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Abstract. In an accumulation game, the Hider secretly distributes his given
total wealth h among n locations, while the Searcher picks r locations and con-
fiscates the material placed there. The Hider wins if what is left at the remaining
n − r locations is at least 1; otherwise the Searcher wins. Ruckle’s Conjecture
says that an optimal Hider strategy is to put an equal amount h/k at k ran-
domly chosen locations, for some k. We extend the work of Kikuta and Ruckle
by proving the Conjecture for several cases, among others: r = 2 or n − 2;
n ≤ 7; n = 2r − 1; h < 2 + 1/ (n− r − 1) and n ≤ 2r. The last result uses the
Erdos-Ko-Rado theorem. We establish a connection between Ruckle’s Conjec-
ture and the difficult Hoeffding problem of bounding tail probabilities of sums
of random variables.

1. Introduction

Accumulation games, as proposed by Ruckle [16] and by Ruckle and Kikuta [11,
17], consider the following problem faced by an individual we call the Hider: He
has a certain amount of continuous ‘wealth’ (food, water, arms, money) which
he is forced to secretly stash at a given set of locations, to collect later. In the
meantime an opposing Searcher (possibly Nature, in the form of storms or other
natural disasters; or perhaps an active pilferer) can choose some of these locations
and remove all the hidden the material from them. The Hider wins if what remains
after confiscation is sufficient to carry out some task (surviving the winter, insur-
rection, cornering a market). Kikuta and Ruckle give several logistical applications
regarding human behavior. An example not mentioned in the earlier literature is
that of the ‘scatter hoarder’ (e.g. a squirrel) who in the autumn hides food in
multiple caches in the hope that enough will remain (after natural disasters or
active ‘pilferage’) to survive the winter. The term scatter hoarder was introduced
by Morris [15], who initiated what is now a considerable literature in this area of
animal behavior.
To model this problem mathematically, we assume a fixed set of location N =
{1, . . . , n} and a given initial wealth h. The Hider may distribute his total wealth
h among these locations in any way he chooses. We call his strategic variable
w = (w1, . . . , wn) a weighting, where wi ≥ 0 is the amount placed at location i.
We treat w as a measure on N , so that the feasibility condition is w (N ) ≤ h. In
the case of equality, we call w a partition of h, that is h = w1 + . . . + wn. The
Searcher picks any r-subset I ⊂ N . The Hider wins the game if wealth at the
n − r survivng locations N − I satisfies w (N − I) ≥ 1. (The threshold of 1 is a
convenient normalization.) Otherwise, the Searcher wins. The parameters r, n, h
are all fixed. Interpreting this problem as a (zero-sum, win-lose) game, the value
(optimal winning probability of the Hider) and optimal strategies exist by standard
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minimax results [1]. Although in some instances the game formulation is useful, it
will generally be more convenient to analyze the problem as a discrete optimization
problem, as already demonstrated by Kikuta and Ruckle. They showed that the
Hider has an optimal strategy consisting of picking a weighting w and placing the
n weights wi randomly on the nodes. The Searcher can pick the set I randomly.
Ruckle has made the following remarkable conjecture.

Conjecture 1 (Ruckle, [17]). For any parameter values n, r and h, it is optimal
for the Hider to use k equal positive weights and n−k weights of 0, for some k ≤ n.

There is no need for the Hider to use weights greater than 1, since he only needs
to retrieve mass 1. If the Hider uses k = bhc equal positive weights, then he may
just as well use k unit weights. In this case we say that the Hider uses unit weights.
More generally, if the Hider partitions h (that is, if w (N ) = h), then of course the
positive weights are all h/k, but sometimes it is simpler to use smaller weights. As
an example, suppose n = 6, r = 4, and 5/2 < h < 3. It turns out that it is optimal
for the Hider to place five weights of 1/2, and one of 0. He does not need to use
all the material. Here Ruckle’s Conjecture holds with k = 5.

