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Abstract

In this paper, we consider estimating sparse inverse covariance of a Gaussian graphi-
cal model whose conditional independence is assumed to be partially known. Similarly as
in [5], we formulate it as an l1-norm penalized maximum likelihood estimation problem.
Further, we propose an algorithm framework, and develop two first-order methods, that
is, the adaptive spectral projected gradient (ASPG) method and the adaptive Nesterov’s
smooth (ANS) method, for solving this estimation problem. Finally, we compare the
performance of these two methods on a set of randomly generated instances. Our com-
putational results demonstrate that both methods are able to solve problems of size at
least a thousand and number of constraints of nearly a half million within a reasonable
amount of time, and the ASPG method generally outperforms the ANS method.

Key words: Sparse inverse covariance selection, adaptive spectral projected gradient
method, adaptive Nesterov’s smooth method

AMS 2000 subject classification: 90C22, 90C25, 90C47, 65K05, 62J10

1 Introduction

It is well-known that sparse undirected graphical models are capable of describing and explain-
ing the relationships among a set of variables. Given a set of random variables with Gaussian
distribution, the estimation of such models involves finding the pattern of zeros in the in-
verse covariance matrix since these zeros correspond to conditional independencies among the
variables. In recent years, a variety of approaches have been proposed for estimating sparse
inverse covariance matrix. (All notations used below are defined in Subsection 1.1.) Given a
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sample covariance matrix Σ ∈ Sn
+, d’Aspremont et al. [5] formulated sparse inverse covariance

selection as the following l1-norm penalized maximum likelihood estimation problem:

max
X
{log detX − 〈Σ, X〉 − ρeT |X|e : X � 0}, (1)

where ρ > 0 is a parameter controlling the trade-off between likelihood and sparsity of the so-
lution. They also studied Nesterov’s smooth approximation scheme [10] and block-coordinate
descent (BCD) method for solving (1). Independently, Yuan and Lin [13] proposed a similar
estimation problem to (1) as follows:

max
X
{log detX − 〈Σ, X〉 − ρ

∑

i 6=j

|Xij| : X � 0}. (2)

They showed that problem (2) can be suitably solved by the interior point algorithm developed
in Vandenberghe et al. [12]. As demonstrated in [5, 13], the estimation problems (1) and (2)
are capable of discovering effectively the sparse structure, or equivalently, the conditional
independence in the underlying graphical model. Recently, Lu [8] proposed a variant of
Nesterov’s smooth method [10] for problems (1) and (2) that substantially outperforms the
existing methods in the literature. In addition, Dahl et al. [4] studied the maximum likelihood
estimation of a Gaussian graphical model whose conditional independence is known, which
can be formulated as

max
X
{log detX − 〈Σ, X〉 : X � 0, Xij = 0, ∀(i, j) ∈ Ē}, (3)

where Ē is a collection of all pairs of conditional independent nodes. They showed that
when the underlying graph is nearly-chordal, Newton’s method and preconditioned conjugate
gradient method can be efficiently applied to solve (3).

In practice, the sparsity structure of a Gaussian graphical model is often partially known
from some knowledge of its random variables. In this paper we consider estimating sparse
inverse covariance of a Gaussian graphical model whose conditional independence is assumed
to be partially known in advance (but it can be completely unknown). Given a sample co-
variance matrix Σ ∈ Sn

+, we can naturally formulate it as the following constrained l1-norm
penalized maximum likelihood estimation problem:

max
X

log detX − 〈Σ, X〉 − ∑

(i,j)/∈Ω

ρij |Xij|,

s.t. X � 0, Xij = 0, ∀(i, j) ∈ Ω,
(4)

where Ω consists of a set of pairs of conditionally independent nodes, and {ρij}(i,j)/∈Ω is a
set of nonnegative parameters controlling the trade-off between likelihood and sparsity of the
solution. It is worth mentioning that unlike in [4], we do not assume any specific structure
on the sparsity of underlying graph for problem (4). We can clearly observe that (i) (i, i) /∈ Ω
for 1 ≤ i ≤ n, and (i, j) ∈ Ω if and only if (j, i) ∈ Ω; (ii) ρij = ρji for any (i, j) /∈ Ω; and (iii)
problems (1)-(3) can be viewed as special cases of problem (4) by choosing appropriate Ω and
{ρij}(i,j)/∈Ω. For example, if setting Ω = ∅ and ρij = ρ for all (i, j), problem (4) becomes (1).
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It is easy to observe that problem (4) can be reformulated as a constrained smooth con-
vex problem that has an explicit O(n2)-logarithmically homogeneous self-concordant barrier
function. Thus, it can be suitably solved by interior point (IP) methods (see Nesterov and
Nemirovski [11] and Vandenberghe et al. [12]). The worst-case iteration complexity of IP
methods for finding an ǫ-optimal solution to (4) is O(n log(ǫ0/ǫ)), where ǫ0 is an initial gap.
Each iterate of IP methods requires O(n6) arithmetic cost for assembling and solving a typ-
ically dense Newton system with O(n2) variables. Thus, the total worst-case arithmetic cost
of IP methods for finding an ǫ-optimal solution to (4) is O(n7 log(ǫ0/ǫ)), which is prohibitive
when n is relatively large.

Recently, Friedman et al. [6] proposed a gradient type method for solving problem (4).
They first converted (4) into the following penalization problem

max
X�0

log detX − 〈Σ, X〉 −
∑

i,j

ρij |Xij|. (5)

by setting ρij to an extraordinary large number (say, 109) for all (i, j) ∈ Ω. Then they applied
a slight variant of the BCD method [5] to the dual problem of (5) in which each iteration
is solved by a coordinate descent approach to a lasso (l1-regularized) least-squares problem.
Given that their method is a gradient type method and the dual problem of (5) is highly
ill-conditioned for the above choice of ρ, it is not surprising that their method converges
extremely slowly. Moreover, since the associated lasso least-squares problems can only be
solved inexactly, their method often fails to converge even for a small problem.

