeed, let C1, C2, . . . , Cρ, ρ ≤ n/3s1 be the components of GR. We see
from (14) that if C ′

i = Ci \ V1 then |C ′
i| ≥ 2s1 for i = 1, 2, . . . , ρ. If x ∈WB and φ(w) ∈ C ′

i

then the probability it is paired with y ∈ WB, φ(y) ∈ Cj is at least s1d1−5t
5dn

given that we
have made t pairings of x ∈ WB. Thus by considering the first s1d1/10 such pairings, we
see that |FB ∩ (Ci × Cj)| dominates Bin(s1d1/10, s1d1/10dn). Thus by a Chernoff bound,

Pr(GRB is not connected) ≤

Pr

(
∃1 ≤ i < j ≤ ρ : |FB ∩ (Ci × Cj)| ≤

s2
1d

2
1

200dn

)
≤

n2

9s2
1

exp

{
−

s2
1d

2
1

800dn

}
= o(1). (15)
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4.2 Pósa’s Lemma and its consequences

Definition 2 Let G = (V,E) be a non-Hamiltonian graph with a longest path of length
ℓ. A pair (u, v) 6∈ E(G) is called a hole if adding (u, v) to G creates a graph G′ which is
Hamiltonian or contains a path longer than ℓ.

Lemma 2 Let G be a non-Hamiltonian connected (k, 2)-expander. For every longest path
of G there is a set A of size k and sets Ba, a ∈ A, each of size k such that (a, b) is a hole
for each b ∈ Ba.

Proof Let P = (v0, . . . , vk) be a longest path in graph G. A Pósa rotation of P [14]
with v0 fixed gives another longest path P ′ = (v0, . . . vivk . . . vi+1) created by adding edge
(vk, vi) and deleting edge (vi, vi+1). Let A = ENDG(v0, P ) be the set of endpoints obtained
by a sequence of Pósa rotations starting with P , keeping v0 fixed and using an edge (vk, vi)
of G.

Each vertex a ∈ A can then be used as the initial vertex of another set of longest paths
whose endpoint set is Ba = ENDG(vj , P ), this time using a as the fixed vertex, but again
only adding edges from G.

The Pósa condition (see, e.g., [4], Ch.8.2)

|N(ENDG(v, P ))| ≤ 2|ENDG(v, P )| − 1

for v ∈ ENDG(P ) together with the fact that G is a (k, 2)-expander implies that
|ENDG(v, P )| > k. The connectivity of G implies that closing a longest path to a cycle
either creates a Hamilton cycle or creates a longer path. For every v ∈ ENDG(P ) and for
every u ∈ ENDG(v, P ), a pair (u, v) is a hole. 2

Going back to our construction of F̂B, let F̂Y denote the set of pairs {v, w} ∈ F in which v

and w are coloured Yellow and let FY =
{
e = {v, w} ∈ F̂Y : φ(v), φ(w) /∈ V0

}
. Let WY =

⋃
e∈FY

e and VY = φ(WY ) and note that FY is a random pairing of WY . Now let

V2 = {i ∈ [n] : d(i, FY ) ≤ d1/10} .

Note that
V2 ⊆ V0 ∪NF (V0) ∪

{
i ∈ [n] : d(i, F̂Y ) ≤ d1/10

}
.

Arguing as for (5) we have that whp

|V2| ≤ 2nd1e
−d1/200 + 2n3/4 ≤ s1/2. (16)

Suppose thatGRB is not Hamiltonian. We start with a longest path P of GRB and construct
A,Ba, a ∈ A as in Lemma 2 using only the edges of GRB. Now choose a ∈ A \ V2 and
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one by one expose the FY pairings involving Wa. There are at least d1/10 (Yellow,Yellow)
points to be paired and the probability of a pairing with a point in Wb, b ∈ Ba \ V2 is at

least pt = s1d1/20−2t−1
dn−2t−1

= s1d1−40t−10
20dn−40t−20

, given t previous attempts at such a pairing. If there
is a pairing then we add the corresponding edge e and either complete a Hamilton cycle or
find a longer path P ′ in GRB + e.

We can then repeat this process with P ′. We claim that whp we can continue this process
until we have added enough Yellow edges to create a Hamilton cycle. To see this we couple
the process with a sequence of Bernoulli trials where the probability of success is pt. It is
sufficient to show that whp there will be at least n successes before we make t1 = s1d1/80
trials. But t ≤ t1 implies pt ≥

s1d1−40
40dn−s1d−1−40

and so the expected number of successes in
the first t1 trials is at least

t1(s1d1 − 40)

40dn− s1d1 − 40
n ≥ 2n, see (8). (17)

We can therefore claim that whp there are at least 3n/2 successes in the first t1 trials and
our claim follows.

