
Interaction of excited states in two-species Bose-Einstein

condensates: a case study

Todd Kapitula ∗

Department of Mathematics and Statistics
Calvin College

Grand Rapids, MI 49546

Kody J.H. Law †

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003-4515

Panayotis G. Kevrekidis ‡

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003-4515

July 9, 2009

Abstract. In this paper we consider the existence and spectral stability of excited states in two-species
Bose-Einstein condensates in the case of a pancake magnetic trap. Each new excited state found in this
paper is to leading order a linear combination two one-species dipoles, each of which is a spectrally stable
excited state for one-species condensates. The analysis is done via a Lyapunov-Schmidt reduction and
is valid in limit of weak nonlinear interactions. Some conclusions, however, can be made at this limit
which remain true even when the interactions are large.

∗E-mail: tmk5@calvin.edu
†E-mail: law@math.umass.edu
‡E-mail: kevrekid@math.umass.edu

mailto:tmk5@calvin.edu
mailto:law@math.umass.edu
mailto:kevrekid@math.umass.edu


T. Kapitula, K.J.H. Law and P.G. Kevrekidis 1

Contents

1. Introduction 1

2. Existence 3
2.1. Lyapunov-Schmidt reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Real-valued solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Complex-valued solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Stability: small eigenvalues 7
3.1. Reduced eigenvalue problem: theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Reduced eigenvalue problem: real-valued solutions . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1. In-phase dipole-dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2. Out-of-phase dipole-dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3. Reduced eigenvalue problem: complex-valued solutions . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1. Vortex-vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2. Azimuthon-dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.3. Dipole-azimuthon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Stability: Hamiltonian-Hopf bifurcations 13
4.1. Reduced eigenvalue problem: theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2. Reduced eigenvalue problem: real-valued solutions . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1. In-phase dipole-dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2. Out-of-phase dipole-dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3. Reduced eigenvalue problem: complex-valued solutions . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1. Vortex-vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. Numerical results 18
5.1. Numerical existence and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2. Dynamics of spectrally unstable states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

References 20

1. Introduction

Over the past decade the experimental realization of Bose-Einstein condensates (BECs) has triggered a
continuously expanding interest in the study of fundamental quantum phenomena as well as of nonlinear
waves that arise in this setting [29, 41, 42]. From a theoretical and modeling perspective the presence
of a mean-field model that has been established as accurately describing the condensate dynamics near
zero temperature has led to a wide range of studies on the solitary waves and coherent structures that
emerge in the BECs. The macroscopic nonlinear matter waves that arise due to the nonlinear inter-particle
interaction which have been explored both theoretically and experimentally include: bright solitons in quasi-
one-dimensional attractive BECs [30, 47], dark [3, 9, 12, 13] and gap [14] matter-wave solitons in quasi-
one-dimensional repulsive BECs, and vortices [33, 34] and vortex lattices [2, 15] in higher dimensions.

Multi-component BECs may arise either between coupled hyperfine states of a single species, or between
two different atomic species, and a principal aspect of interest in this setting has been the statics and dynamics
of binary mixtures [20, 37, 45]. A particularly important manifestation of the interspecies interactions has
been the display of rich phase separation dynamics. The latter leads, e.g., to the formation of robust
single- and multi-ring patterns [20, 35], the evolution of initially coincident triangular vortex lattice through
a turbulent regime into an interlaced square vortex lattice [44] in coupled hyperfine states of 87Rb, or
the study in optical traps of different Zeeman levels of 23Na forming striated magnetic domains [36, 46].
Experimental efforts are still very active in a number of directions and include a detailed examination of the
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observed phase separation phenomenology [35], as well as the study of structural phase transitions from the
immiscible to the miscible regime [38].

In parallel to, or often preceding, these experimental studies, a large volume of theoretical work has been
done which has significantly contributed to a more detailed understanding of such multi-component BECs.
Among the topics considered, one may highlight the stability of BECs against excitations [5, 17, 21, 31],
their static and dynamics properties [10, 16, 18, 19, 43], and the study of solitary waves [7, 28, 40, 49].

Our aim in the present work is to analytically consider the interaction of excited states in a two-component
system. The analysis is tractable because it is based upon the well-understood linear limit, i.e., the weak
nonlinear interaction limit. We will not do an exhaustive study of all possible interactions; instead, we will
focus upon a particular case which nicely illustrates the possibilities associated with intra-species interactions.
For a one-component system the dipole is a real-valued excited state which is spectrally stable (at least in the
limit of weak interactions). The associated complex-valued excited state, which is again spectrally stable,
is the radially symmetric vortex of charge one. In this paper we are interested in seeing if the nonlinear
intra-species interactions lead to new excited states which are not simply a dipole/dipole, dipole/vortex, or
vortex/vortex combination. The answer will be a function of the system parameters: the relative strengths
of the intra-species and inter-species nonlinearities (i.e., the specific values of a1 and a2 given in Eq. (1.2)),
and the relative number of atoms in each of the components. In addition to the expected solutions there will
be a new type of solution, namely the azimuthon-dipole. This solution has the property that it is a dipole
in one component and a non-radially symmetric vortex of charge one in the other component. Even though
the one-component solutions are spectrally stable, many of the two-component solutions will be spectrally
unstable in some parameter regimes. The reader should consult Figure 1 for a graphical depiction of the
stability bifurcation diagram.

The governing equations for a two-species Bose-Einstein condensate are given by

i∂tqj + ∆qj + ωjqj +
2∑
k=1

ajk|qk|2qj = V (x )qj , j = 1, 2, (1.1)

where the complex-valued qj is the mean-field wave-function of species j, ajk ∈ R with a12 = a21, ωj ∈ R is
a free parameter and represents the chemical potential for each species, and V (x ) : R2 7→ R represents the
trapping potential (see [1, 4, 6, 8, 10, 27, 28, 34] and the references therein for further details). In this paper
it will be assumed that both the intra-species and inter-species interactions are repulsive, i.e., ajk ∈ R−. A
simple rescaling via qj 7→ |a21|1/2qj maps a21 7→ sign(a21) and ajj 7→ ajj/|a21|. Set aj := −ajj/|a12| ∈ R+.
Assume now that only a magnetically induced parabolic trapping potential is present, which implies that
V (x ) = |x |2. One can now rewrite Eq. (1.1) as

i∂tq1 + ∆q1 + ω1q1 −
(
a1|q1|2 + |q2|2

)
q1 = |x |2q1

i∂tq2 + ∆q2 + ω2q2 −
(
|q1|2 + a2|q2|2

)
q2 = |x |2q2.

(1.2)

Finally, for ε > 0 scale the wave-functions by qj 7→ ε1/2q̃j , and note that ε� 1 implies that
∫∫
|qj |2 dx = O(ε).

Upon dropping the tilde Eq. (1.2) becomes

i∂tq1 + ∆q1 + ω1q1 − ε
(
a1|q1|2 + |q2|2

)
q1 = |x |2q1

i∂tq2 + ∆q2 + ω2q2 − ε
(
|q1|2 + a2|q2|2

)
q2 = |x |2q2.

(1.3)

This is the system to be studied in this paper.
The paper is organized as follows. In Section 2 we find steady-state solutions to Eq. (1.3) for 0 < ε� 1.

This task will be accomplished via a Lyapunov-Schmidt reduction. In Section 3 and Section 4 the spectral
stability of these solutions is determined. In addition to completely determining the location of the O(ε)
eigenvalues (Section 3), we will partially determine the location of the eigenvalues associated with a potential
Hamiltonian-Hopf bifurcation (Section 4). Finally, in Section 5 we numerically verify some of the analytical
results for the parameter regime of physical interest, as well as give an indication of the dynamics associated
with the evolution of spectrally unstable solutions.

