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Abstract

In this paper, we derive uniqueness conditions for a constrained version of the Parallel Fac-

tor (Parafac) decomposition, also known as Canonical decomposition (Candecomp). Cande-

comp/Parafac (CP) decomposes a three-way array into a prespecified number of outer product

arrays. The constraint is that some vectors forming the outer product arrays are linearly depen-

dent according to a prespecified pattern. This is known as the PARALIND family of models.

An important subclass is where some vectors forming the outer product arrays are repeated ac-

cording to a prespecified pattern. These are known as CONFAC decompositions. We discuss the

relation between PARALIND, CONFAC and the three-way decompositions CP, Tucker3, and

the decomposition in block terms. We provide both essential uniqueness conditions and partial

uniqueness conditions for PARALIND and CONFAC, and discuss the relation with uniqueness

of constrained Tucker3 models and the block decomposition in rank-(L,L, 1) terms. Our results

are demonstrated by means of examples.
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1 Introduction

Hitchcock [18, 19] introduced a generalized rank and related decomposition of a multi-way array

or tensor. The same decomposition was proposed independently by Carroll and Chang [7] and

Harshman [16] for component analysis of three-way data arrays. They named it Candecomp and

Parafac, respectively. We denote the Candecomp/Parafac (CP) model, i.e. the decomposition with

a residual term, as

X =
R∑
r=1

(ar ◦ br ◦ cr) + E , (1.1)

where X is a three-way array of size I × J ×K, ◦ denotes the outer product, and ar, br and cr

are vectors of size I × 1, J × 1 and K × 1, respectively. To find the latter vectors, an iterative

algorithm is used which minimizes the Frobenius norm of the residual array E. For an overview

and comparison of CP algorithms, see Hopke et al. [20] and Tomasi and Bro [44].

The rank of a three-way array X is defined in the usual way, i.e. the smallest number of rank-1

arrays whose sum equals X. A three-way array has rank 1 if it is the outer product of three vectors,

i.e. a◦b◦c. It follows that the CP model tries to find a best rank-R approximation to the three-way

array X.

The real-valued CP model, i.e. where X and the model parameters are real-valued, was intro-

duced in Psychometrics (Carroll and Chang [7]) and Phonetics (Harshman [16]). Later on, it was

also applied in Chemometrics and food industry (Bro [4] and Smilde, Bro and Geladi [32]). For

other applications of CP in Psychometrics, see Kroonenberg [25]. Complex-valued applications of

CP occur in Signal Processing, especially wireless telecommunications; see Sidiropoulos, Giannakis

and Bro [28], Sidiropoulos, Bro and Giannakis [29] and De Lathauwer and Castaing [13]. Also,

CP describes the basic structure of fourth-order cumulants of multivariate data on which a lot of

algebraic methods for Independent Component Analysis are based (Comon [8], De Lathauwer, De

Moor and Vandewalle [9], and Hyvärinen, Karhunen and Oja [21]). In this paper, we consider the

real-valued CP model. All occurrences of three-way rank are assumed to be over the real field.

For later use, we mention that the CP model (1.1) is a special case of the Tucker3 model of

Tucker [45]. The latter is defined as

X =
R∑
r=1

P∑
p=1

Q∑
q=1

grpq (ar ◦ bp ◦ cq) + E . (1.2)

Clearly, the case with R = P = Q and grpq = 0 if (r, p, q) 6= (r, r, r) yields (1.1). The R × P × Q

array G with entries grpq is referred to as the core array. The matrices [a1| . . . |aR], [b1| . . . |bP ]
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and [c1| . . . |cQ] are called the component matrices.

A matrix notation of the CP model (1.1) is as follows. Let Xk (I × J) and Ek (I × J) denote

the k-th frontal slice of X and E, respectively. Then (1.1) can be written as

Xk = A Ck BT + Ek , k = 1, . . .K , (1.3)

where the component matrices A (I × R) and B (J × R) have the vectors ar and br as columns,

respectively, and Ck (R×R) is the diagonal matrix with the k-th elements of the vectors cr on its

diagonal. The model part of the CP model is characterized by (A,B,C), where component matrix

C (K ×R) has the vectors cr as columns.

The most attractive feature of CP is its uniqueness property. Kruskal [26] has shown that, for

fixed residuals E, the vectors ar, br and cr are unique up to rescaling/counterscaling within each

triplet (ar, br, cr) and a permutation of the order of the triplets if

kA + kB + kC ≥ 2R+ 2 , (1.4)

where kA, kB, kC denote the k-ranks of the component matrices. The k-rank of a matrix is the

largest number x such that every subset of x columns of the matrix is linearly independent. If a

CP solution is unique up to these indeterminacies, it is called essentially unique. Two CP solutions

that are identical up to the essential uniqueness indeterminacies, will be called equivalent. A more

accessible proof of the uniqueness condition (1.4) can be found in Stegeman and Sidiropoulos [38].

For the case where one of the component matrices A, B and C has full column rank (i.e.,

rank equal to the number of columns R), a more relaxed uniqueness condition than (1.4) has been

derived by Jiang and Sidiropoulos [22] and De Lathauwer [10]. See also Stegeman, Ten Berge and

De Lathauwer [37]. Stegeman [36] shows that this condition is implied by (1.4).

In this paper, we consider a constrained version of the CP decomposition in which the columns

of A, B and C are linearly dependent according to a prespecified pattern. This type of model is

introduced in Bro, Harshman, Sidiropoulos and Lundy [6] and previous versions of [6], and is named

PARALIND (PARAllel profiles with LINear Dependencies). Instead of (A,B,C), a PARALIND

decomposition is characterized by (AΨ,BΦ,CΩ), where A is I × R1, B is J × R2, C is K × R3,

Ψ is R1 × R, Φ is R2 × R, and Ω is R3 × R. The prespecified matrices Ψ, Φ and Ω contain the

patterns of linear dependency of the columns of A, B and C, respectively. We refer to Ψ, Φ and

Ω as the constraint matrices.

In nearly all applications of PARALIND decompositions, the linear dependencies take the form

of identical columns. Hence, the columns of A, B and C may be repeated more than once in the
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triplets (ar, br, cr) according to a prespecified pattern. The patterns of repetition are given by the

constraint matrices Ψ, Φ and Ω, that contain (possibly identical) unit vectors as columns. The

constraint matrices are assumed to have full row rank, which implies R ≥ max(R1, R2, R3). This

assumption guarantees that each column of A, B and C appears at least once in the decomposi-

tion. In de Almeida, Favier and Mota [3], this type of decomposition is introduced as CONFAC

(CONstrained FACtors).

For given PARALIND or CONFAC constraint matrices, an Alternating Least Squares (ALS)

algorithm for finding the component matrices A, B and C that minimize the Frobenius norm of

the residual array has been proposed in see Bro et al. [6] and de Almeida et al. [3]. However,

analogous to the ALS algorithm for the CP decomposition, it may terminate in a local minimum

instead of the global minimum. This fallacy may be overcome by running the algorithm several

times with random starting points. A more severe problem that PARALIND and CONFAC may

share with CP is nonexistence of an optimal solution (A,B,C). For CP this problem results in

so-called “degenerate solutions”; see Stegeman [33, 34, 35], Krijnen, Dijkstra and Stegeman [24],

De Silva and Lim [15] and Stegeman and De Lathauwer [39]. However, in the study of uniqueness

of a given PARALIND or CONFAC solution this potential problem does not play a role.

In the sequel, we use the name CONFAC for decompositions in which the constraint matrices

have unit vectors as columns, and we use the name PARALIND for decompositions in which the

constraint matrices (are allowed to) have more general forms.

