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GENERAL MATRIX PENCIL TECHNIQUES FOR SOLVING

DISCRETE–TIME NONSYMMETRIC ALGEBRAIC RICCATI

EQUATIONS∗

MARC JUNGERS† , CRISTIAN OARĂ‡ , HISHAM ABOU-KANDIL§ , AND RADU ŞTEFAN‡

Abstract. A discrete–time nonsymmetric algebraic Riccati system which incorporates as spe-
cial cases various discrete–time nonsymmetric algebraic Riccati equations is introduced and studied
without any restrictive assumptions on the matrix coefficients. Necessary and sufficient existence con-
ditions together with computable formulas for the stabilizing solution are given in terms of proper
deflating subspaces of an associated matrix pencil. The theory is applied in the framework of game
theory with an open–loop information structure to design Nash strategy without the classical as-
sumptions on the invertibility of some matrix coefficients.

Key words. Discrete–time Nonsymmetric Algebraic Riccati Equations, Matrix Pencil, Game
Theory, Deflating subspaces.
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1. Introduction. Starting with the seminal works of Kalman [23], Popov [39]
and Willems [48], the standard algebraic Riccati equation – both in the continuous and
discrete–time versions – has been widely investigated due to its prominent role played
in control engineering [26, 28, 5, 41]. Algebraic Riccati equations offer simultaneously
a nice theoretical support together with numerically efficient algorithms to cope with
numerous applications in systems theory, optimal control, and filtering problems.

The theory of symmetric Riccati equations has been approached from several
standpoints: time–domain, frequency domain, and state–space, leading to character-
izations in terms of input–output operator, transfer matrix function, and Hamilto-
nian matrix, all associated with the underlying Hamiltonian system. Among these
approaches, the method of invariant subspaces associated with Hamiltonian matri-
ces for continuous–time (or symplectic matrices for discrete–time) play a paramount
role [25, 28, 29, 27, 40, 30, 49, 45]. The invariant subspace criteria for matrices have
been extended to matrix pencils by the introduction of the Extended Hamiltonian
Pencils in [46] while the place of the invariant subspace is taken by the proper de-
flating subspaces [34]. While pushing forward the algebraic Riccati techniques an
interesting situation developed: the algebraic Riccati equation as such was no longer
defined, and had to be replaced by an appropriate more general substitute. It turned
out that the right substitute are the Riccati systems which can tackle the whole range
of applications that one encounters in practice [20, 19, 21, 35].

Besides the symmetric Riccati equation, the theory of nonsymmetric algebraic
Riccati equation, both continuous and discrete–time, has received recently a renewed
interest due to a large number of applications in various fields, including applied
mathematics, engineering and economic science (see for instance [1, 6, 22, 18]). The
nonsymmetric algebraic Riccati equation extends the concept of standard Riccati
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equation by allowing for a not necessarily square matrix variable. In the literature,
these equations are referred alternatively as nonsymmetric, asymmetric, rectangular,
or simply nonstandard Riccati equations. Again, different approaches based on the
input–output operator, an associated Popov function, or invariant subspaces of an
underlying characteristic matrix are possible. The Popov function based approach
for nonsymmetric algebraic Riccati equation has been developed in [24, 37]. Itera-
tive numerical methods based on Newton’s method and various refinements to solve
nonsymmetric algebraic Riccati equation can be found in [4, 15, 16]. The invariant
subspace method has been extended under various restrictive assumptions on the ma-
trix coefficients in [1, 9, 10]. Based on these theoretical results, several numerical
solvers have been developed [8, 14].

The manifest aim of this paper is to extend the invariant subspace method for
solving discrete–time nonsymmetric algebraic Riccati equation (DTNARE) without
assuming any restrictive assumption on the matrix coefficients, and to explore their
algorithmic consequences. While doing so, we will need to replace the DTNARE
with a more powerful substitute – called the discrete-time nonsymmetric algebraic
Riccati system (DTNARS) – which allows the full range of matrix coefficients, and
the characteristic matrix with an appropriate matrix pencil.

The paper is organized as follows. Section 2 contains some general notation, def-
initions and basic results concerning matrix pencils. In Section 3 we introduce the
basic setting for our approach to the discrete–time nonsymmetric Riccati theory. The
central notion is the Popov–system with which we associate several mathematical ob-
jects that play various parts in the discrete–time nonsymmetric Riccati theory and for
which we define an equivalence transformation. The main result of the paper estab-
lishing a one–to–one correspondence between stabilizing solutions to the discrete–time
nonsymmetric algebraic Riccati system and stable deflating subspaces of the Popov–
system matrix pencil is provided in Section 4. In Section 5, we strengthen our main
result to show that proper deflating subspaces provide the right framework for a prac-
tical numerical algorithm, and sketch a prototype algorithm for the computation of
stabilizing solutions. The efficiency of our matrix pencil approach which avoids clas-
sical invertibility assumptions is illustrated in Section 6. There, we consider in detail
one application from the realm of game theory in which discrete–time nonsymmetric
algebraic Riccati equations with general matrix coefficients occur naturally: design-
ing Nash strategy. Some relevant numerical examples are given in Section 7. Final
conclusions are drawn in Section 8.

2. Preliminaries. In this section we introduce some notation and definitions,
and review certain basic results needed in the sequel.

2.1. Basic notation. By R, C, and N we denote the real axis, the complex
plane, and the set of nonnegative integers, respectively. Let N

∗ := N − {0}. The
open unit disk and its closure in the complex plane are denoted by D and D. For
a constant matrix A we denote by A′ its transpose and if A is invertible by A−1 its
inverse. Im (A) will stand for the image of A. A matrix pair (A, B), with A ∈ R

n×n,
B ∈ R

n×m, is called controllable if rank
[

zI − A B
]

= n, for all z ∈ C. A matrix
pair (C, A), with A ∈ R

n×n, C ∈ R
p×n, is called observable provided the pair (A′, C ′)

is controllable. In1
and 0n1×n2

denote the identity matrix of size n1 ×n1 and the null
matrix of size n1 × n2, respectively. For the sake of simplicity, the dimension of the
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identity and null matrices will be avoided when obvious. Let

diag(A1, . . . , Ak) :=




A1

. . .

Ak




denote a block diagonal matrix defined by the possible rectangular matrices A1, . . . , Ak.
In a block matrix, ⋆ stands for an irrelevant block. Capital letters will denote constant
matrices and bold capital letters will denote rational matrix functions. For a rational
matrix function S(z) with real coefficients, let S∗(z) := S′( 1

z
) be the conjugate.

2.2. Matrix pencils and proper deflating subspaces. We remind in this
subsection some definitions and properties of matrix pencils [12, 13] with a particular
emphasis on proper deflating subspaces. Proper deflating subspaces are a technical
tool that will allow to formulate an “invariant subspace” criteria to solve DTNARS
and DTNARE without any assumption on the matrix coefficients.

Let M and N be m × n matrices with elements in R. The first degree matrix
polynomial zM − N is called a matrix pencil or, briefly, pencil. The pencil is called
regular if it is square (m = n) and has a non–vanishing determinant, i.e., det(zM −
N) 6≡ 0. A pencil which is not regular is called singular. The normal rank of the
pencil – denoted r = rankn(zM − N) – is defined as the rank of zM − N for almost
all z ∈ C (but a finite number of points). For a regular pencil we have m = n = r.
If νℓ := m − r > 0 then we say the pencil has a (nontrivial) left singular structure. If
νr := n − r > 0 then the pencil has a (nontrivial) right singular structure.