Acknowledgments. TK gratefully acknowledges the support of the Jack and Lois Kuipers Applied Math-
ematics Endowment, a Calvin Research Fellowship, and the National Science Foundation under grant
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DMS-0806636. PGK gratefully acknowledges support from NSF-CAREER (NSF-DMS-0349023), NSF-DMS-
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2. Existence

2.1. Lyapunov-Schmidt reduction

In order to perform the Lyapunov-Schmidt reduction, it is important that one has a thorough under-
standing of σ(L), where for r := |x |,

L := −∆ + r2

= −∂2
r −

1
r
∂r −

1
r2
∂2
θ + r2.

(2.1)

If one uses a Fourier decomposition and writes

q(r, θ) =
+∞∑
`=−∞

q`(r)ei`θ, (2.2)

then the eigenvalue problem Lq = λq becomes the infinite sequence of linear Schrödinger eigenvalue problems
in the radial variable for ` ∈ Z:

L`q` = λq`, L` := −∂2
r −

1
r
∂r +

`2

r2
+ r2. (2.3)

Concerning the operator L` it is well-known that for each fixed ` ∈ Z there is a countably infinite sequence
of simple eigenvalues {λm,`}∞m=0, with

λm,` := 2(|`|+ 1) + 4m, (2.4)

such that the eigenfunction qm,`(r) corresponding to λm,` has precisely m zeros. With respect to the operator
L one then has that for each λm,` there exist the real-valued eigenfunctions qm,`(r) cos(`θ) and qm,`(r) sin(`θ).
This implies that if ` 6= 0, then the eigenvalue is not simple, and has geometric multiplicity no smaller than
two. Finally, it is known that if λ ∈ σ(L), then λ = λm,` for some pair (m, `) ∈ N0 × Z. Since λm,` = λm′,`′

if and only if
`′ − ` = 2(m−m′), (2.5)

the operator L has semisimple eigenvalues with multiplicity greater than two for m + |`| ≥ 2. The eigen-
functions associated with these eigenvalues are linear excited states.

The set-up is now complete in order to compute the series expansion which will be used to analytically
study the intra-species interactions of excited states. The first excited state occurs when (m, `) = (0, 1), i.e.,
λ = 4; furthermore, for this case one has that

ker(L − λ0,1) = Span{q0,1(r) cos θ, q0,1(r) sin θ}; q0,1(r) =

√
2
π
re−r

2/2. (2.6)

Upon referring to Eq. (2.6) set

q1 := q0,1(r) cos θ, q2 := q0,1(r) sin θ. (2.7)

Performing a Taylor expansion for the chemical potentials, one will have for j = 1, 2,

ωj = λ0,1 + ∆ωj ε+O(ε2).

Upon setting

∆ω := ∆ω1, b :=
∆ω2

∆ω1
,
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for the steady-state problem associated with Eq. (1.3) write

q1 = x1q1 + x2q2 +O(ε), ω1 = λ0,1 + ∆ω ε+O(ε2)

q2 = y1q1 + y2q2 +O(ε), ω2 = λ0,1 + b∆ω ε+O(ε2),
(2.8)

where xj , yj ∈ C for j = 1, 2. Now, Eq. (1.3) is invariant under the gauge symmetry qj 7→ qjeiφj , and under
the spatial SO(2) symmetry of rotation. The equivariant Lyapunov-Schmidt bifurcation theory guarantees
that the bifurcation equations have the same symmetries as the underlying system (e.g., see [11]). Con-
sequently, without loss of generality one may assume in Eq. (2.8) that x1, y1 ∈ C and x2, y2 ∈ iR. The
expansion of Eq. (2.8) then becomes

q1 = x1q1 + ix2q2 +O(ε), ω1 = λ0,1 + ∆ω ε+O(ε2)

q2 = y1q1 + iy2q2 +O(ε), ω2 = λ0,1 + b∆ω ε+O(ε2),
(2.9)

where now one has that x1, y1 ∈ C, and x2, y2 ∈ R. Substitution of the expansion of Eq. (2.9) into the
steady-state associated with Eq. (1.3) and an application of the Lyapunov-Schmidt reduction yields the
following set of bifurcation equations:

0 = −µx1 + a1(3|x1|2x1 + 2x1x
2
2 − x1x

2
2) + (3|y1|2 + y2

2)x1 + (y1 − y1)x2y2

0 = −µx2 + a1(3x3
2 + 2|x1|2x2 − x2

1x2) + (|y1|2 + 3y2
2)x2 − (y1 − y1)x1y2

0 = −bµy1 + a2(3|y1|2y1 + 2y1y2
2 − y1y2

2) + (3|x1|2 + x2
2)y1 + (x1 − x1)x2y2

0 = −bµy2 + a2(3y3
2 + 2|y1|2y2 − y2

1y2) + (|x1|2 + 3x2
2)y2 − (x1 − x1)x2y1,

(2.10)

where

µ :=
∆ω
g
, g :=

π

4

∫ ∞
0

rq40,1(r) dr
(

=
1

8π

)
. (2.11)

Note that sign(µ) = sign(∆ω). The remainder of this section will be devoted to the analysis of Eq. (2.10).

2.2. Real-valued solutions

Let us first consider the case of real-valued solutions. One sees from Eq. (2.9) that one set can be found
by setting (x2, y2) = (0, 0) with x1, y1 ∈ R. In this case Eq. (2.10) reduces to

0 = x1

[
−µ+ 3a1x

2
1 + 3y2

1

]
0 = y1

[
−bµ+ 3x2

1 + 3a2y
2
1

]
.

(2.12)

The solution to Eq. (2.12) which is nonzero in both components is given by(
x2

1

y2
1

)
=

µ

3(a1a2 − 1)

(
a2 − b
ba1 − 1

)
. (2.13)

Note that the solution given in Eq. (2.13) is valid if and only if (ba1 − 1)(a2 − b) > 0, i.e.,

a1a2 > 1 : 1/a1 ≤ b ≤ a2

a1a2 < 1 : a2 ≤ b ≤ 1/a1.
(2.14)

Note that in either case µ > 0. Further note that if one considers, e.g., the case of a1a2 > 1, then b = 1/a1

corresponds to the solution with q2 ≡ 0, and b = a2 corresponds to the solution with q1 ≡ 0. From Eq. (2.7)
and Eq. (2.9) it is seen that this solution corresponds to in-phase dipoles.

Another real-valued solution to Eq. (2.10) can be found by setting (x2, y1) = (0, 0) and assuming that
x1 ∈ R. Eq. (2.10) then reduces to

0 = x1

[
−µ+ 3a1x

2
1 + y2

2

]
0 = y2

[
−bµ+ x2

1 + 3a2y
2
2

]
,

(2.15)
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and the solution to Eq. (2.15) which is nonzero in both components is(
x2

1

y2
2

)
=

µ

9a1a2 − 1

(
3a2 − b
3ba1 − 1

)
. (2.16)

Note that the solution given in Eq. (2.16) is valid if and only if (3ba1 − 1)(3a2 − b) > 0, i.e.,

a1a2 > 1/9 : 1/3a1 ≤ b ≤ 3a2

a1a2 < 1/9 : 3a2 ≤ b ≤ 1/3a1.
(2.17)

From Eq. (2.7) and Eq. (2.9) it is seen that this solution corresponds to out-of-phase dipoles.
It is not difficult to show that any other solution to Eq. (2.10) which represents a real-valued solution is

equivalent via the symmetries to that presented in either Eq. (2.13) or Eq. (2.16). In summary, the following
result has now been proven.

Lemma 2.1. The in-phase dipole-dipole solution to Eq. (1.3) is given by

q1 ∼

√
a2 − b

3(a1a2 − 1)g
∆ω q0,1(r) cos θ q2 ∼

√
ba1 − 1

3(a1a2 − 1)g
b∆ω q0,1(r) cos θ,

where ∆ω > 0. The restrictions on b are given in Eq. (2.14). The out-of-phase dipole-dipole solution to
Eq. (1.3) is given by

q1 ∼

√
3a2 − b

(9a1a2 − 1)g
∆ω q0,1(r) cos θ, q2 ∼

√
3ba1 − 1

(9a1a2 − 1)g
b∆ω q0,1(r) sin θ,

where ∆ω > 0. The restrictions on b are given in Eq. (2.17).