As an example of CONFAC, let R = 4, R1 = R2 = 2, R3 = 3, and

Ψ = Φ =

 1 1 0 0

0 0 1 1

 , Ω =


1 0 1 0

0 1 0 0

0 0 0 1

 . (1.5)

We have AΨ = [a1 a1 a2 a2], BΦ = [b1 b1 b2 b2] and CΩ = [c1 c2 c1 c3]. The CONFAC model,

i.e. the decomposition plus the residual term, is then given by

X = (a1 ◦ b1 ◦ c1) + (a1 ◦ b1 ◦ c2) + (a2 ◦ b2 ◦ c1) + (a2 ◦ b2 ◦ c3) + E . (1.6)

In Bro et al. [6], CONFAC and PARALIND decompositions are used to analyze flow injection data

and fluorescence data. In [3], de Almeida et al. exploit the CONFAC structure to design multiple-

antenna transmissions in the context of wireless telecommunications and signal processing. It is

shown that the three constraint matrices Ψ, Φ and Ω are design parameters of the transmission

system. By varying their patterns of zeros and ones, it is possible to adjust the model parameters
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thus providing some flexibility to the design of the system. From a signal processing and modeling

viewpoint, the CONFAC approach of [3] generalizes several related works [30], [31], [14], [1], [2],

where the interactions between different factors are either absent, as in [31], or fixed to a prescribed

interaction pattern as in [30], [14], [1], [2].

In this paper, we derive uniqueness conditions for one of the component matrices A, B and

C of a PARALIND or CONFAC decomposition, for given constraint matrices Ψ, Φ and Ω. Our

results are obtained by applying the approach of Jiang and Sidiropoulos [22] for CP uniqueness

to PARALIND. As [22], we prove an essential uniqueness condition for one component matrix

by using the Permutation Lemma of Kruskal [26]. Moreover, we extend this result by proving a

partial uniqueness condition for one component matrix. For this, we use the Equivalence Lemma

for Partitioned Matrices proven by De Lathauwer [11].

In the signal processing applications of the CONFAC decomposition cited above, the uniqueness

of one particular component matrix (the one containing an estimate of the transmitted information

signal in the telecom system) is most important. This shows that, although our uniqueness results

are formulated for a single component matrix, they have immediate practical implications.

The paper is organized as follows. In Section 2, we discuss the relations between PARALIND,

CONFAC and other three-way decompositions such as CP, Tucker3, and block decompositions. In

Section 3, we discuss and define essential and partial uniqueness of the component matrices. In

Sections 4 and 6, we present our essential and partial PARALIND uniqueness results, respectively.

Sections 5 and 7 illustrate our uniqueness results by means of various examples. In Section 8, we

discuss the relation between our approach and uniqueness of Tucker3 models with a constrained

core array. PARALIND can be written into the latter form, as will be seen in Section 2. In Section

9, we consider uniqueness for the block decomposition in rank-(L,L, 1) terms, which is a special

case of CONFAC. Finally, Section 10 contains a discussion of our findings.

2 CONFAC, PARALIND and other three-way decompositions

Here, we discuss the relations between CONFAC, PARALIND and other three-way decompositions.

First, we observe that if Ψ = Φ = Ω = IR, then the decomposition is identical to CP. But there

are more cases where this is true. These are formulated in the following lemma.

Lemma 2.1 Consider a CONFAC model with R1 = R2 = R3 and Ψ = Π1 Φ = Π2 Ω, with Π1
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and Π2 permutation matrices. Then the CONFAC model can be written in the following CP form:

X =
R1∑
r=1

nr (ar ◦ bπ1(r) ◦ cπ2(r)) + E , (2.1)

where nr denotes the row sum of row r of Ψ, and π1(·) and π2(·) are the row permutations of Φ

and Ω corresponding to Π1 and Π2, respectively.

Proof. The component matrices all have the same number of columns, since R1 = R2 = R3. The

condition Ψ = Π1 Φ = Π2 Ω implies that each triplet of vectors forming a rank-1 array in the

decomposition does not share a vector with another triplet. Moreover, the triplet containing ar is

repeated as often as the number of times ar appears in AΨ, which is equal to the row sum of row

r of Ψ. Hence, there are R1 triplets and triplet r is repeated nr times. This completes the proof.2

Note that Lemma 2.1 does not cover all cases where CONFAC reduces to CP. For example, let

R1 = 3, R2 = R3 = 2, R = 3, Ψ = I3, and

Φ = Ω =

 1 1 0

0 0 1

 . (2.2)

Then the CONFAC model is given by

X = (a1 ◦ b1 ◦ c1) + (a2 ◦ b1 ◦ c1) + (a3 ◦ b2 ◦ c2) + E

= ((a1 + a2) ◦ b1 ◦ c1) + (a3 ◦ b2 ◦ c2) + E , (2.3)

where the latter has the form of the CP model (1.1) with R = 2.

Next, we discuss the relation between PARALIND, CONFAC and the Tucker3 model (1.2).

De Almeida et al. [3] show that a PARALIND model can be written as a Tucker3 model with

R1 ×R2 ×R3 core array

G =
R∑
r=1

(ψr ◦ φr ◦ ωr) , (2.4)

where ψr, φr and ωr are the r-th columns of Ψ, Φ and Ω, respectively. Hence, the core array G

satisfies a CP decomposition with component matrices Ψ, Φ and Ω. For a CONFAC decomposition,

it can be seen that G contains at most R nonzero entries. Hence, CONFAC is equivalent to a

Tucker3 model in which the constrained core array has a fixed pattern of zeros and integer-valued

nonzeros. If grpq = n, then the triplet (ar, bp, cq) is contained n times in the decomposition.

Constrained Tucker3 models have applications in Chemometrics, see Smilde et al. [32].
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There also exist three-way decompositions that are hybrid forms of CP and Tucker3. Some of

these may also be written in PARALIND or CONFAC form. This derivation is beyond the scope

of this paper, however. We refer to Harshman and Lundy [17] and Bro [5] for an overview of these

hybrid models.

A third decomposition related to PARALIND and CONFAC is the decomposition in block terms,

introduced by De Lathauwer [12]. Before we discuss this decomposition, we need to introduce some

notions. A mode-n vector of an I1 × I2 × I3 array is an In × 1 vector obtained from the array

by varying the n-th index and keeping the other indices fixed. The mode-n rank is defined as the

dimension of the subspace spanned by the mode-n vectors of the array. When a three-way array

has mode-1 rank L, mode-2 rank M , and mode-3 rank N , it is said to be rank-(L,M,N). The

mode-n rank generalizes the row and column rank of matrices. Note that a rank-(1,1,1) array has

rank 1 and vice versa.

The decomposition in block terms of [12] is a generalization of CP in which the array is not

decomposed into rank-1 arrays but into rank-(L,M,N) arrays, where we denote the number of

terms as F . Term f in the decomposition can be written in Tucker3 form with an L×M ×N core

array G(f) that is rank-(L,M,N), and matrices Af (I × L), Bf (J ×M), and Cf (K ×N) that

have full column rank.

De Lathauwer [12] discusses the decomposition in rank-(L,L, 1) terms as a special case. By

absorbing the L× L× 1 core arrays G(f) into Af , it can be written as

X =
F∑
f=1

(Af BT
f ) ◦ cf + E

=
F∑
f=1

(
L∑
l=1

(a(f)
l ◦ b(f)

l )

)
◦ cf + E

=
F∑
f=1

L∑
l=1

(a(f)
l ◦ b(f)

l ◦ cf ) + E , (2.5)

where a(f)
l and b(f)

l are the l-th columns of Af and Bf , respectively. It can be seen that (2.5) is

the CONFAC model with A = [A1| . . . |AF ], B = [B1| . . . |BF ], C = [c1 . . . cF ], Ψ = Φ = ILF ,

and Ω = IF ⊗ 1TL, where 1L is an L× 1 vectors of ones, and ⊗ denotes the Kronecker product.