Two pencils zM − N and zM̃ − Ñ , with M,N, M̃, Ñ ∈ R
m×n, are called strictly

equivalent if there are two constant invertible matrices Q ∈ R
m×m, Z ∈ R

n×n, such
that Q(zM −N)Z = zM̃ − Ñ . For any pencil zM −N there exist a strict equivalence
transformation (see for example [12]) that brings it to the Kronecker canonical form

Q(zM − N)Z = diag(Lǫ1 , . . . , Lǫνr
, zM∞ − In∞ , zInf

− Nf , LT
η1

, . . . LT
ηνℓ

). (2.1)

Here Lk (k ≥ 0) denotes the bidiagonal k × (k + 1) pencil

Lk :=




z −1
. . .

. . .

z −1


 ,

Nf and M∞ are two square matrices in real Jordan form, with M∞ nilpotent.
The regular part of zM − N is defined by the regular pencil diag(In∞ , Nf ) −

z diag(M∞, Inf
). The finite generalized eigenvalues (and their multiplicities) of the

pencil zM−N are the eigenvalues (and their multiplicities) of the matrix Nf . zM−N

has an infinite generalized eigenvalue if n∞ > 0, and its multiplicities are defined as
the corresponding multiplicities of the eigenvalue at 0 of the nilpotent matrix N∞. A
generalized eigenvalue λ is called stable if λ ∈ D, and antistable if λ 6∈ D. According
to this definition, an infinite generalized eigenvalue is antistable.

The singular part of the pencil is defined by the right and left singular Kronecker
structure as follows. The ǫi × (ǫi + 1) blocks Lǫi

, (i = 1, . . . , νr), are the right
elementary Kronecker blocks, and ǫi ≥ 0 are called the right Kronecker indices. The
(ηj + 1) × ηj blocks Lηj

T , (j = 1, ..., νℓ), are the left elementary Kronecker blocks,
and ηj ≥ 0 are called the left Kronecker indices. Notice that ǫi and ηj can be zero.
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For our future developments we need an equivalent form of (2.1). Let ns and
na be the number (multiplicity counted) of finite stable and antistable generalized
eigenvalues, respectively. By using a mere permutation of rows and columns of (2.1)
it is straightforward to see that for any pencil zM − N there exist two invertible
matrices Q and Z such that

Q(zM−N)Z = diag(
[

zInr
− Ar −B

]
, zIns

−Js, zIna
−Ja, zM∞−In∞ ,

[
zInℓ

− Aℓ

−C

]
)

(2.2)
where (Ar, B) is a controllable pair, with B ∈ R

nr×νr , Js ∈ R
ns×ns and Ja ∈ R

na×na

are two matrices containing the finite spectrum inside and outside D, respectively,
M∞ ∈ R

n∞×n∞ is nilpotent, and (C, Aℓ) is an observable pair, with C ∈ R
νℓ×nℓ .

Finally, we recall the definition of proper deflating subspaces [34, 21] which are
used to replace for the case of singular pencils the invariant subspaces of matrices and
deflating subspaces of regular pencils.

Definition 1. Let zM − N , with M , N ∈ R
m×n, be a fixed pencil. A subspace

V ⊂ R
n of dimension ρ is called right deflating if for an arbitrary basis matrix V ∈

R
n×ρ of V there is an ρ × ρ matrix S such that

NV = MV S. (2.3)

The right deflating subspace V is called proper if MV has full column rank, and it is
called stable if Λ(S) ⊂ D. Since we are interested only in right deflating subspaces,
further on we will simply omit this adjective.

Remark 1. Deflating subspaces of regular pencils have been introduced in [44] and
extended to singular pencils in [47] under the name of reducing subspaces. However,
in the case of singular pencils proper deflating subspaces differ somehow from reducing
subspaces and these differences have been investigated in [36].

3. Popov systems: definitions, associated objects, and equivalence. We
introduce here the basic setting of our approach to the discrete–time nonsymmetric
Riccati theory. The central concept is the Popov–system. With a fixed Popov system
we associate several mathematical objects: the discrete–time nonsymmetric algebraic
Riccati system and a particular version of it called the discrete–time nonsymmetric
algebraic Riccati equation, the Popov function and the Popov–system pencil which
are nothing else but the transfer function and system pencil of the Popov–system,
respectively. Finally, we will introduce an equivalence transformation on Popov–
systems that plays an important part in alternative time– and frequency–domain
characterizations of stabilizing solutions. All developments are considered in discrete–
time and provide the natural extension of the classical symmetric Riccati theory [21]
to the nonsymmetric case.

Consider the discrete–time Popov–system,




σx = A1x +B1u,

λ = Qx +A2
′σλ +L1u,

ν = L2
′x +B2

′σλ +Ru,

(3.1)

where σ is the shift operator acting on a vector valued sequence w = (w(k))k∈Z

as (σw)(k) = w(k + 1). Here the state x = (x(k))k∈N, the costate (or dual) state
λ = (λ(k))k∈N, the input u = (u(k))k∈N and the output ν = (ν(k))k∈N are sequences
in R

n, R
ℓ, R

m and R
m, respectively, and all the intervening matrices in (3.1) have

appropriate dimensions. Let x0 be the initial condition on the state, i.e., x(0) = x0.
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Alternatively, to denote the Popov–system (3.1) we use the following abbreviated
notation P =

(
A1, B1, A2, B2, Q, L1, L2

′, R
)
. Let P∗ =

(
A2, B2, A1, B1, Q

′, L2, L1
′, R′

)

denote the dual Popov–system associated with (3.1).

3.1. DTNARS. Let P be the Popov system (3.1). For any matrix X ∈ C
ℓ×n,

associate with P the matrix

DP(X) =

[
A2

′XA1 − X + Q A2
′XB1 + L1

B2
′XA1 + L2

′ R + B2
′XB1

]
. (3.2)

Definition 2. The system of equations

DP(X1)

[
In

F1

]
= 0 (3.3)

in the unknowns X1 ∈ C
ℓ×n and F1 ∈ C

m×n is called the right discrete–time nonsym-
metric algebraic Riccati system (DTNARS) associated with P. A solution (X1, F1)
to (3.3) is called right stabilizing if Λ(A1 + B1F1) ⊂ D.

Similarly, the system of equations

[
In F2

′
]
DP(X2) = 0 (3.4)

in the unknowns X2 ∈ C
ℓ×n and F2 ∈ C

m×ℓ is called the left DTNARS associated
with P. A solution (X2, F2) satisfying (3.4) is said to be left stabilizing if

Λ(A2 + B2F2) ⊂ D. (3.5)

The following result which is a variation of [24, prop 6.9] shows the connection
between right and left stabilizing solutions.

