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Abstrat

We onsider the linear Shrödinger equation and its disretization by split-step

methods where the part orresponding to the Laplae operator is approximated

by the midpoint rule. We show that the numerial solution oinides with the

exat solution of a modi�ed partial di�erential equation at eah time step. This

shows the existene of a modi�ed energy preserved by the numerial sheme.

This energy is lose to the exat energy if the numerial solution is smooth. As a

onsequene, we give uniform regularity estimates for the numerial solution over

arbitrary long time.
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1 Introdution

We onsider the linear Shrödinger equation

∂tu(t, x) = −i∆u(t, x) + iV (x)u(t, x), u(0, x) = u0(x), (1.1)

with initial ondition u0, and potential funtion V (x) ∈ R. The wave funtion

u(x, t) depends on x ∈ T
d
or R

d
and the time t > 0. The operator ∆ is the
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d-dimensional Laplae operator. In the following, we onsider mainly the ase

where x ∈ T
d
. The ase of the whole spae is totally similar. The equation (1.1)

is sympleti and its solution preserves the L2
norm and the energy

u 7→
∫

Td

|∇u|2 + V |u|2dx = 〈u| −∆+ V |u〉. (1.2)

The solution of (1.1) is given by

u(t, x) = exp(it(−∆+ V ))u0(x),

and a standard method to simulate this solution is to onsider the approximation

exp(ih(−∆+ V )) ≃ exp(−ih∆) exp(ihV ) (1.3)

for a small stepsize h > 0. The solution at a given time t = nh is then approxi-

mated by

exp(it(−∆+ V ))u0 ≃
(

exp(−ih∆) exp(ihV )
)n

u0. (1.4)

The advantage of this method is that it yields a sympleti sheme preserving

the L2
norm. Moreover, it is very easy to implement by using the fast Fourier

transform: while the operator ∆ is diagonal in the Fourier spae, the operator V
ats as a multipliation operator in the phase spae. For �nite time, this splitting

sheme yields a onsistent numerial sheme: as h → 0 and if the numerial

solution is smooth, it an be shown that (1.4) yields a onvergent approximation

of order 1 in h, see [12℄. Considering higher order approximation suh as the

symmetri Strang splitting or higher order splitting methods allows to obtain

higher order approximation sheme under the assumption that the numerial

solution is smooth enough, see [12, 9℄.

Conerning the long-time behaviour of suh methods, very few results exist. In

[3℄, Dujardin & Faou showed the onservation of the regularity of the numerial

solution (1.4) in T
1
over very long time, provided the potential funtion is small

and smooth. Moreover, even in this situation, resonanes e�ets appear for some

values of h: typially when exp(−ih∆) posseses eigenvalues lose to 1.
In the �nite dimensional ase, the long time behaviour of splitting method

an be understood upon using the Baker-Campbell-Hausdor� formula (see for

instane [8℄). Roughly speaking, this result states that for two matries A and

B, we an write

exp(tA) exp(tB) = exp(tZ(t))

where Z(t) = A+B + t[A,B] + t2 · · · , with [A,B] = AB −BA the matrix om-

mutator. Hene the long time behaviour of the numerial solution orresponding

to (1.4) an be analyzed by onsidering the properties of the matrix Z(t) whih
is a small perturbation of the original operator A+B for small time t. However,
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to be valid, the BCH formula requires h to be small enough with respet to the

inverse of the norms of A and B. This makes this strategy impossible to apply

diretly for unbounded operators, unless a drasti CFL like ondition is used for

the full disretization of (1.1).

In this paper, we onsider the time disretization

exp(ih(−∆+ V )) ≃ exp(ihV )R(−ih∆) (1.5)

where

R(z) =
1 + z/2

1− z/2

is the stability funtion of the midpoint rule. Suh an approximation is learly

onsistent with (1.1) if the solution is smooth enough. Moreover, it de�nes a

sympleti numerial sheme preserving the L2
norm, and easily implemented

by using the fast Fourier transform. Similar shemes have been onsidered in

[1, 13, 16℄.