In this paper, we propose adaptive first-order methods for problem (4). Instead of solving
(5) once with a set of huge penalty parameters {ρij}(i,j)∈Ω, our methods consist of solving
a sequence of problems (5) with a set of moderate penalty parameters {ρij}(i,j)∈Ω that are
adaptively adjusted until a desired approximate solution is found. For a given ρ, problem
(5) is solved by the adaptive spectral projected gradient (ASPG) method and the adaptive
Nesterov’s smooth (ANS) method that are proposed in this paper.

The rest of paper is organized as follows. In Subsection 1.1, we introduce the notations used
in this paper. In Section 2, we propose an algorithm framework and develop two first-order
methods, that is, the ASPG and ANS methods, for solving problem (4). The performance
of these two methods are compared on a set of randomly generated instances in Section 3.
Finally, we present some concluding remarks in Section 4.

1.1 Notation

In this paper, all vector spaces are assumed to be finite dimensional. The symbols ℜn, ℜn
+

and ℜn
++ denote the n-dimensional Euclidean space, the nonnegative orthant of ℜn and the

positive orthant of ℜn, respectively. The set of all m×n matrices with real entries is denoted
by ℜm×n. The space of symmetric n×n matrices will be denoted by Sn. If X ∈ Sn is positive
semidefinite, we write X � 0. Also, we write X � Y to mean Y − X � 0. The cone of
positive semidefinite (resp., definite) matrices is denoted by Sn

+ (resp., Sn
++). Given matrices

X and Y in ℜm×n, the standard inner product is defined by 〈X, Y 〉 := Tr(XY T ), where Tr(·)
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denotes the trace of a matrix. ‖ · ‖ denotes the Euclidean norm and its associated operator
norm unless it is explicitly stated otherwise. The Frobenius norm of a real matrix X is defined
as ‖X‖F :=

√

Tr(XXT ). We denote by e the vector of all ones, and by I the identity matrix.
Their dimensions should be clear from the context. For a real matrix X , we denote by |X|
the absolute value of X , that is, |X|ij = |Xij| for all i, j. The determinant and the minimal
(resp., maximal) eigenvalue of a real symmetric matrix X are denoted by detX and λmin(X)
(resp., λmax(X)), respectively, and λi(X) denotes its ith largest eigenvalue. Given an n × n
(partial) matrix ρ, Diag(ρ) denotes the diagonal matrix whose ith diagonal element is ρii for
i = 1, . . . , n. Given matrices X and Y in ℜm×n, X ∗ Y denotes the pointwise product of X
and Y , namely, X ∗ Y ∈ ℜm×n whose ijth entry is XijYij for all i, j. We denote by Z+ the
set of all nonnegative integers.

2 Adaptive first-order methods

In this section, we discuss some suitable first-order methods for general sparse inverse covari-
ance selection problem (4). In particular, we first provide an algorithm framework for it in
Subsection 2.1. Then we specialize this framework by considering two first-order methods,
namely, the adaptive spectral projected gradient method and the adaptive Nesterov’s smooth
method in Subsection 2.2.

2.1 Algorithm framework

In this subsection, we provide an algorithm framework for general sparse inverse covariance
selection problem (4).

Throughout this paper, we assume that ρij ≥ 0 is given and fixed for all (i, j) /∈ Ω, and
that the following condition holds.

Assumption 1 Σ + Diag(ρ) ≻ 0.

Note that Σ is a sample covariance matrix, and hence Σ � 0. In addition, Diag(ρ) � 0.
Thus, Σ + Diag(ρ) � 0. It may not be, however, positive definite in general. But we can
always perturb ρii by adding a small positive number (say, 10−8) whenever needed to ensure
the above assumption holds.

We first establish the existence of an optimal solution for problem (4) as follows.

Proposition 2.1 Problem (4) has a unique optimal solution X∗ ∈ Sn
++.

Proof. Since (i, i) /∈ Ω for i = 1, . . . , n, we see that X = I is a feasible solution of problem
(4). For convenience, let f(X) denote the objective function of (4). We now show that the
sup-level set Sf(I) = {X � 0 : f(X) ≥ f(I), Xij = 0, ∀(i, j) ∈ Ω} is compact. Indeed, using
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the definition of f(·), we observe that for any X ∈ Sf(I),

f(I) ≤ f(X) ≤ log detX − 〈Σ + Diag(ρ), X〉 ≤
n

∑

i=1

[log λi(X)− λmin(Σ + Diag(ρ))λi(X)] ,

≤ (n− 1) [−1 − log λmin(Σ + Diag(ρ))] + log λmax(X)− λmin(Σ + Diag(ρ))λmax(X),

where the last inequality follows from the fact that for any a > 0,

max
t
{log t− at : t ≥ 0} = −1− log a. (6)

Hence, we obtain that for any X ∈ Sf (I),

log λmax(X)−λmin(Σ+Diag(ρ))λmax(X) ≥ f(I)−(n−1) [−1 − log λmin(Σ + Diag(ρ))] , (7)

which implies that there exists some β(ρ) > 0 such that λmax(X) ≤ β(ρ) for all X ∈ Sf(I).
Thus, Sf(I) ⊆ {X ∈ Sn : 0 � X � β(ρ)I}. Further, using this result along with the
definition of f(·), we easily observe that for any X ∈ Sf(I),

log λmin(X) = f(X)−
n−1
∑

i=1

log λi(X) + 〈Σ, X〉+ ∑

(i,j)/∈Ω

ρij |Xij|,

≥ f(I)− (n− 1) log β(ρ) + min
0�X�β(ρ)

{〈Σ, X〉+ ∑

(i,j)/∈Ω

ρij|Xij |}.

It follows that there exists some α(ρ) > 0 such that λmin(X) ≥ α(ρ) for all X ∈ Sf (I). Hence,
Sf(I) ⊆ {X ∈ Sn : α(ρ)I � X � β(ρ)I} is bounded, which together with the fact that f(·) is
continuous in the latter set, implies that Sf(I) is closed. Therefore, problem (4) has at least
an optimal solution. Further, observing that f(·) is strict concave, we conclude that problem
(4) has a unique optimal solution.