Note that k depends on h, n, r. For instance, if (n− r) (h/n) ≥ 1 then the
Hider can guarantee a win by partitioning h into k = n equal parts of (h/n) .
Kikuta and Ruckle [13] showed that the conjecture holds for r equal to 1 and
n − 1, and gave many examples of other parameter values where it is true. This
paper establishes other conditions on the parameters for which the conjecture
holds, using the complementary variable s = n − r which describes the size of
the set of unsearched locations: s = 2 or n − 2; h < 2 and n = 0 or 1 mod s;
n ≤ 7; n = 2s + 1; h < 2 + 1/ (s− 1) and n ≥ 2s. The last result uses the well
known Erdös-Ko-Rado Theorem [6] on the size of ‘intersecting families’ of s-sets.
We also establish a more tenuous connection between Ruckle’s Conjecture and the
difficult Hoeffding Problem [10] of bounding tail probabilities of sums of random
variables. For general parameters n, r, h, Ruckle’s Conjecture remains open.
The accumulation games described above are similar to the ‘number hides game’

that has been studied in [3, 19]. Different types of accumulation games have been
studied by Kikuta and Ruckle in [11] and [12]. Recently Alpern and Fokkink [2]
have studied a modification of the accumulation game of this paper, in which the
Searcher cannot simply search any r-set, but is restricted to an arbitrary given
family of subsets of N . For example, the Hider may distribute his wealth on the
nodes of a graph while the Searcher may remove the wealth from any edge.

2. Notation

It is notationally easier to analyze the accumulation game from the complemen-
tary point of view, in which the Searcher pure strategy is to state the s-set I ⊂ N
which he leaves unsearched, where s = n− r. Thus the accumulation game may be
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described by the Hider (secretly) choosing a weighting w on N with w (N ) ≤ h,
the Searcher picking an s-subset I of N , and the Hider winning (with payoff 1) if

w (I) ≥ 1.

Otherwise the Searcher wins (with payoff 0). The value of the game is thus the
winning probability of the Hider, assuming best play on both sides. As observed
by Kikuta and Ruckle (and generalized by Alpern and Fokkink in [2]) it is optimal
for the Searcher to pick a random s-set, and hence the Hider faces an optimization
problem: Choose w to maximize the number of s-sets I with w (I) ≥ 1. We say
that such a subset I is heavy; otherwise we say that it is light. To summarize, an
optimal weighting maximizes the number of heavy sets.

It is useful to restrict the parameter values n, s, h we consider, so as to avoid
certain trivial (and exception) cases. Note that if sh

n
≥ 1 then the Hider can

guarantee a win by dividing his material into n equal weights of h/n. If h < 1 then
obviously the Hider can never win; if h ≥ 1 then putting all the weight at a single
location makes some sets heavy. So we make the following assumption.

Standing assumption: sh
n

< 1 and h ≥ 1. So for any optimal weighting, not
all edges are heavy and not all edges are light.

The family of all s-subsets of N = {1, . . . , n} is a well known object in com-
binatorics: it is a hypergraph on N . It is convenient to adopt this terminology
and we say that an s-subset I of N is an edge and that the elements of N are
nodes. Often it is convenient to impose a partial ordering on the edges. Given
edges I = {i1, . . . , is} and J = {j1, . . . , jn} we say I º J if ik ≥ jk for k = 1, . . . , n.
We assume that weightings are ordered so that w1 ≤ . . . ≤ wn. (Of course the
Searcher doesn’t know this ordering.) In particular w(I) ≥ w(J) if I º J . The
family of all heavy edges forms a hypergraph and the Hider seeks to maximize the
number of edges of this hypergraph. We denote the set of heavy edges containing
i as Ei and call its cardinality the degree of i, denoted di.

3. Value of the game

Often, optimal strategies are hard to find and it is easier to determine, or at least
bound, the value of a game. So we turn to the value of the game first and in the
proofs in this section, we silently assume that the Hider uses an optimal weighting
(whatever it may be). We denote the value of the game by V (n, s, h). It is equal
to the maximal number of heavy edges divided by

(
n
s

)
.

Lemma 2. The degree sequence d1 ≤ . . . ≤ dn is increasing and d1 < dn. In
particular there exists edges I and J that have s− 1 nodes in common such that I
is heavy and J is light.

Proof. Let w1 ≤ . . . ≤ wn be an optimal weighting. For 0 ≤ m ≤ n − s
denote Im = {m + 1,m + 2, . . . ,m + s} . By our standing assumption, I0 is light
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and In−s is heavy, so there is a largest j with Ij light. Hence Ij+1 is heavy and Ij

and Ij+1 have the s− 1 nodes {j + 2, . . . , j + s} in common.
For the second part, for k < l, define ψ = ψk,l to be the set map that replaces k by

l when possible (for sets containing k but not l) and is the identity otherwise. Since
k < l and hence wk ≤ wl, w (ψ (I)) ≥ w (I) for any set I, and thus ψ preserves
heaviness. Since ψ gives an injection of Ek into El, we have dk ≤ dl. Note that
for the j of the first part, the injection ψj,j+s : Ej → Ej+s is not a surjection, as
Ij+1 ∈ Ej+s − ψj,j+s (Ej) . Hence dj < dj+s, and it follows that d1 < dn. ¤

Suppose that di = dj for j > i. Then the injection Ei → Ej is in fact a bijection.
So we can reduce wj to wi without decreasing the number of heavy edges: if
di = dj then we may assume that wi = wj. It turns out that Ruckle’s conjecture
is equivalent to the statement that all the ≤ signs in the sequence d1 ≤ . . . ≤ dn

are in fact equalities, except for possibly one inequality (one can show that if the
Hider uses only two weights, then it is optimal that one of these weights is zero).

