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AN OPERATOR FORMULATION OF THE MULTISCALE
FINITE-VOLUME METHOD WITH CORRECTION FUNCTION∗

IVAN LUNATI† AND SEONG H. LEE‡

Abstract. The multiscale finite-volume (MSFV) method has been derived to efficiently solve
large problems with spatially varying coefficients. The fine-scale problem is subdivided into local
problems that can be solved separately and are coupled by a global problem. This algorithm,
in consequence, shares some characteristics with two-level domain decomposition (DD) methods.
However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which
delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by
the use of two overlapping coarse grids. The recently introduced correction function allows for a
consistent handling of source terms, which makes the MSFV method a flexible algorithm that is
applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to
compute an approximate pressure solution, can be equivalently constructed by writing the Schur
complement with a tangential approximation of a single-cell overlapping grid and incorporation of
appropriate coarse-scale mass-balance equations.
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1. Introduction. In many branches of science and engineering, large elliptic or
parabolic problems with highly heterogeneous coefficients need to be solved to de-
scribe the dynamics of physical systems. Geological porous media, such as aquifers
and hydrocarbon reservoirs, are particularly challenging due to the hierarchy of scales
involved, ranging from the pore scale (typically microns to millimeters) to the forma-
tion scale (kilometers) [9]. We generally assume that the macroscopic behavior is well
described by Darcy’s law (i.e., the pore-scale processes can be described in terms of
average quantities defined on representative elementary volume [7]). It is, neverthe-
less, difficult to integrate all heterogeneity scales into numerical flow and transport
models. For these reasons, an abundant literature has proposed upscaling techniques
to reduce the number of degrees of freedom (see [30, 25] for a review).

In recent years, several multiscale methods have been developed to model multi-
phase flow and transport in geological formations. The main goal is to improve the
description of multiphase systems by retaining information on the small-scale het-
erogeneity of medium properties and phase distribution, which are important due to
the nonlinear nature of the partial differential equations involved [6]. To accomplish
this, coupled local and global problems are solved numerically. In reservoir modeling,
three major families of methods have been introduced: (1) The multiscale finite-
element method [11], which results in a flux field that is not conservative in general
and poses difficulties for modeling transport; (2) The mixed multiscale finite-element
method [1, 2, 3, 4, 5, 8], which is conservative but involves more degrees of freedom;
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and (3) the multiscale finite-volume (MSFV) method [12, 13, 14, 15, 16, 17, 20, 21],
which provides a locally conservative flux field with the same number of degrees of
freedom for the global problem as the multiscale finite-element method.

These techniques, which mainly deal with the elliptic (or parabolic) pressure
equation, are closely related to upscaling methods in that approximate, mass-conser-
vative solutions are sought rather than the exact answer. However, they obviously
share some characteristics with domain decomposition (DD) methods [24, 28, 26]
and multigrid techniques [29], which have been developed to obtain efficient linear
solvers for large problems. Recently, Nordbotten and Bjørstad [23] addressed and
discussed the similarities between DD and MSFV. However, their analysis does not
include in MSFV formulation the correction functions that have been introduced to
deal with source terms, which can arise in the presence of capillarity or gravity effects
[19, 21, 16], and complex wells [31, 15].

In this paper we briefly review the general formulation of the MSFV method with
correction function for rigorous treatment of source terms, which has been derived
by Lunati and Jenny [18] (section 2); then we present an operator formulation of the
MSFV with correction function, which is based on a classical reordering of unknowns
and equations (section 3); finally, we discuss the similarities and outline the differences
between the MSFV and DD methods and show that the MSFV methods are free of
the drawbacks described in [23] (section 4).

2. Multiscale finite-volume method with correction function. In single
or multiphase flow, a pressure equation is given in an elliptic or parabolic form. Here,
we focus on the former case (incompressible phases) and refer the reader to [17, 18, 32]
for parabolic problems. Thus, we consider the inhomogeneous elliptic equation of the
form

(2.1) ∇ · v = −∇ · (K∇p− h) = q,

where p is the (unknown) pressure; K is a positive defined coefficient matrix; h is
a vector that describes the effects of nonviscous forces, e.g., gravity or capillarity
[19, 21]; q is a source term per unit volume that can describe extended source terms
and wells [17]; and v is the velocity vector.

