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Abstra
t

We 
onsider the linear S
hrödinger equation and its dis
retization by split-step

methods where the part 
orresponding to the Lapla
e operator is approximated

by the midpoint rule. We show that the numeri
al solution 
oin
ides with the

exa
t solution of a modi�ed partial di�erential equation at ea
h time step. This

shows the existen
e of a modi�ed energy preserved by the numeri
al s
heme.

This energy is 
lose to the exa
t energy if the numeri
al solution is smooth. As a


onsequen
e, we give uniform regularity estimates for the numeri
al solution over

arbitrary long time.

MSC numbers: 65P10, 37M15

Keywords: S
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Ba
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1 Introdu
tion

We 
onsider the linear S
hrödinger equation

∂tu(t, x) = −i∆u(t, x) + iV (x)u(t, x), u(0, x) = u0(x), (1.1)

with initial 
ondition u0, and potential fun
tion V (x) ∈ R. The wave fun
tion

u(x, t) depends on x ∈ T
d
or R

d
and the time t > 0. The operator ∆ is the
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d-dimensional Lapla
e operator. In the following, we 
onsider mainly the 
ase

where x ∈ T
d
. The 
ase of the whole spa
e is totally similar. The equation (1.1)

is symple
ti
 and its solution preserves the L2
norm and the energy

u 7→
∫

Td

|∇u|2 + V |u|2dx = 〈u| −∆+ V |u〉. (1.2)

The solution of (1.1) is given by

u(t, x) = exp(it(−∆+ V ))u0(x),

and a standard method to simulate this solution is to 
onsider the approximation

exp(ih(−∆+ V )) ≃ exp(−ih∆) exp(ihV ) (1.3)

for a small stepsize h > 0. The solution at a given time t = nh is then approxi-

mated by

exp(it(−∆+ V ))u0 ≃
(

exp(−ih∆) exp(ihV )
)n

u0. (1.4)

The advantage of this method is that it yields a symple
ti
 s
heme preserving

the L2
norm. Moreover, it is very easy to implement by using the fast Fourier

transform: while the operator ∆ is diagonal in the Fourier spa
e, the operator V
a
ts as a multipli
ation operator in the phase spa
e. For �nite time, this splitting

s
heme yields a 
onsistent numeri
al s
heme: as h → 0 and if the numeri
al

solution is smooth, it 
an be shown that (1.4) yields a 
onvergent approximation

of order 1 in h, see [12℄. Considering higher order approximation su
h as the

symmetri
 Strang splitting or higher order splitting methods allows to obtain

higher order approximation s
heme under the assumption that the numeri
al

solution is smooth enough, see [12, 9℄.

Con
erning the long-time behaviour of su
h methods, very few results exist. In

[3℄, Dujardin & Faou showed the 
onservation of the regularity of the numeri
al

solution (1.4) in T
1
over very long time, provided the potential fun
tion is small

and smooth. Moreover, even in this situation, resonan
es e�e
ts appear for some

values of h: typi
ally when exp(−ih∆) posseses eigenvalues 
lose to 1.
In the �nite dimensional 
ase, the long time behaviour of splitting method


an be understood upon using the Baker-Campbell-Hausdor� formula (see for

instan
e [8℄). Roughly speaking, this result states that for two matri
es A and

B, we 
an write

exp(tA) exp(tB) = exp(tZ(t))

where Z(t) = A+B + t[A,B] + t2 · · · , with [A,B] = AB −BA the matrix 
om-

mutator. Hen
e the long time behaviour of the numeri
al solution 
orresponding

to (1.4) 
an be analyzed by 
onsidering the properties of the matrix Z(t) whi
h
is a small perturbation of the original operator A+B for small time t. However,
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to be valid, the BCH formula requires h to be small enough with respe
t to the

inverse of the norms of A and B. This makes this strategy impossible to apply

dire
tly for unbounded operators, unless a drasti
 CFL like 
ondition is used for

the full dis
retization of (1.1).