It is convenient to think of the value V (n, s, h) as a tail probability. If s numbers
H1, . . . , Hs are sampled without replacement from an optimal weighting {w1, . . . , wn},
then V (n, s, h) is the tail probability:

V (s, n, h) = P (H1 + . . . + Hs ≥ 1) .

In the proof below, we denote the sum of random variables by Ss = H1 + . . . + Hs

or simply by S if the number of samples is clear.

Theorem 3. V (n, s, h) is non-decreasing in h, decreasing in n and increasing in
s.

Proof. The hider need not use all the material, so the value is non-decreasing
in h. To see that V decreases with n, let {w1, . . . , wn} be an optimal weighting for a
value V . Note that

∑
di = sV ·(n

s

)
so it follows from Lemma 2 that d1 < V ·(n−1

s−1

)
.

The number of heavy edges that does not contain the first node is V · (n
s

)− d1 >

V · (n−1
s

)
. Hence the weighting {w2, . . . , wn} yields a value > V and we conclude

that V (n− 1, s, h−w1) > V (n, s, h). Since we have established monotonicity in h
we have V (n− 1, s, h) ≥ V (n− 1, s, h− w1) > V (n, s, h) as claimed.
To see that the value increases with s, we use that V (n, s, h) is the tail probability
P(Ss ≥ 1) for an optimal partition. We sample once more to get V (n, s + 1, h) =
P(Ss+1 ≥ 1). Let H be the event that Ss ≥ 1, where Ss is a sum of random
variables. Then

P(Ss+1 ≥ 1) = P(Ss+1 ≥ 1 | H) · V + P(Ss+1 ≥ 1 | Hc) · (1− V ),

where V = V (n, s, h). Since P(Ss+1 ≥ 1 | H) = 1 it suffices to show that P(Ss+1 ≥
1 | Hc) > 0. In other words, it suffices to show that there exists a light edge that
can be made heavy by adding just one node. This is the content of Lemma 2. ¤
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Theorem 4.

(1) 1− e−
sbhc

n ≤ V (n, s, h) ≤ bshc
n

The proof of this theorem borrows ideas from the study of the accumulation game
on the circle, that has been carried out in [2].

Proof. We calculate modulo n and we think of {1, . . . , n} as a circle. We say
that a subset Ij = {j +1, . . . , j +s} is an s-interval. Notice that

∑
w(Ij) = sh and

that there are n intervals. Suppose that the Searcher adopts a restricted strategy
and randomly picks an s-interval. The value of this ’restricted game’ is greater
then or equal to V (n, s, h) since a restriction of the Searcher benefits the Hider.
The sum of random variables S = Hj+1 + . . . + Hj+s has expectation E[S] = sh

n
.

It follows from Markov’s inequality P(S ≥ 1) ≤ E[S] = sh
n

. There are n intervals,
so at most bshc of them can be heavy. Therefore the value of the restricted game

is at most bshc
n

.
The lower bound follows from the Searcher strategy of placing bhc unit weights.

The number of heavy edges is
(

n
s

) − (
n−bhc

s

)
in this case and if we divide this

by the total number of edges
(

n
s

)
we obtain the lower bound 1 −∏s−1

i=0

(
1− bhc

n−i

)

on V (n, s, h). The theorem now follows from the fact that
∏s−1

i=0

(
1− bhc

n−i

)
≤(

1− bhc
n

)s

≤ e−
sbhc

n . ¤

It is tempting to try another probability inequality to bound the value of the
game. The Azuma-Hoeffding inequality for sums of independent random variables,
which was first proved in [10, Thm 1], also applies to random samples without
replacement [10, Thm 4], but unfortunately, it gives no better bound then Markov’s
inequality in our case.

If sbhc
n

is small, then the lower bound in Theorem 4 is sbhc
n

up to order O
(
( sbhc

n
)2

)
.