This shows that GF is Hamiltonian whp. We now translate the result to Gn,d.

4.3 From configurations to graphs

It is at this point that we appeal to some results from McKay and Wormald [11]. Where
possible, we will use the terminology and notation of that paper. A loop of a pairing F is a
pair {u, v} such that φ(u) = φ(v). A double pair of F is a pair of pairs {u1, v1} , {u2, v2} ∈
F such that φ(u1) = φ(u2) and φ(v1) = φ(v2). A double loop of F is a pair of pairs
{u1, v1} , {u2, v2} such that φ(u1) = φ(v1) = φ(u2) = φ(v2). A triple pair is a triple of pairs
{ui, vi} , i = 1, 2, 3 such that φ(u1) = φ(u2) = φ(u3) and φ(v1) = φ(v2) = φ(v3).

Condition (b) of Theorem 1 has played no part as yet. We do however need it to apply
the results of [11]. So, in the lemmas that follow, we will assume that Condition (b) of
Theorem 1 holds.

Lemma 3 (Lemma 2 of [11])
The probability that F contains at least one triple pair is O(∆2M2

2 /M
3
1 ) = o(1) and the

probability of at least one double loop is O(∆2M2/M
2
1 ) = o(1).

Let now l denote the number of loops and r denote the number of double pairs in F .

Lemma 4 (Lemma 3 of [11])
If λ(n)→∞ then whp

l ≤ 2∆ + λ and r ≤ ∆2 + λ. (18)
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p2 p3

p5p6

p4

p2 p3

p1
p4

p5p6

p1

Figure 1:

We define the following two operations on a pairing: If φ(u) = i then we say that u is in
cell i.

I l-switching.

Take pairs {p1, p6} , {p2, p3} , {p4, p5} where {p2, p3} is a loop, and p1, . . . , p6 are in five
different cells. Replace these pairs by {p1, p2} , {p3, p4} , {p5, p6}. In this operation,
none of the pairs created or destroyed is permitted to be part of a double pair. (See
Figure 1).

II r-switching.

Take pairs {p1, p5} , {p2, p6} , {p3, p7} , {p4, p8} where φ(p2) = φ(p3) and φ(p6) = φ(p7),
but the cells containing p1, p2, p4, p5, p6, p8 are all distinct. Replace these pairs by
{p1, p2} , {p3, p4} , {p5, p6} , {p7, p8}. In this operation, none of the pairs created or
destroyed (other than the pairs {p2, p6} , {p3, p7}) is permitted to be part of a multiple
pair. (See Figure 2).

A forward l-switching is an l-switching as described, and a backward l-switching is the
reverse operation. We use the same convention for r-switchings. Note that a forward l-
switching always reduces the number of loops by one and does not create or destroy double
pairs. Similarly, a forward r-switching reduces the number of double pairs by one and
neither creates nor destroys loops.
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p1 p5

p6

p7

p8p4

p3

p2

p1

p2

p3

p4 p8

p7

p6

p5

Figure 2:

Now let Cl,r denote the set of pairings F with l loops, r double pairs and no triple pairs or
double loops.

Lemma 5 (Lemma 4 of [11])
Denote an operation taking an element of Ci,j to an element Ck,l by Ci,j → Ck,l. For each of
the following operations, we bound the number, m, of ways of applying the operation to a
fixed F .

(1) Forward l-switching Cl,r → Cl−1,r:

2lM2
1 ≥ m ≥ 2lM2

1

(
1−O

(
∆2 + l + r

M1

))
.

(2) Backward l-switching Cl−1,r → Cl,r:

M1M2 ≥ m ≥M1M2

(
1−

∆(6(l + 2r) + ∆l)

M2
−

2∆(∆ + 2)

M1

)
.

(3) Forward r-switching C0,r → C0,r−1:

4rM2
1 ≥ m ≥ 4rM2

1

(
1− O

(
∆2 + r

M1

))
.

(4) Backward r-switching C0,r−1 → C0,r:

M2
2 ≥ m ≥M2

2

(
1−

∆(16r + 9∆ + 3 + ∆2)

M2

)
.