Reall that for all x ∈ R we have

1 + ix

1− ix
= exp(2i arctan(x)).

and hene we an write

R(−ih∆) =
1− ih∆/2

1 + ih∆/2
= exp(2i arctan

(

− h∆

2

)

),

where now 2 arctan
(

− h∆
2

)

is a bounded operator from L2
to itself. Using this

representation, we show in this work that there exists a symmetri operator S(h) :
L2 → L2

suh that

exp(ihV )R(−ih∆) = exp(ihS(h)),

with

S(h) = −2

h
arctan

(h∆

2

)

+ Ṽ (h)

where Ṽ (h) : L2 → L2
is a modi�ed potential.

Hene, for all n and all initial value u0, we have

un =
(

exp(ihV )R(−ih∆)
)n
u0 = exp(inhS(h))u0

and hene the numerial solution un oinides with the exat solution of the

modi�ed equation

∂tu = S(h)u

at eah time step tn = nh. This implies that the assoiated energy

〈u |S(h) |u〉
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is preserved along the numerial solution assoiated with the split-step sheme

(1.5). Moreover this energy is lose to the original energy (1.2) if u is smooth.

Using these properties, we give regularity bounds for the numerial solution over

arbitrary long time.

Suh a result is to our knowledge the �rst extension in an in�nite dimen-

sional setting of the lassial bakward error analysis for Hamiltonian ordinary

di�erential equation (see [8, 11℄). Note in partiular that as in the ase of linear

ordinary di�erential equation, this result is valid for arbitrary long time, while

suh results lassially hold for exponentially long time with respet to the step

size for nonlinear ordinary di�erential equations.

It is worth notiing that suh result does not hold hold for the splitting sheme

(1.3) for whih it is known that resonane e�ets our, see [3℄. The main di�er-

ene between (1.5) and (1.3) lies in the high frequenies regularization e�et of

the midpoint rule: by essene, the logarithm of the operator R(−ih∆) is bounded
while the logarithm of exp(−ih∆) is not well de�ned when h∆ possesses eigen-

values lose to multiples of 2π. Note that this does not a�et the approximation

property of the sheme for �nite time and smooth numerial solution.

Similarly this result does not automatially extend to situations where the

propagator R(−ih∆) is replaed by a higher order approximation of exp(−ih∆),
or for higher order splitting shemes (see [8, Chap III℄). We disuss this point in

the last setion of this work, and show by numerial experiments that in general

resonane e�ets appear.

Let us mention that in the nonlinear situation, results exist onerning the

long-time behaviour of splitting sheme applied to the nonlinear Shrödinger

equation: see the reent works of Faou, Grébert & Paturel [4, 5℄ andGauk-

ler & Lubih [6, 7℄ for the long time behaviour of splitting shemes applied to

NLS when the initial solution is small. However, to our knowledge no existene

results for a global modi�ed energy have been proved. Note that in this diretion,

onerning the numerial approximation of solitary wave, Duran & Sanz-Serna

[2℄ have proved the existene of a modi�ed solitary wave over �nite time for the

numerial solution assoiated with the midpoint rule.

2 Statement of the results

We represent a funtion u ∈ L2(Td) by its Fourier oe�ients u = (uk)k∈Zd

de�ned as

uk =
1

(2π)d

∫

Td

u(x)eik·xdx
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where for k = (k1, . . . , kd) ∈ Z
d
and x = (x1, · · · , xd) ∈ T

d
we set k · x =

k1x1 + · · · kdxd. We de�ne

‖u‖2 =
∑

k∈Zd

|uk|2, and ‖u‖2
Hs =

∑

k∈Zd

(1 + |k|2)s|uk|2

the L2
and the Hs

Sobolev norms on Td
, where for k = (k1, . . . , kd) ∈ Zd

, we set

|k|2 = k21 + · · · k2d.

For an operator A = (Akℓ)k,ℓ∈Zd ating in the Fourier spae C
Z
d
and for α > 1

we set

‖A‖
α
= sup

k,ℓ
|Akℓ|

(

1 + |k − ℓ|α
)

.

We denote by

Lα = {A = (Akℓ)k,ℓ∈Zd | ‖A‖
α
< ∞}.

If A ∈ Lα with α > d, we an easily show that A ∈ L(L2): see Lemma 4.2 below.