Similarly, we can show that the following result holds.

Proposition 2.2 Given any ρij ≥ 0 for (i, j) ∈ Ω, problem (5) has a unique optimal solution
X∗ ∈ Sn

++.

Before presenting an algorithm framework for problem (4), we introduce a terminology for
(4) as follows.

Definition 1 Let ǫo ≥ 0 and ǫc ≥ 0 be given. Let f(·) and f ∗ denote the objective function
and the optimal value of (4), respectively. X ∈ Sn

+ is an (ǫo, ǫc)-optimal solution of problem
(4) if f(X) ≥ f ∗ − ǫo and max

(i,j)∈Ω
|Xij | ≤ ǫc.

Analogously, we can define an ǫo-optimal solution for problem (5). Given that our ultimate
aim is to estimate a sparse inverse covariance matrix X∗ � 0 that satisfies at least X∗

ij = 0,
∀(i, j) ∈ Ω and approximately maximizes the log-likelihood, we now briefly discuss how to
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obtain such an approximate solution X∗ from an (ǫo, ǫc)-optimal solution X̄∗ of (4). Let us
define X̃∗ ∈ Sn by letting X̃∗

ij = X̄∗
ij, ∀(i, j) /∈ Ω and X̃∗

ij = 0, ∀(i, j) ∈ Ω. We then set

X∗ := X̃∗ + t∗I, where

t∗ = argmax {log det(X̃∗ + tI)− 〈Σ, X̃∗ + tI〉 : t ≥ −λmin(X̃
∗)}.

It is not hard to see that t∗ can be easily found. We also observe that such X∗ belongs to Sn
++,

satisfies X∗
ij = 0, ∀(i, j) ∈ Ω and retains the same sparsity as X̃∗. In addition, by setting the

log-likelihood value at X̃∗ to −∞ if λmin(X̃
∗) ≤ 0, we can easily see that the log-likelihood

value at X∗ is at least as good as that at X̃∗. Thus, X∗ is a desirable estimation of sparse
inverse covariance, provided X̄∗ is a good approximate solution to problem (4).

In the remainder of this paper, we concentrate on finding an (ǫo, ǫc)-optimal solution of
problem (4) for any pair of positive (ǫo, ǫc). We next present an algorithm framework for (4)
based on an adaptive l1 penalty approach.

Algorithm framework for general sparse inverse covariance selection (GSICS):

Let ǫo > 0, ǫc > 0 and rρ > 1 be given. Let ρ0ij > 0, ∀(i, j) ∈ Ω be given such that
ρ0ij = ρ0ji, ∀(i, j) ∈ Ω. Set ρij = ρ0ij for all (i, j) ∈ Ω.

1) Find an ǫo-optimal solution Xǫo of problem (5).

2) If max
(i,j)∈Ω

|Xǫo
ij | ≤ ǫc, terminate. Otherwise, set ρij ← ρijrρ for all (i, j) ∈ Ω, and go to

step 1).

end

Remark. To make the above framework complete, we need to choose suitable methods
for solving problem (5) in step 1). We will propose first-order methods for it in Subsection
2.2. In step 2) of the framework GSICS, there are some other strategies for updating the
penalty parameters {ρij}(i,j)∈Ω. For example, for any (i, j) ∈ Ω, one can update ρij only if
ρij > ǫc. But we observed in our experimentation that this strategy performs worse than the
one described above. In addition, instead of using a common ratio rρ for all (i, j) ∈ Ω, one
can associate with each ρij an individual ratio rij . Also, the ratio rρ is no need to be fixed for
all iterations, and it can vary from iteration to iteration depending on the amount of violation
incurred in max

(i,j)∈Ω
|Xǫo

ij | ≤ ǫc.

Before discussing the convergence of the framework GSICS, we first study the convergence
of the l1 penalty method for a general nonlinear programming (NLP) problem.

Given a set ∅ 6= X ⊆ ℜn and functions f : X → ℜ, g : X → ℜk and h : X → ℜl, consider
the NLP problem:

f ∗ = sup
x∈X

f(x)

s.t. g(x) = 0, h(x) ≤ 0.
(8)
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We associate with the NLP problem (8) the following l1 penalty function:

P (x;λ, µ) := f(x)− λT |g(x)| − µTh+(x), (9)

where λ ∈ ℜk
+, µ ∈ ℜl

+ and (h+(x))i = max{0, hi(x)} for i = 1, . . . , l.
We now establish a convergence result for the l1 penalty method for the NLP problem (8)

under some assumption on f(x).

Proposition 2.3 Let ǫo > 0 and ǫc > 0 be given. Assume that there exists some f̄ ∈ ℜ such
that f(x) ≤ f̄ for all x ∈ X . Let xǫo

λ,µ ∈ X be an ǫo-optimal solution of the problem

sup {P (x;λ, µ) : x ∈ X} (10)

for λ ∈ ℜk
+ and µ ∈ ℜl

+, and let vλ,µ := min{min
i

λi,min
i

µi}. Then f(xǫo
λ,µ) ≥ f ∗ − ǫo, and,

moreover,
∥

∥

(

g(xǫo
λ,µ); h

+(xǫo
λ,µ)

)
∥

∥

∞
≤ ǫc holds whenever vλ,µ ≥ (f̄ − f ∗+ ǫo)/ǫc, where f ∗ is the

optimal value of the NLP problem (8).