In this paper, we 
onsider the time dis
retization

exp(ih(−∆+ V )) ≃ exp(ihV )R(−ih∆) (1.5)

where

R(z) =
1 + z/2

1− z/2

is the stability fun
tion of the midpoint rule. Su
h an approximation is 
learly


onsistent with (1.1) if the solution is smooth enough. Moreover, it de�nes a

symple
ti
 numeri
al s
heme preserving the L2
norm, and easily implemented

by using the fast Fourier transform. Similar s
hemes have been 
onsidered in

[1, 13, 16℄.

Re
all that for all x ∈ R we have

1 + ix

1− ix
= exp(2i arctan(x)).

and hen
e we 
an write

R(−ih∆) =
1− ih∆/2

1 + ih∆/2
= exp(2i arctan

(

− h∆

2

)

),

where now 2 arctan
(

− h∆
2

)

is a bounded operator from L2
to itself. Using this

representation, we show in this work that there exists a symmetri
 operator S(h) :
L2 → L2

su
h that

exp(ihV )R(−ih∆) = exp(ihS(h)),

with

S(h) = −2

h
arctan

(h∆

2

)

+ Ṽ (h)

where Ṽ (h) : L2 → L2
is a modi�ed potential.

Hen
e, for all n and all initial value u0, we have

un =
(

exp(ihV )R(−ih∆)
)n
u0 = exp(inhS(h))u0

and hen
e the numeri
al solution un 
oin
ides with the exa
t solution of the

modi�ed equation

∂tu = S(h)u

at ea
h time step tn = nh. This implies that the asso
iated energy

〈u |S(h) |u〉
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is preserved along the numeri
al solution asso
iated with the split-step s
heme

(1.5). Moreover this energy is 
lose to the original energy (1.2) if u is smooth.

Using these properties, we give regularity bounds for the numeri
al solution over

arbitrary long time.

Su
h a result is to our knowledge the �rst extension in an in�nite dimen-

sional setting of the 
lassi
al ba
kward error analysis for Hamiltonian ordinary

di�erential equation (see [8, 11℄). Note in parti
ular that as in the 
ase of linear

ordinary di�erential equation, this result is valid for arbitrary long time, while

su
h results 
lassi
ally hold for exponentially long time with respe
t to the step

size for nonlinear ordinary di�erential equations.

It is worth noti
ing that su
h result does not hold hold for the splitting s
heme

(1.3) for whi
h it is known that resonan
e e�e
ts o

ur, see [3℄. The main di�er-

en
e between (1.5) and (1.3) lies in the high frequen
ies regularization e�e
t of

the midpoint rule: by essen
e, the logarithm of the operator R(−ih∆) is bounded
while the logarithm of exp(−ih∆) is not well de�ned when h∆ possesses eigen-

values 
lose to multiples of 2π. Note that this does not a�e
t the approximation

property of the s
heme for �nite time and smooth numeri
al solution.

Similarly this result does not automati
ally extend to situations where the

propagator R(−ih∆) is repla
ed by a higher order approximation of exp(−ih∆),
or for higher order splitting s
hemes (see [8, Chap III℄). We dis
uss this point in

the last se
tion of this work, and show by numeri
al experiments that in general

resonan
e e�e
ts appear.

Let us mention that in the nonlinear situation, results exist 
on
erning the

long-time behaviour of splitting s
heme applied to the nonlinear S
hrödinger

equation: see the re
ent works of Faou, Grébert & Paturel [4, 5℄ andGau
k-

ler & Lubi
h [6, 7℄ for the long time behaviour of splitting s
hemes applied to

NLS when the initial solution is small. However, to our knowledge no existen
e

results for a global modi�ed energy have been proved. Note that in this dire
tion,


on
erning the numeri
al approximation of solitary wave, Duran & Sanz-Serna

[2℄ have proved the existen
e of a modi�ed solitary wave over �nite time for the

numeri
al solution asso
iated with the midpoint rule.

