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Abstract

In this paper, we derive uniqueness conditions for a constrained version of the Parallel Fac-
tor (Parafac) decomposition, also known as Canonical decomposition (Candecomp). Cande-
comp/Parafac (CP) decomposes a three-way array into a prespecified number of outer product
arrays. The constraint is that some vectors forming the outer product arrays are linearly depen-
dent according to a prespecified pattern. This is known as the PARALIND family of models.
An important subclass is where some vectors forming the outer product arrays are repeated ac-
cording to a prespecified pattern. These are known as CONFAC decompositions. We discuss the
relation between PARALIND, CONFAC and the three-way decompositions CP, Tucker3, and
the decomposition in block terms. We provide both essential uniqueness conditions and partial
uniqueness conditions for PARALIND and CONFAC, and discuss the relation with uniqueness
of constrained Tucker3 models and the block decomposition in rank-(L, L, 1) terms. Our results

are demonstrated by means of examples.
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1 Introduction

Hitcheock [18, 19] introduced a generalized rank and related decomposition of a multi-way array
or tensor. The same decomposition was proposed independently by Carroll and Chang [7] and
Harshman [16] for component analysis of three-way data arrays. They named it Candecomp and
Parafac, respectively. We denote the Candecomp/Parafac (CP) model, i.e. the decomposition with

a residual term, as
R
X:Z(arobrocr)+Ea (11)
r=1

where X is a three-way array of size I x J x K, o denotes the outer product, and a,, b, and c,
are vectors of size I x 1, J x 1 and K x 1, respectively. To find the latter vectors, an iterative
algorithm is used which minimizes the Frobenius norm of the residual array E. For an overview
and comparison of CP algorithms, see Hopke et al. [20] and Tomasi and Bro [44].

The rank of a three-way array X is defined in the usual way, i.e. the smallest number of rank-1
arrays whose sum equals X. A three-way array has rank 1 if it is the outer product of three vectors,
i.e. aoboc. It follows that the CP model tries to find a best rank-R approximation to the three-way
array X.

The real-valued CP model, i.e. where X and the model parameters are real-valued, was intro-
duced in Psychometrics (Carroll and Chang [7]) and Phonetics (Harshman [16]). Later on, it was
also applied in Chemometrics and food industry (Bro [4] and Smilde, Bro and Geladi [32]). For
other applications of CP in Psychometrics, see Kroonenberg [25]. Complex-valued applications of
CP occur in Signal Processing, especially wireless telecommunications; see Sidiropoulos, Giannakis
and Bro [28], Sidiropoulos, Bro and Giannakis [29] and De Lathauwer and Castaing [13]. Also,
CP describes the basic structure of fourth-order cumulants of multivariate data on which a lot of
algebraic methods for Independent Component Analysis are based (Comon [8], De Lathauwer, De
Moor and Vandewalle [9], and Hyvérinen, Karhunen and Oja [21]). In this paper, we consider the
real-valued CP model. All occurrences of three-way rank are assumed to be over the real field.

For later use, we mention that the CP model (1.1) is a special case of the Tucker3 model of

Tucker [45]. The latter is defined as

X —

> grpg (@robyocy) + E. (1.2)
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Clearly, the case with R = P = @ and g,pq = 0 if (r,p,q) # (r,r,7) yields (1.1). The R x P x Q

array G with entries g,pq is referred to as the core array. The matrices [a;|...|ag], [bi]...|bp]



and [cq]...|cg| are called the component matrices.
A matrix notation of the CP model (1.1) is as follows. Let X}, (I x J) and Ej (I x J) denote

the k-th frontal slice of X and E, respectively. Then (1.1) can be written as
X, =AC,B” + E, k=1,...K, (1.3)

where the component matrices A (I x R) and B (J x R) have the vectors a, and b, as columns,
respectively, and Cy (R x R) is the diagonal matrix with the k-th elements of the vectors ¢, on its
diagonal. The model part of the CP model is characterized by (A, B, C), where component matrix
C (K x R) has the vectors ¢, as columns.