Proposition 1. Assume (X1, F1) and (X2, F2) are right and left stabilizing
solutions to the DTNARS (3.3) and (3.4), respectively. Then X1 and X2 are unique
and

X1 = X2. (3.6)

Proof. We show first (3.6). From the definition of the right stabilizing solution,
one obtains

A2
′X1A1 − X1 + A2

′X1B1F1 + L1F1 + Q = 0, (3.7)

B2
′X1A1 + L2

′ + (R + B2
′X1B1)F1 = 0. (3.8)

Let S1 = A1 + B1F1 and rewrite the equation (3.7) as

A2
′X1S1 − X1 + L1F1 + Q = 0. (3.9)

By premultiplying equality (3.8) by F2
′, one obtains

F2
′B2

′X1A1 + F2
′L2

′ + F2
′(R + B2

′X1B1)F1 = 0. (3.10)

Add now these two last equations to obtain, by setting S2 = A2 + B2F2

S2
′X1S1 − X1 + L1F1 + F2

′L2
′ + F2

′RF1 + Q = 0. (3.11)
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Using the similar technique for the left stabilizing Riccati solution, one gets

S2
′X2S1 − X2 + L1F1 + F2

′L2
′ + F2

′RF1 + Q = 0. (3.12)

Substracting equality (3.11) from equality (3.12) leads to

S2
′(X1 − X2)S1 − (X1 − X2) = 0. (3.13)

Since S1 and S2 are both stable by definition, this Stein equation has a unique
solution, which must be X1 − X2 = 0.

The unicity follows by repeating the arguments for pairs of an arbitrary right
stabilizing solution X1 and a fixed left stabilizing solution X2f , and for pairs of an
arbitrary left stabilizing solution X2 and a fixed right stabilizing solution X1f .

Remark 2. The transpose of the left DTNARS (3.4) coincides with the right
DTNARS associated with the dual Popov–system P∗ in the unknowns (X ′, F2). This
observation allows us to consider in the sequel only the right DTNARS.

3.2. DTNARE. Let P be the Popov system (3.1). Suppose that (X,F1) is a
solution to the right DTNARS (3.3) and in addition (R+B2

′XB1) is invertible. Then
F1 could be made explicit as

F1 = −(R + B2
′XB1)

−1(B2
′XA1 + L2

′). (3.14)

Substituting the expression (3.14) into the first equation of the DTNARS (3.3), one
obtains the discrete–time nonsymmetric algebraic Riccati equation (DTNARE) asso-
ciated with the Popov–system P

A2
′XA1 − X + Q − (L1 + A2

′XB1)(R + B2
′XB1)

−1(B2
′XA1 + L2

′) = 0. (3.15)

Definition 3. A solution X to DTNARE (3.15) is called stabilizing if A1+B1F1

is stable, for F1 defined in (3.14). In this case, F1 is called the (right) stabilizing
Riccati feedback.

The form (3.15) of DTNARE is directly related to the DTNARS (3.3) by the
Schur complement. However, if both R and (I + B1R

−1B2
′X) are invertible we get

the following more familiar equivalent form which occurs widely in the literature:

− X + Q − L1R
−1L2

′ + (A2
′ − L1R

−1B2
′)

× X(I + B1R
−1B2

′X)−1(A1 − B1R
−1L2

′) = 0. (3.16)

The transformation between these two forms is obvious. Indeed, using (3.14) we get
successively

F1 = −(R + B2
′XB1)

−1(B2
′XA1 + L2

′)

= −R−1
(
L2

′ + B2
′X(I + B1R

−1B2
′X)−1(A1 − B1R

−1L′
2)

)
, (3.17)

and

A1 + B1F1 = A1 − B1(R + B2
′XB1)

−1(B2
′XA1 + L2

′)

= (I + B1R
−1B2

′X)−1(A1 − B1R
−1L2

′). (3.18)

Further, rewriting (3.16) as

−X + Q + A′
2X(A1 + B1F1) + L1F1

and replacing F1 and A + B1F1 from (3.17) and (3.18), respectively, we get precisely
(3.16). As it will be shown later on, the choice between these forms is guided by the
application, in particular by the value of the matrices L1 and L2.
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3.3. The Popov function, the Popov–system pencil, and an equivalence

relation. Let P be the Popov–system (3.1). The transfer matrix from u to ν,

ΠP(z) =
[

B2
′(z−1I − A2

′)−1 I
] [

Q L1

L2
′ R

] [
(zI − A1)

−1B1

I

]
(3.19)

is called the (nonsymmetric) Popov function.
Let P be a Popov–system. The system (transmission) pencil zMP−NP associated

with P is called the Popov–system pencil, where

MP =




In 0 0
0 −A2

′ 0
0 −B2

′ 0


 , NP =




A1 0 B1

Q −Iℓ L1

L2
′ 0 R


 . (3.20)

Since the zMP −NP is the transmission pencil and ΠP(z) the transfer matrix of the
Popov–system, it follows that the Popov–system pencil is regular if and only if the
Popov function is square and has full rank.

We introduce now an equivalence transformation for Popov systems.
Definition 4. Two Popov–systems

P =
(
A1, B1, A2, B2, Q, L1, L2

′, R
)
, P̃ =

(
Ã1, B̃1, Ã2, B̃2, Q̃, L̃1, L̃

′
2, R̃

)

are called (X, F1, F2)–equivalent if there are matrices X ∈ C
ℓ×n, F1 ∈ C

m×n and
F2 ∈ C

m×ℓ such that the following conditions hold

Ã1 = A1 + B1F1, (3.21)

Ã2 = A2 + B2F2, (3.22)

B̃1 = B1, (3.23)

B̃2 = B2, (3.24)

L̃1 = L1 + A2
′XB1 + F2

′(R + B′
2XB1), (3.25)

L̃′
2 = L2

′ + B2
′X(A1 + B1F1) + RF1, (3.26)

Q̃ = Q + F2
′RF1 + L1F1 + F2

′L2
′ + (A2 + B2F2)

′X(A1 + B1F1) − X, (3.27)

R̃ = R + B2
′XB1. (3.28)

It is straightforward to check that the relation defined above is indeed an equivalence
relation fulfilling the corresponding axioms.

The next result gives the relation between the above mathematical objects asso-
ciated with two equivalent Popov–systems.

Proposition 2. Let

P =
(
A1, B1, A2, B2, Q, L1, L2

′, R
)
, P̃ =

(
Ã1, B̃1, Ã2, B̃2, Q̃, L̃1, L̃2

′

, R̃
)

,

be two (X, F1, F2)–equivalent Popov systems.
1. (Xs, Fs) is a (stabilizing) solution to the DTNARS associated with P if and

only if (Xs−X, Fs−F1) is a (stabilizing) solution to the DTNARS associated

with P̃.
2. For z ∈ C \ {Λ(A1) ∪ Λ(A2) ∪ Λ(Ã1) ∪ Λ(Ã2)} we have

ΠP(z) = S∗
F2

(z)Π eP
(z)SF1

(z), (3.29)
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where

SFi
(z) := I − Fi(zI − Ai)

−1Bi, i = 1, 2. (3.30)

Moreover, if (Xs1, Fs1), (Xs2, Fs2) are right and left solutions to the right and
left DTNARS associated with the Popov–system P, respectively, and Xs1 =
Xs2 =: Xs, then

ΠP(z) = S∗
Fs2

(z)(R + B′
2XsB1)SFs1

(z), (3.31)

where SFsi
(z) is (3.30) written for Fi = Fsi, i = 1, 2. (The identity (3.31) is

the nonsymmetric spectral factorization identity and (3.30) are the spectral
factors.)