2 Statement of the results

We represent a fun
tion u ∈ L2(Td) by its Fourier 
oe�
ients u = (uk)k∈Zd

de�ned as

uk =
1

(2π)d

∫

Td

u(x)eik·xdx

4



where for k = (k1, . . . , kd) ∈ Z
d
and x = (x1, · · · , xd) ∈ T

d
we set k · x =

k1x1 + · · · kdxd. We de�ne

‖u‖2 =
∑

k∈Zd

|uk|2, and ‖u‖2
Hs =

∑

k∈Zd

(1 + |k|2)s|uk|2

the L2
and the Hs

Sobolev norms on Td
, where for k = (k1, . . . , kd) ∈ Zd

, we set

|k|2 = k21 + · · · k2d.

For an operator A = (Akℓ)k,ℓ∈Zd a
ting in the Fourier spa
e C
Z
d
and for α > 1

we set

‖A‖
α
= sup

k,ℓ
|Akℓ|

(

1 + |k − ℓ|α
)

.

We denote by

Lα = {A = (Akℓ)k,ℓ∈Zd | ‖A‖
α
< ∞}.

If A ∈ Lα with α > d, we 
an easily show that A ∈ L(L2): see Lemma 4.2 below.

We say that A is symmetri
 if for all k, ℓ ∈ Z
d
, we have Akℓ = Aℓk, or

equivalently A∗ = A. In this situation, for u ∈ L2
, we set

〈u|A |u〉 =
∑

k,ℓ∈Zd

ūkAkℓuℓ = (u,Au) ∈ R

where ( · , · ) is the L2
produ
t in T

d
. For two operators A and B, we set

adA(B) = AB −BA.

Finally, with a real fun
tion W (x) we asso
iate the operator W = (Wkℓ)k,ℓ∈Zd

with 
omponents Wkℓ = Wk−ℓ where Wn denote the Fourier 
oe�
ient of W
asso
iated with n ∈ Z

d
. Thus the operator (Wkℓ)k,ℓ∈Zd a
ting in the Fourier

spa
e 
orresponds to the multipli
ation by W . Note moreover that with this

identi�
ation, ‖W‖
α
< ∞ with α > d implies that ‖W‖

L∞
< ∞.

The goal of this paper is to prove the following results:

Theorem 2.1 Let α > d, and assume that ‖V ‖
α
< ∞. There exist h0 > 0 and

a 
onstant C su
h that for all h ∈ (0, h0), there exists a symmetri
 operator S(h)
su
h that

exp(ihV )R(−ih∆) = exp(ihS(h)),

satisfying for all h,

S(h) = −2

h
arctan

(h∆

2

)

+ V (h) + hW (h)
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where V (h) and W (h) satisfy

‖V (h)‖
α
+ ‖W (h)‖

α
≤ C‖V ‖

α
, (2.1)

and where moreover V (h) is given by the 
onvergent series in Lα

V (h) =
(

d expZ0(h)

)−1
(V ) = V +

∑

k≥1

Bk

k!
ikadkZ0(h)

(V ) (2.2)

with Z0(h) = −2 arctan
(h∆

2

)

, and where the Bk are the Bernouilli numbers.

Remark 2.2 The size of h0 is only proportional to the inverse of ‖V ‖
α
, and

hen
e is a reasonably small parameter. In parti
ular it does not depend on a

possible spa
e dis
retization of the problem through a CFL 
ondition.

The following result shows that S(h) de�nes a �modi�ed� energy when applied

to smooth fun
tions:

Proposition 2.3 Let β ∈ [0, 1]. Assume that u ∈ H1+β(Td), then we have for

h ∈ (0, h0),
∣

∣〈u|S(h)|u〉 − 〈u| −∆+ V |u〉
∣

∣ ≤ Chβ‖u‖2
H1+β . (2.3)

where C depends on β and V .

The next results shows the 
onservation the modi�ed energy S(h) along the

numeri
al solution asso
iated with the split-step propagator. As a 
onsequen
e,

we give a regularity bound for the numeri
al solution over arbitrary long time.

Corollary 2.4 Assume that u0 ∈ L2(Td) and h ∈ (0, h0). For all n ≥ 1, we
de�ne

un =
(

exp(ihV )R(−ih∆)
)n
u0.