Proof. In view of the assumption that f(x) is bounded above in X , we clearly see that f ∗

is finite. Let f ∗
λ,µ denote the optimal value of problem (10). We easily observe that f ∗

λ,µ ≥ f ∗.
Using this relation, (9) and the fact that xǫo

λ,µ is an ǫo-optimal solution of (10), we have

f(xǫo
λ,µ) ≥ P (xǫo

λ,µ;λ, µ) ≥ f ∗
λ,µ − ǫo ≥ f ∗ − ǫo, (11)

and hence the first statement holds. We now prove the second statement. Using (9), (11) and
the definition of vλ,µ, we have

f(xǫo
λ,µ)− vλ,µ

∥

∥

(

g(xǫo
λ,µ); h

+(xǫo
λ,µ)

)
∥

∥

∞
≥ f(xǫo

λ,µ)− vλ,µ
∥

∥

(

g(xǫo
λ,µ); h

+(xǫo
λ,µ)

)
∥

∥

1

≥ P (xǫo
λ,µ;λ, µ) ≥ f ∗ − ǫo. (12)

Further, from the assumption, we know f(xǫo
λ,µ) ≤ f̄ due to xǫo

λ,µ ∈ X . This together with (12)
immediately implies that the second statement holds.

We are now ready to establish a convergence result for the framework GSICS.

Theorem 2.4 Let ǫo > 0 and ǫc > 0 be given. Suppose that in step 1) of the framework
GSICS, an ǫo-optimal solution Xǫo of problem (5) is obtained by some method. Then, the
framework GSICS generates an (ǫo, ǫc)-optimal solution to problem (4) in a finite number
of outer iterations, or equivalently, a finite number of updates on the penalty parameters
{ρij}(i,j)∈Ω.

Proof. Invoking that Σ + Diag(ρ) ≻ 0 (see Assumption 1), we see that for any X ∈ Sn
+,

log detX − 〈Σ, X〉 − ∑

(i,j)/∈Ω

ρij |Xij| ≤ log detX − 〈Σ + Diag(ρ), X〉

≤ sup{log det Y − 〈Σ+ Diag(ρ), Y 〉 : Y � 0} < ∞,

where the last inequality follows from the fact that the above maximization problem achieves
its optimal value at Y = (Σ+Diag(ρ))−1 ≻ 0. This observation together with Proposition 2.3
immediately yields the conclusion.
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2.2 Adaptive first-order methods for problem (5)

In this subsection, we will discuss some suitable first-order methods for solving problem (5)
that appears in step 1) of the algorithm framework GSICS.

As seen from Proposition 2.2, problem (5) has a unique optimal solution. We next provide
some bounds on it.

Proposition 2.5 Let fρ(·) and X∗
ρ denote the objective function and the unique optimal so-

lution of problem (5), respectively. Let ϑ be defined as

ϑ := max
{

fρ((Σ + Diag(ρ))−1), θ
}

− (n− 1)[−1− log λmin(Σ + Diag(ρ))], (13)

where θ := n(−1− log Tr(Σ+ ρ) + log n). Then αρI � X∗
ρ � βρI, where αρ := 1/(‖Σ‖+ ‖ρ‖)

and βρ is the largest positive root of the following equation

log t− λmin(Σ + Diag(ρ))t− ϑ = 0.

Proof. Let
U := {U ∈ Sn : |Uij| ≤ 1, ∀ij}, (14)

and
φ(X,U) := log detX − 〈Σ + ρ ∗ U,X〉, ∀(X,U) ∈ Sn

++ × U . (15)

Since X∗
ρ ∈ Sn

++ is the optimal solution of problem (5), it can be easily shown that there exists
some U∗ ∈ U such that (X∗

ρ , U
∗) is a saddle point of φ(·, ·) in Sn

++ × U , and hence

X∗
ρ = arg min

X∈Sn
++

φ(X,U∗).

This relation along with (15) immediately yields X∗
ρ (Σ + ρ ∗ U∗) = I. Hence, we have

X∗
ρ = (Σ + ρ ∗ U∗)−1 � 1

‖Σ‖+ ‖ρ ∗ U∗‖I,

which together with (14) and the fact that U∗ ∈ U , implies that X∗ � 1
‖Σ‖+‖ρ‖

I. Thus,
X∗

ρ � αρI as desired.
We next bound X∗

ρ from above. Let f ∗
ρ denote the optimal value of problem (5). In view

of the definition of fρ(·) and (6), we have

f ∗
ρ ≥ max

t>0
fρ(tI) = max

t>0
n log t− tTr(Σ + ρ) = n(−1− log Tr(Σ + ρ) + log n) =: θ.

Thus, f ∗
ρ ≥ max{fρ((Σ + Diag(ρ))−1), θ}. Using this result and following a similar procedure

as for deriving (7), we can show that

log λmax(X
∗
ρ)− λmin(Σ + Diag(ρ))λmax(X

∗
ρ) ≥ ϑ,

8



where ϑ is given in (13), and hence the statement X∗
ρ � βρI immediately follows.

In view of Proposition 2.5, we see that problem (5) is equivalent to the following problem

max
αρ�X�βρ

log detX − 〈Σ, X〉 −
∑

i,j

ρij |Xij|, (16)

where αρ and βρ are defined in Proposition 2.5.
We further observe that problem (16) can be rewritten as

max
X∈Xρ

{fρ(X) := min
U∈U

φ(X,U)}, (17)

where U and φ(·, ·) are given in (14) and (15), respectively, and Xρ is defined as follows:

Xρ := {X ∈ Sn : αρI � X � βρI}. (18)

Observing that φ(X,U) : Xρ × U → ℜ is a smooth function which is strictly concave in
X ∈ Xρ for every fixed U ∈ U , and convex in U ∈ U for every fixed X ∈ Xρ, we can conclude
that (i) problem (17) and its dual, that is,

min
U∈U
{gρ(U) := max

X∈Xρ

φ(X,U)} (19)

are both solvable and have the same optimal value; and (ii) the function gρ(·) is convex
differentiable and its gradient is given by

∇gρ(U) = ∇Uφ(X(U), U), ∀U ∈ U ,

where
X(U) := arg max

X∈Xρ

φ(X,U). (20)

The following result shows that the approximate solution of problem (17) (or equivalently,
(5)) can be obtained by solving smooth convex problem (19).