2.3. Complex-valued solutions

Now consider complex-valued solutions to Eq. (2.10). Upon setting

x1 := ρ1eiφ1 , y1 := s1eiψ1 , (2.18)

the imaginary part of Eq. (2.10) can be written as(
0
0

)
=
(
ρ1 cosφ1 0

0 s1 cosψ1

)(
a1 1
1 a2

)(
ρ1x2 sinφ1

s1y2 sinψ1

)
(

0
0

)
=
(
−µ+ 3a1(ρ2

1 + x2
2) + 3s21 + y2

2 2x2y2
2x2y2 −bµ+ 3ρ2

1 + x2
2 + 3a2(s21 + y2

2)

)(
ρ1 sinφ1

s1 sinψ1

)
,

(2.19)

and the real part of Eq. (2.10) becomes

0 = ρ1 cosφ1(−µ+ a1[3ρ2
1 + x2

2] + 3s21 + y2
2)

0 = x2(−µ+ a1[(2− cos 2φ1)ρ2
1 + 3x2

2] + s21 + 3y2
2) + 2ρ1s1y2 sinφ1 sinψ1

0 = s1 cosψ1(−bµ+ 3ρ2
1 + x2

2 + a2[3s21 + y2
2 ])

0 = y2(−bµ+ ρ2
1 + 3x2

2 + a2[(2− cos 2ψ1)s21 + 3y2
2 ]) + 2ρ1x2s1 sinφ1 sinψ1.

(2.20)

In order to construct solutions to Eq. (2.10) which are not covered via the symmetries by Lemma 2.1, one
cannot choose the solution φ1, ψ1 = π/2 (mod π) in Eq. (2.19). First assume that

φ1, ψ1 = 0 (mod π). (2.21)
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Upon assuming that all of the variables will be nonzero Eq. (2.20) becomes

0 = −µ+ (3ρ2
1 + x2

2) + 3s21 + y2
2

0 = −µ+ a1(ρ2
1 + 3x2

2) + s21 + 3y2
2

0 = −bµ+ 3ρ2
1 + x2

2 + a2(3s21 + y2
2)

0 = −bµ+ ρ2
1 + 3x2

2 + a2(s21 + 3y2
2).

(2.22)

The solution to Eq. (2.22) is

ρ2
1 = x2

2 =
a2 − b

4(a1a2 − 1)
µ, s21 = y2

2 =
ba1 − 1

4(a1a2 − 1)
µ. (2.23)

Note that the restriction of Eq. (2.14) is valid for Eq. (2.23). Note that when b = 1/a1 the solution is a
vortex in the first component and identically zero in the second, whereas the situation is reversed at the
limit b = a2. This is the vortex-vortex solution.

Now consider Eq. (2.19) and Eq. (2.20) under the assumption that φ1, ψ1 = 0 (mod π) and y2 = 0, i.e.,
the solution is real-valued in the second component. In this case the system to be solved for which all of the
remaining variables are nonzero becomes

0 = −µ+ a1(3ρ2
1 + x2

2) + 3s21
0 = −µ+ a1(ρ2

1 + 3x2
2) + s21

0 = −bµ+ 3ρ2
1 + x2

2 + 3a2s
2
1.

(2.24)

The solution to Eq. (2.24) is given by ρ2
1

x2
2

s21

 =
µ

12a1(a1a2 − 1)

 3a1a2 − 4ba1 + 1
3(a1a2 − 1)
4a1(ba1 − 1)

 . (2.25)

The solution is valid if and only if

a1a2 > 1 : 1/a1 ≤ b ≤ (3a1a2 + 1)/4a1

a1a2 < 1 : (3a1a2 + 1)/4a1 ≤ b ≤ 1/a1.
(2.26)

Note that in either case µ > 0. Further note that if b = 1/a1 corresponds to the solution with q2 ≡ 0 and a
vortex in q1, and b = (3a1a2+1)/4a1 corresponds to the solution described by Eq. (2.16), i.e., an out-of-phase
dipole-dipole solution. This solution will be denoted by azimuthon-dipole, i.e., a phase-modulated vortex in
the first component coupled to a dipole in the second component.

Finally consider Eq. (2.19) and Eq. (2.20) under the assumption that φ1, ψ1 = 0 (mod π) and x2 = 0,
i.e., the solution is real-valued in the first component. In this case the system to be solved for which all of
the remaining variables are nonzero becomes

0 = −µ+ 3a1ρ
2
1 + 3s21 + y2

2

0 = −bµ+ 3ρ2
1 + a2(3s21 + y2

2)

0 = −bµ+ ρ2
1 + a2(s21 + 3y2

2).

(2.27)

The solution to Eq. (2.27) is given by ρ2
1

s21
y2
2

 =
µ

12a2(a1a2 − 1)

 4a2(a2 − b)
3ba1a2 − 4a2 + b

3b(a1a2 − 1)

 . (2.28)

The solution is valid if and only if

a1a2 > 1 : a2 ≤ b ≤ 4a2/(3a1a2 + 1)
a1a2 < 1 : 4a2/(3a1a2 + 1) ≤ b ≤ a2.

(2.29)
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Again note that in either case µ > 0. Furthermore, if b = a2 corresponds to the solution with q1 ≡ 0 and a
vortex in q2, and b = 4a2/(3a1a2+1) corresponds to the solution described by Eq. (2.16), i.e., an out-of-phase
dipole-dipole solution. This solution will be denoted by dipole-azimuthon.

It is not difficult to show that any other solution to Eq. (2.10) which represents a solution which is
complex-valued in at least one component is equivalent via the symmetries to those given above. In summary,
the following result has now been proven.
Lemma 2.2. The solution with a vortex in both components is given by

q1 ∼

√
a2 − b

4(a1a2 − 1)g
∆ω q0,1(r)eiθ, q2 ∼

√
ba1 − 1

4(a1a2 − 1)g
∆ω q0,1(r)eiθ,

where ∆ω > 0. The restrictions on b are given in Eq. (2.14). The azimuthon-dipole solution is given by

q1 ∼ q0,1(r)

(√
3a1a2 − 4ba1 + 1
12a1(a1a2 − 1)g

∆ω cos θ + i
√

1
4a1g

∆ω sin θ

)

q2 ∼ q0,1(r)

√
ba1 − 1

3(a1a2 − 1)g
∆ω cos θ,

where ∆ω > 0. The restrictions on b are given in Eq. (2.26). Finally, the dipole-azimuthon solution is given
by

q1 ∼ q0,1(r)

√
a2 − b

3(a1a2 − 1)g
∆ω cos θ

q2 ∼ q0,1(r)

(√
3ba1a2 − 4a2 + b

12a2(a1a2 − 1)g
∆ω cos θ + i

√
b

4a2g
∆ω sin θ

)
,

where ∆ω > 0. The restrictions on b are given in Eq. (2.29).

For j = 1, 2 the conserved quantities Nj (number of particles) are given by

Nj :=
∫∫
|qj(x, t)|2 dx . (2.30)

Let the ratio between these two quantities be defined by

R :=
N1

N2
=
|x1|2 + x2

2

|y1|2 + y2
2

+O(ε). (2.31)

The results of Lemma 2.1 and Lemma 2.2 are summarized in Figure 1. The horizontal axis is given by R.
The labeling is such that “V” corresponds to vortex, “D” corresponds to dipole, and “A” corresponds to
azimuthon. The subscript “i” means “in-phase”, and the subscript “o” means “out-of-phase”.