Then for all n we have

〈un|S(h)|un〉 = 〈u0|S(h)|u0〉. (2.4)

If moreover u0 ∈ H1
, then there exists a 
onstant C0 depending on V and α su
h

that for all n ∈ N,

∑

|k|≤1/
√
h

|k|2|unk |2 +
1

h

∑

|k|>1/
√
h

|unk |2 ≤ C0‖u0‖2H1
. (2.5)

This last result shows that H1
estimate are preserved over arbitrary long time

only for �low� modes |k| < 1/
√
h whereas the remaining high frequen
ies part is

small in L2
.

6



Remark 2.5 The results above obviously remain valid when 
onsidering the full

dis
retization of (1.1) by 
ollo
ation methods (see for instan
e [10℄), with esti-

mates independent of the spe
tral dis
retization parameter.

Remark 2.6 The previous results easily extend to the splitting s
heme

R(−ih∆) exp(ihV )

and to the Strang splitting

exp(ihV/2)R(−ih∆) exp(ihV/2). (2.6)

Note that in this last situation, the fa
t that the method is of order 2 allows to take
β ∈ [0, 2] in (2.3). See Se
tion 7 for further details on other possible extensions.

3 Formal series

We now start the proof of Theorem 2.1.

In the following, we set

Z0 := −2 arctan
(h∆

2

)

the diagonal operator with 
oe�
ients

λk = (Z0)kk = 2arctan
(h|k|2

2

)

, k ∈ Z
d.

We look for a fun
tion t → Z(t) taking value into the set of operator a
ting on

C
Z
d
su
h that Z(0) = Z0 and

∀ t ∈ [0, h], eitV eiZ0 = eiZ(t).

Derivating the equation in t, this yields (see [8℄)

iV eitV eiZ0 = i
(

d expiZ(t) Z
′(t)
)

eiZ(t).

Hen
e Z(t) has to satisfy the equation (see [8, Chap. III.4℄)

Z ′(t) = (d expiZ(t))
−1V = i

∑

k≥0

Bk

k!
adkiZ(t)(V ). (3.1)

and Z(0) = Z0. Here, the Bk are the Bernouilli numbers. Re
all that for z ∈ C,

|z| < 2π, the expression
∑

k≥0

Bk

k!
zk =

z

ez − 1

7



de�nes a power series of radius 2π.
We de�ne the formal series

Z(t) =
∑

ℓ≥0

tℓZℓ

where Zℓ, ℓ ≥ 1, are unknown operators.

Plugging this expression into (3.1) we �nd

∑

ℓ≥1

ℓtℓ−1Zℓ =
∑

k≥0

Bk

k!

(

i
∑

ℓ≥0

tℓadZℓ

)k
(V )

=
∑

ℓ≥0

tℓ
∑

k≥0

Bk

k!
ik

∑

ℓ1+···+ℓk=ℓ

adZℓ1
· · · adZℓk

(V ).

Identifying the 
oe�
ients in the formal series, we �nd the indu
tion formula:

∀ ℓ ≥ 1, (ℓ+ 1)Zℓ+1 =
∑

k≥0

Bk

k!
ik

∑

ℓ1+···+ℓk=ℓ

adZℓ1
· · · adZℓk

(V ). (3.2)

Note that we easily show by indu
tion that for all ℓ, Zℓ is symmetri
. For ℓ = 1,
this equation yields

Z1 =
∑

k≥0

Bk

k!
ikadkZ0

(V ). (3.3)

Note that the main di�eren
e with the �nite dimensional situation is that the

��rst� term in the expansion is given by an in�nite series and that it depends on

the small parameter h through the operator Z0. The key to 
ontrol this term is

to estimate the norm of the operator adZ0
.

4 Proof of Theorem 2.1

Lemma 4.1 Assume that α > d. There exist a 
onstant Cα su
h that for all

operator A and B,

‖AB‖
α
≤ Cα‖A‖α ‖B‖

α
.