12



Now consider the following algorithm for generating a member of Gn,d:

1. Generate a random pairing F .

2. If there is a double loop or a triple pair, output ⊥ – construed as failure.

3. If the number of loops l ≥ 2∆ + log n or the number of double pairs r ≥ ∆2 + logn,
output ⊥ – construed as failure.

4. F0 ← F .

5. For i = 1 to l choose a random forward l-switching on Fi−1, creating Fi ∈ Cl−i,r.

6. For i = l + 1 to l + r choose a random forward r-switching on Fi−1, creating Fi ∈
C0,r−(i−l).

7. Output G∗ = GFl+r
∈ Gn,d.

For each l, r satisfying (18), with λ = logn, and G ∈ Gn,d, there are by Lemma 5(2),(4)

(M1M2)
lM2r

2

(
1 +O

(
∆l(∆l + r)

M2
+

∆2l

M1
+

∆r(∆2 + r)

M2

))

sequences of switchings which yield G. Each of these has probability

((2M2
1 )ll!(4M2

1 )rr!)−1

(
1 +O

(
l(∆2 + l + r)

M1

+
r(∆2 + r)

M1

))

of being followed by the algorithm, given l, r.

Thus if Condition 1(b) holds, then whp the algorithm outputs a graph in Gn,d and

Pr(G∗ = G) = (1 + o(1))

2∆+log n∑

l=0

∆2+log n∑

r=0

M l
1M

2r+l
2

2l+2rM
2(l+r)
1 l!r!

Pr(l loops, r double pairs)

and so for G1, G2 ∈ Gn,d

Pr(G∗ = G1) = (1 + o(1))Pr(G∗ = G2).

Given this, we only have to show that whp G∗ is Hamiltonian.

Let H1 be the graph consisting of those edges of GF that are deleted in going from GF to
G∗.

Lemma 6 Whp H1 has at most 5∆2 = o(n) edges and has maximum degree at most 19.

13



Proof The fact that H1 has at most 5∆2 edges whp follows immediately from Lemma
4 and from the fact that each switching deletes at most 4 edges. Now every edge of F at
distance ≥ 2 from the loop or double edge can be used as one of the two edges destroyed
by the two types of switching. Thus vertex i has probability

O

(
di

M1 −∆2

)
= O

(
∆

M1

)

of being on an H1-edge created by any switching, regardless of the history of the switchings
to this point. So if H ′

1 is the subgraph of H1 induced by these edges (i.e. the non-loops and
multiple edges) then for some constant c > 0, assuming due to Lemma 4 that G∗ satisfies
(18):

Pr(∆(H ′
1) ≥ 10) ≤ n

(
∆2 + 2∆ + 2 logn

10

)(
c∆

M1

)10

≤
c10∆30(log n)10n

M10
1

≤
c10(log n)10M6

2n

ω6M10
1

≤
c10(log n)10∆6n

ω6M4
1

= o(1).

after using ∆ = o(n1/3), from (2), and M1 ≥ n.

We can estimate the expected number of vertices incident with ≥ 10 multiple edges by

n∆20

(
∆

M1

)10

≤
nM6

2

ω6M10
1

≤
n∆4

ω6M4
1

= o(1).

There are no double loops whp and so whp ∆(H1) ≤ 9 + 9 + 1 = 19. 2

Remark 3 It is probably a good time to remark that (1) with k = 1 implies that ∆ ≤
Kdn1−α. And then we get from A2 of Theorem 2 that ∆2 = o(s0).

Next let H2 denote the graph induced by the set of edges added in going from GF to G∗.

Lemma 7 Whp H2 has maximum degree at most 25.

Proof Except for loops and multiple edges, each edge of H2 can be paired with an
edge of H1. Thus ∆(H2) ≤ ∆(H1) + ∆l + ∆m where whp ∆l = 1 is the maximum number
of loops at a vertex and ∆m is the maximum number of multiple edges at a vertex. Our
result follows from ∆m ≤ 5 whp. Indeed,

Pr(∆m ≥ 6) ≤ n∆12

(
∆

dn

)6

= n
∆18

(dn)6
≤ n

M
18/5
2

(dn)6
≤ n

∆18/5

(dn)12/5
≤ n−1/5.

2
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Let us now see how this affects the argument used in Sections 4.1 and 4.2. Assume now
that the edges of H1 are deleted and the edges of H2 are added.

Going back to Remarks 1 and 3 we see that the argument in Case 1 can handle the deletion
of the edges of H1 and the addition of the edges in H2.

Going back to Remarks 2 and 3 we see that the argument in Case 2 can handle the deletion
of the edges of H1.

Going back to (17) we see that we can afford to give up o(n) successes in the first t1 trials
due to deletion of the edges of H1.

Going back to (15) we see that we can afford to delete o(n) edges without disconnecting
GRB.

This completes the proof of Theorem 2. 2
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