3. Stability: small eigenvalues

The theory leading to the determination of the spectral stability of the solutions found in Section 2 will
heavily depend upon the results presented in [25, Section 4] and [23, 24, 39]. There are at least three
conserved quantities associated with Eq. (1.3): two are given in Eq. (2.30), and the third is given by

Lz :=
∫∫

R2
Im(qj(x ))∂θ Re(qj(x )) dx ; ∂θ := x∂y − y∂x,

where Lz refers to the total angular momentum of the condensate. Consequently, one typically has that
λ = 0 is an eigenvalue with some multiplicity. When discussing the solutions given in Figure 1, one has the
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1/a1 a2
0 8

VV

ADDA

DDi

DDo

a1a2>1

a2 1/a1
0 8

VV

ADDA

DDi

DDo

a1a2<1

Figure 1: (color online) The existence diagram for the solutions discussed in Lemma 2.1 and
Lemma 2.2. In each subfigure the horizontal axis is R as defined in Eq. (2.31). The
labeling is such that “V” corresponds to vortex, “D” corresponds to dipole, and “A”
corresponds to azimuthon. The subscript “i” means “in-phase”, and the subscript “o”
means “out-of-phase”.

following table regarding the multiplicity of the null eigenvalue:

DDi DDo DA AD VV
mg(0) 3 3 3 3 2
ma(0) 6 6 6 6 4

(3.1)

It is interesting to note that the vortex solutions VV do not have the maximal geometric multiplicity. The
disparity when compared to the other solutions is due to the fact that the null eigenfunctions associated with
Nj and Lz are constant multiples of each other for solutions of the form q(r)eiθ, i.e., solutions with radially
symmetric moduli. The spectral stability results proven in the subsequent subsections are summarized in
Figure 2.

3.1. Reduced eigenvalue problem: theory

A more complete version of the discussion in this subsection can be found in [26, Section 5.1]. It is given
here for the sake of completeness. Upon linearizing Eq. (1.3) about a complex-valued solution one has the
eigenvalue problem

JLu = λu , (3.2)

where

J :=
(

0 1

−1 0

)
,

and L is a symmetric operator on a Hilbert space X with inner product 〈·, ·〉, and is a relatively compact per-
turbation of a self-adjoint and strictly positive operator. In particular, for 0 < ε� 1 consider Eq. (3.2)under
the following scenario:

L = L0 + εL1,
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R-DDo R+DDo1/a1 a2RAD RDA
0 8

VV

ADDA

DDi

DDo

a1a2>1

R-DDo R
+DDoa2 1/a1

0 8

VV

ADDA

DDi

DDo

a1a2<1
a1+a2>2

a2 1/a1
0 8

VV

ADDA

DDi

DDo

a1a2<1
a1+a2<2

Figure 2: (color online) Recall the description associated with Figure 1. The solid red curve
corresponds to solutions with one positive real eigenvalue. All other solutions have no
purely real eigenvalues. The variables R±DDo

are defined in Eq. (3.12). The variables
RDA,AD are defined in Eq. (3.20) and Eq. (3.24), respectively.

with

L0 := diag(A0,A0), L1 :=
(
L1

+ B
B∗ L1

−

)
. (3.3)

Assume that dim ker(A0) = n ∈ N, and that an orthonormal basis for ker(A0) is given by

ker(A0) = Span{φ1, . . . , φn}. (3.4)

As seen in [25, Section 4], upon writing

λ = ελ1 +O(ε2), u =
n∑
j=1

xj(φj , 0)T +
n∑
j=1

xn+j(0, φj)T +O(ε),

the determination of the O(ε) eigenvalues to Eq. (3.3) is equivalent to the finite-dimensional eigenvalue
problem

JSx = λ1x ; J :=
(

0 1

−1 0

)
, S :=

(
S+ S2

SH
2 S−

)
, (3.5)
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where (·)H is Hermitian conjugation and

(S±)ij = 〈φi,L1
±φj〉, (S2)ij = 〈φi,Bφj〉. (3.6)

3.2. Reduced eigenvalue problem: real-valued solutions

From the theory presented in Section 2 we can represent the steady-state solutions as qj = Qj + O(ε),
where Qj is real-valued. Following the discussion of the previous subsection one has that B = 0 with

L1
+ =

(
−∆ω + 3a1Q

2
1 +Q2

2 2Q1Q2

2Q1Q2 −b∆ω +Q2
1 + 3a2Q

2
2

)
L1
− = diag

(
−∆ω + a1Q

2
1 +Q2

2,−b∆ω +Q2
1 + a2Q

2
2

)
.

(3.7)

For j = 1, 2 write
φ2j−1 := q0,1(r) cos θ ej , φ2j := q0,1(r) sin θ ej ,

where ej ∈ R2 is the standard unit basis vector. Recall from Eq. (3.1) that there will be only one pair of
O(ε) nonzero eigenvalues when solving Eq. (3.5).

3.2.1. In-phase dipole-dipole

Upon using Eq. (2.13) and Eq. (3.6) one eventually sees that

S+ = 2g


3a1x

2
1 0 3x1y1 0

0 −y2
1 0 x1y1

3x1y1 0 3a2y
2
1 0

0 x1y1 0 −x2
1


S− = −2g diag

(
0, a1x

2
1 + y2

1 , 0, x
2
1 + a2y

2
1

)
.

(3.8)

From Eq. (3.5) it is seen that the nonzero eigenvalues are given by

λ2
1 = −4g2

[
x2

1(x2
1 + a2y

2
1) + y2

1(a1x
2
1 + y2

1)
]
∈ R−; (3.9)

hence, these waves are spectrally stable with respect to small eigenvalues.

3.2.2. Out-of-phase dipole-dipole

From Eq. (2.16) and Eq. (3.6) one gets that

S+ = 2g


3a1ρ

2
1 0 0 ρ1y2

0 y2
2 ρ1y2 0

0 ρ1y2 ρ2
1 0

ρ1y2 0 0 3a2y
2
2


S− = 2g diag

(
0,−a1ρ

2
1 + y2

2 , ρ
2
1 − a2y

2
2 , 0
)
.

(3.10)

Note that
−a1ρ

2
1 + y2

2 = 0 =⇒ R = 1/a1,

and
ρ2
1 − a2y

2
2 = 0 =⇒ R = a2,

where R is defined in Eq. (2.31). Thus, it is seen that the bifurcation from DDo to AD or DA is realized
spectrally as an eigenvalue of L− passing through the origin. Using Eq. (3.5) it is seen that the nonzero
eigenvalues are given by

λ2
1 = −4g2

[
x2

1(ρ2
1 − a2y

2
2) + y2

1(−a1ρ
2
1 + y2

2)
]
. (3.11)
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If one sets
R±DDo

:=
1
2

(
a1 + a2 ±

√
(a1 + a2)2 − 4

)
, (3.12)

then an analysis of Eq. (3.11) yields

λ2
1 > 0 ⇐⇒ R−DDo

<
ρ2
1

y2
2

< R+
DDo

; (3.13)

otherwise, λ2
1 < 0. In conclusion, the real eigenvalues of O(ε) can exist only if a1 + a2 > 2.

3.3. Reduced eigenvalue problem: complex-valued solutions

If the underlying solution is written as qj = Uj + iVj for j = 1, 2, then in this case one has that

L1
+ =

(
−∆ω + a1(3U2

1 + V 2
1 ) + U2

2 + V 2
2 2U1U2

2U1U2 −b∆ω + U2
1 + V 2

1 + a2(3U2
2 + V 2

2 )

)
L1
− =

(
−∆ω + a1(U2

1 + 3V 2
1 ) + U2

2 + V 2
2 2V1V2

2V1V2 −b∆ω + U2
1 + V 2

1 + a2(U2
2 + 3V 2

2 )

)
B = 2

(
a1U1V1 U1V2

U2V1 a2U2V2

)
.