3. The matrix pencils zMP − NP and zM eP
− N eP

are strictly equivalent.
Proof. 1. Let X∆ := Xs − X, F∆ := Fs − F1. We show first that

DP(Xs)

[
I

Fs

]
= 0 ⇔ D eP

(X∆)

[
I

F∆

]
= 0

which will prove the relation between the solutions of the DTNARSs. Indeed, we have

[
A2

′XsA1 − Xs + Q A2
′XsB1 + L1

B2
′XsA1 + L2

′ R + B2
′XsB1

] [
I

Fs

]
= 0

⇔

[
A2

′X∆A1 − X∆ + Q + A′
2XA1 − X A2

′X∆B1 + L1 + A2
′XB1

B2
′X∆A1 + L2

′ + B2
′XA1 R + B2

′X∆B1 + B2
′XB1

] [
I

Fs

]
= 0

⇔

[
I F2

T

0 I

] [
A2

′X∆A1 − X∆ + Q + A′
2XA1 − X A2

′X∆B1 + L1 + A2
′XB1

B2
′X∆A1 + L2

′ + B2
′XA1 R + B2

′X∆B1 + B2
′XB1

]

×

[
I 0
F1 I

] [
I 0

−F1 I

] [
I

Fs

]
= 0

⇔

[
Ã′

2X∆Ã1 − X∆ + Q̃ Ã′
2X∆B̃1 + L̃1

B̃′
2X∆Ã1 + L̃′

2 R̃ + B̃′
2X∆B̃1

] [
I

F∆

]
= 0.

The fact that (Xs, Fs) is a stabilizing solution to the DTNARS associated with P if

and only if (X∆, F∆) is a stabilizing solution to the DTNARS associated with P̃ is
obvious.

2. For i = 1, 2, we have successively

(zI − Ãi)
−1BiSFi

(z)

= (zI − Ai − BiFi)
−1Bi[I − Fi(zI − Ai)

−1Bi]

= (zI − Ai − BiFi)
−1[Bi − BiF (zI − Ai)

−1Bi]

= (zI − Ai − BiFi)
−1[I − BiFi(zI − Ai)

−1]Bi

= (zI − Ai − BiFi)
−1(zI − Ai − BiFi)(zI − Ai)

−1Bi

= (zI − Ai)
−1Bi.
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Using this we get further

[
(zI − Ãi)

−1Bi

I

]
SFi

(z) =

[
(zI − Ai)

−1Bi

I − Fi(zI − Ai)
−1Bi

]
=

[
I 0

−Fi I

] [
(zI − Ai)

−1Bi

I

]
.

Based on this identity, we readily obtain

S∗
F2

(z)Π eP
(z)SF1

(z) = [B′
2(

1
z
I − A′

2)
−1 I]

[
I −F ′

2

0 I

][
Q̃ L̃1

L̃2

′

R̃

]

×

[
I 0

−F1 I

] [
(zI − A1)

−1B1

I

]
.

A straightforward computation gives

[
I −F ′

2

0 I

][
Q̃ L̃1

L̃′
2 R̃

] [
I 0

−F1 I

]
=

[
Q L1

L′
2 R

]
+

[
A′

2XA1 − X A′
2XB1

B′
2XA1 B′

2XB1

]
.

Combining the last two identities, we conclude that (3.29) is proved, if we show that

[
B′

2(
1
z
I − A′

2)
−1 I

] [
A′

2XA1 − X A′
2XB1

B′
2XA1 B′

2XB1

] [
(zI − A1)

−1B1

I

]
= 0. (3.32)

To this end, let

[
A′

2XA1 − X A′
2XB1

B′
2XA1 B′

2XB1

]
=

[
A′

2

B′
2

]
X

[
A1 B1

]
−

[
X 0
0 0

]
. (3.33)

We have

[
A1 B1

] [
(zI − A1)

−1B1

I

]
= [A1(zI −A1)

−1 + I]B1 = z(zI −A1)
−1B1 (3.34)

and

[
B′

2(
1
z
I − A′

2)
−1 I

] [
A′

2

B′
2

]
=

1

z
B′

2(
1

z
I − A′

2)
−1. (3.35)

With (3.33), (3.34) and (3.35) the left–hand side of (3.32) becomes

B′
2(

1

z
I − A′

2)
−1X(zI − A1)

−1B1 − B′
2(

1

z
I − A′

2)
−1X(zI − A1)

−1B1 = 0

and thus (3.32) is proved.
If (Xs, Fs1) and (Xs, Fs2) are a right and left solution of the DTNARS associated

with P, respectively, then it is easily checked that the (Xs, Fs1, Fs2)–equivalent of P

has Q̃ = 0, L̃1 = 0, and L̃2 = 0. Hence, the Popov function associated with P̃ is
Π eP

(z) = R + B′
2XsB1, and (3.31) follows as a consequence of (3.29).

3. If P and P̃ are two (X, F1, F2)–equivalent Popov–systems, then the matrices
X, F1, F2 verify the relations (3.21)-(3.28). A direct check shows that

zMP − NP = U(zM eP
− N eP

)V, (3.36)
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where U and V defined by

U =




I 0 0
−A2

′X I −F2
′

−B2
′X 0 I


 , V =




I 0 0
−X I 0
−F1 0 I


 , (3.37)

are clearly invertible and their inverses are given by

U−1 =




I 0 0

Ã′
2X I F2

′

B̃′
2X 0 I


 , V −1 =




I 0 0
X I 0
F1 0 I


 . (3.38)

Combining Proposition 1 and 2 it follows that the spectral factorization identity
(3.31) holds if the DTNARS associated with P has a right and a left stabilizing
solution.

4. Main result. In this section we present the main result of the paper which
establishes a one–to–one correspondence between stabilizing solutions of the DTNARS
and stable deflating subspaces of the associated Popov–system pencil. We introduce
first a definition.

Definition 5. Let P be a Popov–system. An n–dimensional deflating subspace
V of the Popov–system pencil zMP −NP is called disconjugate provided it has a basis
matrix

V =




V1

V2

V3




} n

} ℓ

} m

(4.1)

with V1 invertible.

Notice that disconjugacy of a deflating subspace is independent of the choice
of the basis matrix for V . Moreover, if the deflating subspace is disconjugate then
automatically is proper as can be seen from

MPV =




V1

−A2
′V2

−B2
′V2


 .

This last property will be used in the sequel to compute numerically different solutions
to DTNARS. The next theorem contains the central contribution of the paper and is a
rich extension of known results to allow working without any restrictive assumptions
on the matrix coefficients.

Theorem 1. Let P be the Popov–system (3.1). The right DTNARS associated
with P given in (3.3) has a stabilizing solution (X, F1) if and only if the Popov–system
pencil zMP − NP given in (3.20) has a stable disconjugate deflating subspace V of
dimension n. Provided V ∈ C

(n+ℓ+m)×n is a basis matrix of V partitioned as in (4.1),
the stabilizing solution is given by

X = V2V1
−1, F1 = V3V1

−1. (4.2)
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Proof. [Sufficiency.] If zMP −NP has a stable deflating subspace of dimension n

which admits a basis matrix of the form (4.1), then (2.3) shows that there is a stable
matrix S such that

A1V1 + B1V3 = V1S, (4.3)

QV1 − V2 + L1V3 = −A2
′V2S, (4.4)

L2
′V1 + RV3 = −B2

′V2S. (4.5)

Since V is disconjugate, V1 is invertible, and multiplying these equations to the right
with V1

−1 leads to

A1 + B1V3V1
−1 = V1SV1

−1,

Q − V2V1
−1 + L1V3V1

−1 = −A2
′V2V1

−1V1SV1
−1,

L2
′ + RV3V1

−1 = −B2
′V2V1

−1V1SV1
−1.