The relation between PARALIND, CONFAC and the general decomposition in rank-(L,M,N)

terms is more complicated. In order to obtain a PARALIND or CONFAC form, each core array

G(f) must be transformed by nonsingular transformations into some canonical form. The inverses
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of the transformations can be absorbed into Af , Bf , and Cf . Whether the resulting decomposition

obeys the PARALIND or CONFAC structure depends on the canonical forms of the core arrays.

This can be illustrated by considering the case L = M = N = 2, for which the canonical forms are

given by De Silva and Lim [15]. Hence, the core arrays are 2 × 2 × 2 and rank-(2,2,2). Each core

array satisfies one of the following: it is generic and has rank 2, it is generic and has rank 3, or it

is degenerate and has rank 3. If the core array G(f) is degenerate and has rank 3, then it can be

transformed to a canonical form such that term f of the decomposition is

(a(f)
1 ◦ b(f)

1 ◦ c(f)
1 ) + (a(f)

2 ◦ b(f)
2 ◦ c(f)

1 ) + (a(f)
1 ◦ b(f)

2 ◦ c(f)
2 ) . (2.6)

It can be checked that this term has the CONFAC structure. If the core array G(f) is generic and

has rank 2, then it can be transformed to the a diagonal canonical form such that term f of the

decomposition is (a(f)
1 ◦b

(f)
1 ◦c

(f)
1 )+(a(f)

2 ◦b
(f)
2 ◦c

(f)
2 ). This is of CP form, and, hence, of CONFAC

form. If the core array G(f) is generic and has rank 3, then it can be transformed to a canonical

form such that term f of the decomposition is

(a(f)
1 ◦ b(f)

1 ◦ c(f)
1 ) + (a(f)

2 ◦ b(f)
2 ◦ c(f)

1 ) + (a(f)
1 ◦ b(f)

2 ◦ c(f)
2 )− (a(f)

2 ◦ b(f)
1 ◦ c(f)

2 ) . (2.7)

This term is of PARALIND form but does not have CONFAC structure. We conjecture that G(f)

cannot be transformed to a canonical form such that term f of the decomposition is of CONFAC

form. Since term f of the decomposition only involves columns from Af , Bf and Cf , the complete

decomposition can be written in CONFAC form when the core arrays are either degenerate and

have rank 3, or generic and have rank 2.

3 Essential and partial uniqueness in PARALIND

Before we present our uniqueness results for the component matrices in PARALIND, we discuss

the meaning of essential and partial uniqueness in PARALIND. Recall that essential uniqueness

in CP holds when the triplets (ar,br, cr) are unique up to scaling/counterscaling within each

triplet, and a permutation of the order of the triplets. More formally, if we have an essentially

unique CP solution (A,B,C) and an alternative solution (Ā, B̄, C̄) with the same residuals, then

Ā = A Π Λa, B̄ = B Π Λb, and C̄ = C Π Λc, where Π is a permutation matrix and Λa, Λb, and

Λc are nonsingular diagonal matrices such that Λa Λb Λc = IR.

In PARALIND, due to the linear dependence of the vectors in the triplets (ar,bp, cq), there

is less freedom of scaling/counterscaling within the triplets without affecting the residuals. Also,
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permuting the order of the triplets may not be possible without affecting the residuals. The

PARALIND solutions (AΨ,BΦ,CΩ) and (AΨΠ,BΦΠ,CΩΠ) do have the same residuals for a

permutation matrix Π, but the latter solution features constraint matrices that may differ from

those in the former solution. Note that we consider a PARALIND solution as a triplet of component

matrices corresponding to a fixed triplet of constraint matrices.

To avoid these complications, we define essential uniqueness for one component matrix instead

of all three of them together. In particular, we define the following.

Definition 3.1 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ,

and Ω. If any alternative PARALIND solution (ĀΨ, B̄Φ, C̄Ω) with the same residuals satisfies

Ā = A Π Λ for some permutation matrix Π and some nonsingular diagonal matrix Λ, then we call

A essentially unique. 2

Note that if A is essentially unique, then also AΠ is essentially unique for any permutation matrix

Π. Hence, the essential uniqueness of the PARALIND component matrices is invariant under row

permutations of the constraint matrices Ψ, Φ, and Ω.

Next, we discuss the concept of partial uniqueness. For CP, this term has been used to describe

cases where some columns of a component matrix are identified up to their linear span only, or

where only a finite number of alternative CP solutions are available (up to CP essential uniqueness);

see Ten Berge [42]. For PARALIND, we adopt the first definition, and we call A partially unique

if its columns can be partitioned into disjoint subsets and each subset is identified up to its linear

span. This is in line with the discussion on partial uniqueness in PARALIND by Bro et al. [6].

Definition 3.2 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ,

and Ω. Let the columns of A be partitioned into disjoint subsets as A Πa = [A1| . . . |AF ], where Πa

is a permutation matrix. Suppose that, for any alternative PARALIND solution (ĀΨ, B̄Φ, C̄Ω)

with the same residuals and with Ā partitioned as Ā Πa = [Ā1| . . . |ĀF ], it holds that Ā Πa =

A Πa Π Λ, where Π is a unique block-permutation matrix, Λ is a unique nonsingular block-diagonal

matrix, and the block-transformation Π Λ is compatible with the partition of A Πa and Ā Πa. Then

we call A partially unique. 2

Definition 3.2 states that each subset of columns of Ā Πa satisfies Āf = Aπ(f) S, where S is a

unique nonsingular matrix and the permutation π(·) is defined by the unique block-permutation
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Π. Hence, each subset Af is identified up to its linear span. Note that when checking partial

uniqueness of A one is free to choose a suitable column permutation Πa and partition of A Πa.

For the block decomposition in rank-(L,M,N) terms De Lathauwer [12] defines “essential

uniqueness” as the case where the blocks Af , Bf , and Cf in the component matrices A =

[A1| . . . |AF ], B = [B1| . . . |BF ], C = [C1| . . . |CF ] are identified up to their linear spans and a

simultaneous permutation of the F blocks.

Next, we present an identifiability condition for the PARALIND component matrices due to de

Almeida et al. [3]. Let the three matricized forms of the PARALIND core array (2.4) be

G1 = (Φ�Ω) ΨT G2 = (Ω�Ψ) ΦT G3 = (Ψ�Φ) ΩT , (3.1)

where � denotes the Khatri-Rao product, i.e. the column-wise Kronecker product.

Proposition 3.3 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ,

Φ, and Ω. Let (ĀΨ, B̄Φ, C̄Ω) be an alternative PARALIND solution with the same residuals.

(i) If A and (B⊗C)G1 have full column rank, then Ā = A S for some nonsingular matrix S.

(ii) If B and (C⊗A)G2 have full column rank, then B̄ = B T for some nonsingular matrix T.

(iii) If C and (A⊗B)G3 have full column rank, then C̄ = C U for some nonsingular matrix U.

Proof. We prove only (i). The proofs of (ii) and (iii) follow analogously by interchanging the

roles of (A,Ψ), (B,Φ) and (C,Ω).

The structural part of the JK × I matrix unfolding of the PARALIND model can be written

as

((BΦ)� (CΩ)) (AΨ)T = (B⊗C) G1 AT . (3.2)

Equating the structural parts of the two PARALIND solutions, we obtain

(B⊗C) G1 AT = (B̄⊗ C̄) G1 ĀT . (3.3)

Since (B⊗C) G1 has full column rank, it follows that the columns of A lie in the column space of

Ā, i.e. A = Ā S for some square matrix S. Moreover, since A has full column rank, this implies

that also Ā has full column rank. Hence, S is nonsingular and Ā = A S−1. This completes the

proof of (i). 2
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Note that, in (i) of Proposition 3.3, the matrix (B⊗C)G1 has full column rank if B, C, and G1

have full column rank. Hence, all component matrices are identified up to their linear span if all of

A, B, C, G1, G2, and G3 have full column rank.