The most attractive feature of CP is its uniqueness property. Kruskal [26] has shown that, for
fixed residuals E, the vectors a,, b, and ¢, are unique up to rescaling/counterscaling within each

triplet (a,, by, ¢,;) and a permutation of the order of the triplets if
ka+kgp+kc>2R+2, (1.4)

where ka, kB, kc denote the k-ranks of the component matrices. The k-rank of a matrix is the
largest number x such that every subset of x columns of the matrix is linearly independent. If a
CP solution is unique up to these indeterminacies, it is called essentially unique. Two CP solutions
that are identical up to the essential uniqueness indeterminacies, will be called equivalent. A more
accessible proof of the uniqueness condition (1.4) can be found in Stegeman and Sidiropoulos [38].

For the case where one of the component matrices A, B and C has full column rank (i.e.,
rank equal to the number of columns R), a more relaxed uniqueness condition than (1.4) has been
derived by Jiang and Sidiropoulos [22] and De Lathauwer [10]. See also Stegeman, Ten Berge and
De Lathauwer [37]. Stegeman [36] shows that this condition is implied by (1.4).

In this paper, we consider a constrained version of the CP decomposition in which the columns
of A, B and C are linearly dependent according to a prespecified pattern. This type of model is
introduced in Bro, Harshman, Sidiropoulos and Lundy [6] and previous versions of [6], and is named
PARALIND (PARAllel profiles with LINear Dependencies). Instead of (A,B,C), a PARALIND
decomposition is characterized by (AW, B®, C€), where A is I x Ry, Bis J X Re, C is K x Rg3,
¥is Ri Xx R, ® is Ry X R, and € is R3 x R. The prespecified matrices ¥, ® and €2 contain the
patterns of linear dependency of the columns of A, B and C, respectively. We refer to ¥, ® and
Q as the constraint matrices.

In nearly all applications of PARALIND decompositions, the linear dependencies take the form

of identical columns. Hence, the columns of A, B and C may be repeated more than once in the



triplets (a,, b, c,) according to a prespecified pattern. The patterns of repetition are given by the
constraint matrices ¥, ® and €2, that contain (possibly identical) unit vectors as columns. The
constraint matrices are assumed to have full row rank, which implies R > max (R, Rg, R3). This
assumption guarantees that each column of A, B and C appears at least once in the decomposi-
tion. In de Almeida, Favier and Mota [3], this type of decomposition is introduced as CONFAC
(CONstrained FACtors).

For given PARALIND or CONFAC constraint matrices, an Alternating Least Squares (ALS)
algorithm for finding the component matrices A, B and C that minimize the Frobenius norm of
the residual array has been proposed in see Bro et al. [6] and de Almeida et al. [3]. However,
analogous to the ALS algorithm for the CP decomposition, it may terminate in a local minimum
instead of the global minimum. This fallacy may be overcome by running the algorithm several
times with random starting points. A more severe problem that PARALIND and CONFAC may
share with CP is nonexistence of an optimal solution (A, B, C). For CP this problem results in
so-called “degenerate solutions”; see Stegeman [33, 34, 35], Krijnen, Dijkstra and Stegeman [24],
De Silva and Lim [15] and Stegeman and De Lathauwer [39]. However, in the study of uniqueness
of a given PARALIND or CONFAC solution this potential problem does not play a role.

In the sequel, we use the name CONFAC for decompositions in which the constraint matrices
have unit vectors as columns, and we use the name PARALIND for decompositions in which the
constraint matrices (are allowed to) have more general forms.