Instead of solving (2.1) on the original fine grid, the MSFV method employs an
auxiliary (primary) coarse grid, together with its dual (Figure 2.1). The dual coarse
grid, which divides the domain Ω into a set of subdomains {Ω̃d}d∈[1,Nd], is used to
define an approximate pressure solution. Referring to the two-dimensional (2D) case
depicted in Figure 2.1, we observe that each edge is shared by two and each node
by four adjacent duals if the grid is regular and Cartesian. The primary coarse grid,
instead, defines a partition of the domain into cells, {Ω̄m}m∈[1,Nn], that are centered
on the nodes of the dual grid (we have, therefore, one coarse cell per each node of
the dual grid). The coarse grid is used to define an approximate flux field that is
conservative at the fine scale.

2.1. Pressure approximation. The approximate pressure is defined as a jux-
taposition of local solutions computed in the dual cells:

(2.2) p̃ =
⋃

d∈[1,Nd]

p̃d ≈ p.

The definition of the dual solutions, p̃d, requires an appropriate localization assump-
tion to assign the boundary conditions of the local problems. At this end, it is required
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98 IVAN LUNATI AND SEONG H. LEE

Fig. 2.1. Primary coarse grid (solid thick lines) and the dual coarse grid (dashed lines); the
dual grid naturally defines a partition of the fine-mesh into internal (white cells), edge (shaded cells),
and node points (grey cells) of the dual grid.

that the flux derivative in the direction perpendicular to the dual boundaries be zero,
i.e.,

(2.3) ∇ · [(ηηT )v] = [(ηηT )∇] · v = ∇⊥ · v = 0,

where ηηT is the projector operator in the direction η perpendicular to edges of the
duals, ∂Ω̃e. If the flow is divergence-free, (2.3) is equivalent to requiring that p̃d is
the solution of a reduced problem along the edges. Hence, the approximate pressure
in a dual cell is solution of the problem

(2.4)






∇ ·K∇p̃d = r in Ω̃d,
∇‖ ·K∇p̃d = r‖ on ∂Ω̃d,
p̃d(xi) = pi,

where pi is the pressure at the node of the dual grid, xi, which is also called coarse-grid
pressure; and we have defined ∇‖ = (I− ηηT )∇, r = q +∇ · h, and r‖ = q +∇‖ · h.

The solution of (2.4) is then expressed as a linear combination of a set of basis
functions, {ϕ̃d

j}, independent of the node pressure, plus a correction function, ϕ̃d
∗, i.e.,

(2.5) p̃d =
∑

j

ϕ̃d
jpj + ϕ̃d

∗ on Ω̃d,

and zero elsewhere. The linear combination of basis functions represents the solution
of the localized homogeneous problem obtained by setting r‖ = r = 0, whereas the
correction function accounts for the effects of the right-hand side (r.h.s.) in (2.5)
and describes all processes that do not scale with the coarse pressure. Since the
homogeneous problem needs to be satisfied in Ω̃d for any value of the coarse pressure,
each basis function is obtained from the solution of

(2.6)






∇ ·K∇ϕ̃d
j = 0 in Ω̃d,

∇‖ ·K∇ϕ̃d
j = 0 on ∂Ω̃d,

ϕ̃d
j (xi) = δij .

Each basis function ϕ̃d
j represents the contribution from a unit pressure signal at the

node xj. For (2.5) to be the solution of (2.4), the correction function must be defined
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by the local problem:

(2.7)






∇ ·K∇ϕ̃d
∗ = r in Ω̃d,

∇‖ ·K∇ϕ̃d
∗ = r‖ on ∂Ω̃d,

ϕ̃d
∗(xi) = 0.

To couple the local solutions in (2.4), the coarse-grid pressure coefficients, pi, are
determined by solving a set of coarse-scale mass conservation equations, which are ob-
tained by integrating (2.1) over each coarse cell, Ω̄i. Applying the Gauss (divergence)
theorem, we get

(2.8)

∫

Ω̄i

∇ ·K∇p dx =

∫

∂Ω̄i

K∇p · η dΓ =

∫

Ω̄i

r dx, i ∈ [1, Nn],

and using the approximate pressure, (2.5), we obtain the coarse-scale problem,

(2.9)
∑

j∈ℵi

Tij(pj − pi) =
∑

d

∫

∂Ω̄i∩Ω̃d

K∇ϕ̃d
∗ · η dΓ−

∫

Ω̄i

r dx, i ∈ [1, Nn],

where ℵi denotes the neighboring coarse cells of cell i and the coarse-scale transmis-
sibilities are defined by

(2.10) Tij = −
∑

d

∫

∂Ω̄i∩Ω̃d

K∇ϕ̃d
j · η dΓ.