We conclude this section with an invariance result of essential and partial uniqueness, which is

useful when checking uniqueness. The result is an adaptation of Ten Berge and Sidiropoulos [40,

p.401].

Lemma 3.4 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ, and

Ω. If A and (B⊗C)G1 have full column rank, then A is essentially/partially unique if and only

if IR1 is essentially/partially unique in the PARALIND solution (IR1Ψ,BΦ,CΩ).

Proof. The uniqueness properties of A are the same for SA, where S is nonsingular. Consider S

with SA =

 IR1

O

, where O denotes an all-zero matrix. The all-zero rows of SA do not affect

the uniqueness properties of SA. Indeed, let (IR1Ψ,BΦ,CΩ) have an alternative (FΨ, B̄Φ, C̄Ω).

Then, as in (3.3),

(B⊗C) G1 IR1 = (B̄⊗ C̄) G1 FT . (3.4)

Full column rank of (B⊗C) G1 implies that also (B̄⊗ C̄) G1 has full column rank. Hence,

(B⊗C) G1 [IR1 O] = (B̄⊗ C̄) G1 ĀT , (3.5)

implies that the last I − R1 rows of Ā are all-zero. This shows that the uniqueness properties of

SA solely depend on its nonzero rows. 2

4 Essential uniqueness results for PARALIND

Here, we discuss and prove essential uniqueness conditions for PARALIND. Since PARALIND is a

Tucker3 model with constrained core array (2.4), studying PARALIND uniqueness is analogous to

studying uniqueness of Tucker3 models with a constrained core array. Suppose we work under the

conditions of Proposition 3.3 and A, B, and C are identified up to their linear spans. Equating

the JK × I matricized form of the structural part of the PARALIND model for the original and

alternative solutions (see (3.3)) yields

(B⊗C) G1 AT = (B⊗C) (T⊗U) G1 STAT . (4.1)
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Since A, B, and C have full column rank, this is equivalent to

G1 = (T⊗U) G1 ST . (4.2)

Equation (4.2) states that the PARALIND core array (2.4) must be invariant under the transfor-

mations S, T, and U that are applied “on its three sides”. If (4.2) implies that S is a rescaled

permutation matrix, then A is essentially unique. This method of proving essential uniqueness

depends on the structure of G1 and can be relatively easy or rather complicated: compare e.g. Ten

Berge and Smilde [41], Ten Berge [43] and Kiers, Ten Berge and Rocci [23]. Below, we present a

unified approach to essential uniqueness in PARALIND that yields an identical sufficient unique-

ness condition for each triplet of constraint matrices (Ψ,Φ,Ω). By using Kruskal’s Permutation

Lemma [26], the uniqueness of one component matrix can be obtained separate from the other two

component matrices. A more detailed comparison between our approach and uniqueness results for

constrained Tucker3 models is contained in Section 8.

Our PARALIND essential uniqueness condition is featured in Section 4.1. In Section 4.2 we

discuss necessary uniqueness conditions for CONFAC and PARALIND.

4.1 An essential uniqueness condition for PARALIND

Here, we present our essential uniqueness condition for one component matrix in PARALIND.

Without loss of generality, we focus on the essential uniqueness of A. To prove our uniqueness

condition, we use the approach of Jiang and Sidiropoulos [22] for CP uniqueness. As the latter

authors, we make use of Kruskal’s Permutation Lemma [26] which is the cornerstone of the proof

of Kruskal’s uniqueness condition (1.4) for CP. The Permutation Lemma is formulated as follows.

Let ω(·) denote the number of nonzero elements of a vector.

Lemma 4.1 (Permutation Lemma) Let A and Ā be two I ×R1 matrices and let kA ≥ 2. Sup-

pose the following condition holds: for any vector x such that ω(ĀTx) ≤ R1− rank(Ā)+1, we have

ω(ATx) ≤ ω(ĀTx). Then there exists a unique permutation matrix Π and a unique nonsingular

diagonal matrix Λ such that Ā = A Π Λ. 2

Our essential uniqueness condition for PARALIND is given in Theorem 4.2 below. Let

N∗ = max
j=1,...,R1

(
rank(Φ diag(ψTj ) ΩT )

)
, (4.3)
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where ψTj denotes row j of Ψ. Hence, N∗ is the maximum of the ranks of the R1 horizontal slices

of the core array in (2.4).

Theorem 4.2 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ,

and Ω. Let (ĀΨ, B̄Φ, C̄Ω) be an alternative PARALIND solution with the same residuals. Suppose

(B⊗C)G1 and A have full column rank. If for any vector d,

rank(BΦ diag(ΨTd) ΩTCT ) ≤ N∗ implies ω(d) ≤ 1 , (4.4)

then there exists a unique permutation matrix Π and a unique nonsingular diagonal matrix Λ such

that Ā = A Π Λ.

Proof. The result follows if we show that the conditions of the theorem imply the condition

of the Permutation Lemma: for any vector x such that ω(ĀTx) ≤ R1 − rank(Ā) + 1, we have

ω(ATx) ≤ ω(ĀTx). As in the proof of (i) of Proposition 3.3, the conditions of the theorem imply

that Ā has full column rank. Hence, the condition of the Permutation Lemma becomes: for any

vector x such that ω(ĀTx) ≤ 1, we have ω(ATx) ≤ ω(ĀTx). For any x, we have

(B⊗C) G1 ATx = (B̄⊗ C̄) G1 ĀTx . (4.5)

Suppose ω(ĀTx) = 0. Then the right-hand side of (4.5) equals the all-zero vector. Since (B⊗C) G1

has full column rank, it follows that also ATx is all-zero. Hence, ω(ĀTx) = 0 implies ω(ATx) = 0.

It remains to show that ω(ĀTx) = 1 implies ω(ATx) ≤ 1. Rewriting (4.5) in J × K matrix

form, we obtain

BΦ diag(ΨTATx) ΩTCT = B̄Φ diag(ΨT ĀTx) ΩT C̄T . (4.6)

Suppose ω(ĀTx) = 1. Then ΨT ĀTx is a nonzero scalar multiple of one row of Ψ. From (4.6), it

follows that

rank(BΦ diag(ΨTATx) ΩTCT ) = rank(B̄Φ diag(ΨT ĀTx) ΩT C̄T )

≤ rank(Φ diag(ΨT ĀTx) ΩT )

≤ max
j=1,...,R1

(
rank(Φ diag(ψTj ) ΩT )

)
= N∗ . (4.7)
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Let d = ATx. If (4.7) implies ω(d) ≤ 1, then the condition of the Permutation Lemma holds. The

proof is complete by observing that this is exactly condition (4.4). 2

When PARALIND reduces to CP, we have N∗ = 1 and Ψ = Φ = Ω = IR, where we may have

to permute the columns of B and C to obtain the latter identity (see Lemma 2.1). In this case,

condition (4.4) is identical to Condition B of Jiang and Sidiropoulos [22] for the essential uniqueness

of a CP component matrix of full column rank.

Condition (4.4) can be difficult to check. However, when B or C have full column rank, they

can be eliminated from the expression rank(BΦ diag(ΨTd) ΩTCT ). If both B and C have full

column rank, then condition (4.4) reduces to (4.8), which is easier to check. This is illustrated by

the examples in Section 5. Also, (B⊗C)G1 has full column rank if and only if G1 has full column

rank. This yields the following corollary.