Surprisingly, sbhc
n

is an absolute upper bound under some arithmetic restrictions
on s and n:

Theorem 5. If n = 0 mod s or n = 1 mod s, then V (n, s, h) ≤ sbhc
n

.

Proof. Again, as in the proof of the previous theorem, the Searcher adopts
the restricted strategy of taking one of these s-intervals at random, uniformly. The

value of the restricted game is bounded by bshc
n

and by our standing assumption
sh < n so there exists a light interval. Without loss of generality we may assume
that In−1 is light (note that we cannot assume that w1 ≤ . . . ≤ wn since the Hider
adopts a restricted strategy).

To prove the theorem, it suffices to show that there are at most sbhc heavy s-
intervals. Since n = 0, 1 mod 1 there exist an integer k such that either n = ks or
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n = ks + 1. Since I0 ∪ Is ∪ . . . ∪ I(k−1)s is a disjoint union, the sum of the weights
of these intervals is at most h. So at most bhc of these intervals can be heavy.
The same argument applies to Ij ∪ Is+j ∪ . . . ∪ I(k−1)s+j and we find that at most
sbhc of the intervals Ij+is are heavy with 0 ≤ j < s and 0 ≤ i < k. For the given
restrictions on j and i we find all intervals except In−1 for n = ks + 1. But In−1 is
light. ¤
The arithmetic restriction on s and n is necessary. If n = 5 and s = 3 and

h = 3/2 then the Hider divides into {1
2
, 1

2
, 1

2
, 0, 0}, creating 7 heavy s-sets. It

follows from Theorem 16 below that this weighting is optimal. The value of the

game is V (5, 3, 3/2) = 7
10

, while sbhc
n

= 3
5

and bshc
n

= 4
5
.

The following corollary will be improved later on.

Corollary 6. If h < 2 and if n = 0 or 1 mod s then the Hider uses a single unit
weight. In particular, Ruckle’s conjecture holds.

Proof. Since bhc = 1 the lower bound 1 − ∏s−1
i=0

(
1− bhc

n−i

)
in the proof of

Theorem 4 is equal to s
n

= sbhc
n

. By Theorem 5 this is the value of the game. ¤

Corollary 7. If n = 0 mod s and if h ≥ n−1
s

then Ruckle’s conjecture is true.

Proof. Under these conditions bhc = n−s
s

. By Theorem 5 the number of light

edges is at least n−sbhc
n

· (n
s

)
=

(
n−1
s−1

)
. Now suppose the Hider puts n− 1 weights 1

s
.

Then the number of light edges is
(

n−1
s−1

)
which is best possible. ¤

These corollaries are typical for the results in our paper. We can only prove the

conjecture if sbhc
n

is close to 1 or if it is relatively small.

Ruckle’s conjecture is true if s = 1 or n − 1, see [13]. In the next section, the
conjecture is shown to be true as well if s = 2 or n − 2. This suggests that there
exists some a symmetry between sampling s times or n−s times in an accumulation
game. We can prove that such a symmetry exists but only under a very restrictive
condition on the optimal weighting:

Theorem 8. Suppose that there exists an optimal weighting with weights bounded

by h−1
n−s−1

, for s < n− 1 and h > 1. Then V (n, s, h) = V (n, n− s, h(s+1)−n
h−1

).

Proof. Let w = {w1, . . . , wn} be an optimal weighting of mass h. Define a
new weighting w′ with weights gi = 1 − (

n−s−1
h−1

) · wi, which is well defined under

the conditions, and total weight g = (h(s+1)−n
h−1

. Conversely, any such weighting

w′ can be transformed to a weighting w with weights ≤ n−s−1
h−1

by the inverse

transformation wi = 1−gi

n+1−s−g
. Now compute

w1 + . . . + ws ≥ 1 ⇔ ws+1 + . . . + wn ≤ h− 1 ⇔
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n− s− 1

h− 1
· ws+1 + . . . +

n− s− 1

h− 1
· wn ≤ n− s− 1 ⇔

(1− gs+1) + . . . + (1− gn) ≤ n− s− 1 ⇔ gs+1 + . . . + gn ≥ 1.

In particular, an edge is heavy w(I) ≥ 1 under the weighting w if and only if its
complement is heavy w′(Ic) ≥ 1 under the weighting w′. ¤

4. Solution of the conjecture for some special cases

It is not hard to see that Ruckle’s conjecture is true if s = 1 or s = n−1. If s = 1
then the Hider divides h into bhc unit weights (or more precisely, into bhc parts of
weight h/bhc). If s = n − 1 then the hider puts one weight h. In this section we
prove that Ruckle’s conjecture is also true if s = 2 or s = n− 2.