Equation (2.9) results in a 27-point stencil for three dimensions and a 9-point stencil
for two dimensions. The coarse-scale operator, Tij does not include effects of r and
yields incorrect fluxes across ∂Ωi for a given pressure drop between the nodes; the first
term on the r.h.s. of (2.9) represents a correction to these inaccurate fluxes [19, 21].

The accuracy of the pressure approximation in (2.1) depends only on the quality
of the localization assumption, (2.3). Given the localized problem to be satisfied and
the basis-function definition, the correction function is uniquely defined.

2.2. Conservative flux approximation. The approximate pressure, p̃, satis-
fies the coarse-scale mass balance but yields fine-scale fluxes which are nonconservative
at the dual boundaries. The approximate pressure is not the solution of (2.1) on the
dual edges where transversal fluxes are neglected, (2.3). To avoid severe mass-balance
errors when the flux field is used to model transport [12], a conservative flux approxi-
mation is constructed for the whole domain from a juxtaposition of local conservative
pressure solutions computed in the volume defined by the primary partition, i.e.,

(2.11) v̄ = −K∇ψ̄ + h,

where

(2.12) ψ̄ =
⋃

m∈[1,Nn]

ψ̄m.

Each conservative local problem has the form of (2.1) and boundary conditions
extracted from the approximate pressure solution, i.e.,

(2.13)

{
∇ ·K∇ψi = r in Ω̄i,
∇ψ̄i · ν = ∇p̃ · ν on ∂Ω̄i,

where ν is the normal to the boundary. The resulting flux field is conservative every-
where by construction.
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3. Matrix formulation. Of course, a numerical implementation of the MSFV
algorithm outlined in the previous section includes the discretization of the fine-scale
problem. At this end we consider a finite-volume discretization of (2.1), which can be
written in matrix form as

(3.1) Au = r,

where the unknown variable (pressure) uj = u(xj) is defined at a discrete set of points
If = {xj}j∈[1,Nf ]. Hence we write u = [u(xj ∈ If )]T = [ u1 u2 · · · uj · · · un ]T

and similarly r = [r(xj ∈ If )]T . The coefficient matrix A = [ajk] is symmetric and
positive definite and hence nonsingular.

Here, we consider 2D problems with a 5-point stencil discretization, such that
the resulting coefficient matrix, A, has pentadiagonal structure, if unknowns and
equations are in lexicographic order. The directed graph associated with the 5-point
stencil is illustrated in Figure 3.1(a). Referring to the starting point of the arrow as
the “predecessor” and to the endpoint as the “successor,” the direction of the arrow
indicates that the predecessor contributes to the balance equation associated with the
successor. Neglecting boundary points, we can say that the directed graph associated
with A is symmetric. The MSFV localization of the pressure problem is achieved by
breaking the symmetry of the graph associated with the coefficient matrix.

(a) (b)

Fig. 3.1. Representation of the stencils used for the fine-scale solution (a) and for the multiscale
solution with reduced-problem boundary conditions (b). Terming arrow starting points “predeces-
sors” and endpoints “successors,” an arrow indicates that the pressure value of the predecessor
affects the mass balance of the successor.

3.1. Reordering. If the dual boundaries coincide with the segments connecting
the fine-cell centers (Figure 2.1), then the dual mesh {Ω̃d}d∈Nd naturally defines a
partition of the points {xj} into node, edge, and internal points (Figure 2.1), i.e.,

(3.2) If = In ∪ Ie ∪ Ii.

The sets In, Ie, and Ii consist of Nn, Ne, and Ni points, respectively, and we have
Nf = Ni+Ne+Nn. The localization rules expressed in (2.3) and (2.4) correspond to
a graph in which the node points have no predecessor and internal points have only
other internal points as successor (Figure 3.1(b)).