As an example of CONFAC, let R =4, Ry = Ry =2, R3 = 3, and

1 010
1100
=& = , Q=101 0 0. (1.5)
0 0 11
0 0 01

We have AW = [a; a; az az], B® = [b; by by by] and CQ = [c; ¢c2 ¢; ¢3]. The CONFAC model,

i.e. the decomposition plus the residual term, is then given by
X = (a1 ob; ocl) + (a1 ob; OCQ) -+ (aQObQ OC1) + (ag o by OCg) +E. (16)

In Bro et al. [6], CONFAC and PARALIND decompositions are used to analyze flow injection data
and fluorescence data. In [3], de Almeida et al. exploit the CONFAC structure to design multiple-
antenna transmissions in the context of wireless telecommunications and signal processing. It is
shown that the three constraint matrices ¥, ® and €2 are design parameters of the transmission

system. By varying their patterns of zeros and ones, it is possible to adjust the model parameters



thus providing some flexibility to the design of the system. From a signal processing and modeling
viewpoint, the CONFAC approach of [3] generalizes several related works [30], [31], [14], [1], [2],
where the interactions between different factors are either absent, as in [31], or fixed to a prescribed
interaction pattern as in [30], [14], [1], [2].

In this paper, we derive uniqueness conditions for one of the component matrices A, B and
C of a PARALIND or CONFAC decomposition, for given constraint matrices ¥, ® and €2. Our
results are obtained by applying the approach of Jiang and Sidiropoulos [22] for CP uniqueness
to PARALIND. As [22], we prove an essential uniqueness condition for one component matrix
by using the Permutation Lemma of Kruskal [26]. Moreover, we extend this result by proving a
partial uniqueness condition for one component matrix. For this, we use the Equivalence Lemma
for Partitioned Matrices proven by De Lathauwer [11].

In the signal processing applications of the CONFAC decomposition cited above, the uniqueness
of one particular component matrix (the one containing an estimate of the transmitted information
signal in the telecom system) is most important. This shows that, although our uniqueness results
are formulated for a single component matrix, they have immediate practical implications.

The paper is organized as follows. In Section 2, we discuss the relations between PARALIND,
CONFAC and other three-way decompositions such as CP, Tucker3, and block decompositions. In
Section 3, we discuss and define essential and partial uniqueness of the component matrices. In
Sections 4 and 6, we present our essential and partial PARALIND uniqueness results, respectively.
Sections 5 and 7 illustrate our uniqueness results by means of various examples. In Section 8, we
discuss the relation between our approach and uniqueness of Tucker3d models with a constrained
core array. PARALIND can be written into the latter form, as will be seen in Section 2. In Section
9, we consider uniqueness for the block decomposition in rank-(L, L, 1) terms, which is a special

case of CONFAC. Finally, Section 10 contains a discussion of our findings.

2 CONFAC, PARALIND and other three-way decompositions

Here, we discuss the relations between CONFAC, PARALIND and other three-way decompositions.
First, we observe that if ¥ = & = £ = Ig, then the decomposition is identical to CP. But there

are more cases where this is true. These are formulated in the following lemma.

Lemma 2.1 Consider a CONFAC model with Ry = Ry = Rz and ¥ = I1; ® = I1, Q, with II;



and Iy permutation matrices. Then the CONFAC model can be written in the following CP form:

Ry
X = an (ar o bﬂ'l(r) o C7T2(T)) —I—E, (21)

r=1
where n, denotes the row sum of row r of ¥, and mi(-) and m(-) are the row permutations of ®

and Q corresponding to Il and Iy, respectively.

Proof. The component matrices all have the same number of columns, since Ry = Ry = R3. The
condition ¥ = II; & = II, 2 implies that each triplet of vectors forming a rank-1 array in the
decomposition does not share a vector with another triplet. Moreover, the triplet containing a, is
repeated as often as the number of times a, appears in AW, which is equal to the row sum of row

r of W. Hence, there are R; triplets and triplet r is repeated n, times. This completes the proof.O

Note that Lemma 2.1 does not cover all cases where CONFAC reduces to CP. For example, let
R1:3, R2:R3:2,R:3,‘I’:Ig, and

1 10

¢=0= : (2.2)
0 01
Then the CONFAC model is given by
X = (ajobjocy)+(agobjocy)+(agobsocy) +E
= ((a1tag)obioci)+(agobyocy) +E, (2.3)

where the latter has the form of the CP model (1.1) with R = 2.
Next, we discuss the relation between PARALIND, CONFAC and the Tucker3 model (1.2).
De Almeida et al. [3] show that a PARALIND model can be written as a Tucker3 model with