Corollary 4.3 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ,

and Ω. Let (ĀΨ, B̄Φ, C̄Ω) be an alternative PARALIND solution with the same residuals. Suppose

A, B, C and G1 have full column rank. If for any vector d,

rank(Φ diag(ΨTd) ΩT ) ≤ N∗ implies ω(d) ≤ 1 , (4.8)

then there exists a unique permutation matrix Π and a unique nonsingular diagonal matrix Λ such

that Ā = A Π Λ. 2

Note that when we use the Permutation Lemma to show that S in (4.2) is equal to IR1 up to

column scaling and permutation, then we obtain exactly condition (4.8) since T and U in (4.2) are

nonsingular.

To check the uniqueness condition (4.8) requires solving a system of equations in the elements

of the vector d. In a special case, the following lemma states a condition that does not involve the

vector d.

Lemma 4.4 Let A, B, C and G1 have full column rank. If Ψ = IR, then condition (4.8) holds

if and only if Φ and Ω are R ×R permutation matrices, i.e. if and only if we have the CP model

(see Lemma 2.1).

Proof. Let Ψ = IR. It can be verified that N∗ = 1. Also, we have Φ diag(ΨTd) ΩT =

Φ diag(d) ΩT . First, we show that condition (4.8) does not hold if Φ and Ω are not both R × R

14



permutation matrices. Each element of d is contained in exactly one row of Φ diag(d) and some

row of Φ diag(d) contains more than one dj if Φ is not a permutation matrix. In that case, it is

possible to set all dj equal to zero except those in a row containing multiple dj . Then Φ diag(d)

has rank 1 while ω(d) ≥ 2. Hence, condition (4.8) does not hold. Analogously, it can be shown

that if Ω is not a permutation matrix, then there exists a d such that diag(d) ΩT has rank 1 while

ω(d) ≥ 2.

It remains to show that condition (4.8) holds if Φ and Ω are R×R permutation matrices. But

then rank(Φ diag(d) ΩT ) = rank(diag(d)) = ω(d), which completes the proof. 2

4.2 Necessary uniqueness conditions for CONFAC and PARALIND

Additional to sufficient conditions for essential uniqueness in PARALIND, we also consider neces-

sary uniqueness conditions. The lemma below follows from a necessary condition for CP essential

uniqueness (see Stegeman and Sidiropoulos [38], p.543).

Lemma 4.5 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ, and

Ω. If (B⊗C) G1 does not have full column rank, then A is not essentially unique. Moreover, an

alternative PARALIND solution exists in which A has R1 − 1 columns.

Proof. Suppose (B⊗C) G1 does not have full column rank. Let n be such that (B⊗C) G1 n = 0.

Then

(B⊗C) G1 AT = (B⊗C) G1 (A + ynT )T , (4.9)

for any vector y. Hence, an alternative decomposition exists with (A + ynT ) instead of A. More-

over, we can choose y such that one column of (A + ynT ) becomes all-zero. This completes the

proof. 2

Another necessary condition for CP essential uniqueness is that none of the component matrices may

have all-zero or proportional columns (see Stegeman and Sidiropoulos [38], p.543). For CONFAC

we have a similar condition: if, for some (s, t), columns s and t of Ψ are identical and columns s

and t are unique in Φ and Ω, then B and C are not unique. In the lemma below, a more general

form of this condition is proven.

Lemma 4.6 Let (AΨ,BΦ,CΩ) be a CONFAC solution for fixed constraint matrices Ψ, Φ, and

Ω. Suppose, for some column index set S ⊆ {1, . . . , R} with at least two elements, columns S of
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Ψ are identical and columns S of Φ and Ω do not repeat in columns {1, . . . , R}\S of Φ and Ω. If

columns S of Φ and Ω are not all identical, then B and C are not essentially unique.

Proof. For simplicity, let columns S of Ψ be equal to the first column of IR1 . We denote the

columns S of Φ and Ω by ΦS and ΩS , respectively. Let the unique columns of B and C in BΦS

and CΩS be given by BS (J×n2) and CS (K×n3), respectively. Then the CONFAC decomposition

is

a1 ◦BΦS (CΩS)T + (rest) , (4.10)

where (rest) does not include the columns BS and CS of B and C, respectively. The number of

rank-1 terms in the first part of (4.10) equals card(S). We have

BΦS (CΩS)T = BS V CT
S , (4.11)

with V being an n2 × n3 matrix. Let m = min(n2, n3). The condition of the lemma implies that

max(n2, n3) ≥ 2. For any matrices T (n2 ×m) and U (n3 ×m) with V = TUT , an alternative

decomposition is

a1 ◦BST (CSU)T + (rest) . (4.12)

The number of rank-1 terms in the first part of (4.12) equals m. Hence, we have shown that B and

C are not essentially unique. This completes the proof. 2

Note that, in order to obtain conditions for essential uniqueness of B and C, it suffices to interchange

the roles of (A,Ψ), (B,Φ) and (C,Ω) in Theorem 4.2, Corollary 4.3, and Lemmas 4.5 and 4.6.

5 Examples

In this section, we present two examples to demonstrate the condition (4.8) of Corollary 4.3 for

essential uniqueness. In all examples it is implicitly assumed that A, B, and C have full column

rank. The first example is Example 2 in de Almeida et al. [3]. Here, we have a CONFAC model

with R = 4, R1 = R2 = 3, R3 = 2, and

Ψ =


1 1 0 0

0 0 0 1

0 0 1 0

 , Φ =


0 0 1 0

1 1 0 0

0 0 0 1

 , Ω =

 1 1 1 0

0 0 0 1

 . (5.1)
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Using our results in Section 4, we show that C is essentially unique. It can be verified that G3 has

full column rank. We have

Φ diag(ωT1 ) ΨT =


0 0 1

2 0 0

0 0 0

 , Φ diag(ωT2 ) ΨT =


0 0 0

0 0 0

0 1 0

 , (5.2)

where ωTj denotes row j of Ω. Hence, N∗ = 2 follows from its definition (4.3) with Ψ and Ω

interchanged. Next, we check condition (4.8) translated to C. For a vector d = (d1 d2)T , we obtain

Φ diag(ΩTd) ΨT =


0 0 d1

2d1 0 0

0 d2 0

 . (5.3)

If the matrix in (5.3) is to have rank at most 2, it follows that d1d2 = 0. Hence, the condition (4.8)

translated to C holds and C is essentially unique.

It follows from (5.1) that the CONFAC decomposition is given by

a1 ◦ b2 ◦ c1 + a1 ◦ b2 ◦ c1 + a3 ◦ b1 ◦ c1 + a2 ◦ b3 ◦ c2 . (5.4)

An alternative decomposition is

(a1 + a3) ◦ b1 ◦ c1 + a1 ◦ (2b2 − b1) ◦ c1 + a2 ◦ b3 ◦ c2 . (5.5)

This shows that A and B are not essentially unique.

The second example is taken from Bro et al. [6, section 3.2.5]. Here, we have a PARALIND

model with R = 6, R1 = 3, R2 = 6, R3 = 4, Φ = I6 and

Ψ =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 , Ω =


1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

0 1 0 1 0 1

 . (5.6)

Using Corollary 4.3, we show that A is essentially unique. It can be verified that G1 has full column
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rank and that N∗ = 2. Next, we check condition (4.8). For a vector d = (d1 d2 d3)T , we obtain

Φ diag(ΨTd) ΩT =



d1 0 0 0

−d1 0 0 d1

0 d2 0 0

0 −d2 0 d2

0 0 d3 0

0 0 −d3 d3


. (5.7)

If the matrix in (5.7) is to have rank at most 2, it follows that ω(d) ≤ 1. Hence, condition (4.8)

holds and A is essentially unique. This is not proven in [6].