Denoting X := V2V1
−1, F1 := V3V1

−1 and S̃ := V1SV1
−1, we obtain

A1 + B1F1 = S̃, (4.6)

Q − X + L1F1 = −A2
′XS̃, (4.7)

L2
′ + RF1 = −B2

′XS̃. (4.8)

Substituting S̃ from (4.6) in (4.7) and (4.8), we deduce that X and F1 fulfill

Q − X + A2
′XA1 + L1F1 + A2

′XB1F1 = 0,

L2
′ + B2

′XA1 + RF1 + B2
′XB1F1 = 0,

i.e., (X, F1) is a solution to the right DTNARS (3.3). Furthermore S being stable,

S̃ = A1 +B1F1 is also stable which proves that (X,F1) is a stabilizing solution to the
DTNARS (3.3).

[Necessity.] If (X, F1) is a right stabilizing solution to the DTNARS then (3.3)
can be rewritten as

NP




In

X

F1


 = MP




In

X

F1


 (A1 + B1F1). (4.9)

Since by assumption (A1 +B1F1) is stable, the space spanned by
[

In XT F1
T

]T

is a stable deflating subspace. The subspace is in addition disconjugate, due to the
invertibility of In.

Contrary to alternative approaches available in the literature (see for example
[9]), Theorem 1 does not assume any hypothesis on the matrix coefficients of the
underlying Popov–system P. In particular, the matrix R could be singular, while
A1 and A2 could be singular and have an arbitrary spectrum (not necessary stable).
However, when R is invertible, we have




In 0 −B1R
−1

0 Iℓ −L1R
−1

0 0 Im


 (zMP − NP)




In 0 0
0 Iℓ 0

−R−1L2
′ 0 R−1


 =

z




In B1R
−1B2

′ 0
0 −A2

′ + L1R
−1B2

′ 0
0 −B2

′ 0


 −




A1 − B1R
−1L2

′ 0 0
Q − L1R

−1L2
′ −Iℓ 0

0 0 Im


 (4.10)
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which shows that the Popov–system pencil is regular and can be replaced for compu-
tational purposes with the pencil

M̂P =

[
In B1R

−1B2
′

0 −(A2
′ − L1R

−1B2
′)

]
, N̂P =

[
A1 − B1R

−1L2
′ 0

Q − L1R
−1L2

′ −Iℓ

]
. (4.11)

The generalized eigenvalues of zMP − NP are those of zM̂P − N̂P plus m infinite
ones. If in addition (A2

′ − L1R
−1B2

′) is invertible, the deflating subspace of (4.11)

can be replaced by the classical concept of invariant subspace of the matrix M̂−1
P

N̂P

(or, respectively, if (A1 − B1R
−1L2

′) is invertible of the matrix N̂−1
P

M̂P [10]).

Remark 3. Let C = Cg ∪ Cb be a disjoint partition of the complex plane in two
symmetric sets (a good one and a bad one). Similar results establishing a one–to–
one correspondence between solutions (X, F1) to the DTNARS with Λ(A1 + B1F1) ⊂
Cg, and disconjugate deflating subspaces of the Popov–system pencil fulfilling (2.3)
with Λ(S) ⊂ Cg, can be obtained by simply replacing in the above definitions and
derivations the open unit disk with Cg, while the adjective stable pertains now to Cg.
Moreover, as will become clear in the next section, also the numerical algorithms can
go through. In particular, one obtains a complete characterization of semi–stabilizing
solutions to the DTNARS for which Cg = D.

5. Computation of the stabilizing solutions to the DTNARS. In this sec-
tion we present a numerically–sound approach for checking the solvability conditions
of and computing the stabilizing solutions to the DTNARS.

Theorem 1 establishes a one–to–one correspondence between stabilizing solutions
of DTNARSs and stable disconjugate (and implicitly proper) deflating subspaces of
dimension n of the Popov–system pencil. Although the theorem gives a necessary
and sufficient criterion for the solvability of the DTNARS, it is not very useful for the
numerical computation of the solution since, in general, there may be none or many
n–dimensional proper stable deflating subspaces. Therefore we need a tool to decide
if any such subspace exists and, if so, to give a way to construct these subspaces
and implicitly the solutions to DTNARS. The following theorem offers a criterion
for ensuring the existence of a proper stable deflating subspace of dimension n of a
general pencil.

Theorem 2. Let zM−N be an arbitrary pencil. Denote by nr the sum of the right
Kronecker indices and by ns the number (multiplicity counted) of stable generalized
eigenvalues of zM − N . Then zM − N has a proper stable deflating subspace of
dimension n if and only if nr + ns ≥ n.

Proof. [Necessity.] Let V be a proper stable deflating subspace of dimension n

for zM −N and let V ∈ C
(n+ℓ+m)×n be a basis matrix for it. Following Definition 1,

there exists a square matrix S, with Λ(S) ⊂ D, such that

NV = MV S, (5.1)

with MV of full column rank. Let Q and Z be two invertible matrices that bring the
pencil to the form (2.2). Then (5.1) can be rewritten as

QNZZ−1V = QMZZ−1V S, (5.2)
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where

Z−1V =




Vr1

Vr2

Vs

Va

V∞

Vℓ




} nr

} νr

} ns

} na

} n∞

} nℓ

(5.3)

has been partitioned conformably with (2.2). Here νr, na, and n∞ are the number of
right Kronecker blocks, the number of finite antistable generalized eigenvalues, and
the number of infinite generalized eigenvalues, respectively.

From (5.2) we extract

JaVa = VaS, (5.4)

V∞ = M∞V∞S, (5.5)

AℓVℓ = VℓS, (5.6)

CVℓ = 0. (5.7)

Since (C, Aℓ) is observable there exists K such that Λ(Aℓ + KC) ⊂ C \D. Hence the
two last equations yield

(Aℓ + KC)Vℓ = VℓS. (5.8)

Since Λ(S)∩Λ(Aℓ+KC) = Λ(S)∩Λ(Ja) = ∅, we infer from (5.4) and (5.8) that Va = 0
and Vℓ = 0. From (5.5) we show now that V∞ = 0. Indeed, since M∞ is nilpotent let
k ∈ N be its nilpotency index. Then Mk

∞ = 0 and multiplying to the left (5.5) with

M
(k−1)
∞ , it follows that M

(k−1)
∞ V∞ = 0. Multiplying to the left (5.5) with M

(k−2)
∞ , we

get M
(k−2)
∞ V∞ = 0. Iterating this, we end with M∞V∞ = 0, and (5.5) gives V∞ = 0.

Hence we showed

QMV =




Vr1

Vs

0t×n


 , (5.9)

(t := na + n∞ + nℓ + νℓ). Since V is a proper deflating subspace of dimension n, and

Q is invertible, MV has full column rank and therefore

[
Vr1

Vs

]
has also full column

rank. It follows dimV = n ≤ (nr + ns).
[Sufficiency.] Assume that (nr + ns) ≥ n. We show, constructively, that there

exists a proper stable deflating subspace of dimension n. We consider separately the
following two cases: ns ≥ n and ns < n.