Lemma 9. For any partition h = w1 + . . . + wn there exists another partition
g = g1 + . . . + gn for g ≤ h and all gi ∈ {0, 1

2
, 1}, such that wi + wj ≥ 1 implies

gi + gj ≥ 1.

The proof of this lemma is similar to one used for arbitrary graphs in [2].

Proof. Let R be the set of all equations wi + wj ≥ 1 that are satisfied
by a weighting {w1, . . . , wn}. Without loss of generality, we may assume that
h minimizes w1 + . . . + wn under the constraints R and wi ≥ 0. Denote b =
max {wi : wi 6= 1} and a = min {wi : wi 6= 0} , so that a ≤ b. Call the weights wi

which are equal to b the ‘big weights’ and those equal to a the ‘small weights’.
If a + b > 1 then h could be reduced by decreasing all the big weights to 1 − a,

contradicting our assumption that h is minimal under the constraints R. Similarly,
if a + b < 1 then we could decrease all the small weights to zero. Hence a + b = 1.
Let α be the number of small weights, let β be the number of big weights, and let

ε be the minimum difference between any two weights. If β > α we could decrease
h by changing the big weights to b − ε and increasing the small weights to a + ε,
contrary to assumption. If β < α, then h may be reduced by changing the small
weights to a− ε and the big ones to β + ε. We conclude that α = β.
Minimize |b− a| under the constraints R and h = w1 + . . . + wn and wi ≥ 0. We

claim that |b − a| = 0. If not, then we could reduce the big weights to b − ε and
increase the small weights to a+ε under the constraints, since α = β, contradicting
minimality. We conclude that a = b = 1

2
and we are done. ¤

The proof of the following lemma is very similar.

Lemma 10. For any partition h = w1 + . . . + wn there exists another partition
g = g1 + . . . + gn with g ≥ h such that gi + gj < g − 1 if wi + wj < h− 1 and such
that of the following two possibilities holds:

(1) all gi ∈ {0, h−1
2

, h− 1}
(2) g is trivially partitioned into g + 0 + . . . + 0.
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Figure 1. mass m of a T−graph

Proof. Suppose that the weighting contains a weight > h− 1, say w1. Then
the trivial partition h + 0 . . . + 0 satisfies the same constraints wi + wj < h − 1
and the second possibility holds. So suppose that all weights are ≤ h − 1. Let
b = max {wi : wi 6= h− 1} and a = min {wi : wi 6= 0} , so that a ≤ b. Let R be the
set of all equations wi + wj that are satisfied by the weights of the partition. We
minimize h under these constraints.
If a+b > h−1 then h could be increased by replacing all the big weights by h−1.

Similarly, if a+ b < h− 1 then h could be increased by replacing the small weights
by m − 1 − b. Hence a + b = h − 1. Let α be the number of small weights, let β
be the number of big weights. If β < α we could reduce b to b − ε and increase
a to a + ε, contrary to our choice of a maximal h. In the same way we can rule
out that β > α. We conclude that α = β. Minimize |b − a| under the constraints
R and h = w1 + . . . + wn and wi ≥ 0. By the same argument as in the previous
lemma |b− a| = 0. We conclude that a = b = h−1

2
. ¤

In the proofs of both lemmas we treated the equations wi + wj as constraints.
We never needed that i and j are different, so the lemmas remain valid if we allow
that i = j.

Definition 11. A graph is called a T−graph if its nodes can be partitioned into
three sets A,B and C such that a pair of nodes is connected if and only of one of
the nodes is in C or if both nodes are in B. If the cardinalities of the three node
sets are respectively a, b and c, we denote the graph by T (a, b, c) , and we define its
mass to be b + 2c.

Lemma 12. Let T (a, b, c) be a T−graph with a, c ≥ 1 and b ≥ 2. Then there is
another T−graph with the same nodes and the same mass which has more arcs
than T .

Proof. We consider two overlapping cases, b ≥ a and b ≤ a.

b ≥ a: Since a and c are at least 1, we may move two nodes x and y from
A and C, respectively, to B. There will be b more edges incident to x,
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corresponding to the original nodes of B, and a − 1 fewer edges incident
to y. Hence there are b−(a− 1) ≥ 1 more edges in the resulting T−graph.

b ≤ a: Since b ≥ 2, we may move two nodes u and z from B into A and
C, respectively. In the resulting T−graph there will be b− 1 fewer edges
incident to u, corresponding to the nodes of B other than u and z, and a
more edges incident to z. Hence the resulting T−graph has a−(b− 2) ≥ 1
more edges.