R1 x Ry X Rj3 core array
R

G=) (¥, 00, 0w), (24)

r=1

where v¢,., ¢, and w, are the r-th columns of ¥, ® and €2, respectively. Hence, the core array G
satisfies a CP decomposition with component matrices ¥, ® and £2. For a CONFAC decomposition,
it can be seen that G contains at most R nonzero entries. Hence, CONFAC is equivalent to a
Tucker3 model in which the constrained core array has a fixed pattern of zeros and integer-valued
nonzeros. If g,pq = n, then the triplet (a,, by, c,) is contained n times in the decomposition.

Constrained Tucker3 models have applications in Chemometrics, see Smilde et al. [32].



There also exist three-way decompositions that are hybrid forms of CP and Tucker3. Some of
these may also be written in PARALIND or CONFAC form. This derivation is beyond the scope
of this paper, however. We refer to Harshman and Lundy [17] and Bro [5] for an overview of these
hybrid models.

A third decomposition related to PARALIND and CONFAC is the decomposition in block terms,
introduced by De Lathauwer [12]. Before we discuss this decomposition, we need to introduce some
notions. A mode-n vector of an I1 x Iy X I3 array is an I, x 1 vector obtained from the array
by varying the n-th index and keeping the other indices fixed. The mode-n rank is defined as the
dimension of the subspace spanned by the mode-n vectors of the array. When a three-way array
has mode-1 rank L, mode-2 rank M, and mode-3 rank N, it is said to be rank-(L, M, N). The
mode-n rank generalizes the row and column rank of matrices. Note that a rank-(1,1,1) array has
rank 1 and vice versa.

The decomposition in block terms of [12] is a generalization of CP in which the array is not
decomposed into rank-1 arrays but into rank-(L, M, N) arrays, where we denote the number of
terms as F. Term f in the decomposition can be written in Tucker3d form with an L x M x N core
array G that is rank-(L, M, N), and matrices Ay (I x L), By (J x M), and C; (K x N) that
have full column rank.

De Lathauwer [12] discusses the decomposition in rank-(L, L, 1) terms as a special case. By

absorbing the L x L x 1 core arrays GY) into A f, it can be written as

M=

X = (AfBf)ocs+E

T
I

Il
M=

1 \l=1

~
Il

L
(Z(al”) : b§f)>> oc;+E
(",

b oc)+E, (2.5)

Il
M=

D (a

=1

T
I

where al(f ) and bl(f ) are the I-th columns of A s and By, respectively. It can be seen that (2.5) is
the CONFAC model with A = [A4]|...|Ar], B=[By|...Br],C=[c; ... cp|, ¥ =@ =1,p,
and Q =1Ir® 1:LF, where 17, is an L x 1 vectors of ones, and ® denotes the Kronecker product.
The relation between PARALIND, CONFAC and the general decomposition in rank-(L, M, N)
terms is more complicated. In order to obtain a PARALIND or CONFAC form, each core array

G must be transformed by nonsingular transformations into some canonical form. The inverses



of the transformations can be absorbed into Ay, By, and C;. Whether the resulting decomposition
obeys the PARALIND or CONFAC structure depends on the canonical forms of the core arrays.
This can be illustrated by considering the case L = M = N = 2, for which the canonical forms are
given by De Silva and Lim [15]. Hence, the core arrays are 2 x 2 x 2 and rank-(2,2,2). Each core
array satisfies one of the following: it is generic and has rank 2, it is generic and has rank 3, or it
is degenerate and has rank 3. If the core array G s degenerate and has rank 3, then it can be

transformed to a canonical form such that term f of the decomposition is

(agf) Obgf) chf)) + (agf) Obgf) ocgf)) + (agf) Obgf) chf)). (2.6)