Proposition 2.6 Let X∗
ρ be the unique optimal solution of problem (17), and let f ∗

ρ be the
optimal value of problems (17) and (19). Suppose that the sequence {Uk}∞k=0 ⊆ U is such that
gρ(Uk)→ f ∗

ρ as k →∞. Then, X(Uk)→ X∗
ρ and gρ(Uk)− fρ(X(Uk))→ 0 as k →∞, where

X(·) is defined in (20).

Proof. The proof is similar to that of Theorem 2.4 of Lu [8].

From Proposition 2.6, we see that problem (5) can be solved simultaneously while solving
problem (19). Indeed, suppose that {Uk}∞k=0 ⊆ U is a sequence of approximate solutions
generated by some method for solving (19). It follows from Proposition 2.6 that given any
ǫo > 0, there exists some iterate Uk such that gρ(Uk)− fρ(X(Uk)) ≤ ǫo. Then, it is clear that
X(Uk) is an ǫo-optimal solution of (17) and hence (5). We next discuss two first order methods,
namely, the adaptive spectral projected gradient method and the adaptive Nesterov’s smooth
method for problems (19) and (17) (or equivalently, (5)).
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2.2.1 Adaptive spectral gradient projection method

In this subsection, we propose an adaptive spectral projected gradient (ASPG) method for
solving problems (19) and (17) (or equivalently, (5)).

The spectral gradient projection (SPG) methods were developed by Birgin et al. [3] for
minimizing a smooth function over a closed convex set, which well integrate the nonmonotone
line search technique proposed by Grippo et al. [7] and Barzilai-Borwein’s gradient method [1]
into classical projected gradient methods (see [2]). We next discuss the one of them (namely,
the SPG2 method [3]) for solving the problem

min {gρ,β(U) : U ∈ U}, (21)

and its dual
max {fρ(X) : αρI � X � βI} (22)

for some β ≥ αρ, where
gρ,β(U) := max

αρI�X�βI
φ(X,U), (23)

U , φ(·, ·), fρ(·) and αρ are defined in (14), (15), (17) and Proposition 2.5, respectively. We
denote by Xβ(U) the unique optimal solution of problem (23). In view of (15), it is not hard
to observe that gρ,β(U) is differentiable, and, moreover, Xβ(U) and ∇gρ,β(U) have closed-form
expressions for any U ∈ U (see (30) of [8]). In addition, since U is a simple set, the projection
of a point to U can be cheaply carried out. Thus, the SPG method [3] is suitable for solving
problem (21).

For ease of subsequent presentation, we now describe the SPG method [3] for (21) in
details. The following notation will be used throughout this subsection.

Given a sequence {Uk}∞k=0 ⊆ U and an integer M ≥ 1, we define

gMk := max {gρ,β(Uk−j) : 0 ≤ j ≤ min{k,M − 1}}.

Also, let PU : ℜn×n → U be defined as

PU(U) := argmin{‖Û − U‖F : Û ∈ U}, ∀U ∈ ℜn×n.
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The SPG method for problems (21) and (22):

Let ǫo > 0, γ ∈ (0, 1), 0 < σ1 < σ2 < 1 and 0 < αmin < αmax <∞ be given. Let M ≥ 1 be an
integer. Choose U0 ∈ U , α0 ∈ [αmin, αmax] and set k = 0.

1) If gρ,β(Uk)− fρ(Xβ(Uk)) ≤ ǫo, terminate.

2) Compute dk = PU(Uk − αk∇gρ,β(Uk))− Uk. Set λ← 1.

2a) Set U+ = Uk + λdk.

2b) If gρ,β(U+) ≤ gMk + γλ〈dk,∇gρ,β(Uk)〉, set Uk+1 = U+, sk = Uk+1 − Uk, yk =
∇gρ,β(Uk+1)−∇gρ,β(Uk). Otherwise, choose λ+ ∈ [σ1λ, σ2λ], set λ← λ+ and go to
step 2a).

2c) Compute bk = 〈sk, yk〉. If bk ≤ 0, set αk+1 = αmax. Otherwise, compute ak =
〈sk, sk〉 and set αk+1 = min {αmax,max{αmin, ak/bk}}.

3) Set k ← k + 1, and go to step 1).

end

We next establish a convergence result for the SPG method for solving problems (21) and
(22).

Theorem 2.7 Let ǫo > 0 be given. The SPG method generates a pair of ǫo-optimal solutions
(Uk, Xβ(Uk)) to problems (21) and (22) in a finite number of iterations.

Proof. Suppose by contradiction that the SPG method does not terminate. Then it
generates a sequence {Uk}∞k=0 ⊆ U satisfying gρ,β(Uk) − fρ(Xβ(Uk)) > ǫo. Note that gρ,β(·)
is convex, which together with Theorem 2.4 of [3] implies that any accumulation point of
{Uk}∞k=0 is an optimal solution of problem (21). By the continuity of gρ,β(·), it further implies
that any accumulation point of {gρ,β(Uk)}∞k=0 is the optimal value f ∗

ρ of (21). Using this
observation and the fact that {gρ,β(Uk)}∞k=0 is bounded, we conclude that gρ,β(Uk) → f ∗

ρ as
k → ∞. Further, in view of Proposition 2.6 by replacing βρ with β, and gρ(·) with gρ,β(·),
we have gρ,β(Uk)− fρ(Xβ(Uk)) → 0 as k → ∞, and arrive at a contradiction. Therefore, the
conclusion of this theorem holds.