If ns ≥ n, it suffices to select n eigenvalues among the ns stable ones. Define

V = Z




0(nr+νr)×n

In

0α×n


 , (5.10)

with α = ns − n + na + n∞ + nℓ. A direct check shows that V satisfies (5.2) and

has rank equal to n. Since MV = Q−1




0nr×n

In

0α×n


 has full column rank, we conclude

that Im (V ) is a proper stable deflating subspace of dimension n.
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If ns < n, since the pair (Ar, B) is controllable, there exist matrices F ∈ R
νr×nr ,

Ac1 ∈ R
(n−ns)×(n−ns), Ac2 ∈ R

(nr+ns−n)×(nr+ns−n) and T ∈ R
nr×nr , with T invert-

ible, such that

(Ar + BF ) = T

[
Ac1 0
0 Ac2

]
T−1, (5.11)

with Λ(Ac1) ⊂ D. Denote by T(n−ns) ∈ R
nr×(n−ns) the matrix built from the first

(n − ns) columns of T . Define

V = Z




Inr
0

F 0
0 Ins

0 0α×ns




[
T(n−ns) 0

0 Ins

]
=




T(n−ns) 0
FT(n−ns) 0
0ns×(n−ns) Ins

0α×(n−ns) 0α×ns


 , (5.12)

with α := n − ns + na + n∞ + nℓ. A direct check shows that (5.2) holds with

S =

[
Ac1 0
0 Js

]
, Λ(S) ⊂ D, and V and MV have both full column rank. Hence we

conclude again that the subspace spanned by V is a proper stable deflating subspace
of dimension n. This ends the whole proof.

We comment on the possibility of using the above result to compute the stabilizing
solution to the DTNARS associated with P. The maximal dimension of a proper
stable deflating subspace of zMP − NP is (nr + ns). However, even stable proper
deflating subspaces of maximal dimension are in general non–unique. Though, at
least when nr + ns = n this non–uniqueness does not affect the possibility to find the
solution to the DTNARS associated with P, as shown in the following proposition.

Proposition 3. Let P be a Popov–system (3.1) and (zMP − NP) the associated
pencil. If (zMP − NP) has a maximal proper stable deflating subspace of dimension
n which is disconjugate then each maximal proper stable deflating subspace is discon-
jugate.

Proof. We show first that if V is a basis matrix for a maximal proper stable
deflating subspace V then Im(MPV ) is independent of the particular choice of V. Let
Q and Z be the invertible matrices that bring the pencil to the form (2.2). From

(5.9) it follows that the matrix
[

V T
r1 V T

s

]T
has full column rank and, since the

dimension of V is n = nr + ns, it is also square and, therefore, invertible. Now

Im(MPV ) = Im(Q−1




Vr1

Va

0


) = Im(Q−1

[
Inr+ns

0

]
),

which is clearly independent of the particular choice of V.
Let V and V be two maximal stable subspaces with basis matrices

V =
[

V T
1 V T

2 V T
3

]T
, V =

[
V

T

1 V
T

2 V
T

3

]T

,

respectively. Then

MPV =




V1

−A′
2V2

−B′
2V2


 , MPV =




V 1

−A′
2V 2

−B′
2V 2
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have full column rank and as proved before their images coincide. Hence there exists
an invertible G such that




V1

−A′
2V2

−B′
2V2


 =




V 1

−A′
2V 2

−B′
2V 2


G. (5.13)

Thus if V1 is invertible, then V1 is too.
The previous results show that depending on the matrix coefficients three distinct

cases may occur:
• If nr + ns < n, the DTNARS has no stabilizing solution;
• If nr + ns = n then the DTNARS may have a stabilizing solution and its

existence can be decided by computing any maximal proper stable deflating
subspace of the Popov–system pencil and checking its disconjugacy. More-
over, under the mild assumption that the pair (A2, B2) is controllable at z = 0
it can be easily seen from (5.13) that V2 = V 2G. Indeed, let F be a feedback
matrix such that A2 + B2F is invertible. Then from (5.13) we get

[
−(A2 + B2F )′

−B′
2

]
V2 =

[
−(A2 + B2F )′

−B′
2

]
V 2G

from where V2 = V 2G. Therefore the stabilizing solution X = V2V
−1
1 =

V 2V
−1

1 is unique in this case and can be computed from any proper stable
deflating subspace of maximal dimension n.

• If nr +ns > n, the DTNARS may have none, one, or many distinct stabilizing
solutions. However, even in this case the existence of solutions may be decided
by computing a maximal stable deflating subspace of zMP −NP as explained
further. In view of Theorem 1 we are interested only in disconjugate stable
deflating subspaces V of dimension n (which are automatically proper). Any
such subspace fulfills V ⊂ X , and MPV ⊂ Y, where (X ,Y) is the (unique) pair
of reducing subspaces corresponding to the stable eigenvalues of zMP − NP .
Moreover, X is precisely the maximal stable deflating subspace (see [36]) and
all it remains is to decide if X contains any proper subspace and to compute
these subspaces. More details are given in the numerical algorithm presented
below.

It is apparent from the previous discussion that the main step in computing the
solution of a DTNARS is to find the maximal stable deflating subspace and, if possible,
to select from it a proper deflating subspaces of dimension n. The algorithm given
below follows quite closely the proof of Theorem 2, except that it avoids the use of
the Kronecker form, which is a poor tool in numerical computations.

Algorithm for computing stabilizing solutions to DTNARS. Let P be a
Popov–system (3.3) and zMP − NP the associated pencil.

Step 1. Compute unitary matrices Q and Z that bring zMP −NP to the gener-
alized Schur form

Q(zMP − NP)Z =




zMǫ − Nǫ ⋆ ⋆ ⋆

0 zMs − Ns ⋆ ⋆

0 0 zMa − Na ⋆

0 0 0 zMη − Nη


 , (5.14)

(see for example (2.5) in [3]), where zMs−Ns (with dimensions ns×ns) and zMa−Na

(with dimensions na × na) are regular pencils containing the stable and antistable
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generalized eigenvalues, respectively, while the singular right and left parts of the
pencil are determined by zMǫ−Nǫ (with dimensions nr×(nr+νr)) and zMη−Nη (with
dimensions (nℓ + νℓ)× nℓ), respectively. In particular, both Mǫ and Nǫ have full row
rank and outline the following partition z Mǫ − Nǫ = z

[
0 Mǫ2

]
−

[
Nǫ1 Nǫ2

]
,

where Mǫ2 is square, block upper triangular and nonsingular, and the pair (M−1
ǫ2 Nǫ2,

M−1
ǫ2 Nǫ1) is controllable.

Step 2. If nr + ns < n the DTNARS has no solution (as there is no proper
deflating subspace of dimension n – see Theorem 2). Otherwise, let K be a feedback
matrix such that zMǫ2−Nǫ2−Nǫ1K has solely stable generalized eigenvalues. The ex-
istence of the feedback matrix K follows from the controllability of the pair (M−1

ǫ2 Nǫ2,
M−1

ǫ2 Nǫ1). The feedback K can be computed either by explicitly inverting the matrix
Mǫ2 and applying an eigenvalue assignment algorithm or, better, without inverting
Mǫ2 by using the algorithm in [34] based on the generalized Schur form of the regular
pencil zMǫ2 −Nǫ2. The effect of the feedback on the whole pencil zMP −NP is that
of a strict equivalence. Update Q and Z and get (by reusing notation)

Q(zMP − NP)Z =




−Nǫ1 zMǫ2 − Nǫ1K − Nǫ2 zMǫs − Nǫs ⋆

0 0 zMs − Ns ⋆

0 0 0 ⋆

0 0 0 ⋆


 .