It can be checked that this term has the CONFAC structure. If the core array G s generic and
has rank 2, then it can be transformed to the a diagonal canonical form such that term f of the
decomposition is (agf) obgf) ocgf)) + (agf) obgf) ocgf)). This is of CP form, and, hence, of CONFAC
form. If the core array G s generic and has rank 3, then it can be transformed to a canonical

form such that term f of the decomposition is
(agf) Obgf) chf)) + (agf) Obgf) chf)) + (agf) o béf) chf)) o (agf) o bgf) o cgf)). (2.7)

This term is of PARALIND form but does not have CONFAC structure. We conjecture that G/
cannot be transformed to a canonical form such that term f of the decomposition is of CONFAC
form. Since term f of the decomposition only involves columns from Ay, By and Cy, the complete
decomposition can be written in CONFAC form when the core arrays are either degenerate and

have rank 3, or generic and have rank 2.

3 Essential and partial uniqueness in PARALIND

Before we present our uniqueness results for the component matrices in PARALIND, we discuss
the meaning of essential and partial uniqueness in PARALIND. Recall that essential uniqueness
in CP holds when the triplets (a,,b,,c,) are unique up to scaling/counterscaling within each
triplet, and a permutation of the order of the triplets. More formally, if we have an essentially
unique CP solution (A, B, C) and an alternative solution (A, B, C) with the same residuals, then
A =ATIA, B=BIIA,;, and C = CII A, where II is a permutation matrix and A,, Ap, and
A, are nonsingular diagonal matrices such that A, Ay A, = Ip.

In PARALIND, due to the linear dependence of the vectors in the triplets (a,, by, c,), there

is less freedom of scaling/counterscaling within the triplets without affecting the residuals. Also,



permuting the order of the triplets may not be possible without affecting the residuals. The
PARALIND solutions (A¥, B®, C2) and (AYII, B®II, CQII) do have the same residuals for a
permutation matrix I, but the latter solution features constraint matrices that may differ from
those in the former solution. Note that we consider a PARALIND solution as a triplet of component
matrices corresponding to a fixed triplet of constraint matrices.

To avoid these complications, we define essential uniqueness for one component matrix instead

of all three of them together. In particular, we define the following.

Definition 3.1 Let (AW, B®, CQ) be a PARALIND solution for fized constraint matrices ¥, ®,
and Q. If any alternative PARALIND solution (AW, B®,CQ) with the same residuals satisfies
A = ATIA for some permutation matriz II and some nonsingular diagonal matriz A, then we call

A essentially unique. O

Note that if A is essentially unique, then also AII is essentially unique for any permutation matrix
I1. Hence, the essential uniqueness of the PARALIND component matrices is invariant under row
permutations of the constraint matrices ¥, ®, and 2.

Next, we discuss the concept of partial uniqueness. For CP, this term has been used to describe
cases where some columns of a component matrix are identified up to their linear span only, or
where only a finite number of alternative CP solutions are available (up to CP essential uniqueness);
see Ten Berge [42]. For PARALIND, we adopt the first definition, and we call A partially unique
if its columns can be partitioned into disjoint subsets and each subset is identified up to its linear

span. This is in line with the discussion on partial uniqueness in PARALIND by Bro et al. [6].

Definition 3.2 Let (A¥,B®,CQ) be a PARALIND solution for fized constraint matrices ¥, ®,
and Q2. Let the columns of A be partitioned into disjoint subsets as AIL, = [A1]...|AF], whereIl,
is a permutation matriz. Suppose that, for any alternative PARALIND solution (AW, B®, CQ)
with the same residuals and with A partitioned as ATl, = [A1]...|AF], it holds that ATI, =
ATI,IT A, where Il is a unique block-permutation matrix, A is a unique nonsingular block-diagonal
matriz, and the block-transformation IL A is compatible with the partition of AT, and ATI,. Then

we call A partially unique. O

Definition 3.2 states that each subset of columns of ATI, satisfies A f = Ax(nS, where S is a

unique nonsingular matrix and the permutation 7(-) is defined by the unique block-permutation



II. Hence, each subset Ay is identified up to its linear span. Note that when checking partial
uniqueness of A one is free to choose a suitable column permutation I, and partition of A Il,.