(3.14)

3.3.1. Vortex-vortex

Upon using Eq. (2.23) and Eq. (3.6) one has

S+ = 2g


3a1ρ

2
1 0 3ρ1s1 0

0 a1ρ
2
1 0 ρ1s1

3ρ1s1 0 3a2s
2
1 0

0 ρ1s1 0 a2s
2
1

 , S− = 2g


a1ρ

2
1 0 ρ1s1 0

0 3a1ρ
2
1 0 3ρ1s1

ρ1s1 0 a2s
2
1 0

0 3ρ1s1 0 3a2s
2
1



S2 = 2g


0 a1ρ

2
1 0 ρ1s1

a1ρ
2
1 0 ρ1s1 0

0 ρ1s1 0 a2s
2
1

ρ1s1 0 a2s
2
1 0

 .

(3.15)

From Eq. (3.5) it is seen that the nonzero eigenvalues represented by Z := λ1/2g satisfy the characteristic
equation

Z4 + 4(a2
1ρ

4
1 + 2ρ2

1s
2
1 + a2

2s
4
1)Z2 + 16(a1a2 − 1)2ρ4

1s
4
1 = 0. (3.16)

Now, one can rewrite the above as[
Z2 + 2(a2

1ρ
4
1 + 2ρ2

1s
2
1 + a2

2s
4
1)
]2

+ 16(a1a2 − 1)2ρ4
1s

4
1 − 4(a2

1ρ
4
1 + 2ρ2

1s
2
1 + a2

2s
4
1)2 = 0.

Upon using Eq. (2.23) and simplifying one gets that

16(a1a2 − 1)2ρ4
1s

4
1 − 4(a2

1ρ
4
1 + 2ρ2

1s
2
1 + a2

2s
4
1)2 = −

(
a1(a2 − b)− a2(ba1 − 1)

a1a2 − 1

)2

;

hence, for Eq. (3.16) solutions Ẑ satisfy Ẑ2 ∈ R−. Since

a2
1ρ

4
1 + 2ρ2

1s
2
1 + a2

2s
4
1 > 0,

one has that all of the solutions must be simple zeros; consequently, the solution is spectrally stable with
respect to the small eigenvalues.
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3.3.2. Azimuthon-dipole

Upon using Eq. (2.25) and Eq. (3.6) one gets

S+ = 2g


3a1ρ

2
1 0 3ρ1s1 0

0 a1ρ
2
1 0 ρ1s1

3ρ1s1 0 3a2s
2
1 0

0 ρ1s1 0 x2
2 − ρ2

1

 , S− = 2g


a1x

2
2 0 0 0

0 3a1x
2
2 0 0

0 0 0 0
0 0 0 −ρ2

1 + x2
2 − a2s

2
1



S2 = 2g


0 a1ρ1x2 0 0

a1ρ1x2 0 0 0
0 s1x2 0 0

s1x2 0 0 0

 .

(3.17)

Since
−ρ2

1 + x2
2 = s21/a1, −ρ2

1 + x2
2 − a2s

2
1 = −4(ba1 − 1)/3,

upon using Eq. (3.5) it is seen that the nonzero eigenvalues satisfy(
λ1

2g

)2

=
4x2

2

3a1

[
−3a3

1ρ
2
1 + (ba1 − 1)s21

]
. (3.18)

Upon using the expressions given in Eq. (2.25) it can be seen that λ1 = 0 if and only if b = b±, where

b± :=
1
a1

+
3
2
a1

(
−1±

√
1 + (a1a1 − 1)/a2

1

)
. (3.19)

It is an exercise in algebra to check that

b− −
1
a1

< 0, b± −
1 + 3a1a2

4a1
< 0, b+ −

1
a1

{
> 0, a1a2 > 1
< 0, a1a2 < 1.

Set

RAD :=
ρ2
1 + x2

2

s21

∣∣∣∣
b=b+

, (3.20)

where b+ is defined in Eq. (3.19). If a1a2 > 1, then one can conclude that for Eq. (3.18) λ2
1 > 0 for 1/a1 ≤

R < RAD; otherwise, λ2
1 < 0. Consequently, there is a pair of small real eigenvalues for 1/a1 ≤ R < RAD,

and otherwise the small eigenvalues are purely imaginary. If a1a2 < 1, λ2
1 < 0, so that the eigenvalues are

always purely imaginary (see Figure 2).

3.3.3. Dipole-azimuthon

Using Eq. (2.28) and Eq. (3.6) yields

S+ = 2g


3a1ρ

2
1 0 3ρ1s1 0

0 −s21 + y2
2 0 ρ1s1

3ρ1s1 0 3a2s
2
1 0

0 ρ1s1 0 a2s
2
1

 , S− = 2g


0 0 0 0
0 a1ρ

2
1 − s21 + y2

2 0 0
0 0 a2y

2
2 0

0 0 0 3a2y
2
2



S2 = 2g


0 a2s1y2 0 0

a2s1y2 0 0 0
0 ρ1y2 0 0

ρ1y2 0 0 0

 .

(3.21)

Since
−s21 + y2

2 = ρ2
1/a2, a1ρ

2
1 − s21 + y2

2 = −4(a2 − b)/3b,
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by using Eq. (3.5) it is eventually seen that the nonzero eigenvalues are given by(
λ1

2g

)2

=
4y2

2

3ba2

[
(a2 − b)ρ2

1 − 3ba3
2s

2
1

]
. (3.22)

Using the expressions given in Eq. (2.28) yields that λ1 = 0 if and only if b = b±, where now

b± :=
4a2

3a2
2(3a1a2 + 1)− 4

(
−1 +

3
2
a2
2

[
1±

√
1 + (a1a1 − 1)/a2

2

])
. (3.23)

Arguing as in the previous subsection it can eventually be seen that for

RDA :=
ρ2
1

s21 + y2
2

∣∣∣∣
b=b+

, (3.24)

where b+ is defined in Eq. (3.23), if a1a2 > 1, then λ2
1 > 0 for RDA ≤ R < a2; otherwise, λ2

1 < 0.
Consequently, there is a pair of small real eigenvalues for RDA ≤ R < a2, and otherwise the small eigenvalues
are purely imaginary. If a1a2 < 1, λ2

1 < 0, so that the eigenvalues are always purely imaginary (see Figure 2).

4. Stability: Hamiltonian-Hopf bifurcations

In the previous sections the O(ε) eigenvalues were determined. Herein we will locate the potentially
unstable O(1) eigenvalues which arise from a Hamiltonian-Hopf bifurcation. This bifurcation is possible
only if for the unperturbed problem there is the collision of eigenvalues of opposite sign, i.e., only for the
eigenvalues ±i2. A preliminary theoretical result, derived in [26, Section 6.1], will be needed before the actual
calculations are presented. In particular, we first consider the nongeneric case for which the eigenvalue is
algebraically simple.

4.1. Reduced eigenvalue problem: theory

A more complete version of the discussion in this subsection can be found in [26, Section 6.1]. As in
Section 3.1, it is given here for the sake of completeness. Consider the scenario presented in Section 3.1. First
suppose that ε = 0. Let λ± ∈ σ(L)∩R± each be semi-simple eigenvalues with multiplicity n±; furthermore,
let the basis of each eigenspace be given by the orthonormal set {ψ±1 , . . . , ψ±n±}. When considering only
those eigenvalues in the upper-half of the complex plane, for Eq. (3.2) the eigenvalues and corresponding
eigenfunctions are given by

λ = −iλ− : u−j = (ψ−j ,−iψ−j )T, j = 1, . . . n−

λ = +iλ+ : u+
j = (ψ+

j , iψ
+
j )T, j = 1, . . . n+.

(4.1)

If one assumes that λ− = −λ+, then there is a collision of eigenvalues with opposite Krein signature;
in particular, n− eigenvalues of negative sign have collided with n+ eigenvalues of positive sign. Under this
scenario the eigenspace associated with the colliding eigenvalues is also semi-simple. As discussed in [32],
this is a codimension three phenomenon, and hence is nongeneric.