¤
Theorem 13. Ruckle’s conjecture is true if s = 2 or s = n− 2.

Proof. Suppose that s = 2. The optimal weighting maximizes the number
of wi + wj ≥ 1 and by Lemma 9 we may suppose that the weights are either 0 or
1
2

or 1. Hence, the equations wi + wj ≥ 1 form the edges on a T -graph, with A

the set of zero weights, B the set of weights 1
2

and C the set of unit weights. The
optimal weighting maximizes the number of edges of the T -graph. By Lemma 12
either b ≤ 1, or min{a, b} = 0. If b = 1 there is only one weight 1

2
, which could be

changed to a zero weight without losing optimality. So if b ≤ 1 then b = 0 and the
Hider uses zero and unit weights only, in accordance with the conjecture. If a = 0
then the all wi + wj ≥ 1 contradicting our standing assumption. So c = 0 and the
Hider uses only weights 0 and 1

2
in this case, in accordance with the conjecture.

Suppose that s = n−2. The optimal weighting minimizes the number of wi+wj <
h − 1 and by Lemma 10 there are two cases. The case of the trivial weighting
{h, 0, . . . , 0} is in accordance with the conjecture. So we may suppose that the
weights are either 0 or h−1

2
or h − 1. The equations wi + wj < h − 1 form the

edges of a T -graph, with A the set of weights h− 1, B the set of weights h−1
2

and
C the set of zero weights. By a similar analysis, which we leave to the reader, we
conclude that either a or b is zero. ¤
Corollary 14. Ruckle’s conjecture is true for n ≤ 6.

Proof. Since the conjecture is correct if s ∈ {1, 2, n − 2, n − 1} it is true for
n ≤ 5. For n = 6 the remaining case is s = 3, which is settled by corollary 6. ¤
The following theorem will be extended in the next section.

Theorem 15. If n = 2s + 1 then Ruckle’s conjecture is true.

Proof. If h < 2 then Corollary 6 applies. Suppose that h ≥ 2 and note that
h < 2 + 1

s
by our standing assumption. If the Hider puts two unit weights then he

creates
(
2s+1

s

)− (
2s−1

s

)
heavy edges. This is optimal if the number of light edges is

always at least
(
2s−1

s

)
. Since

(
2s−1

s

)
= 1

2

(
2s
s

)
it suffices to show that of the edges with

nodes in {2, . . . , 2s + 1} half are light. Suppose that I and J are complementary
edges in {2, . . . , 2s + 1} and suppose that both are heavy. Then sw1 ≥ w(I) ≥ 1
so w1 ≥ 1

s
and therefore h ≥ w1 + w(I) + w(J) ≥ 2 + 1

s
contradicting our standing
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assumption. It follows that of each pair of complementary edges at least one is
light. So half of the edges with nodes in {2, . . . , 2s + 1} are light. ¤

By symmetry one would expect to dispose of the case n = 2s − 1 in a similar
manner, but this is not entirely true.

Theorem 16. If n = 2s− 1 and h ≥ 2− 1
s−1

then Ruckle’s conjecture is true.

Proof. Suppose h ≥ 2− 1
s−1

. We show that the partition into 2s− 3 weights
1

s−1
is optimal. This creates

(
2s−3
s−2

)
light edges. Let w1 + . . . + wn be any partition

of h with w1 ≤ . . . ≤ wn. Note that wk < 1
s

otherwise all edges are heavy. We
say that two edges I, J are 1-complementary if {1} = I ∩ J . Two such edges
cannot both be heavy since w(I) + w(J) = h + w1 which is < 2 by our standing
assumption. So the number of light edges is at least 1

2

(
2s−2
s−1

)
=

(
2s−3
s−2

)
. ¤

We illustrate below for s = 7 and n = 4 that the case h < 2− 1
s−1

is more involved.

Corollary 17. Ruckle’s conjecture is true for n = 7.