We say that A is symmetri if for all k, ℓ ∈ Z
d
, we have Akℓ = Aℓk, or

equivalently A∗ = A. In this situation, for u ∈ L2
, we set

〈u|A |u〉 =
∑

k,ℓ∈Zd

ūkAkℓuℓ = (u,Au) ∈ R

where ( · , · ) is the L2
produt in T

d
. For two operators A and B, we set

adA(B) = AB −BA.

Finally, with a real funtion W (x) we assoiate the operator W = (Wkℓ)k,ℓ∈Zd

with omponents Wkℓ = Wk−ℓ where Wn denote the Fourier oe�ient of W
assoiated with n ∈ Z

d
. Thus the operator (Wkℓ)k,ℓ∈Zd ating in the Fourier

spae orresponds to the multipliation by W . Note moreover that with this

identi�ation, ‖W‖
α
< ∞ with α > d implies that ‖W‖

L∞
< ∞.

The goal of this paper is to prove the following results:

Theorem 2.1 Let α > d, and assume that ‖V ‖
α
< ∞. There exist h0 > 0 and

a onstant C suh that for all h ∈ (0, h0), there exists a symmetri operator S(h)
suh that

exp(ihV )R(−ih∆) = exp(ihS(h)),

satisfying for all h,

S(h) = −2

h
arctan

(h∆

2

)

+ V (h) + hW (h)
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where V (h) and W (h) satisfy

‖V (h)‖
α
+ ‖W (h)‖

α
≤ C‖V ‖

α
, (2.1)

and where moreover V (h) is given by the onvergent series in Lα

V (h) =
(

d expZ0(h)

)−1
(V ) = V +

∑

k≥1

Bk

k!
ikadkZ0(h)

(V ) (2.2)

with Z0(h) = −2 arctan
(h∆

2

)

, and where the Bk are the Bernouilli numbers.

Remark 2.2 The size of h0 is only proportional to the inverse of ‖V ‖
α
, and

hene is a reasonably small parameter. In partiular it does not depend on a

possible spae disretization of the problem through a CFL ondition.

The following result shows that S(h) de�nes a �modi�ed� energy when applied

to smooth funtions:

Proposition 2.3 Let β ∈ [0, 1]. Assume that u ∈ H1+β(Td), then we have for

h ∈ (0, h0),
∣

∣〈u|S(h)|u〉 − 〈u| −∆+ V |u〉
∣

∣ ≤ Chβ‖u‖2
H1+β . (2.3)

where C depends on β and V .

The next results shows the onservation the modi�ed energy S(h) along the

numerial solution assoiated with the split-step propagator. As a onsequene,

we give a regularity bound for the numerial solution over arbitrary long time.

Corollary 2.4 Assume that u0 ∈ L2(Td) and h ∈ (0, h0). For all n ≥ 1, we
de�ne

un =
(

exp(ihV )R(−ih∆)
)n
u0.

Then for all n we have

〈un|S(h)|un〉 = 〈u0|S(h)|u0〉. (2.4)

If moreover u0 ∈ H1
, then there exists a onstant C0 depending on V and α suh

that for all n ∈ N,

∑

|k|≤1/
√
h

|k|2|unk |2 +
1

h

∑

|k|>1/
√
h

|unk |2 ≤ C0‖u0‖2H1
. (2.5)

This last result shows that H1
estimate are preserved over arbitrary long time

only for �low� modes |k| < 1/
√
h whereas the remaining high frequenies part is

small in L2
.

6



Remark 2.5 The results above obviously remain valid when onsidering the full

disretization of (1.1) by olloation methods (see for instane [10℄), with esti-

mates independent of the spetral disretization parameter.

Remark 2.6 The previous results easily extend to the splitting sheme

R(−ih∆) exp(ihV )

and to the Strang splitting

exp(ihV/2)R(−ih∆) exp(ihV/2). (2.6)

Note that in this last situation, the fat that the method is of order 2 allows to take
β ∈ [0, 2] in (2.3). See Setion 7 for further details on other possible extensions.

3 Formal series

We now start the proof of Theorem 2.1.

In the following, we set

Z0 := −2 arctan
(h∆

2

)

the diagonal operator with oe�ients

λk = (Z0)kk = 2arctan
(h|k|2

2

)

, k ∈ Z
d.

We look for a funtion t → Z(t) taking value into the set of operator ating on

C
Z
d
suh that Z(0) = Z0 and

∀ t ∈ [0, h], eitV eiZ0 = eiZ(t).