The location of the perturbed eigenvalues can be found in the following manner. First write the perturbed
eigenvalue and eigenfunction using the expansion

λ = iλ+ + ελ1 +O(ε2), u =
n−∑
j=1

c−j u
−
j +

n+∑
j=1

c+j u
+
j +O(ε), (4.2)

and set c := (c−1 , . . . , c
−
n− , c

+
1 , . . . , c

+
n+

)T ∈ Cn−+n+ . One eventually sees that the O(ε) correction is found
by solving the matrix system

JSc = λ1c; J := − i
2

diag(1−,−1+), S :=
(

S− S c

SH
c S+

)
, (4.3)
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where
(S±)jk = 〈(L1

+ + L1
−)ψ±j , ψ

±
k 〉, (S c)jk = 〈(L1

+ − L1
− + i2B)ψ−j , ψ

+
k 〉. (4.4)

In Eq. (4.3) one has that 1± ∈ Rn±×n± is the identity matrix. Note that J is skew-symmetric and that S
is symmetric.
Remark 4.1. As a consequence of theoretical results presented in [22, Section 2] (also see the references
therein) it is known regarding Eq. (4.3) that

• {λ,−λ} ⊂ σ(JS)

• the number of λ ∈ σ(JS) with Reλ 6= 0 is bounded above by min{n−, n+}.

Let us now apply these results to those solutions found in Section 2. Recall that from Section 2 the
solutions bifurcate from λ = 4. When ε = 0 the eigenvalue λm,` maps to ±i(4−λm,`). Thus, upon following
the ideas presented in Section 4.1 one knows that a Hamiltonian-Hopf bifurcation will be associated with
those eigenvalues which satisfy

4− λa,b = λc,d − 4; λa,b ∈ σ(L) ∩ R−, λc,d ∈ σ(L) ∩ R+.

A simple calculation shows that the above is satisfied if and only if

(a, b) = (0, 0) : (c, d) ∈ {(0, 2), (1, 0)}. (4.5)

As a consequence, in the upper-half of the complex plane one has one distinct possible bifurcation point at
i2. Furthermore, n− = 2 and n+ = 6, so that there will be at most two eigenvalues with real part nonzero
for ε > 0. Using the notation leading to Eq. (4.1) one has that

ψ−j = q0,0(r)ej , j = 1, 2

ψ+
1 = q1,0(r)e1, ψ

+
2 = q0,2(r) cos 2θe1, ψ

+
3 = q0,2(r) sin 2θe1

ψ+
4 = q1,0(r)e1, ψ

+
5 = q0,2(r) cos 2θe2, ψ

+
6 = q0,2(r) sin 2θe2.

(4.6)

The functions are explicitly given by

q0,0(r) =

√
1
π

e−r
2/2; q1,0(r) =

√
1
π

(1− r2)e−r
2/2; q0,`(r) =

√
2
`!π

r`e−r
2/2, ` ∈ N. (4.7)

Finally, regarding Eq. (4.3) one has that the operators L1
± and B are given in Eq. (3.7). Since J ,S ∈ C8×8,

Eq. (4.3) unfortunately is in general not analytically tractable. However, it turns out to be the case that at
the limits R = 0,∞ (see Figure 1) one can perform a perturbation analysis of the characteristic equation in
order to determine if an instability is generated near those limits. Otherwise, the eigenvalues in Eq. (4.3)
can be determined numerically.

4.2. Reduced eigenvalue problem: real-valued solutions

4.2.1. In-phase dipole-dipole

For this problem B = 0 and

L1
+ − L1

− = q20,1(r)(1 + cos 2θ)
(
a1x

2
1 x1y1

x1y1 a2y
2
1

)
L1

+ + L1
− = −2∆ω diag(1, b) + q20,1(r)(1 + cos 2θ)

(
2a1x

2
1 + y2

1 x1y1
x1y1 x2

1 + 2a2y
2
1

)
.

In using Eq. (4.3) along with the expressions in Eq. (2.13) and Eq. (4.7) it is seen that

S c = 2g
(

0 a1x
2
1 0 0 x1y1 0

0 x1y1 0 0 a2y
2
1 0

)
, S− = 2g

(
a1x

2
1 − y2

1 2x1y1
2x1y1 −x2

1 + a2y
2
1

)
,
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and

S+ = 2g


−(a1x

2
1 + 2y2

1) −(a1x
2
1 + y2

1/2) 0 x1y1 −x1y1/2 0
−(a1x

2
1 + y2

1/2) −3y2
1/2 0 −x1y1/2 3x1y1/2 0

0 0 −3y2
1/2 0 0 3x1y1/2

x1y1 −x1y1/2 0 −(2x2
1 + a2y

2
1) −(x2

1/2 + a2y
2
1) 0

−x1y1/2 3x1y1/2 0 −(x2
1/2 + a2y

2
1) −3x2

1/2 0
0 0 3x1y1/2 0 0 −3x2

1/2

 .

When considering Eq. (4.3) at the limits b = 1/a1, a2 one has the semisimple eigenvalues

b = 1/a1 : i
λ1

g
=

1
3

; b = a2 : i
λ1

g
=
a2

3
.

All of the other eigenvalues are simple with zero real part; hence, for small perturbations they will remain
purely imaginary. A Taylor expansion of the characteristic equation yields to leading order

b = 1/a1 :
(

i
λ1

g
− 1

3

)2

− a1(a1 − 1)2(12a1 − 17)
9(a1 + 1)(a1a2 − 1)(4a2

1 − 14a1 + 11)

(
b− 1

a1

)
= 0, (4.8)

and

b = a2 :
(

i
λ1

g
− a2

3

)2

+
a2(a2 − 1)2(12a2 − 17)

9(a2 + 1)(a1a2 − 1)(4a2
2 − 14a2 + 11)

(b− a2) = 0. (4.9)

Set

a± :=
1
4

(7±
√

5) (a− ∼ 1.19, a+ ∼ 2.31).

First suppose that a1a2 > 1, so that 1/a1 < b < a2. From Eq. (4.8) it is seen that Reλ1 6= 0 if a1 < a−
or 17/12 < a1 < a+, and Reλ1 = 0 for complementary values of a1. One sees the same situation arising
from the analysis of Eq. (4.9), i.e., Reλ1 6= 0 if and only if a2 < a− or 17/12 < a2 < a+. On the other
hand, if a1a2 < 1 then an instability arises near b = 1/a1 if and only if a− < a1 < 17/12 or a+ < a1, and
an instability arises near b = a2 if and only if a− < a2 < 17/12 or a+ < a2. The situation is depicted in
Figure 3.

We numerically compute Reλ1 for the relevant experimental parameters (a1, a2) = (1.03, 0.9717) in the
left panel of Figure 4. As predicted by the theory, the solution undergoes the Hamiltonian-Hopf bifurcation
near the limits 0 < b− 1/a1 � 1 and 0 < a2 − b� 1. It is seen in the figure that the bifurcation occurs for
all values of b.

a1a2>1

a1a2<1
a2

a- a+17/12

R=0
a1a2>1

a1a2<1
a1

a- a+17/12

R= 8

Figure 3: (color online) Regarding the solution DDi, the left panel is concerned with Hamiltonian-
Hopf bifurcations near R = 0, whereas the right panel is concerned with such bifurca-
tions near R =∞. The horizontal axis is a2 on the left and a1 on the right. The solid
red curve corresponds to the bifurcation occurring; otherwise, the bifurcation does not
occur.
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Figure 4: (color online) Numerically computed Reλ1 from the reduced eigenvalue problem
Eq. (4.3) for the relevant experimental parameters (a1, a2) = (1.03, 0.9717). The left
panel shows the results of the computation for the solution DDi, and therefore has
b ∈ (1/a1, a2), while the right panel shows the results for the solution DDo, so that
b ∈ (1/3a1, 3a2).