Based on the above discussion, we see that the SPG method can be directly applied to
find a pair of ǫo-optimal solutions to problems (19) and (17) (or equivalently, (5)) by setting
β = βρ, where βρ is given in Proposition 2.5. It may converge, however, very slowly when
βρ is large. Indeed, similarly as in [8], one can show that ∇gρ,β(U) is Lipschitz continuous
on U with constant L = β2(max

i,j
ρij)

2 with respect to the Frobenius norm. Let αk, bk and dk

be defined as above. Since gρ,β(·) is convex, we have bk ≥ 0. Actually, we observed that it
is almost always positive. In addition, αmin and αmax are usually set to be 10−30 and 1030,
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respectively. Thus for the SPG method, we typically have

αk+1 =
‖Uk+1 − Uk‖2F

〈Uk+1 − Uk,∇gρ,β(Uk+1)−∇gρ,β(Uk)〉
≥ =

1

L
=

1

β2(max
i,j

ρij)2
.

Recall that βρ is an upper bound of λmax(X
∗
ρ), and typically it is overly large, where X∗

ρ is the
optimal solution of (5). When β = βρ, we see from above that αk can be very small and so is
Uk+1 − Uk due to

‖Uk+1 − Uk‖F ≤ ‖dk‖F = ‖PU(Uk − αk∇gρ,β(Uk))− Uk‖F ≤ αk‖∇gρ,β(Uk)‖F .

Therefore, the SPG method may converge very slowly when applied to problem (19) directly.
To alleviate the aforementioned computational difficulty, we next propose an adaptive SPG

(ASPG) method for problems (19) and (17) (or equivalently, (5)) by solving a sequence of
problems (21) with β = β0, β1, . . ., βm for some {βk}mk=0 approaching λmax(X

∗
ρ) monotonically

from below.

The adaptive SPG (ASPG) method for problems (17) and (19):

Let ǫo > 0, β0 ≪ βρ and rβ > 1 be given. Choose U0 ∈ U and set k = 0.

1) Set β ← βk. Apply the SPG method to find a pair of ǫo-optimal solutions (Ûk, Xβ(Ûk))
to problems (21) and (22) starting from U0.

2) If β = βρ or λmax(Xβ(Ûk)) < β, terminate.

3) Set U0 ← Ûk, βk+1 = min{βrβ, βρ}, k ← k + 1, and go to step 1).

end

We now establish a convergence result for the ASPG method for solving problems (19)
and (17) (or equivalently, (5)).

Theorem 2.8 Let ǫo > 0 be given. The ASPG method generates a pair of ǫo-optimal solutions
to problems (19) and (17) (or equivalently, (5)) in a finite number of total (inner) iterations.

Proof. First, we clearly see that β is updated for only a finite number of times. Using
this observation and Theorem 2.7, we conclude that the ASPG method terminates in a finite
number of total (inner) iterations. Now, suppose that it terminates at β = βk for some k.
We claim that (Ûk, Xβ(Ûk)) is a pair of ǫo-optimal solutions to problems (19) and (17) (or

equivalently, (5)). Indeed, we clearly have β = βρ or λmax(Xβ(Ûk)) < β, which together with

the definition of gρ(·) and gρ,β(·) (see (19) and (21)), implies that gρ(Ûk) = gρ,β(Ûk). Thus,
we obtain that

gρ(Ûk)− fρ(Xβ(Ûk)) = gρ,β(Ûk)− fρ(Xβ(Ûk)) ≤ ǫo,

which along with the fact Xβ(Ûk) ∈ Xρ, implies that (Ûk, Xβ(Ûk)) is a pair of ǫo-optimal
solutions to problems (19) and (17).

12



As discussed above, the ASPG method is able to find a pair of ǫo-optimal solutions to
problems (5) and (19). We now show how this method can be extended to find an (ǫo, ǫc)-
optimal solution to problem (4). Recall from the framework GSICS (see Subsection 2.1)
that in order to obtain an (ǫo, ǫc)-optimal solution to problem (4), we need to find an ǫo-
optimal solution of problem (5) for a sequence of penalty parameters {ρk}mk=1, which satisfy
for k = 1, . . . , m, ρkij = ρij , ∀(i, j) 6∈ Ω and ρkij = ρ0ijr

k−1
ρ , ∀(i, j) ∈ Ω for some rρ > 1 and

ρ0ij > 0, ∀(i, j) ∈ Ω. Suppose that a pair of ǫo-optimal solutions (Xβk
(Ûk)), Ûk) of problems

(5) and (19) with ρ = ρk are already found by the ASPG method for some βk ∈ [αρk , βρk ].
Then, we choose the initial U0 and β0 for the ASPG method when applied to solve problems
(5) and (19) with ρ = ρk+1 as follows:

(U0)ij =

{

(Ûk)ij/rρ, if (i, j) ∈ Ω;

(Ûk)ij , otherwise.
, β0 = max

{

αρk+1 , λmax(Xβk
(Ûk))

}

. (24)

We next provide some interpretation on such a choice of U0 and β0. Since Û
k ∈ U and rρ > 1,

we easily see that U0 ∈ U . In addition, using the definition of βρ (see Proposition 2.5) and the
fact that Diag(ρk+1) = Diag(ρk), we observe that βρk+1 = βρk , and hence β0 ∈ [αρk+1 , βρk+1].
Let f ∗

ρ denote the optimal value of problem (5) for any given ρ. Clearly, we can observe from

the ASPG method that either λmax(Xβk
(Ûk)) < βk < βρk or λmax(Xβk

(Ûk) ≤ βk = βρk holds,
which together with (19) and (23) implies that

gρk,βk
(Ûk) = gρk(Ûk) ∈ [f ∗

ρk , f
∗
ρk + ǫo]. (25)

Typically, λmax(Xβk
(Ûk) ≫ αρk+1 , and hence β0 = λmax(Xβk

(Ûk)) ≤ βk generally holds. Also
usually, αρk+1 ≈ αρk ≈ 0. Using these relations along with (25), (19) and (23), we further
observe that

f ∗
ρk+1 ≤ gρk+1(U0) ≈ gρk(Ûk) ≤ f ∗

ρk + ǫo,

f ∗
ρk+1 ≤ gρk+1,β0

(U0) ≈ gρk,β0
(U0) ≤ gρk,βk

(Ûk) ≤ f ∗
ρk + ǫo.