Denoting the first nmax := nr+νr+ns columns of Z by V1 we conclude that MPV1S =
NPV1 holds with

S :=




Sa 0 0
M−1

ǫ2 Nǫ1 M−1
ǫ2 (Nǫ1K + Nǫ2) M−1

ǫ2 (Nǫs − MǫsM
−1
s Ns)

0 0 M−1
s Ns


 ,

where Sa is an arbitrary νr×νr matrix with Λ(Sa) ⊂ D. Clearly, Λ(S) ⊂ D and there-
fore V1 = Im(V1) is the (unique) maximal stable deflating subspace which coincides
with X , where (X ,Y) is the maximal stable reducing pair.

Step 3. Let V1 =
[

V T
11 V T

21 V T
31

]T
be partitioned as V in (2.3).

If rank(V11) < n then the DTNARS has no stabilizing solution (as there is no
disconjugate deflating subspace of dimension n).

If rank(V11) ≥ n then the DTNARS may have none, one, a finite number, or
an uncountable set of stabilizing solutions corresponding to various possible choices
of n–dimensional disconjugate stable deflating subspaces included in V1. Each sta-
ble deflating subspace included in V1 is in correspondence with an S–invariant sub-
space. Provided the matrix S has eigenvalues with geometric multiplicity 1, all sta-
ble deflating subspaces of dimension n can be selected by bringing the matrix S to
ordered Schur forms with different arrangements of the first n eigenvalues on the
main diagonal. In this case the number N of all n–dimensional stable deflating sub-
spaces, which is an upper bound for the number of all stabilizing solutions of the

DTNARS, fulfils N ≤

(
nmax

n

)
. Each such subspace which is in addition dis-

conjugate corresponds to a stabilizing solution to the DTNARS. If the matrix S

has eigenvalues with geometric multiplicity greater than one, then there exists al-
ways an uncountable set of n–dimensional stable deflating subspaces (correspond-
ing to the uncountable set of n–dimensional S–invariant subspaces) and in this case
the DTNARS may also have an uncountable set of stabilizing solutions. However,
Λ(S) = Λ(Sa) ∪ Λ(M−1

ǫ2 (Nǫ1K + Nǫ2)) ∪ Λ(M−1
s Ns) and at least the matrix Sa and
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K can always be chosen such that the Λ(Sa) ∪ Λ(M−1
ǫ2 (Nǫ1K + Nǫ2)) has distinct

elements. In particular, by selecting sets of eigenvalues such that any eigenvalue in
the set appears together with its complex–conjugated pair the resulting solutions to
the DTNARS are real.

Step 4. Let V 1 =
[

V
T

11 V
T

21 V
T

31

]T

be a basis matrix of an n–dimensional

stable disconjugate subspace, partitioned conformably to V in (2.3). Compute the

corresponding stabilizing solution to the DTNARS as X = V 21V
−1

11 , F = V 31V
−1

11 .
We comment briefly on numerical aspects of the proposed algorithm: operation

count and numerical stability. The computational burden lies with Step 1 in which the
pencil is brought to the generalized Schur form. The computation of this form requires
O(m2n) operations for the m×n pencil zMP−NP , provided the efficient algorithm in
[3] is used. Moreover, the algorithm in [3] uses solely unitary transformations leading
to numerical backward stability. Reordering of eigenvalues or generalized eigenvalues
is potentially needed in each of the first three steps of the algorithm (provided at Step
2 the generalized Schur type algorithm of [34] is used). For reordering eigenvalues of
an n × n matrix the O(n3) backward stable algorithm in [13] is recommended while
for generalized eigenvalues the backward stable algorithm [46] can be used leading to
a similar operation count of O(n3) for a regular n×n pencil. Besides these backward
stable unitary transformations, two nonunitary ones are needed: at Step 2 (the sta-
bilizing feedback matrix K) and the final formulas from Step 4. Although they do
not affect the overall algorithm complexity, extra care should be taken in order not
to compromise the accuracy of the final results. For example, the feedback matrix K

should be computed by a robust pole placement algorithm (see Section 6 of [38]) while
the explicit inversion of the matrix V 11 should be avoided and implemented through
a reliable algorithm for solving linear systems of equations (see [13]).

6. Application of DTNARE to game theory. In game theory [33, 2] one
builds mathematical models of multiple users behavior in a competitive environment,
where the profit of each participant depends on the choices of the others. Game theory
offers essential tools to define and find equilibria by providing sets of strategies which
should be followed by different players to reach a suitable compromise. The most
prominent family of equilibria are related to Nash [31, 32] strategy.

Equilibria depend on the information structure, more precisely on the set of in-
formation available to each player to build its own strategy. With an open-loop
information structure – as opposed to a closed–loop one – no player has access to the
measured value of the system state. This means that the players are committed to
follow an a priori strategy. In a linear–quadratic game with infinite time horizon, the
existence of a Nash equilibrium is closely related to the solvability of a set of coupled
algebraic Riccati equations which can be reformulated as a single nonsymmetric al-
gebraic Riccati equation [1, 7, 6, 22, 18]. We show further how these results can be
recast by our pencil approach while removing the restrictive invertibility hypotheses
present in the literature.

Consider a two–player linear quadratic discrete–time game defined by the linear
dynamic

σx = Ax + B1u1 + B2u2, x(0) = x0, (6.1)

and the infinite–time horizon quadratic criteria

Ji(u1, u2) =
∑

k∈N

Li(x(k), u1(k), u2(k)), (6.2)
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where the instantaneous criteria are

Li(x, u1, u2) = x′Qix + u′
1Ri1u1 + u′

2Ri2u2. (6.3)

Here A ∈ R
n×n, Bi ∈ R

n×mi , Qi = Q′
i ∈ R

n×n, Rij = R′
ij ∈ R

mi×mj , n and mi

belong to N
∗, x is the state of the game, and ui is the input of player i (i, j = 1, 2). In

general Rii are assumed invertible and the criteria are convex, i.e., Qi ≥ 0, Rij ≥ 0,
(i, j = 1, 2).

Definition 6. Define the rational reaction sets of the players

R1 (u2) = {ũ1 ∈ Uad,1 | J1 (ũ1, u2) ≤ J1 (u1, u2) ,∀u1 ∈ Uad,1} , (6.4)

R2 (u1) = {ũ2 ∈ Uad,2 | J2 (u1, ũ2) ≤ J2 (u1, u2) ,∀u2 ∈ Uad,2} , (6.5)

where Uad,i denotes the set of admissible controls ui for the player i. The rational
reaction set corresponds to the best reply of the player i against a fixed but arbitrary
action of the other.

In the following subsection we study open–loop Nash strategy, and show how the
computation of equilibrium points reduces to the solution of DTNAREs and corre-
sponding eigenvalue problems for the associated system–pencil.

6.1. Open–Loop Nash strategy and DTNARE. Nash strategy [31, 32] is
a solution concept of a noncooperative game in which there is no hierarchy among
the players, each player is assumed to know the equilibrium strategies of the other
players, and no player has anything to gain by changing unilaterally only his own
strategy. Specifically, if each player has chosen his strategy and no player can benefit
by changing his strategy while the other players keep theirs unchanged, then the
current set of strategy choices constitute a Nash equilibrium. Control design using
Nash strategies has been formalized in [43, 42, 17].