Proof. We have for k, ℓ ∈ Z
d
,

|(AB)kℓ|(1 + |k − ℓ|α) ≤ (1 + |k − ℓ|α)
∑

p∈Zd

|Akp||Bkp|

≤ ‖A‖
α
‖B‖

α

∑

p∈Zd

1 + |k − ℓ|α
(1 + |k − p|α)(1 + |p− ℓ|α)

But as the fun
tion x → xα is 
onvex for x > 0, we have

1 + |k − p|α ≤ 1 +
(

|k − ℓ|+ |ℓ− p|
)α ≤ 2α−1

(

1 + |k − ℓ|α + 1 + |ℓ− p|α
)

.
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Hen
e we have

|(AB)kℓ|(1 + |k − ℓ|α) ≤ 2α−1‖A‖
α
‖B‖

α

∑

p∈Zd

( 1

1 + |k − p|α +
1

1 + |p− ℓ|α
)

and this shows the result, as α > d.

Lemma 4.2 Let α > d. There exist a 
onstant Mα su
h that for all symmetri


operator B and for all u ∈ L2
, we have

|〈u|B|u〉| ≤ Mα‖B‖
α
‖u‖2 .

Proof. We have

|〈u|B|u〉| ≤
∑

k,ℓ

|Bkℓ||uk||uℓ|

≤ ‖B‖
α

∑

k,ℓ

1

1 + |k − ℓ|α |uk||uℓ|

≤ ‖B‖
α

∑

k,ℓ

1

1 + |k − ℓ|α |uk|
2

using the formula |uk||uℓ| ≤ 1
2(|uk|2 + |uℓ|2). This yields the result.

Lemma 4.3 Re
all that Z0 = 2arctan
(h∆

2

)

, and let W = (Wkℓ)k,ℓ∈Zd be an

operator. We have for all α > 1

‖adZ0
W‖

α
≤ π‖W‖

α
. (4.1)

Proof. For k, ℓ ∈ Z
d
we have as Z0 is diagonal

(

adZ0
W
)

kℓ
= (λk − λℓ)Wkℓ,

=
(

2 arctan(h|k|2/2) − 2 arctan(h|ℓ|2/2)
)

Wkℓ.

Hen
e we have for all k, ℓ ∈ Z
d
,

∣

∣

(

adZ0
W
)

kℓ

∣

∣ ≤ π|Wkℓ|
and this shows the result.

Using this Lemma, we see using (3.3) that

‖Z1‖α ≤ ‖V ‖
α

∑

k≥0

|Bk|
k!

πk ≤ C‖V ‖
α

(4.2)

is bounded. In 
omponents, we 
al
ulate using the expression of adZ0
that

(Z1)kℓ = Vkℓ
i(λk − λℓ)

exp(i(λk − λℓ))− 1
(4.3)

9



Note that for any bounded operator A and B, we always have

‖adA(B)‖
α
≤ 2Cα‖A‖α ‖B‖

α

where Cα is given by Lemma 4.1 We de�ne now the following numbers:

ζ0 = π and ζℓ = 2Cα‖Zℓ‖α , for ℓ ≥ 1.

Using (3.2) and Lemma 4.3, we easily see that we have the estimates

∀ ℓ ≥ 1,
1

2Cα
(ℓ+ 1)ζℓ+1 ≤ ‖V ‖

α

∑

k≥0

|Bk|
k!

∑

ℓ1+···+ℓk=ℓ

ζℓ1 · · · ζℓk .

Now for any ρ su
h that π < ρ < 2π, there exist a 
onstant M su
h that for all

k, |Bk| ≤ k!Mρ−k
. Hen
e we 
an write

∀ ℓ ≥ 1,
1

2Cα
(ℓ+ 1)ζℓ+1 ≤ M‖V ‖

α

∑

k≥0

ρ−k
∑

ℓ1+···+ℓk=ℓ

ζℓ1 · · · ζℓk .

Let ζ(t) be the formal series ζ(t) =
∑

ℓ≥0 t
ℓζℓ. Multiplying the previous equation

by tℓ and summing over ℓ ≥ 0, we �nd

1

2Cα
ζ ′(t) ≤ M‖V ‖

α

∑

k≥0

ρ−kζ(t)k = M‖V ‖
α

1

1− ζ(t)/ρ
.

Let η(t) be the solution of the di�erential equation:

η′(t) = 2MCα‖V ‖
α

1

1− η(t)/ρ
, η(0) = π.