The graph of the MSFV operator can be easily described if the unknowns in
(3.1) are reordered such that internal points appear first and node points last (see,
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e.g., [26] or [27] for an application related to reservoir simulations). Hence, we define
the Nf × Nf permutation matrix P̃ associated to the dual grid, which reorders the
unknown vectors such that

(3.3) ũ = P̃ u =




ũi

ũe

ũn



 ,

where ũi = [u(xj ∈ Ii)]T , ũe = [u(xj ∈ Ie)]T , and ũn = [u(xj ∈ In)]T . The
permutation matrix has only one nonzero entry per row and column: if P̃jk = 1,
then the element uk will become the element ũj of the new vector. Recalling that
permutation matrices are orthogonal, i.e., P̃T = P̃−1, we can rewrite (3.1) in the form

(3.4) Ãũ = r̃,

where r̃ = P̃ r and

(3.5) Ã = P̃AP̃T =




Ãii Ãie 0
Ãei Ãee Ãen

0 Ãne Ãnn



 .

The block Ãjk represents the effects of the unknowns ũk∈{i,e,n} on the mass balance
of the points x ∈ Ij∈{i,e,n}. The diagonal blocks are block-diagonal. If properly

ordered, the blocks of Ãii and Ãee are pentadiagonal and tridiagonal, respectively,
whereas Ãnn is diagonal. Ãin = ÃT

ni = 0 because we are considering a 5-point stencil.
The reordered matrix is connected to exactly the same symmetric directed graph as
the original matrix.

3.2. MSFV matrix. Since we have simply reordered unknowns and equations,
the problem in (3.4) is identical to the original linear system, (3.1). However, the
MSFV method solves a different system, which we represent in the form

(3.6) Mũ = q,

where we have defined

(3.7) M =




Ãii Ãie 0
0 Mee Ãen

0 0 Mnn



 ,

and q =
[
qi r̃e qn

]T
.

To understand (3.7), we recall that the block Ãie, respectively, Ãei, contains the
active connections (internal points–edge points) that determine the pressure at the
internal, respectively, edge, points. Satisfying (2.3) (or, equivalently, solving a reduced
problem along the edges) requires that the “internal point-edge point” connections
are removed when the edge-point equations are solved, i.e., Mei = 0. When solving
for the internal points, however, connections with the edges are active, such that
Mie = Ãie (= 0. This is illustrated by the oriented graph in Figure 3.1. Removing these
connections also requires modifying the diagonal entries, such that Ãee is substituted
by

(3.8) Mee = Ãee + diag

{
∑

i

ÃT
ie

}
,
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where the operator “diag” transforms a vector into a diagonal square matrix. The
diagonal block Ãnn has been replaced by a multidiagonal block Mnn, which is a 9-
diagonal matrix in the MSFV implementation. Mnn is the coarse-scale operator and
it is defined such that mass conservation on coarse control volumes is guaranteed (see
(2.9)–(2.10)). Analogously, r̃ has been replaced by q. Note that qi = r̃i, whereas, in
general, qe (= r̃e (for instance, in the presence of gravity); and we always have qn (= r̃n.
Mnn and qn are derived in the next section; to simplify the exposition we consider the
special case qe = r̃e. The sparsity patterns of the matrices M and A are compared in
Figure 3.2.
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Fig. 3.2. Comparison of the sparsity patterns of the reordered fine-scale matrix (a) and the
MSFV matrix (b) for the grid depicted in Figure 2.1. Localization is achieved by removing the
internal point–edge point connections when the edge-point equations are solved; the fine-scale node-
point equations are replaced by coarse-scale equations obtained by integrating over the control volumes
defined by the coarse grid.

3.3. Coarse-scale problem. Since M is block upper triangular, (3.7) can be
readily solved by backward substitution, which yields

(3.9) ũ = BM−1
nn qn + Cq,

where we have defined the Nf ×Nn prolongation operator,

(3.10) B =




Ã−1

ii ÃieM−1
ee Ãen

−M−1
ee Ãen

Inn





(Inn is the Nn ×Nn identity matrix), and the Nf ×Nf matrix,

(3.11) C =




Ã−1

ii −Ã−1
ii ÃieM−1

ee 0
0 M−1

ee 0
0 0 0



 .

(Note that qn does not contribute to Cq because the last column of C consists of
zeros only; qn appears in (3.9) only through the solution of the coarse problem, (3.12)
below.)
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This problem can be viewed as consisting of two steps: first, a coarse-scale problem
is solved to compute the node (coarse-scale) pressures, i.e.,

(3.12) Mnnũn = qn;

then, the solution is prolonged on the fine grid,

(3.13) ũ = Bũn + Cq.