4.2.2. Out-of-phase dipole-dipole

For this problem B = 0 and

L1
+ − L1

− = q20,1(r)
(
a1x

2
1(1 + cos 2θ) x1y2 sin 2θ
x1y2 sin 2θ a2y

2
2(1− cos 2θ)

)
L1

+ + L1
− = −2∆ω diag(1, b) + q20,1(r)

(
2a1(1 + cos 2θ)x2

1 + (1− cos 2θ)y2
2 x1y2 sin 2θ

x1y2 sin 2θ (1 + cos 2θ)x2
1 + 2a2(1− cos 2θ)y2

2

)
.

In using Eq. (4.3) along with the expressions in Eq. (2.16) and Eq. (4.7) it is eventually seen that

S c = 2g
(

0 a1x
2
1 0 0 0 x1y2

0 0 x1y2 0 −a2y
2
2 0

)
, S− = 2g

(
a1x

2
1 + y2

2 0
0 x2

1 + a2y
2
2

)
,

and

S+ = 2g


−a1x

2
1 −a1x

2
1 + y2

2/2 0 0 0 −x1y2/2
−a1x

2
1 + y2

2/2 y2
2/2 0 0 0 0

0 0 y2
2/2 −x1y2/2 0 0

0 0 −x1y2/2 −a2y
2
2 −x2

1/2 + a2y
2
2 0

0 0 0 −x2
1/2 + a2y

2
2 x2

1/2 0
−x1y2/2 0 0 0 0 x2

1/2

 .

When considering Eq. (4.3) at the limits b = 1/3a1, 3a2 one has the semisimple eigenvalues

b = 1/3a1 : i
λ1

g
=

1
3

; b = 3a2 : i
λ1

g
= a2.

All of the other eigenvalues are simple with zero real part; hence, for small perturbations they will remain
purely imaginary. A Taylor expansion of the characteristic equation yields to leading order

b = 1/3a1 :
(

i
λ1

g
− 1

3

)2

+
a1(4a1 + 1)

2(2a1 + 1)(9a1a2 − 1)

(
b− 1

3a1

)
= 0, (4.10)

and

b = 3a2 :
(

i
λ1

g
− a2

)2

− a2(4a2 + 1)
2(2a2 + 1)(9a1a2 − 1)

(b− 3a2) = 0. (4.11)
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An analysis of Eq. (4.10) and Eq. (4.11) yields that Reλ1 6= 0 for both 9a1a2 > 1 and 9a1a2 < 1 near the
two limits; in other words, there is a Hamiltonian-Hopf bifurcation at both limits.

We numerically compute Reλ1 for the relevant experimental parameters (a1, a2) = (1.03, 0.9717) in the
right panel of Figure 4. As predicted by the theory, the solution undergoes the Hamiltonian-Hopf bifurcation
near the limits 0 < b − 1/3a1 � 1 and 0 < 3a2 − b � 1. It is seen in the figure that the bifurcation occurs
for all values of b. Furthermore, there is a range of b values for which two eigenvalues with positive real part
arise as a consequence of the bifurcation.

4.3. Reduced eigenvalue problem: complex-valued solutions

Herein the analysis will be done for only the solution VV. The analysis for the other two solutions is left
for the interested reader.

4.3.1. Vortex-vortex

Regarding Eq. (4.3) one has that the operators L1
± and B are given in Eq. (3.14). For this problem one

then has that

L1
+ − L1

− + i2B = 2q20,1(r)ei2θ

(
a1ρ

2
1 ρ1s1

ρ1s1 a2s
2
1

)
L1

+ + L1
− = −2∆ω diag(1, b) + 2q20,1(r)

(
2a1ρ

2
1 + s21 ρ1s1
ρ1s1 ρ2

1 + 2a2s
2
1

)
.

In using Eq. (4.3) along with the expressions in Eq. (2.23) and Eq. (4.7) it is seen that

S c = 2g
(

0 a1ρ
2
1 ia1ρ

2
1 0 ρ1s1 iρ1s1

0 ρ1s1 iρ1s1 0 a2s
2
1 ia2s

2
1

)
, S− = 2g

(
4a1ρ

2
1 4ρ1s1

4ρ1s1 4a2s
2
1

)
,

and

S+ = 2g


−2s21 0 0 2ρ1s1 0 0

0 2a1ρ
2
1 − s21 0 0 3ρ1s1/2 0

0 0 2a1ρ
2
1 − s21 0 0 3ρ1s1/2

2ρ1s1 0 0 −2ρ2
1 0 0

0 3ρ1s1/2 0 0 −ρ2
1 + 2a2s

2
1 0

0 0 3ρ1s1/2 0 0 −ρ2
1 + 2a2s

2
1

 .

When considering Eq. (4.3) at the limits b = 1/a1, a2 one has the semisimple eigenvalues

b = 1/a1 : i
λ1

g
=

1
4a1

; b = a2 : i
λ1

g
=

1
4
.

All of the other eigenvalues are simple with zero real part; hence, for small perturbations they will remain
purely imaginary. Unlike the previous problems, one must go to higher order in the Taylor expansion in
order to capture the leading order behavior of the eigenvalues. Upon doing so one sees that

b = 1/a1 :
(

i
λ1

g
− 1

4a1

)2

+ c1bλ

(
b− 1

a1

)(
i
λ1

g
− 1

4a1

)
+ c1bb

(
b− 1

a1

)2

= 0, (4.12)

and

b = a2 :
(

i
λ1

g
− 1

4

)2

+ c2bλ (b− a2)
(

i
λ1

g
− 1

4

)
+ c2bb (b− a2)2 = 0, (4.13)

where the coefficients c1,2bλ , c
1,2
bb are complicated real-valued algebraic expressions in a1, a2. Solving Eq. (4.12)

eventually yields that

b = 1/a1 : 2
(

i
λ1

g
− 1

4

)
=
(
−c2bλ ±

a1(a1 + 2)2

8(2a1 + 1)(a1a2 − 1)(6a2
1 + 2a1 − 1)

)(
b− 1

a1

)
, (4.14)
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and solving Eq. (4.13) eventually yields

b = a2 : 2
(

i
λ1

g
− 1

4a1

)
=
(
−c1bλ ±

(a2 + 2)2

8(2a2 + 1)(a1a2 − 1)(6a2
2 + 2a2 − 1)

)
(b− a2) . (4.15)

An examination of Eq. (4.14) and Eq. (4.15) yields that Reλ1 = 0 in for both a1a2 > 1 and a1a2 < 1 near
the two limits. In conclusion, there is no Hamiltonian-Hopf bifurcation at either limit. Numerical results
for the case of the experimental parameters (a1, a2) = (1.03, 0.9717) show that there is no bifurcation for all
relevant b values.

5. Numerical results
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Figure 5: (color online) In-phase dipole, DDi (R = 1). Colorbars are consistent between this and
the following two figures.

The numerical results will be organized as follows. In the first subsection we will confirm the analytical
predictions from the previous sections for a physically relevant set of interaction parameters, namely a1 = 1.03
and a2 = 0.9717 for 87Rb [35], and monitor the solution branches as a function ofR, the ratio between number
of atoms in each component. In the next subsection we will explore the dynamical evolution of unstable
solutions for some representative regimes of R.