6 A partial uniqueness condition for PARALIND

Here, we present a partial uniqueness condition for one component matrix in PARALIND. Without

loss of generality, we focus on the partial uniqueness of A. We obtain our partial uniqueness

condition by applying the approach of Jiang and Sidiropoulos [22] to the PARALIND decomposition

in which the columns of A are partitioned into disjoint subsets. The structure of our proof is

analogous to the proof of the essential uniqueness condition in Theorem 4.2. Instead of Kruskal’s

Permutation Lemma [26], we make use of the Equivalence Lemma for Partitioned Matrices that was

proven by De Lathauwer [11]. This lemma is used by De Lathauwer [12] to prove partial uniqueness

results of the partitioned component matrices of the decomposition in rank-(L,M,N) terms. The

Equivalence Lemma for Partitioned Matrices is formulated as follows. For a vector y partitioned

as y = (yT1 | . . . |yTF )T , let ω′(y) denote the number of parts of the vector that are not all-zero. For

a matrix A partitioned as A = [A1| . . . |AF ], let k′A denote the maximal number f such that any

set of f submatrices of A has full column rank. Note that this generalizes the concept of k-rank to

partitioned matrices.

Lemma 6.1 (Equivalence Lemma for Partitioned Matrices) Let A and Ā be two I × R1

matrices partitioned in the same way into F submatrices that are of full column rank. Sup-

pose the following condition holds: for any vector x such that ω′(ĀTx) ≤ F − k′
Ā

+ 1, we have

ω′(ATx) ≤ ω′(ĀTx). Then there exists a unique block-permutation matrix Π and a unique nonsin-

gular block-diagonal matrix Λ such that Ā = A Π Λ, where the block-transformation is compatible

with the partition of A and Ā. 2
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Note that Lemma 6.1 is not a straightforward generalization of the Permutation Lemma (Lemma 4.1).

The condition of Lemma 4.1 features ω(ĀTx) ≤ R1−rank(Ā)+1, while in Lemma 6.1 this becomes

ω′(ĀTx) ≤ F − k′
Ā

+ 1. Hence, the rank of Ā has been replaced by the k′-rank of Ā. It can be

shown by an example that Lemma 6.1 with an r′-rank of Ā is incorrect.

Our partial uniqueness condition for PARALIND is the following.

Theorem 6.2 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ,

and Ω. Let (ĀΨ, B̄Φ, C̄Ω) be an alternative PARALIND solution with the same residuals. Let the

columns of A be partitioned as A Πa = [A1| . . . |AF ], where Πa is a permutation matrix. Define

the partition of Ā analogously as Ā Πa = [Ā1| . . . |ĀF ]. Let

N∗∗ = max
f=1,...,F

max
gf

(
rank(Φ diag(ΨTΠa gf ) ΩT )

)
, (6.1)

where gf is a vector with the same partition as A Πa and nonzero elements only in part f . Suppose

(B⊗C)G1 and A have full column rank. If for any vector d with the same partition as A Πa,

rank(BΦ diag(ΨTΠa d) ΩTCT ) ≤ N∗∗ implies ω′(d) ≤ 1 , (6.2)

then there exists a unique block-permutation matrix Π and a unique nonsingular block-diagonal

matrix Λ such that Ā Πa = A Πa Π Λ, where the block-transformation is compatible with the

partition of A Πa and Ā Πa.

Proof. See Appendix. 2

The result of Theorem 6.2 states that each subset of columns of Ā Πa satisfies Āf = Aπ(f) S,

where S is a unique nonsingular matrix and the permutation π(·) is defined by the unique block-

permutation Π. Hence, according to Definition 3.2, A is partially unique. Note that when checking

the condition of Theorem 6.2, one is free to choose a suitable column permutation Πa and partition

of A Πa.

Theorem 6.2 is a generalization of Theorem 4.2. Indeed, if the column permutation Πa equals

IR and the disjoint subsets in the partition of the columns of A are the columns themselves, then

Theorem 6.2 is just Theorem 4.2.

Condition (6.2) can be difficult to check. However, when B or C have full column rank, they

can be eliminated from the expression rank(BΦ diag(ΨTΠa d) ΩTCT ). If both B and C have full

column rank, then condition (6.2) reduces to (6.3) which is easier to check. This is illustrated by
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the examples in Section 7. Also, (B⊗C)G1 has full column rank if and only if G1 has full column

rank. This yields the following analogue of Corollary 4.3.

Corollary 6.3 Let (AΨ,BΦ,CΩ) be a PARALIND solution for fixed constraint matrices Ψ, Φ,

and Ω. Let (ĀΨ, B̄Φ, C̄Ω) be an alternative PARALIND solution with the same residuals. Let the

columns of A be partitioned as A Πa = [A1| . . . |AF ], where Πa is a permutation matrix. Define

the partition of Ā analogously as Ā Πa = [Ā1| . . . |ĀF ]. Suppose A, B, C and G1 have full column

rank. If for any vector d with the same partition as A Πa,

rank(Φ diag(ΨTΠa d) ΩT ) ≤ N∗∗ implies ω′(d) ≤ 1 , (6.3)

then there exists a unique block-permutation matrix Π and a unique nonsingular block-diagonal ma-

trix Λ such that Ā Πa = A Πa Π Λ, where the block-transformation is compatible with the partition

of A Πa and Ā Πa. 2

Note that, in order to obtain conditions for partial uniqueness of subsets of columns of B and C,

it suffices to interchange the roles of (A,Ψ), (B,Φ) and (C,Ω) in Theorem 6.2 and Corollary 6.3.

7 Examples

In this section, we present two examples to demonstrate the condition (6.3) of Corollary 6.3 for

partial uniqueness. In the examples it is implicitly assumed that A, B, and C have full column

rank.

As a first example, consider again the CONFAC model with constraint matrices (5.1). In Section

5 it was established that C is essentially unique, while A and B are not essentially unique. Next,

we show that the subsets of columns in A Πa = [a1 a3|a2] are partially unique. It can be verified

that G1 has full column rank. We have

ΨTΠa =


1 0 0

1 0 0

0 1 0

0 0 1

 . (7.1)
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For g1 = (β γ 0)T and g2 = (0 0 α)T , we obtain

Φ diag(ΨTΠa g1) ΩT =


γ 0

2β 0

0 0

 Φ diag(ΨTΠa g2) ΩT =


0 0

0 0

0 α

 , (7.2)

where α, β and γ are arbitrary nonzero numbers. This implies N∗∗ = 1, see (6.1). Next, we check

whether condition (6.3) holds. For a vector d partitioned as d = (d1 d2|d3)T we have

Φ diag(ΨTΠa d) ΩT =


d2 0

2d1 0

0 d3

 . (7.3)

If this matrix is to have rank at most 1, it follows that d1d3 = d2d3 = 0. Hence, ω′(d) ≤ 1

holds and the two subsets of columns in A Πa are partially unique. Note that this implies that

a2 is unique up to scaling, a1 and a3 are identified up to their linear span, and the two subsets of

columns may appear in a different order in Ā Πa. By translating condition (6.3) to B, it follows

that B Πb = [b1 b2|b3] is also partially unique.

The second example is taken from Bro et al. [6, section 3.2.4]. Here, we have a CONFAC model

with R = 6, R1 = 3, R2 = R3 = 6, and

Ψ =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 , Φ = Ω = I6 . (7.4)

Using Corollary 4.3, it can be verified that A is essentially unique. Lemma 4.6 with S = {1, 2}

yields that B and C are not essentially unique. Next, we show that B = [b1 b2|b3 b4|b5 b6] is

partially unique. Since Φ = Ω it immediately follows that C = [c1 c2|c3 c4|c5 c6] is also partially

unique. It can be verified that G2 has full column rank. Interchanging Ψ and Φ in the definition

of N∗∗ in (6.1), we obtain N∗∗ = 1. Interchanging Ψ and Φ in condition (6.3) yields

Ψ diag(ΦT d) ΩT =


d1 d2 0 0 0 0

0 0 d3 d4 0 0

0 0 0 0 d5 d6

 . (7.5)

If this matrix is to have rank at most 1, it follows that at least two of the pairs (d1, d2), (d3, d4),

and (d5, d6) are all-zero. Hence, for a vector d partitioned as d = (d1 d2|d3 d4|d5 d6)T we have

ω′(d) ≤ 1. This shows that B = [b1 b2|b3 b4|b5 b6] is partially unique. Bro et al. [6] show
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the essential uniqueness of A and partial uniqueness of B and C using an eigendecomposition

argument.