Taking ρ = 3π/2, we easily see that for t ≤ π
32MCα‖V ‖

α

, the solution 
an be

written

η(t) =
3π

2

(

1−
√

1

9
− 16

3
MCα‖V ‖

α
t

)

,

and de�nes an analyti
 fun
tion of t. Expanding η(t) =
∑

ℓ≥0 t
ℓηℓ, we see that

the 
oe�
ients satisfy the relations η0 = π and

∀ ℓ ≥ 1,
1

2Cα
(ℓ+ 1)ηℓ+1 = M‖V ‖

∑

k≥0

ρ−k
∑

ℓ1+···+ℓk=ℓ

ηℓ1 · · · ηℓk

with ρ = 3π
2 . By indu
tion, this shows that ζℓ ≤ ηℓ. Moreover, for all z ∈ C with

|z| ≤ π
32MCα‖V ‖

α

, we have as the 
oe�
ients ζℓ are positive,

|ζ(z)| =
∣

∣

∣

∣

∣

∞
∑

ℓ=0

ζℓz
ℓ

∣

∣

∣

∣

∣

≤
∞
∑

ℓ=0

ζℓ|z|ℓ = ζ(|z|) ≤ η(|z|) ≤ 3π

2
.
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Using Cau
hy estimates, we see that

∀ ℓ ≥ 1, ‖Zℓ‖ =
1

2Cα
ζℓ =

1

2Cα

ζ(ℓ)(0)

ℓ!
≤ 3π

4Cα

(32MCα‖V ‖
α

π

)ℓ
.

The theorem is now proved by setting

V (h) = Z1, and W (h) =
∑

ℓ≥2

hℓ−2Zℓ

whi
h de�nes a 
onvergent power series for |h| < h0 =
π

32MCα‖V ‖
α

. The estimate

(2.1) on V (h) is then an easy 
onsequen
e of (4.2). The estimate (2.1) on W (h)
is easily proved.

5 Modi�ed energy

We give now the proof of Proposition 2.3.

For all x ∈ R, we have

arctan(x)− x = −
∫ x

0

y2

1 + y2
dy.

For k ∈ Z
d
, this yields

2

h
arctan

(h|k|2
2

)

− |k|2 = −2

h

∫ h|k|2/2

0

y2

1 + y2
dy.

Let γ ∈ [0, 2], it is 
lear that for all y ∈ R,

y2

1 + y2
≤ yγ .

Hen
e we have for all k ∈ Z
d
,

∣

∣

∣

2

h
arctan

(h|k|2
2

)

− |k|2
∣

∣

∣
≤ 2

h

∫ h|k|2/2

0
yγdy ≤ Chγ |k|2γ+2.

This shows that for all v,

∣

∣

∣
〈v| − 2

h
arctan

(h∆

2

)

|v〉 − 〈v| −∆|v〉
∣

∣

∣
≤ Chγ‖v‖2

H1+γ . (5.1)

Now we have

〈v |V (h) | v〉 − 〈v |V | v〉 =
∑

k≥1

Bk

k!
〈v | ikadkZ0(h)

(V ) | v〉

11



Re
all that Z0(h) = −2 arctan
(

h∆
2

)

is a positive operator. The operator Z0(h)
1/2

is hen
e well de�ned, and for an operator W we have in 
omponents

(Z0(h)
1/2W )kℓ =

(

2 arctan
(h|k|2

2

)

)1/2
Wkℓ.

Hen
e we have for all α > 1,

‖Z0(h)
1/2W‖

α
≤

√
π‖W‖

α
and ‖WZ0(h)

1/2‖
α
≤

√
π‖W‖

α
.

Now using Lemma 4.2 and the fa
t that Z0(h) is symmetri
, we have for all v
and all operator W

|〈v | adZ0(h)(W ) |v〉| ≤ (‖Z0(h)
1/2W‖

α
+ ‖WZ0(h)

1/2‖
α
)‖Z0(h)

1/2v‖ ‖v‖

≤ 2
√
π‖W‖

α
‖Z0(h)

1/2v‖ ‖v‖ .