Proof. The cases s ∈ {1, 2, 5, 6} are settled by the preceding theorem and
s = 3 is settled by Theorem 15. It remains to settle the case s = 4. By Theorem 16
we may assume that h < 5/3. We show that an optimal weighting in this case
is {0, 0, 0, 0, 1/2, 1/2, 1/2}, which gives 22 heavy edges. So we need to argue that
there are at least 13 light edges, which we do by contradiction and assume that
there are less. Since I = {2, 3, 4, 7} has 12 edges that are smaller in the Â order, it
has to be heavy. We argue that its 3-complementary edge J = {1, 3, 5, 6} is heavy.
Indeed, if I and J they would both be heavy, then h + w3 = w(I) + w(J) ≥ 2. So
w3 ≥ 1/3 but this is nonsense since this implies that h ≥ 5/3. In particular, at
most one of I = {2, 3, 4, 7} and J = {1, 3, 5, 6} is heavy and since I is heavy, J
is light. There are 8 edges that are smaller than J in the edge order, so they are
light also. The edges {2, 3, 5, 6} and {1, 3, 4, 7} are 3-complementary, so at least
one of the following cases holds:

(A) {2, 3, 5, 6} is light
(B) {1, 3, 4, 7} is light

Assume that (A) holds. Since {2, 3, 5, 6} is larger than 11 edges, we need just
one more light edge to get a contradiction. The edges {1, 2, 3, 7} and {2, 4, 5, 6}
are 2-complementary, so at least one of them is light. This gives 13 light edges,
contradicting our assumption that there are at most 12. Assume that (B) holds.
There are two edges that are smaller than {1, 3, 4, 7} and that are not in the set
of 9 light edges that are ¹ J for a total of 12 light edges. The edge {2, 3, 4, 6}
is not in this set so it is heavy by our assumption. Its 3-complementary edge
{1, 3, 5, 7} therefore is light and this is the 13-d edge that is light. We conclude
that {0, 0, 0, 0, 1/2, 1/2, 1/2} is an optimal weighting if h < 5/3.
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Now suppose that h < 3/2. We claim that it is optimal to put one unit weight, for
a total of 20 heavy edges. We argue by contradiction and assume that there are less
than 15 edges that are light. This implies that the three edges {3, 4, 5, 6}, {2, 3, 5, 7}, {1, 4, 5, 7}
all are heavy, since each has 14 edges that are smaller. By the familiar argu-
ment, only one of two 5-complementary edges can be heavy. So the three edges
{1, 2, 5, 7}, {1, 4, 5, 6}, {2, 3, 5, 6} are light, but there are 13 edges that are smaller
than one of these three edges, contradicting our assumption. ¤
A weaker form of Ruckle’s conjecture is that the Hider uses at least n− sh zero

weights in an optimal partition. The following result is a step toward settling this
weakened conjecture.

Theorem 18. For any n, s, h there exists an optimal weighting for the Hider with
at least n− s2bhc zero weights.

Proof. Fix some optimal weighting and let {I1, . . . , Ik} be a maximal family
of disjoint heavy edges, so that k ≤ bhc, and let I = I1 ∪ . . . ∪ Ik. Every heavy
edge contains at least one node in I. Let J = {j : wj > 0} be the nodes of weight
> 0 in the hider’s partition. Suppose that |J | > s2bhc. Let ε denote the minimum
nonzero weight. Reduce the weight on the nodes that are in J \I by ε and increase
the weight on the nodes in I by (s− 1)ε. There are more than s2bhc− sbhc nodes
in J \I and there are at most sbhc nodes in I, so this operation does not increase
the total weight of the partition. It preserves heavy sets, since each heavy set
contains a node that increases by (s− 1)ε. So we can reduce the total weight until
J contains no more then s2bhc nodes. ¤

5. Intersecting families

Let F be a family of subsets of {1, . . . , n}. In other words, F is a hypergraph. It
is called an intersecting family if no two of its elements are disjoint.

Theorem 19 (Erdös-Ko-Rado, [6]). Let F be an intersecting family of s-subsets.
If 2s ≤ n then F has no more than

(
n−1
s−1

)
elements. In other words, the family of

sets with one common element has maximal cardinality.

The following improves on Corollary 6 and Theorem 15.

Corollary 20. Ruckle’s conjecture is true if h < 2 + 1
s−1

and n ≥ 2s.

Proof. If h < 2 then the heavy edges form an intersecting family and by the
Erdös-Ko-Rado theorem the Hider puts one unit weight. Consider the case that
h ≥ 2. Suppose that wn < 1

s−1
. Then all weights are smaller than 1

s−1
so each

heavy edge consists of s weights ≥ 1
s
. It follows that the Hider may just as well

use weights 1
s

only, which is a strategy that is predicted by Ruckle’s conjecture.