Note that our partial uniqueness condition for PARALIND can also be applied to CP in case

one of the component matrices has proportional columns. Indeed, let A (I × R − 1), B (J × R)

and C (K ×R) have full column rank, Φ = Ω = IR, and Ψ = [α e1|IR−1] (R− 1×R), with α 6= 0.

As in the last example, we can show that the first two columns of B and C are identified up to

their linear span only. This approach can be extended to the case where AΨ has several groups of

proportional columns as in the example above.

8 Uniqueness for constrained Tucker3 models

As explained at the beginning of Section 4, studying PARALIND uniqueness is analogous to study-

ing uniqueness of Tucker3 models with a constrained core array (i.e. containing many zero ele-

ments). Here, we discuss how the results in this paper may benefit the study of uniqueness of

constrained Tucker3 models, and how the latter benefits the study of PARALIND uniqueness.

Uniqueness results for Tucker3 models with a constrained core array have been obtained by a.o.

Kiers et al. [23] (for a family of constrained 3× 3× 3 cores), and Ten Berge and Smilde [41] (for a

particular constrained 5×3×3 core). See also Ten Berge [43] and the references therein. Ten Berge

and Smilde [41] express the need for systematic study of uniqueness in constrained Tucker3 models,

since current results resort to ad hoc arguments. This is exactly where the uniqueness conditions

in Sections 4 and 6 may be useful. They represent a systematic analysis of uniqueness that can

handle not only essential uniqueness but also partial uniqueness as defined in Definition 3.2. Any

Tucker3 model with a core array with several zero elements can be written as a PARALIND model,

and our PARALIND uniqueness conditions can be applied.

Conversely, the study of PARALIND uniqueness also benefits from the study of uniqueness of

constrained Tucker3 models. As an example, we consider the following uniqueness result from Kiers

et al. [23].

Proposition 8.1 Let (A,B,C) be a Tucker3 solution with 3× 3× 3 core array G with slices
1 0 0

0 0 b

0 a 0

 ,


0 0 d

0 1 0

c 0 0

 ,


0 f 0

e 0 0

0 0 1

 . (8.1)
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If A, B, and C have full column rank and (1 + ade + bcf)3 6= 27abcdef , then A, B, and C are

essentially unique. 2

The case a = b = c = d = e = 0 and f = 1 corresponds to a CONFAC model with

Ψ =


1 0 0 1

0 1 0 0

0 0 1 0

 , Φ =


1 0 0 0

0 1 0 1

0 0 1 0

 , Ω =


1 0 0 0

0 1 0 0

0 0 1 1

 . (8.2)

It can be verified that the condition (4.8) for essential uniqueness does not hold for A or B or

C. However, from Proposition 8.1 we know that all component matrices are essentially unique.

Analogously, the essential uniqueness of other CONFAC or PARALIND models with a core array

(2.4) of the form (8.1) can be obtained.

9 Uniqueness for the block decomposition in rank-(L,L, 1) terms

Here, we discuss uniqueness in the case where CONFAC is equal to the block decomposition in

rank-(L,L, 1) terms, introduced by De Lathauwer [12]. As explained in Section 2, we have A =

[A1| . . . |AF ], B = [B1| . . . |BF ], C = [c1 . . . cF ], Ψ = Φ = ILF , and Ω = IF ⊗ 1TL. Here, Af and

Bf are I×L and J ×L, respectively, and have full column rank for all f . First we show, analogous

to the approach of Jiang and Sidiropoulos [22] for CP, that if C has full column rank, then essential

uniqueness of C implies partial uniqueness of A and B. Next, also analogous to [22], we present

a necessary and sufficient condition for essential uniqueness of C. We show that this condition is

identical to condition (4.4) in Theorem 4.2 (translated to C).

Proposition 9.1 Let (A,B,C) be a solution for the block decomposition in rank-(L,L, 1) terms,

with C having full column rank. Suppose C is essentially unique as defined in Definition 3.1. Then

A and B are partially unique as defined in Definition 3.2, i.e. the parts Af and Bf are identified

up to their column spaces.

Proof. See Appendix. 2

As in Jiang and Sidiropoulos [22] we obtain the following necessary and sufficient condition for the

uniqueness of (A,B,C).
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Proposition 9.2 Let (A,B,C) be a solution for the block decomposition in rank-(L,L, 1) terms,

with C having full column rank. Then A and B are partially unique and C is essentially unique if

and only if

rank(d1 A1 BT
1 + · · · + dF AF BT

F ) ≤ L implies ω(d1, . . . , dF ) ≤ 1 . (9.1)

Proof. See Appendix. 2

The results in this section have been obtained by following the approach of Jiang and Sidiropoulos

[22]. Since that same approach is used to derive Theorem 4.2, it may not come as a surprise that

condition (9.1) is the same as condition (4.4) translated to C. Indeed, interchanging the roles of

(A,Ψ) and (C,Ω) we obtain N∗ = maxj(rank(diag(ωTj )) = L and

rank(B diag(ΩTd) AT ) = rank(d1 A1 BT
1 + · · · + dF AF BT

F ) . (9.2)

For CP, Jiang and Sidiropoulos [22] show that their difficult-to-check necessary and sufficient condi-

tion for uniqueness (this is (9.1) with L = 1) is implied by the condition that U(A,B) has full column

rank, where U(A,B) is a matrix containing products of 2× 2 minors of A and B. This condition is

much easier to check in practice. An alternative proof of this condition is given by De Lathauwer

[10], who uses a link between CP and the problem of simultaneous matrix diagonalization. Nion

and De Lathauwer [27] present a generalization of [10] to the block decomposition in rank-(L,L, 1)

terms.

Using an eigendecomposition argument, Sidiropoulos and Dimić [30] prove essential uniqueness

of C and partial uniqueness of the partitioned matrices A and B for a case where C does not have

full column rank. Here, we cannot use Proposition 9.2. However, using Theorem 4.2 for C and

Theorem 6.2 for A and B yields the same uniqueness properties as in [30].

10 Discussion

In this paper, we considered the PARALIND model which is a restricted CP model in which the

vectors forming the outer product arrays are linearly dependent according to a prespecified pattern.

An important special case of PARALIND is CONFAC, in which the linear dependencies take the

form of identical columns. PARALIND and CONFAC can also be considered as Tucker3 models

with a constrained core array. Moreover, some types of block decompositions are special cases of

CONFAC or PARALIND. Using the approach of Jiang and Sidiropoulos [22] for CP uniqueness, we
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proved an essential uniqueness condition for one PARALIND component matrix. As [22], we used

Kruskal’s Permutation Lemma [26] to obtain our result. We extended our approach by proving a

partial uniqueness condition for one PARALIND component matrix. For this, we made use of the

Equivalence Lemma for Partitioned Matrices proven by De Lathauwer [11].

We showed that our PARALIND uniqueness results can also be useful for the study of uniqueness

of Tucker3 models with a constrained core array. That is, we provide tools for a systematic analysis

of the latter, where so far only ad hoc arguments are used. Conversely, some uniqueness results

for constrained Tucker3 models are also applicable to PARALIND and CONFAC. In particular,

the Tucker3 uniqueness result of Kiers et al. [23] shows that our PARALIND essential uniqueness

condition is not necessary.

As a special case of CONFAC, we considered the block decomposition in rank-(L,L, 1) terms.