Using a restriction operator R = [0 0 Inn] the inverse multiscale matrix can be readily
expressed as

(3.14) M−1 = BM−1
nnR+ C.

Note that Ã and M are associated with different graphs. This means that, in general
(i.e., for dimension D > 1), the prolonged solution will not coincide with the fine-
scale solution even if exact coarse-node pressures are assigned. This is due to the
approximation introduced by the localization. For D = 1, instead, the solution of the
MSFV method with correction function is exact.

To derive the MSFV coarse-scale operator we first define the control-volume
summation operator χ, which is represented by an Nn × Nf matrix. Each row of
χ = [χj∈[1,Nn]] = [χjk] corresponds to an element Ω̄n, and we have the definition

(3.15) χjk =

{
1 if xk ∈ Ω̄j ,
0 otherwise.

When applied to a vector of size Nf , this operator returns a vector of size Nn, whose
entries are the sum of the values assumed by the original vector in the corresponding
coarse cells. χ is the discrete analogue of the control-volume integral operator

∫
Ω̄j

dx

employed in section 2. A coarse-scale problem that satisfies the coarse-scale mass
balance can be obtained by substituting (3.13) into (3.6) and applying the operator
χ, which yields

(3.16) χÃũ = χÃBũn + χÃCq = χr̃,

from which we deduce that the coarse-scale operator is

(3.17) Mnn = χÃB

and the coarse-scale r.h.s. is

(3.18) qn = χr̃ − χÃCq.

If we define the operator

(3.19) F = I −RTR+RTχ =




Iii 0 0
0 Iee 0
χni χne Inn





(where we have used the property χnn = Inn), we can express the r.h.s. of (3.6) as

(3.20) q = (F −RTχÃC)r̃.
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3.4. Relationship of B and C with basis and correction functions. Let
us define a base of the subspace In ⊂ If , i.e., {ej} = {ej | xj ∈ In and ej = [δji]T }.
Then we can write

(3.21) Bej =
⋃

d

ϕ̃d
j ,

where it appears that the columns of B are given by the juxtaposition of the basis
functions relative to the node xj. Comparing (2.5) and (3.13), we immediately obtain

(3.22) Cq =
⋃

d

ϕ̃d
" = ϕ̃",

which shows that Cq is the juxtaposition of the correction functions, which has been
introduced in [16, 19, 21] for gravity and capillarity; in [15] for complex wells; and
in very general form in [18]. It is evident from (3.13) that ϕ̃" is the solution of the
inhomogeneous problem with ũn = 0.

0 25 50 75 100 0

25

50

75

0 

(a) (b)

Fig. 3.3. (a) Representation of the stencils used for the construction of the conservative flux
(the solid thick lines represent the boundaries of the primary coarse cells). An arrow from A to
B indicates that the pressure value of A affects the mass balance of B. (b) Sparsity pattern of the
reordered coefficient matrix Ā = P̄AP̄T ; the original pentadiagonal structure has been modified by
the permutation P̄ into a block-pentadiagonal structure.

3.5. The conservative flux field. To illustrate the discrete formulation of
the conservative flux construction, it is useful to define the permutation operator P̄
naturally associated with the coarse grid, {Ω̄n}n∈[1,Nn]. This permutation replaces
the fine-scale lexicographic ordering by an ordering that is lexicographic in each coarse
cell. The resulting matrix,

(3.23) Ā = P̄AP̄T ,

has a pentadiagonal block structure if the coarse cells are also in lexicographic order
(Figure 3.3(b)). Each diagonal block corresponds to a coarse cell Ω̄i; off-diagonal
blocks represent the mutual effect between adjacent blocks, i.e., they contain the
transmissibilities between nodes belonging to two distinct but adjacent blocks. A
conservative flux field is computed by solving local flow problems with Neumann
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boundary conditions, hence removing from the operator Ā the connections between
points belonging to different coarse cells (Figure 3.3(a)). More rigorously, let ĀD =
diag(Ā), i.e., the block-diagonal part of the reordered matrix; then we define the
block-diagonal matrix

(3.24) D = ĀD + diag





∑

j

(Ājk − ĀD
jk)




 .