It follows that when f ∗
ρk+1 is close to f ∗

ρk , U0 is nearly an ǫo-optimal solution for problems (19)

and (23) with ρ = ρk+1 and β = β0. Therefore, we expect that for the above choice of U0 and
β0, the ASPG method can solve problems (5) and (19) with ρ = ρk+1 rapidly when ρk+1 is
close to ρk.

2.2.2 Adaptive Nesterov’s smooth method

In this subsection, we propose an adaptive Nesterov’s smooth (ANS) method for solving
problems (19) and (17) (or equivalently, (5)).

Recently, Lu [8] studied Nesterov’s smooth method [9, 10] for solving a special class of
problems (19) and (17) (or equivalently, (5)), where ρ is a positive multiple of eeT . He
showed that an ǫo-optimal solution to problems (19) and (17) can be found in at most
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√
2βρ(max

i,j
ρij)max

U∈U
‖U − U0‖F/

√
ǫo iterations by Nesterov’s smooth method for some initial

point U0 ∈ U (see pp. 12 of [8] for details). Given that βρ is an estimate and typically
an overestimate of λmax(X

∗
ρ), where X∗

ρ is the unique optimal solution of problem (5), the
aforementioned iteration complexity can be exceedingly large and Nesterov’s smooth method
generally converges extremely slowly. Lu [8] further proposed an adaptive Nesterov’s smooth
(ANS) method for solving problems (19) and (17) (see pp. 15 of [8]). In his method, λmax(X

∗
ρ)

is estimated by λmax(X(Uk)) and adaptively adjusted based on the change of λmax(X(Uk)) as
the algorithm progresses, where Uk is an approximate solution of problem (19). As a result, his
method can provide an asymptotically tight estimate of λmax(X

∗
ρ) and it has an asymptotically

optimal iteration complexity.
We now extend the ANS method [8] to problems (19) and (17) (or equivalently, (5)) with

a general ρ. Recall from Subsection 2.2.1 that ∇gρ(U) is Lipschitz continuous on U with
constant L = β2

ρ(max
i,j

ρij)
2 with respect to the Frobenius norm. Then it is straightforward

to extend the ANS method [8] to problems (19) and (5) for a general ρ by replacing the
corresponding Lipschitz constants by the ones computed according to the above formula. For
ease of reference, we provide the details of the ANS method for problems (19) and (17) (or
equivalently, (5)) below.

Throughout the remainder of this section, we assume that αρ, βρ, gρ,β(·) and Xβ(·) are
given in Proposition 2.5 and Subsection 2.2.1, respectively. We now introduce a definition
that will be used subsequently.

Definition 2 Given any U ∈ U and β ∈ [αρ, βρ], Xβ(U) is called “active” if λmax(Xβ(U)) = β
and β < βρ; otherwise it is called “inactive”.

We are now ready to present the ANS method [8] for problems (19) and (17).
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The ANS method for problems (17) and (19)

Let ǫ > 0, ς1, ς2 > 1, and let ς3 ∈ (0, 1) be given. Let ρmax = max
i,j

ρij . Choose U0 ∈ U and

β ∈ [αρ, βρ]. Set L = β2ρ2max, σ = 1, and k = 0.

1) Compute Xβ(Uk).

1a) If Xβ(Uk) is active, find the smallest s ∈ Z+ such that Xβ̄(Uk) is inactive, where
β̄ = min{ςs1β, βρ}. Set k = 0, U0 = Uk, β = β̄, L = β2ρ2max and go to step 2).

1b) If Xβ(Uk) is inactive and λmax(Xβ(Uk)) ≤ ς3β, set k = 0, U0 = Uk,
β = max{min{ς2λmax(Xβ(Uk)), βρ}, αρ}, and L = β2ρ2max.

2) If gρ,β(Uk)− fρ(Xβ(Uk)) ≤ ǫ, terminate. Otherwise, compute ∇gρ,β(Uk).

3) Find Usd
k = argmin

{

〈∇gρ,β(Uk), U − Uk〉+ L
2
‖U − Uk‖2F : U ∈ U

}

.

4) Find Uag
k = argmin

{

L
2σ
‖U − U0‖2F +

k
∑

i=0

i+1
2
[gρ,β(Ui) + 〈∇gρ,β(Ui), U − Ui〉] : U ∈ U

}

.

5) Set Uk+1 =
2

k+3
Uag
k + k+1

k+3
Usd
k .

6) Set k ← k + 1, and go to step 1).

end

Similarly as the ASPG method, we can easily extend the ANS method to find an (ǫo, ǫc)-
optimal solution to problem (4) by applying the same strategy for updating the initial U0

and β0 detailed at the end of Subsection 2.2.1. For convenience of presentation, the resulting
method is referred to as the adaptive Nesterov’s smooth (ANS) method.

3 Computational results

In this section, we test the sparse recovery ability of the model (4) and compare the per-
formance of the adaptive spectral projected gradient (ASPG) method and the adaptive Nes-
terov’s smooth (ANS) method that are proposed in Section 2 for solving problem (4) on a set
of randomly generated instances.

All instances used in this section were randomly generated in a similar manner as described
in d’Aspremont et al. [5] and Lu [8]. Indeed, we first generate a sparse matrix A ∈ Sn

++, and
then we generate a matrix B ∈ Sn by

B = A−1 + τV,

where V ∈ Sn contains pseudo-random values drawn from a uniform distribution on the
interval [−1, 1], and τ is a small positive number. Finally, we obtain the following randomly
generated sample covariance matrix:

Σ = B −min{λmin(B)− ϑ, 0}I,
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Table 1: Comparison of ASPG and ANS for ̺ = 0.1
Problem Iter Nf Time
n size(Ω) ans aspg ans aspg ans aspg

100 8792 1298 1736 1298 2626 17.9 33.9
200 35646 593 489 593 654 52.1 56.1
300 80604 1411 683 1411 974 431.8 291.7
400 143636 1400 702 1400 978 1053.8 730.4
500 224788 1012 615 1012 863 1469.4 1244.8
600 324072 1410 661 1410 908 3501.2 2220.5
700 441380 1189 738 1189 1050 4656.0 4070.5
800 576896 1175 811 1175 1169 6601.2 6500.5
900 730500 1660 808 1660 1154 12975.7 8964.5
1000 902124 2600 1285 2600 1903 27523.2 20059.9

where ϑ is a small positive number. In particular, we set τ = 0.15, ϑ = 1.0e−4 for generating
all instances.