Using the approach of Jiang and Sidiropoulos [22], we showed that our essential uniqueness condition

for C also implies partial uniqueness of the partitioned matrices A and B.

Our PARALIND uniqueness conditions require solving a nonlinear system of equations in an

unknown vector d. In one particular case (see Lemma 4.4) we have obtained an easy-to-check

equivalent condition that does not involve the vector d. A subject of future research would be to

eliminate the vector d from the uniqueness conditions for a larger variety of PARALIND models,

in the spirit of studies of CP uniqueness carried out by Jiang and Sidiropoulos [22], De Lathauwer

[10], Stegeman et al. [37], and Stegeman [36].

Our uniqueness conditions are formulated for one component matrix only and ignore the rela-

tions between the column permutations and scalings or the column-block permutations and scalings

for different component matrices that are essentially or partially unique. However, as mentioned

in Section 1, in signal processing applications one is usually interested in the uniqueness properties

of one component matrix only. Hence, our approach has immediate pratical implications. Still, we

conjecture that uniqueness results for three component matrices together are possible to obtain,

possibly inspired by the proof of Kruskal’s [26] uniqueness condition for CP; see Stegeman and

Sidiropoulos [38].

Finally, we would like to point out that also other types of uniqueness occur in PARALIND

and CONFAC models and constrained Tucker3 models, than the essential uniqueness or the partial

uniqueness defined in Definitions 3.1 and 3.2, respectively. As an example, consider the PARALIND

model with constraint matrices (5.6). Numerical experiments show that alternatives for C = I4 are
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of the form

C =


∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

∗ ∗ ∗ ∗

 , (10.1)

where ∗ denotes a nonzero element. Hence, only the last column of C appears to be identified up

to scaling (or: only the first three rows are identified). This is not partial uniqueness according to

Definition 3.2. Analogous examples have been encountered for constrained Tucker3 models, see e.g.

Ten Berge and Smilde [41]. It would require a more detailed study of CONFAC and PARALIND

models to prove systematic uniqueness conditions for this type of uniqueness.
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Appendix: proofs

Proof of Theorem 6.2. The result follows if we show that the condition of the Equivalence Lemma

for Partitioned Matrices holds for the partitioned matrices A Πa and Ā Πa. As in the proof of (i)

of Proposition 3.3, the conditions of the theorem imply that Ā has full column rank. This implies

k′
Ā

= F , and the condition of the Equivalence Lemma for Partitioned Matrices becomes: for any

vector x such that ω′(ΠT
a ĀTx) ≤ 1, we have ω′(ΠT

aATx) ≤ ω′(ΠT
a ĀTx). For any x, we have

(B⊗C) G1 Πa (A Πa)Tx = (B̄⊗ C̄) G1 Πa (Ā Πa)Tx . (A.1)

Suppose ω′(ΠT
a ĀTx) = 0. Then the right-hand side of (A.1) equals the all-zero vector. Since

(B⊗C) G1 Πa has full column rank, it follows that also (A Πa)Tx is all-zero. Hence, ω′(ΠT
a ĀTx) =

0 implies ω′(ΠT
aATx) = 0.

It remains to show that ω′(ΠT
a ĀTx) = 1 implies ω′(ΠT

aATx) ≤ 1 Rewriting (A.1) in J × K

matrix form, we obtain

BΦ diag(ΨTΠa ΠT
aATx) ΩTCT = B̄Φ diag(ΨTΠa ΠT

a ĀTx) ΩT C̄T . (A.2)

Suppose ω′(ΠT
a ĀTx) = 1. Then ΨTΠa ΠT

a ĀTx is equal to ΨTΠa gf for some vector gf with the

same partition as Ā Πa and nonzero elements only in some part f . From (A.2), it follows that

rank(BΦ diag(ΨTΠa ΠT
aATx) ΩTCT ) = rank(B̄Φ diag(ΨTΠa ΠT

a ĀTx) ΩT C̄T )

≤ rank(Φ diag(ΨTΠa ΠT
a ĀTx) ΩT )

≤ max
f=1,...,F

max
gf

(
rank(Φ diag(ΨTΠa gf ) ΩT )

)
= N∗∗ . (A.3)

Let d = ΠT
aATx. If (A.3) implies ω′(d) ≤ 1, then the condition of the Equivalence Lemma for

Partitioned Matrices holds. The proof is complete by observing that this is exactly condition (6.2).2

Proof of Proposition 9.1. We define

MA,B = [(A1 �B1)1L · · · (AR �BR)1L] . (A.4)

The structured part of the IJ ×K matricized block decomposition in rank-(L,L, 1) terms equals

MA,B CT ; see [12]. Suppose we have an alternative decomposition (Ā, B̄, C̄) and C̄ = C Π Λ,

where Π is a permutation matrix and Λ is a nonsingular diagonal matrix. We have

MA,B CT = MĀ,B̄ C̄T = MĀ,B̄ Λ ΠT CT . (A.5)
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Since C has full column rank, it follows that MĀ,B̄ = MA,B Π Λ−1. Hence, MĀ,B̄ contains

the reordered and rescaled columns of MA,B. Suppose (Ā1 � B̄1)1L = λ (A2 � B2)1L. Then

Ā1 B̄T
1 = λA2 BT

2 . Since rank(Af BT
f ) = L, the column spaces of Ā1 and A2 are identical, and

the column spaces of B̄1 and B2 are identical. This completes the proof. 2

Proof of Proposition 9.2. We start by proving the following necessary and sufficient condition

for uniqueness:

MA,B d = (F�G)1L for some F (I × L) and G (J × L) implies ω(d) ≤ 1 . (A.6)

Condition (A.6) is analogous to Condition A for CP in [22]. First, we show show sufficiency. It

follows from Proposition 9.1 that we only need to show essential uniqueness of C. Suppose we have

an alternative decomposition (Ā, B̄, C̄). From the Permutation Lemma (Lemma 4.1) and C full

column rank, it follows that we need to show that ω(CTx) ≤ ω(C̄Tx) for all x with ω(C̄Tx) ≤ 1.

We have MA,B CTx = MĀ,B̄ C̄Tx. Condition (A.6) implies that MA,B has full column rank.

Indeed, since MA,B does not contain all-zero columns (the I × J matrix form of column f equals

AfBT
f , which has rank L), a rank deficient matrix would imply a linear combination of at least two

columns constituting the all-zero vector, and the latter can be written as (F�G)1L with F all-zero.

Since MA,B has full column rank, ω(C̄Tx) = 0 implies ω(CTx) = 0. Next, suppose ω(C̄Tx) = 1.

For d = C̄Tx, condition (A.6) implies that ω(d) ≤ 1. Therefore, the condition of the Permutation

Lemma holds and C is essentially unique.

Next, we show necessity of (A.6). Without loss of generality, we set C = IF (see Ten Berge

and Sidiropoulos [40]). Suppose condition (A.6) does not hold. In particular, we assume that

(A1 �B1)1L + (A2 �B2)1L = (F�G)1L (the general proof is analogous). Then

MA,B IF = [(F�G)1L (A2 �B2)1L · · · (AF �BF )1L]


1 0 0T

−1 1 0T

0 0 IF−2

 , (A.7)

where 0 is the (F − 2) × 1 all-zero vector. Hence, we obtain an alternative decomposition that

differs from (A,B,C). This completes the proof of the necessary and sufficient condition (A.6).

It remains to show that (A.6) is equivalent to condition (9.1). This can be seen as follows. The

I × J matrix form of MA,B d = (F �G)1L is d1 A1 BT
1 + · · · + dF AF BT

F = F GT , where the

rank of the latter is at most L. Since any I × J matrix of at most rank L can be written as F GT ,

conditions (A.6) and (9.1) are equivalent. This completes the proof. 2
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