Hen
e we have

∣

∣〈v |V (h) | v〉 − 〈v |V | v〉
∣

∣ ≤ 2
∑

k≥1

|Bk|
k!

πk−1/2‖V ‖
α
‖Z0(h)

1/2v‖ ‖v‖

≤ C‖V ‖
α
‖Z0(h)

1/2v‖ ‖v‖

Using (5.1) with γ = 0, this shows that

∣

∣〈v |V (h) | v〉 − 〈v |V | v〉
∣

∣ ≤ C‖V ‖
α
h‖u‖

H1
‖u‖ .

Finally, we easily have using (2.1) that

∣

∣〈v |W (h) | v〉
∣

∣ ≤ C‖V ‖
α
h‖u‖2 .

Summing the previous inequalities with γ = β in (5.1) we have that

〈u|S(h)|u〉 − 〈u|∆+ V |u〉 ≤ Chβ‖u‖2
H1+β + C‖V ‖

α
h‖u‖

H1 ‖u‖

and this yields the result.

6 Bounds for the numeri
al solution

We prove now Corollary 2.4. Note that Eqn. (2.4) is 
lassi
.

Using the fa
t that V is symmetri
, we have for all n, ‖un‖ = ‖u0‖ where

‖ · ‖ denotes the L2
norm.

12



Using Lemma 4.2, we 
an write for all v ∈ L2
,

〈v|S(h)|v〉 = 1

h
〈v| − 2 arctan

(h∆

2

)

|v〉+ 〈v|V (h) + hW (h) | v〉

when
e using (2.1), Lemma 4.2 and the fa
t that Z0 is a positive operator

|〈v|S(h)|v〉| ≥ 1

h
〈v| − 2 arctan

(h∆

2

)

|v〉 − C‖V ‖
α
‖v‖2 .

Hen
e using (2.4) we have that for all n,

1

h
〈un| − 2 arctan

(h∆

2

)

|un〉 ≤ 〈un|S(h)|un〉+ C‖V ‖
α
‖un‖2

≤ 〈u0|S(h)|u0〉+ C‖V ‖
α
‖u0‖2 .

Using (2.3) with β = 0, we �nd that there exists a 
onstant su
h that for all n,

1

h
〈un| − 2 arctan

(h∆

2

)

|un〉 ≤ C0‖u0‖2H1 . (6.1)

Now we have for all x > 0

x >
1

2
=⇒ arctan x > arctan

(1

2

)

and x ≤ 1

2
=⇒ arctan x >

2x

3
. (6.2)

Applying this inequality to (6.1) by 
onsidering the set of frequen
ies h|k|2 ≤ 1
and h|k|2 > 1 immediately yields the result.

7 Higher order approximations

In this se
tion we further investigate the long time behaviour by numeri
al sim-

ulations and 
onsider higher-order numeri
al s
hemes.

We perform the simulations with d = 1, u0 = 2/(2 − cos(x)) and V (x) =
cos(x)+ sin(6x). In the next �gures, we show the maximal size of the os
illations

of the trun
ated H1
norm

(

20
∑

k=−20

(1 + |k|2)|unk |2
)1/2

(7.1)

along the numeri
al solution un from t = 0 to t = 50, and for stepsize ranging

from h = 0.01 to h = 0.1.
As expe
ted, we see that this quantity is uniformly bounded for the splitting

s
heme (1.5) (Figure 1).
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Figure 1: Midpoint approximation of the exponential.

As explained in Remark 2.6, our methods easily extends to the Strang splitting

s
heme (2.6). Considering the alternative Strang splitting

R(−ih∆/2) exp(−ihV )R(−ih∆/2),

the same argument does not apply straightforwardly. The obstru
tion o

urs in

Lemma 4.3 where R(−ih∆) is repla
ed by R(−ih∆/2)2 in the de�nition of the

operator Z0, transforming π by 2π in inequality (4.1).

Nevertheless, as shown in Figure 2, the same uniform 
onservation phenomenon


an be observed. This might be justi�ed using the fa
t that the operator Z1 de-

�ned in (4.3) still makes sense in this situation.