For the block decomposition in rank-(L, M, N) terms De Lathauwer [12] defines “essential
uniqueness” as the case where the blocks Ay, By, and C; in the component matrices A =
[Ai]...|AF], B = [By|...|Br], C = [Cy]...|CF] are identified up to their linear spans and a
simultaneous permutation of the F' blocks.

Next, we present an identifiability condition for the PARALIND component matrices due to de
Almeida et al. [3]. Let the three matricized forms of the PARALIND core array (2.4) be

G =(@o)w’ Gy= (o)’ G;= (o) nl, (3.1)
where ® denotes the Khatri-Rao product, i.e. the column-wise Kronecker product.

Proposition 3.3 Let (A¥,B®, CQ) be a PARALIND solution for fixed constraint matrices ¥,
®, and Q. Let (A®,B®,CQ) be an alternative PARALIND solution with the same residuals.

(i) If A and (B ® C)G1 have full column rank, then A = A'S for some nonsingular matriz S.
i1) If B and (C ® A)Gy have full column rank, then B = BT for some nonsingular matriz T.
(i) : 9

(iii) If C and (A ® B)G3 have full column rank, then C = CU for some nonsingular matriz U.

Proof. We prove only (7). The proofs of (ii) and (iii) follow analogously by interchanging the
roles of (A, ¥), (B,®) and (C, Q).
The structural part of the JK x I matrix unfolding of the PARALIND model can be written

as

(B®)o (CQ)) (AP)T = (B C)G; AT. (3.2)
Equating the structural parts of the two PARALIND solutions, we obtain
B®C)G AT = (B®C)G AT . (3.3)

Since (B ® C) G has full column rank, it follows that the columns of A lie in the column space of
A, ie. A = AS for some square matrix S. Moreover, since A has full column rank, this implies
that also A has full column rank. Hence, S is nonsingular and A = A S™!. This completes the

proof of (7). O

10



Note that, in (i) of Proposition 3.3, the matrix (B ® C)Gy has full column rank if B, C, and G,
have full column rank. Hence, all component matrices are identified up to their linear span if all of
A, B, C, G, Gy, and G3 have full column rank.

We conclude this section with an invariance result of essential and partial uniqueness, which is
useful when checking uniqueness. The result is an adaptation of Ten Berge and Sidiropoulos [40,

p.401].

Lemma 3.4 Let (AW, B®, CQ) be a PARALIND solution for fized constraint matrices ¥, ®, and
Q. If A and (B ® C)Gy have full column rank, then A is essentially/partially unique if and only
if Ir, is essentially/partially unique in the PARALIND solution (Ir, ¥,B®,CS).

Proof. The uniqueness properties of A are the same for SA, where S is nonsingular. Consider S

I
with SA = f , where O denotes an all-zero matrix. The all-zero rows of SA do not affect

(0)
the uniqueness properties of SA. Indeed, let (Iz, ¥, B®, CQ2) have an alternative (F¥, B®, CQ).

Then, as in (3.3),
(B®C)G Iy, = (B®C)G, FT. (3.4)

Full column rank of (B ® C) G implies that also (B ® C) Gy has full column rank. Hence,
(B®C)Gi[lg, O)=(B®C)G, AT, (3.5)

implies that the last I — Ry rows of A are all-zero. This shows that the uniqueness properties of

S A solely depend on its nonzero rows. O

4 Essential uniqueness results for PARALIND

Here, we discuss and prove essential uniqueness conditions for PARALIND. Since PARALIND is a
Tucker3 model with constrained core array (2.4), studying PARALIND uniqueness is analogous to
studying uniqueness of Tucker3 models with a constrained core array. Suppose we work under the
conditions of Proposition 3.3 and A, B, and C are identified up to their linear spans. Equating
the JK x I matricized form of the structural part of the PARALIND model for the original and

alternative solutions (see (3.3)) yields

B®C)GAT=(B®C)(TeoU)G;STAT. (4.1)