In the first experiment we compare the performance of the ASPG and ANS methods for
problem (4). For this purpose, we first randomly generate the above matrix A ∈ Sn

++ with
a density prescribed by ̺, and set Ω = {(i, j) : Aij = 0, |i − j| ≥ 2} and ρij = 0.5 for all
(i, j) /∈ Ω. Σ is then generated by the above approach. The codes for both methods are
written in MATLAB. In particular, we set γ = 10−4, M = 8, σ1 = 0.1, σ2 = 0.9, αmin = 10−15,
αmax = 1015 for the ASPG method, and set ς1 = ς2 = 1.05 and ς3 = 0.95 for the ANS method.
In addition, for both methods we set β0 = 1, rβ = 10, rρ = 2, and ρ0ij = 0.5 for all (i, j) ∈ Ω.
Also, the ASPG and ANS methods start from the initial point U0 = 0 and terminate once
an (ǫo, ǫc)-optimal solution of problem (4) is found, where ǫo = 0.1 and ǫc = 10−4. All
computations are performed on an Intel Xeon 2.66 GHz machine with Red Hat Linux version
8.

The performance of the ASPG and ANS methods for the randomly generated instances
with density ̺ = 0.1, 0.5 and 0.9 is presented in Tables 1-3, respectively. The row size n of
each sample covariance matrix Σ is given in column one. The size of the set Ω is given in
column two. The numbers of (inner) iterations of ASPG and ANS are given in columns three
to four, the number of function evaluations are given in columns five to six, and the CPU times
(in seconds) are given in the last two columns, respectively. From Tables 1-3, we see that
both methods are able to solve all instances within a reasonable amount of time. In addition,
the ASPG method, namely, the adaptive spectral gradient method, generally outperforms the
ANS method, that is, the adaptive Nesterov’s smooth method.

Our second experiment is similar to the one carried out in d’Aspremont et al. [5]. We
intend to test the sparse recovery ability of the model (4). To this aim, we specialize n = 30
and the matrix A ∈ Sn

++ to be the one with diagonal entries around one and a few randomly
chosen, nonzero off-diagonal entries equal to +1 or −1 and the sample covariance matrix Σ is
then generated by the aforementioned approach. Also, we set Ω = {(i, j) : Aij = 0, |i−j| ≥ 5}
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Table 2: Comparison of ASPG and ANS for ̺ = 0.5
Problem Iter Nf Time
n size(Ω) ans aspg ans aspg ans aspg

100 4776 256 112 256 146 3.9 2.3
200 19438 453 178 453 229 40.3 20.1
300 44136 412 229 412 296 128.4 91.4
400 78738 433 250 433 339 335.1 260.2
500 123300 499 313 499 417 727.2 605.8
600 177614 535 354 535 494 1361.0 1247.1
700 241944 569 327 569 467 2204.8 1793.9
800 317184 536 349 536 498 3011.7 2763.5
900 400952 581 420 581 600 4619.5 4752.2
1000 494610 697 561 697 775 7425.6 8240.1

Table 3: Comparison of ASPG and ANS for ̺ = 0.9
Problem Iter Nf Time
n size(Ω) ans aspg ans aspg ans aspg

100 960 207 85 207 164 3.3 2.5
200 3738 275 139 275 180 24.5 16.0
300 8750 567 178 567 220 173.4 69.7
400 15764 408 180 408 235 318.6 182.7
500 25072 416 272 416 367 616.8 535.2
600 35846 441 275 441 371 1107.0 920.7
700 48718 1219 421 1219 597 4646.2 2300.0
800 63814 461 348 461 460 2693.9 2650.0
900 80798 469 363 469 507 4124.1 4171.8
1000 98870 495 363 495 514 5656.1 5718.9

and ρij = 0.1 for all (i, j) /∈ Ω. The model (4) with such an instance is finally solved by the
ASPG method whose parameters, initial point and termination criterion are exactly same as
above. In Figure 1, we plot the sparsity patterns of the original inverse covariance matrix A,
the approximate solution to problem (4) and the noisy inverse covariance matrix B−1 for such
a randomly generated instance. We observe that the model (4) is capable of recovering the
sparsity pattern of the original inverse covariance matrix.

4 Concluding remarks

In this paper, we considered estimating sparse inverse covariance of a Gaussian graphical model
whose conditional independence is assumed to be partially known. Naturally, we formulated
it as a constrained l1-norm penalized maximum likelihood estimation problem. Further, we
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Figure 1: Sparsity recovery.

proposed an algorithm framework, and developed two first-order methods, that is, adaptive
spectral projected gradient (ASPG) method and adaptive Nesterov’s smooth (ANS) method,
for solving it. Our computational results demonstrate that both methods are able to solve
problems of size at least a thousand and number of constraints of nearly a half million within
a reasonable amount of time, and the ASPG method generally outperforms the ANS method.

The source codes for the ASPG and ANS methods (written in MATLAB) are available
online at www.math.sfu.ca/∼zhaosong. They can also be applied to problem (4) with Ω = ∅,
namely, the case where the underlying sparsity structure is completely unknown. It shall be
mentioned that these codes can be extended straightforwardly to more general problems of
the form

max
X

log detX − 〈Σ, X〉 − ∑

(ij)/∈Ω

ρij |Xij|

s.t. αI � X � βI,

Xij = 0, ∀(i, j) ∈ Ω,

where 0 ≤ α < β ≤ ∞ are some fixed bounds on the eigenvalues of the solution.
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