So we may assume that wn ≥ 1
s−1

. Now h− wn < 2, so the family of heavy edges
that do not contain node n form an intersecting family F . By the Erdös-Ko-Rado
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theorem |F| ≤ (
n−2
s−1

)
. There are

(
n−1
s−1

)
edges that contain node n, so the number

of heavy edges is bounded by(
n− 2

s− 1

)
+

(
n− 1

s− 1

)
=

(
n

s

)
−

(
n− 2

s

)

which is the number of heavy edges if the Hider puts two unit weights. ¤
The Erdös-Ko-Rado theorem is a celebrated result and a starting point of the

theory of hypergraphs [4]. It has been extended in many ways. For integers n, s, k
the number f(n, s, k) is defined as the largest possible collection of s-sets, no k of
which are pairwise disjoint, that can be chosen from a set of size n.1 Obviously, if
k = bhc then the maximal number of heavy edges is bounded by f(n, s, k).

Theorem 21 (Erdös, [7]). For each s ≥ 2 there exists a constant c(s) depending
only on s such that

f(n, s, k) =

(
n

s

)
−

(
n− k + 1

s

)
for n > c(s)k.

The value of f(n, s, k) in this theorem is attained by the family of all s-subsets
that contain at least one element of a given k − 1-subset. In other words, it is
attained if the Hider uses unit weights:

Corollary 22. Ruckle’s conjecture is true if n > c(s)bhc and in this case the
Hider uses bhc unit weights.

The best known estimate of the constant in Theorem 21, due to Bollobás et al [5],
is c(s) ≤ 2s3.

6. Hoeffding’s problem

Ruckle’s conjecture is related to work of Hoeffding and others in probability.
Suppose that the Searcher samples randomly and with replacement, so he may pick
the same weight twice. Unlike in Ruckle’s accumulation game, it is not easy to give
a real life interpretation of this game, but it does simplify the random variables.
In particular, the samples X1, . . . , Xs now are independent and the Hider wants to
maximize the tail probability P(X1+. . .+Xs ≥ 1) for i.i.d. random variables. This
is related to a probability problem that was proposed by Hoeffding [8] and studied
by Hoeffding and Shrikhande [9]. Hoeffding’s problem is to find nonnegative i.i.d.
random variables that maximize P(X1 + . . . + Xs ≥ 1) for a given E[Xi] = α.

Theorem 23 (Hoeffding-Shrikhande). If s = 2 and if 2α < 1 then the tail
probability is maximized by either Xi ∈ {0, 1

2
} or Xi ∈ {0, 1}.

1This number is also denoted by f(n, s, k, 0), where 0 represents empty intersection and
Erdös in [7] denotes it by f(n, s, k) − 1. In other papers, the number f(n, s, k) represents the
maximum cardinality of a union of k intersecting families.
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Note that the random variable Xi is well defined, since it takes only two values
and since its expectation is known. The Hoeffding-Shrikhande theorem is similar
to our Theorem 13.

Hoeffding’s problem has been proposed in several contexts, as discussed in [14].
In Meester’s words, the problem satisfies a common rule: s = 1 is trivial, s = 2
can be solved with a reasonable amount of work and s ≥ 3 is hard. There is no
conjectured solution to Hoeffding’s problem, but the general idea seems to be that
the tail probability can be maximized by a random variable that takes on only
two values. The only result on Hoeffding’s problem apart from the Hoeffding-
Shrikhande theorem is the following asymptotic result.

Theorem 24 (Samuels [18]). Let Xi be i.i.d. and non-negative for 1 ≤ i ≤ s. If
max{4sh/n, (s−1)sh/n} < 1 then the tail probability is maximized by Xi ∈ {0, 1}.
In particular, if 2s2h < n and if h is an integer, then a weighting by unit weights

is optimal. Note the similarity with our Corollary 22 and also note that the order
s2 is sharper then s3 as found by Bollobás et al.

Hoeffding’s problem is not exactly the same as the problem of finding an optimal
weighting in an accumulation game with replacement. For instance, if s = 2 and
n = 4 and h = 3/2 then E[Xi] = 3/8. By the Hoeffding-Shrikhande theorem the
tail probability is maximized by random variables Xi ∈ {0, 1} (which give a greater
tail probability under these conditions then Xi ∈ {0, 1

2
}). However, these random

variables cannot be created by a weighting on 4 locations. The optimal weighting
is {0, 0, 1

2
, 1}. Suppose we double the number of locations n = 8 and the mass

h = 3, keeping the expectation at E[Xi] = 3/8, then it is possible to create the
optimal random variables by the weighting {0, 0, 0, 0, 0, 1, 1, 1}, which therefore is
optimal. Any solution of Hoeffding’s problem puts an upper bound on the value
of the accumulation game with replacement.
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