11



Since A, B, and C have full column rank, this is equivalent to
G =(T®U)G;S". (4.2)

Equation (4.2) states that the PARALIND core array (2.4) must be invariant under the transfor-
mations S, T, and U that are applied “on its three sides”. If (4.2) implies that S is a rescaled
permutation matrix, then A is essentially unique. This method of proving essential uniqueness
depends on the structure of G; and can be relatively easy or rather complicated: compare e.g. Ten
Berge and Smilde [41], Ten Berge [43] and Kiers, Ten Berge and Rocci [23]. Below, we present a
unified approach to essential uniqueness in PARALIND that yields an identical sufficient unique-
ness condition for each triplet of constraint matrices (¥, ®,€2). By using Kruskal’s Permutation
Lemma [26], the uniqueness of one component matrix can be obtained separate from the other two
component matrices. A more detailed comparison between our approach and uniqueness results for
constrained Tucker3 models is contained in Section 8.

Our PARALIND essential uniqueness condition is featured in Section 4.1. In Section 4.2 we

discuss necessary uniqueness conditions for CONFAC and PARALIND.

4.1 An essential uniqueness condition for PARALIND

Here, we present our essential uniqueness condition for one component matrix in PARALIND.
Without loss of generality, we focus on the essential uniqueness of A. To prove our uniqueness
condition, we use the approach of Jiang and Sidiropoulos [22] for CP uniqueness. As the latter
authors, we make use of Kruskal’s Permutation Lemma [26] which is the cornerstone of the proof
of Kruskal’s uniqueness condition (1.4) for CP. The Permutation Lemma is formulated as follows.

Let w(-) denote the number of nonzero elements of a vector.

Lemma 4.1 (Permutation Lemma) Let A and A be two I x Ry matrices and let ka > 2. Sup-
pose the following condition holds: for any vector x such that w(ATx) < Ry —rank(A)+1, we have
w(ATx) < w(ATx). Then there exists a unique permutation matriz I and a unique nonsingular

diagonal matriz A such that A = ATIA. O

Our essential uniqueness condition for PARALIND is given in Theorem 4.2 below. Let

N* = max_ (rank(® diag(dyjr) ah)), (4.3)
J=1se 111

12



where ¢]T denotes row j of ¥. Hence, N* is the maximum of the ranks of the R; horizontal slices

of the core array in (2.4).

Theorem 4.2 Let (AW, B®,CN) be a PARALIND solution for fixed constraint matrices ¥, ®,
and Q. Let (A¥®, B®,CQ) be an alternative PARALIND solution with the same residuals. Suppose
(B® C)Gy and A have full column rank. If for any vector d,

rank(B® diag(®¥7d) QTCT) < N*  implies  w(d) <1, (4.4)

then there exists a unique permutation matrix I and a unique nonsingular diagonal matriz A such

that A = ATIA.

Proof. The result follows if we show that the conditions of the theorem imply the condition
of the Permutation Lemma: for any vector x such that w(ATx) < R; — rank(A) + 1, we have
w(ATx) < w(ATx). As in the proof of (i) of Proposition 3.3, the conditions of the theorem imply
that A has full column rank. Hence, the condition of the Permutation Lemma becomes: for any

vector x such that w(ATx) < 1, we have w(ATx) < w(ATx). For any x, we have
B®C)G ATx=(B®C)G, Alx. (4.5)

Suppose w(ATx) = 0. Then the right-hand side of (4.5) equals the all-zero vector. Since (B®C) G1
has full column rank, it follows that also ATx is all-zero. Hence, w(ATx) = 0 implies w(ATx) = 0.