The reordered fine-scale problem can be written in the form

(3.25) Dū+ (Ā−D)ū = r̄,

where we have defined ū = P̄ u and r̄ = P̄ r. In the MSFV algorithm, the second term
on the left-hand side (l.h.s.) is approximate as (Ā−D)ū ≈ (Ā−D)P̄ P̃T ũ, where ũ is
the solution of Mũ = q̃, defined in the previous sections. Therefore, we write

(3.26) Dūc = r̄ − (Ā−D)P̄ P̃T ũ,

where only fluxes across the boundaries of the primary grid contribute to the second
term on the r.h.s.

4. Discussion. The matrix formulation presented in section 3 has been obtained
following exactly the same steps outlined in section 2 for a continuum fine-scale prob-
lem. It is simply the fine-scale discrete form of the MSFV algorithm with correction
function [18]. The matrix formulation, however, allows for a straightforward com-
parison with domain decomposition (DD) techniques. There are obvious similarities
between the MSFV method (and multiscale methods in general) and classical DD
preconditioners: they both employ a decomposition of the original problem into sub-
domains where local solutions are computed; also, the boundary conditions of the
local problems expressed in (2.3) are identical to the tangential approximation of the
DD literature.

There are, however, important characteristics of the MSFV method that differ
from conventional DD. First, (approximate) acceptable solutions are obtained without
iterating for most problems; second, the flux reconstruction step yields exact mass-
conservative fine-scale fluxes even for approximate (inexact) pressure solution. The
latter property is fundamental for applications in which phase or component transport
are modeled. Mass conservation is enforced by construction employing primal and
dual coarse grids: the primal coarse grid defines a set of coarse-scale control volumes
and is used to define local problems to be solved to obtain an approximate flux
field. Although employing two staggered grids is reminiscent of some overlapping DD
techniques, the use is peculiar and allows computing a conservative flux field even
if the pressure field is only an approximation of the exact fine-scale solution. The
flux reconstruction step is a distinctive and inherent part of the MSFV algorithm and
not a simple postprocessing operation. Another important property, closely related
to the previous property, is that the MSFV flux approximation is conservative (at
the fine scale) by construction, without the need for iterating. On the contrary, DD
techniques are inherently iterative methods which deliver accurate solutions only after
successive application of an operator (preconditioner). As such, mass conservation is
guaranteed only within the numerical error at each iteration, and ultimately only for
the converged solution.
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A DD preconditioner that allows a velocity reconstruction similar to that inherent
to the MSFV method has been suggested by Nordbotten and Bjørstad [23], who
enforce coarse-scale mass conservation by manipulating the original fine-scale system
of equations. At this end, similarly to the MSFV algorithm, a second coarse grid
is used to define a coarse-scale mass-balance equation, Ω̄ = {Ω̄n}n∈[1,Nn]. Instead
of directly considering (3.1), the equations relative to the nodes of the coarse grid,
xi∈[1,Nn], are first replaced by the sum of all fine-scale equations relative to xj ∈ Ω̄i,
which is a coarse-scale balance equation that guarantees mass conservation on the
coarse grid (see (A.1)). Then the Schur complement with tangential approximation
can be computed to localize the coarse-cell problems. As shown in the appendix, where
we have developed these calculations in detail, this procedure yields a preconditioner
identical to the MSFV operator (with correction function) as presented [18, 19, 21] and
reformulated in terms of matrix operators in the present paper. Adopting the language
of DD, we can say that the MSFV operator, if seen as a simple preconditioner, can
be regarded as the Schur complement with tangential approximation of a single-cell
overlapping DDmethod, provided that (3.1) has been replaced by the equivalent (A.1).
Therefore, as demonstrated in the appendix, the algorithm suggested in [23] appears
to be simply a reformulation of the MSFV algorithm with correction function [18].

The correction function allows consistent handling of the source term both at the
fine scale and at the coarse scale. Hence, the MSFV algorithm is free of all drawbacks
outlined in [23], which did not consider the recent development of the MSFV to
treat source terms [15, 16, 18, 19, 21, 31]. We stress that (2.3) uniquely defines the
local problems, being fully equivalent to the tangential approximation for single-cell
overlapping subdomains (i.e., edges are shared by adjacent duals). Although the
localization assumption works reasonably well for a number of problems, it can be of
interest to improve the accuracy of the MSFV method by performing iterations that
minimize the flux inconsistency at the dual cell boundaries (see also [13]). At this end,
the correction function, which allows a consistent treatment of the r.h.s., allows the
construction of an iterative scheme converging to the exact fine-scale solution. Using
the MSFV data structure, several iterative schemes can be developed [10, 22, 23].