5.1. Numerical existence and stability

The numerical results for existence and stability were obtained in a rescaled (r̃ = r/L) radial domain
(r, θ) ∈ (0, L) × [0, 2π) with a Chebyshev basis in r (20 modes) and a Fourier basis in θ (20 modes) as
suggested in [48, Chap. 11]. For our present computations we set L = 4.5. A typical solution pertaining
to the stable DDi family (R = 1) is presented in Figure 5 along with its spectral stability. Since we believe
that the most interesting solution branch is attached to the AD solutions, we perform a continuation for
the DDo/AD branches in R = N1/N2

1 for fixed N1 + N2 = 5 and R ∈ [0.01, 100] (see Figure 6). The
continuation begins with a DDo solution for R = 0.01. Solutions in this regime are stable as in the single
component limit, with most of the mass in the second component. The profiles of the two components and
the associated linearization spectra for R = 0.01, depicted by a magenta circle in Figure 6, are displayed
in the left-hand panels of Figure 7. As R is increased there are two Hamiltonian-Hopf bifurcations arising
whose eigenvalue trajectories are shown by the real part of the relevant eigenvalue in the first quadrant of the
complex spectral plane Re(λh1) in thick dashed blue and Re(λh2) in thick dashed-dotted magenta. The inset,

1We define the measure Nj =
∑

m,n |U
j
m,n|2rm∆rm∆θn, where Uj

m,n is the numerical representation of component j in the

radial domain at the grid point (rm, θn) and ∆rm = rm+1− rm (this value is within 1% of that obtained with Clenshaw-Curtis
quadrature for the same integral).
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and the inset of the inset, depict a zoomed in region just before R−DDo
(thin solid red), where a real eigenvalue

pair bifurcates from an imaginary one through the origin (thick solid black) for the DDo branch, until after
RAD (thin dashed-dotted magenta), where, for the newly bifurcating AD branch, the reverse bifurcation
occurs and the solution restabilizes. In between, the bifurcation of the AD branch of solutions at 1/a1 (thin
dashed blue) has materialized, and past the bifurcation point it is this latter branch that is followed (hence
the stabilization at RAD vs. R+

DDo
). Notice the very close proximity of these instability and bifurcation

phenomena as a function of variations of R, which is induced by the fact that a2 − 1/a1 = 8.26 × 10−4 in
87Rb. Unstable solutions before (R = 0.97, red circle) and after (R = 0.9712, green circle) this bifurcation
are shown in the right-hand panels of Figure 7 and Figure 8, respectively. The solution corresponding to
R = 57 (blue circle) is presented in the left-hand panels of Figure 8. We make note that the predictions for
the Hamiltonian-Hopf bifurcations of the real solutions were indeed confirmed, but for N1 +N2 ∼ 0.1 in the
limits of small and large R. The inverse bifurcations occur for N1 +N2 < 1.

5.2. Dynamics of spectrally unstable states

In this section we will investigate the dynamics of solutions from the families depicted in Figure 6 with
predominantly one component in each of the unstable DDo (small R) and AD (large R) regimes, as well as
one from the roughly equal atom number regime in which the AD and DDo solutions are perturbations of one
another. Movies of the dynamics are available online. In order to monitor the detailed instability dynamics,
we use a transformed Cartesian domain (with second-order finite-difference Laplacian) for the dynamics, with
a fourth order Runge-Kutta integration scheme.2 The integration is always done for u(0) = Us(1+Ur) where
Us is the stationary solution in the Cartesian domain and Ur is a random noise field uniformly distributed
in the interval (−0.05, 0.05).

There are similarities in the dynamics of the different cases presented, but nonetheless, they are qualita-
tively distinct. In particular, vortices nucleate as a result of the evolution for all unstable dipole solutions.
For the largely asymmetric DDo solution depicted in Figure 9 for R = 0.2642, the dynamics occur in the
direction of the x-axis (over which the larger magnitude component is symmetric) for a long time after the
instability initially sets in. The amplitudes appear to remain roughly symmetric over the x-axis, while the
vorticity is anti-symmetric. Increasing vorticity seems to emerge in the pattern at larger times. For the
comparable atom number case of R = 0.9712 (see Figure 10) the dynamics are roughly the same between
components, and initially vortices nucleate and annihilate each other in the central density minima of each
component as the two lobes breathe smaller and larger (leading to asymmetric density profiles). Again the
vorticity increases with time and ultimately, the original structure gets completely destroyed in favor of
rotating structures with persistent vortices in both components. When the persistent vortices first emerge
around t = 120, there is a single dominant one in each component with smaller magnitude ones of incon-
sistent vorticity magnitude surrounding it in the periphery of the cloud. The largest magnitude vortex in
u1 is negative, while that of u2 is positive.3 As expected, these precess in opposite directions (the direction
of their respective rotation), and they appear to interact with one another as seen in Figure 11, as well as
with other vortices within each component whose magnitude of vorticity increase with time. In particular,
one can observe in the included movie, that around t = 160, two positively charged vortices begin to attain
the same magnitude, at times, as the originally dominant negatively charged one. This can be compared
with the time in which the motion of the two vortices become less synchronized in Figure 11. Lastly, for the
asymmetric AD solution with R = 6.296, and most of the atoms comprising a vortex in the first component,
the mild instability takes some time to set in. After t = 200, when it has settled in, the vortex in the first
component precesses while vortices nucleate and annihilate in the density minimum of the second component
(which again develops asymmetric density modulations), much like the previous case for two dipoles. How-
ever, as t approaches 400 the dynamics appears to be settling and approaching a rotated (by slightly over
90 degrees clockwise, i.e. opposite the direction of rotation of the precessing vortex) version of the original
configuration. For longer integration times, this procedure periodically repeats, leading to a further rotated

2In order to compensate for the reduced accuracy of resolving nucleating vortices, we first interpolate to a finer uniform (r, θ)
grid, and then map to Cartesian coordinates. Since the mapping results in a reduction of the number of atoms, the dynamics
are all done with N ≈ 4.9.

3Counter-clockwise rotation indicates positive vorticity and clockwise rotation indicates negative vorticity.
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version of the original configuration, and so on (see Figure 12). While it is beyond the scope of this paper,
we feel that understanding this dynamical behavior is extremely interesting.
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Figure 6: (color online) Diagram of the stability of a branch of solutions which originates from a
single dipole as a function of R = N1/N2, the ratio of the number of atoms of species
1 to that of species 2 (N = N1 + N2 = 5 remains constant throughout). The far
left of the diagram begins from R = 0.01, when the first component is very slightly
populated out-of phase (DDo solution). There are two Hamiltonian-Hopf bifurcations,
whose trajectories are indicated by thick dashed (blue) and dashed-dotted (magenta)
lines. There is one bifurcation of pure imaginary eigenvalues to pure real through the
origin given by the thick solid (black) line at R−DDo

(thin solid red line), followed by a
structural bifurcation of the solution from DDo to the azimuthon-dipole solution AD
at 1/a1 (thin dashed blue), at which point the phase of the first component acquires
nontrivial phase, i.e., it becomes a vortex. The real pair of eigenvalues subsequently
bifurcates through the origin again just slightly beyond the predicted value RAD (thin
dashed-dotted magenta). Notice the inset and the inset of the inset, which zoom in from
just before R−DDo

to just after RAD (solutions given in Figure 7 and Figure 8 are marked
with circles). Then, following the AD branch, we observe an inverse Hamiltonian-Hopf
bifurcation, while the second quartet persists until the end of the plot when R ≈ 100.
There will necessarily be another inverse Hamiltonian-Hopf bifurcation when the second
component eventually disappears as R → ∞, since the single-charge one-component
vortex is linearly stable. However, a continuation until R > 300 has been done and
Re(λh2) is still non-zero.
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Figure 7: (color online) Out-of-phase dipole, DDo, is shown for stable (R = 0.01 < R−, left) and
unstable (R− < R = 0.97 < 1/a1) values of R
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Figure 8: (color online) Azimuthon-dipole, AD, is shown for stable (R = 57 > RAD, left) and
unstable (1/a1 < R = 0.9712 < RAD) values of R.
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Figure 9: (color online) Some snapshots in the evolution of a solution from the families of Figure 6
for R = 0.2642. The amplitude is the squared modulus of the field and the vorticity is
the curl of the velocity vector field.
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Figure 10: (color online) Some snapshots in the evolution of a solution from the families of Figure 6
for the comparable atom number regime (R = 0.9712).

Figure 11: (color online) Vorticity isosurfaces of negative charge in the first component (red) and
positive charge in the second component (blue) from the dynamics presented in Fig.
Figure 10. The trajectories (clockwise and counter-clockwise, respectively) seem to be
synchronized with each other at first and then diverge.
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Figure 12: (color online) Some snapshots in the evolution of a solution from the families of Figure 6
for R ≈ 6.296.