Next we 
onsider s
hemes of the form

exp(ihV )
s
∏

j=1

R(−γjh∆) (7.2)

where γj ∈ R, j = 1, . . . , s are 
oe�
ients satisfying γ1 + . . . + γs = 1. Su
h an

approximation will be a higher order approximation of the splitting s
heme (1.3)

for suitable γj satisfying given algebrai
 
onditions (see for instan
e [8, Chap

III℄). Of 
ourse, all these s
hemes remain symple
ti
 and preserve the L2
norm.

0.02 0.04 0.06 0.08 0.1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

h

Figure 2: Strang splitting R(−ih∆/2) exp(−ihV )R(−ih∆/2).
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In Figures 3, 4 and 5, we 
onsider su

essively 
lassi
al symmetri
 
omposition

methods of order 4, 6 and 8 (see [8, Chap V℄ and the referen
es therein). The

method of order 4 is the triple jump method for whi
h s = 3,

γ1 = γ3 =
1

2− 21/3
, and γ2 = − 21/3

2− 21/3
. (7.3)

The methods of order 6 
orresponds to the methods given by Yoshida (see [15℄

and [8, Se
tion V.3.2℄) and requires s = 7, while the method of order 8 is the

methods given by Suzuki & Umeno, see [14℄, and requires s = 15.
What we observe is that for the method of order 4, the situation is similar

to the previous 
ases (regularity 
onservation), but for the methods of order 6
and 8, resonan
es appear: for spe
i�
 values of the stepsize, the regularity of the

numeri
al solution deteriorates.

0.02 0.04 0.06 0.08 0.1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

h

Figure 3: Order 4 approximation of the exponential.
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0.7

0.8

0.9

h

Figure 4: Order 6 approximation of the exponential.

Finally, we plot in Figure 6 the same simulation for the �exa
t� splitting

s
heme (1.5). In this last situation, it is known that the resonan
es appear for

step sizes h su
h that h(k2 − ℓ2) is 
lose to a multiple of 2π for some k and ℓ ∈ Z

(see [3℄).

The fa
t that the method of order 4 possesses a modi�ed energy 
an easily

seen: With the values of γ1, γ2 and γ3 given in (7.3), we have

R(−γ1h∆)R(−γ2h∆)R(−γ3h∆) = exp(iZ0)
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Figure 5: Order 8 approximation of the exponential.

0.02 0.04 0.06 0.08 0.1
1

1.2

1.4

1.6

1.8

2

h

Figure 6: Exa
t splitting.

where

Z0 = −4 arctan
( h∆

2(2− 21/3)

)

+ 2arctan
( 21/3h∆

2(2 − 21/3)

)

= −G(h∆/2) (7.4)

with

G(x) = 4 arctan
( x

2− 21/3
)

− 2 arctan
( 21/3x

2− 21/3
)

.

It is easy to see that for all x > 0 G(x) is an in
reasing fun
tion su
h that

G(x) ∈ (0, π). Hen
e Lemma 4.3 remains valid for this Z0. Using the same

te
hniques as before, and bounds like (6.2) still valid for the fun
tion G(x), we

an show the existen
e of a modi�ed energy for this method, explaining the

absen
e of resonan
es.

Note that in the same spirit, we 
ould 
onsider symmetri
 
omposition meth-

ods based on the order two Strang splitting (2.6) to build higher order methods

of the form

s
∏

j=1

exp(iγjhV/2)R(−iγjh∆) exp(iγjhV/2)

to approximate (1.1). A general strategy to show the existen
e of a modi�ed

energy for this method would be to sear
h for an operator Z(t) su
h that for all

16



t > 0,

exp(iZ(t)) =

s
∏

j=1

exp(iγjtV/2)R(−iγjh∆) exp(iγjtV/2)

with

Z0 = −
s
∑

j=1

2 arctan(hγj∆/2).

In the 
ase of the triple jump method, this operator 
an be written (7.4), and the

same argument as above shows the existen
e of a modi�ed energy for this method

by using the same kind of te
hniques. We do not give the details here. The

derivation of higher order methods possessing a modi�ed energy is an interesting

question that will be addressed in future studies.
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