It remains to show that w(ATx) = 1 implies w(ATx) < 1. Rewriting (4.5) in J x K matrix
form, we obtain

B® diag(¥T ATx) Q7 CT = B® diag(¥TATx) QI CT . (4.6)

Suppose w(ATx) = 1. Then T ATx is a nonzero scalar multiple of one row of ¥. From (4.6), it

follows that

rank(B® diag(TTATx) QTCT) = rank(B® diag(®¥? ATx) QTCT)

< rank(® diag(®T ATx) Q)
. Ty T
< j:q}.z.xich (rank(® diag(tp; ) Q2 )

= N*. (4.7)
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Let d = ATx. If (4.7) implies w(d) < 1, then the condition of the Permutation Lemma holds. The

proof is complete by observing that this is exactly condition (4.4). O

When PARALIND reduces to CP, we have N* = 1 and ¥ = & = Q = Iy, where we may have
to permute the columns of B and C to obtain the latter identity (see Lemma 2.1). In this case,
condition (4.4) is identical to Condition B of Jiang and Sidiropoulos [22] for the essential uniqueness
of a CP component matrix of full column rank.

Condition (4.4) can be difficult to check. However, when B or C have full column rank, they
can be eliminated from the expression rank(B® diag(¥7d) Q7 C”). If both B and C have full
column rank, then condition (4.4) reduces to (4.8), which is easier to check. This is illustrated by
the examples in Section 5. Also, (B ® C)G has full column rank if and only if G; has full column

rank. This yields the following corollary.

Corollary 4.3 Let (A¥,B®,CQ) be a PARALIND solution for fized constraint matrices W, ®,
and Q. Let (A¥®, B®,CQ) be an alternative PARALIND solution with the same residuals. Suppose
A, B, C and G have full column rank. If for any vector d,

rank(® diag(®7d) Q7) < N* implies w(d) <1, (4.8)

then there exists a unique permutation matrixz I and a unique nonsingular diagonal matriz A such

that A = ATIA. 0

Note that when we use the Permutation Lemma to show that S in (4.2) is equal to Iz, up to
column scaling and permutation, then we obtain exactly condition (4.8) since T and U in (4.2) are
nonsingular.

To check the uniqueness condition (4.8) requires solving a system of equations in the elements
of the vector d. In a special case, the following lemma states a condition that does not involve the

vector d.

Lemma 4.4 Let A, B, C and G have full column rank. If ¥ = Ig, then condition (4.8) holds
if and only if ® and Q are R x R permutation matrices, i.e. if and only if we have the CP model

(see Lemma 2.1).

Proof. Let ¥ = Ig. It can be verified that N* = 1. Also, we have ® diag(¥’d) Q7 =
® diag(d) Q7. First, we show that condition (4.8) does not hold if ® and £ are not both R x R
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permutation matrices. Each element of d is contained in exactly one row of ® diag(d) and some
row of ® diag(d) contains more than one d; if ® is not a permutation matrix. In that case, it is
possible to set all d; equal to zero except those in a row containing multiple d;. Then ® diag(d)
has rank 1 while w(d) > 2. Hence, condition (4.8) does not hold. Analogously, it can be shown
that if Q is not a permutation matrix, then there exists a d such that diag(d) 27 has rank 1 while
w(d) > 2.

It remains to show that condition (4.8) holds if ® and € are R x R permutation matrices. But

then rank(® diag(d) Q1) = rank(diag(d)) = w(d), which completes the proof. O

4.2 Necessary uniqueness conditions for CONFAC and PARALIND

Additional to sufficient conditions for essential uniqueness in PARALIND, we also consider neces-
sary uniqueness conditions. The lemma below follows from a necessary condition for CP essential

uniqueness (see Stegeman and Sidiropoulos [38], p.543).

Lemma 4.5 Let (AW, B®, CQ) be a PARALIND solution for fized constraint matrices ¥, ®, and
Q. If (B® C) Gy does not have full column rank, then A is not essentially unique. Moreover, an
alternative PARALIND solution exists in which A has R1 — 1 columns.

Proof. Suppose (B® C) G does not have full column rank. Let n be such that (B® C) Gy n = 0.
Then
B®C)G AT = (B®C)G{ (A +yn")T, (4.9)

for any vector y. Hence, an alternative decomposition exi