Definition 7. A pair of controls (u∗
1, u

∗
2) is a Nash strategy, if and only if, for

all ui ∈ Uad,i

J∗
1 = J1(u

∗
1, u

∗
2) ≤ J1(u1, u

∗
2), (6.6)

J∗
2 = J2(u

∗
1, u

∗
2) ≤ J2(u

∗
1, u2), (6.7)

i.e., u∗
1 ∈ R1(u

∗
2), u∗

2 ∈ R2(u
∗
1). The couple (J∗

1 , J∗
2 ) is known as the outcome of the

associated Nash equilibrium.
The necessary conditions leading to a Nash equilibrium (see [2]) are





σx = Ax + B1u1 + B2u2,

λ1 = Q1x + A′σλ1,

λ2 = Q2x + A′σλ2,

0 = (B1)′σλ1 + R11u1,

0 = (B2)′σλ2 + R22u2,

(6.8)

where (λ1(k))k∈N and (λ2(k))k∈N are the dual state (or costate) R
n–valued vectors

related to the rational reaction set of each player.
To these necessary conditions we associate the Popov–system (3.1) by identifying

x = x, λ =

[
λ1

λ2

]
, ℓ = 2n, m = m1 + m2, and setting

A1 = A ∈ R
n×n, B1 =

[
B1 B2

]
∈ R

n×(m1+m2), L1 = 0ℓ×m, (6.9)
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A2 =

[
A 0
0 A

]
∈ R

2n×2n, B2 =

[
B1 0
0 B2

]
∈ R

2n×(m1+m2), L2 = 0n×m,

(6.10)

Q =

[
Q1

Q2

]
∈ R

2n×n, R =

[
R11 0
0 R22

]
∈ R

(m1+m2)×(m1+m2), (6.11)

Partition X =

[
X1

X2

]
, where X1 and X2 are in R

n×n.

If the quadratic criterion is convex (i.e., R11 > 0 and R22 > 0) then R is invertible
and we can define Si := BiR−1

ii (Bi)′, (i = 1, 2). Assuming (In + S1X1 + S2X2) is
invertible the DTNARE (3.16) becomes for the actual data

−

[
X1

X2

]
+

[
Q1

Q2

]
+

[
A′ 0
0 A′

] [
X1

X2

] (
In +

[
S1 S2

] [
X1

X2

])−1

A = 0,

(6.12)
or, more compactly,

X1 = Q1 + A′X1(In + S1X1 + S2X2)
−1A, (6.13)

X2 = Q2 + A′X2(In + S1X1 + S2X2)
−1A. (6.14)

This equation is called the open–loop Nash Riccati equation [1]. The controls
(u∗

1, u
∗
2) are then given by

[
u∗

1

u∗
2

]
= u = F1x = −

[
R−1

11 (B1)′X1

R−1
22 (B2)′X2

]
(In + S1X1 + S2X2)

−1A. (6.15)

By applying the transformation (4.10), the pencil (zMP − NP) associated with P

reduces to
(
zM̂P − N̂P

)
, where

M̂P =




In S1 S2

0n −A′ 0n

0n 0n −A′


 ; N̂P =




A 0n 0n

Q1 −In 0n

Q2 0n −In


 . (6.16)

Assuming in addition that A is invertible, we recover the characterization matrix
introduced in [11],

N̂−1
P

M̂P =




A−1 A−1S1 A−1S2

Q1A
−1 A′ + Q1A

−1S1 Q1A
−1S2

Q2A
−1 Q2A

−1S1 A′ + Q2A
−1S2


 . (6.17)

7. Numerical examples. We illustrate the benefits of our approach on some
simple but relevant examples, from academic world, that cannot be solved by alter-
native methods.

Example 1. Before presenting game theoretic examples, we consider a generic
example of DTNARS leading to singular pencils, in particular where A1, A2 and R

are not invertible. The example is defined with the Popov-system:

A1 = [0], A2 =

[
0 0.1
0 0

]
, B1 =

[
0 0.1

]
,

B2 =

[
0 0.1
0 0

]
, Q =

[
1
3

]
, R =

[
0 0
1 0

]
.
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The Popov–system pencil zMP −NP has the following structural elements: nr =
νr = νℓ = 1, nℓ = nf = 0, n∞ = 3, ns = na = 0, and therefore is singular,
without finite regular part. Due to the fact that nr = n = 1, it is possible to hope
to obtain a real stabilizing solution for the DTNARS. The Popov–system pencil is
strictly equivalent to

Q(zMP − NP)Z =




z 1 0 0 0
0 0
0 0 ⋆

0 0
0 0




, with Z =




−0.9901 0.0000
−0.9901 −0.0000
−2.9704 −0.0990 ⋆

0 0.0990
0.0000 −9.9015




.

In order to obtain a closed-loop eigenvalue γ, the first component of Z
[

1 γ 01×3

]

is always invertible and leads to

X =
[

1 3 + 0.1γ
]′

, F1 =
[
−0.1γ 10γ

]′
, A1 + B1F1 = γ.

Example 2. In this example we consider a Nash strategy for a linear quadratic
game in which the matrices A and R11 are both singular. Due to this singularity the
characteristic matrix approach [11] does not apply. The Popov–system in (6.9)–(6.11)
is defined by

A =

[
1 1
1 1

]
, B1 =

[
2
0

]
, B2 =

[
1.5
−1

]
, Q1 =

[
1 1
1 2

]
, Q2 =

[
2 1
1 1

]
,

R11 = 0, R12 = 0, R21 = 1, R22 = 2.

The Popov–system pencil zMP−NP has the following structural elements: nr = nℓ =
νr = νℓ = 0, nf = 4, n∞ = 4, ns = 3, na = 1, and therefore is regular. The stable
finite eigenvalues are {0, 0, 0.5561} while the unstable eigenvalue is {3.9561}. We
compute a stable deflating subspace corresponding to the following n = 2 eigenvalues:
{0, 0.5561}. The resulting stable deflating subspace is disconjugate leading to the
right stabilizing solution (X, F ) to the DTNARE associated with P, where

X =




0.0000 0.0000
0.0000 1.0000

−21.7805 −22.7805
−22.7805 −22.7805


 , F =

[
−1.2219 −1.2219
2.0000 2.0000

]
.

Example 3. In this case we consider Nash strategy for the linear quadratic game
defined by n = 2,

A =

[
3 1
1 1

]
, B1 =

[
2
0

]
, B2 =

[
1.5
−1

]
, Q1 =

[
1 1
1 2

]
, Q2 =

[
2 1
1 1

]
,

R11 = 1, R12 = 0, R21 = 1, R22 = 1.

For Nash equilibria, the Popov–system pencil zMP − NP associated with P in
(6.9)–(6.11) has the following structure: nr = nℓ = νr = νℓ = 0, nf = 6, n∞ = 2,
ng = nb = 3. The stable eigenvalues are {0.1530 + 0.1189i; 0.1530 − 0.1189i; 0.4424}.
To obtain a real stabilizing solution to the DTNARE associated with P, we select pairs
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of complex–conjugated eigenvalues, and get a disconjugate proper deflating subspace
and the stabilizing solution

X =




5.2133 3.4401
3.2971 3.4486
2.1571 0.6319
1.2758 1.0167


 , F =

[
−1.9162 −0.9915
0.4242 0.4978

]
.

8. Conclusions. We have presented a comprehensive theory of the discrete–
time nonsymmetric algebraic Riccati systems under the most general conditions on the
matrix coefficients. We have given necessary and sufficient conditions for the existence
of stabilizing solutions and we proved that these conditions can be effectively checked
and the solutions computed by a numerically–sound procedure. The results have
been applied in game theory to design Nash strategy without the classical invertibility
assumptions needed in the literature.
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