Derivating the equation in t, this yields (see [8℄)

iV eitV eiZ0 = i
(

d expiZ(t) Z
′(t)
)

eiZ(t).

Hene Z(t) has to satisfy the equation (see [8, Chap. III.4℄)

Z ′(t) = (d expiZ(t))
−1V = i

∑

k≥0

Bk

k!
adkiZ(t)(V ). (3.1)

and Z(0) = Z0. Here, the Bk are the Bernouilli numbers. Reall that for z ∈ C,

|z| < 2π, the expression
∑

k≥0

Bk

k!
zk =

z

ez − 1
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de�nes a power series of radius 2π.
We de�ne the formal series

Z(t) =
∑

ℓ≥0

tℓZℓ

where Zℓ, ℓ ≥ 1, are unknown operators.

Plugging this expression into (3.1) we �nd

∑

ℓ≥1

ℓtℓ−1Zℓ =
∑

k≥0

Bk

k!

(

i
∑

ℓ≥0

tℓadZℓ

)k
(V )

=
∑

ℓ≥0

tℓ
∑

k≥0

Bk

k!
ik

∑

ℓ1+···+ℓk=ℓ

adZℓ1
· · · adZℓk

(V ).

Identifying the oe�ients in the formal series, we �nd the indution formula:

∀ ℓ ≥ 1, (ℓ+ 1)Zℓ+1 =
∑

k≥0

Bk

k!
ik

∑

ℓ1+···+ℓk=ℓ

adZℓ1
· · · adZℓk

(V ). (3.2)

Note that we easily show by indution that for all ℓ, Zℓ is symmetri. For ℓ = 1,
this equation yields

Z1 =
∑

k≥0

Bk

k!
ikadkZ0

(V ). (3.3)

Note that the main di�erene with the �nite dimensional situation is that the

��rst� term in the expansion is given by an in�nite series and that it depends on

the small parameter h through the operator Z0. The key to ontrol this term is

to estimate the norm of the operator adZ0
.

4 Proof of Theorem 2.1

Lemma 4.1 Assume that α > d. There exist a onstant Cα suh that for all

operator A and B,

‖AB‖
α
≤ Cα‖A‖α ‖B‖

α
.

Proof. We have for k, ℓ ∈ Z
d
,

|(AB)kℓ|(1 + |k − ℓ|α) ≤ (1 + |k − ℓ|α)
∑

p∈Zd

|Akp||Bkp|

≤ ‖A‖
α
‖B‖

α

∑

p∈Zd

1 + |k − ℓ|α
(1 + |k − p|α)(1 + |p− ℓ|α)

But as the funtion x → xα is onvex for x > 0, we have

1 + |k − p|α ≤ 1 +
(

|k − ℓ|+ |ℓ− p|
)α ≤ 2α−1

(

1 + |k − ℓ|α + 1 + |ℓ− p|α
)

.
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Hene we have

|(AB)kℓ|(1 + |k − ℓ|α) ≤ 2α−1‖A‖
α
‖B‖

α

∑

p∈Zd

( 1

1 + |k − p|α +
1

1 + |p− ℓ|α
)

and this shows the result, as α > d.

Lemma 4.2 Let α > d. There exist a onstant Mα suh that for all symmetri

operator B and for all u ∈ L2
, we have

|〈u|B|u〉| ≤ Mα‖B‖
α
‖u‖2 .

Proof. We have

|〈u|B|u〉| ≤
∑

k,ℓ

|Bkℓ||uk||uℓ|

≤ ‖B‖
α

∑

k,ℓ

1

1 + |k − ℓ|α |uk||uℓ|

≤ ‖B‖
α

∑

k,ℓ

1

1 + |k − ℓ|α |uk|
2

using the formula |uk||uℓ| ≤ 1
2(|uk|2 + |uℓ|2). This yields the result.

Lemma 4.3 Reall that Z0 = 2arctan
(h∆

2

)

, and let W = (Wkℓ)k,ℓ∈Zd be an

operator. We have for all α > 1

‖adZ0
W‖

α
≤ π‖W‖

α
. (4.1)

Proof. For k, ℓ ∈ Z
d
we have as Z0 is diagonal

(

adZ0
W
)

kℓ
= (λk − λℓ)Wkℓ,

=
(

2 arctan(h|k|2/2) − 2 arctan(h|ℓ|2/2)
)

Wkℓ.