Appendix. A Schur complement formulation satisfying coarse-scale mass bal-
ance can be obtained by introducing a balance equation for the coarse grid (see, e.g.,
[23]). The key idea is that, instead of writing the Schur complement of (3.1) directly,
one considers the equation

(A.1) Ã′ũ = F r̃,

where F is given in (3.19) and we have defined

(A.2) Ã′ = FÃ =




Ãii Ãie 0
Ãei Ãee Ãen

Ã′
ni Ã′

ne Ã′
nn



 ,

with

Ã′
ni = χniÃii + χneÃei,(A.3)

Ã′
ne = χniÃie + χneÃee + Ãne,(A.4)

Ã′
nn = χneÃen + Ãnn.(A.5)

The fine-scale equations relative to the nodes xi∈[1,Nn] have been replaced by a sum
of all the equations relative to xj ∈ Ω̄i, which is a coarse-scale balance equation that
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guarantees mass conservation on the coarse grid Ω̄ = {Ω̄n}n∈[1,Nn]. Obviously the
resulting system is equivalent to (3.1).

By calculating the Schur complement of Ã′
ii = Ãii, (A.1) becomes

(A.6)




Ãii Ãie 0
0 See Ãen

0 Sne Snn








ũi

ũe

ũn



 =




Iii 0 0

−ÃeiÃ
−1
ii Iee 0

−Ã′
niÃ

−1
ii 0 Inn








r̃i
r̃e
χr̃



 ,

where we have defined

See = Ãee − ÃeiÃ
−1
ii Ãie,(A.7)

Sne = Ã′
ne − Ã′

niÃ
−1
ii Ãie = χneSee + Ãne,(A.8)

Snn = Ã′
nn.(A.9)

Note that (A.6) is exact and fully equivalent to (3.1). By using the tangential com-
ponent approximation, we write the second line of (A.6) as

(A.10) ue = S−1
ee

(
r̃e − ÃeiÃ

−1
ii ri − Ãenũn

)
≈ M−1

ee

(
r̃e − Ãenũn

)
,

where we approximate Mee ≈ See. Inserting (A.10) into the third line of (A.6) yields

(A.11)
(
Snn − SneM

−1
ee Ãen

)
ũn = χr̃ − Ã′

niÃ
−1
ii r̃i − SneM

−1
ee r̃e.

If we define

(A.12) M ′
nn =

(
Snn − SneM

−1
ee Ãen

)

and

(A.13) q′n = χr̃ − Ã′
niÃ

−1
ii r̃i − SneM

−1
ee r̃e,

we can write the tangential approximation of the Schur complement in the form

(A.14)




Ãii Ãie 0
0 Mee Ãen

0 0 M̂ ′
nn








ũi

ũe

ũn



 =




r̃i
r̃e
q′n



 .

This is in the same form of (3.6), which describes the MSFV operator. Further
elaborating on (A.12) and (A.13), we obtain

M̂ ′
nn = Ã′

niÃ
−1
ii ÃieM

−1
ee Ãen − Ã′

neM
−1
ee Ãen + Ã′

nn(A.15)

= χ








Ãii

Ãei

0



 Ã−1
ii ÃieM

−1
ee Ãen −




Ãie

Ãee

Ãne



M−1
ee Ãen +




0

Ãen

Ãnn



 Inn



(A.16)

= χÃB = Mnn(A.17)
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and

q′n = χr̃ − Ã′
niÃ

−1
ii

(
r̃i − ÃieM

−1
ee r̃e

)
− Ã′

neM
−1
ee r̃e(A.18)

= χ



r̃ −




Ãii

Ãei

0



 Ã−1
ii

(
r̃i − ÃieM

−1
ee r̃e

)
−




Ãie

Ãee

Ãne



M−1
ee r̃e



(A.19)

= χ



r̃ − Ã




Ã−1

ii

(
r̃i − ÃieM−1

ee r̃e
)

M−1
ee r̃e
0







 = χ
(
r̃ − ÃCq

)
= qn,(A.20)

respectively. This proves that the matrix used to compute the dual pressure in the
MSFV method [18, 21] is identical to the matrix obtained by computing the Schur
complement with tangential approximation of the fine-scale problem, provided that
the fine-scale nodal equations are replaced by coarse-scale balance equations.
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