Hene we have for all k, ℓ ∈ Z
d
,

∣

∣

(

adZ0
W
)

kℓ

∣

∣ ≤ π|Wkℓ|
and this shows the result.

Using this Lemma, we see using (3.3) that

‖Z1‖α ≤ ‖V ‖
α

∑

k≥0

|Bk|
k!

πk ≤ C‖V ‖
α

(4.2)

is bounded. In omponents, we alulate using the expression of adZ0
that

(Z1)kℓ = Vkℓ
i(λk − λℓ)

exp(i(λk − λℓ))− 1
(4.3)
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Note that for any bounded operator A and B, we always have

‖adA(B)‖
α
≤ 2Cα‖A‖α ‖B‖

α

where Cα is given by Lemma 4.1 We de�ne now the following numbers:

ζ0 = π and ζℓ = 2Cα‖Zℓ‖α , for ℓ ≥ 1.

Using (3.2) and Lemma 4.3, we easily see that we have the estimates

∀ ℓ ≥ 1,
1

2Cα
(ℓ+ 1)ζℓ+1 ≤ ‖V ‖

α

∑

k≥0

|Bk|
k!

∑

ℓ1+···+ℓk=ℓ

ζℓ1 · · · ζℓk .

Now for any ρ suh that π < ρ < 2π, there exist a onstant M suh that for all

k, |Bk| ≤ k!Mρ−k
. Hene we an write

∀ ℓ ≥ 1,
1

2Cα
(ℓ+ 1)ζℓ+1 ≤ M‖V ‖

α

∑

k≥0

ρ−k
∑

ℓ1+···+ℓk=ℓ

ζℓ1 · · · ζℓk .

Let ζ(t) be the formal series ζ(t) =
∑

ℓ≥0 t
ℓζℓ. Multiplying the previous equation

by tℓ and summing over ℓ ≥ 0, we �nd

1

2Cα
ζ ′(t) ≤ M‖V ‖

α

∑

k≥0

ρ−kζ(t)k = M‖V ‖
α

1

1− ζ(t)/ρ
.

Let η(t) be the solution of the di�erential equation:

η′(t) = 2MCα‖V ‖
α

1

1− η(t)/ρ
, η(0) = π.

Taking ρ = 3π/2, we easily see that for t ≤ π
32MCα‖V ‖

α

, the solution an be

written

η(t) =
3π

2

(

1−
√

1

9
− 16

3
MCα‖V ‖

α
t

)

,

and de�nes an analyti funtion of t. Expanding η(t) =
∑

ℓ≥0 t
ℓηℓ, we see that

the oe�ients satisfy the relations η0 = π and

∀ ℓ ≥ 1,
1

2Cα
(ℓ+ 1)ηℓ+1 = M‖V ‖

∑

k≥0

ρ−k
∑

ℓ1+···+ℓk=ℓ

ηℓ1 · · · ηℓk

with ρ = 3π
2 . By indution, this shows that ζℓ ≤ ηℓ. Moreover, for all z ∈ C with

|z| ≤ π
32MCα‖V ‖

α

, we have as the oe�ients ζℓ are positive,

|ζ(z)| =
∣

∣

∣

∣

∣

∞
∑

ℓ=0

ζℓz
ℓ

∣

∣

∣

∣

∣

≤
∞
∑

ℓ=0

ζℓ|z|ℓ = ζ(|z|) ≤ η(|z|) ≤ 3π

2
.
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Using Cauhy estimates, we see that

∀ ℓ ≥ 1, ‖Zℓ‖ =
1

2Cα
ζℓ =

1

2Cα

ζ(ℓ)(0)

ℓ!
≤ 3π

4Cα

(32MCα‖V ‖
α

π

)ℓ
.

The theorem is now proved by setting

V (h) = Z1, and W (h) =
∑

ℓ≥2

hℓ−2Zℓ

whih de�nes a onvergent power series for |h| < h0 =
π

32MCα‖V ‖
α

. The estimate

(2.1) on V (h) is then an easy onsequene of (4.2). The estimate (2.1) on W (h)
is easily proved.

5 Modi�ed energy

We give now the proof of Proposition 2.3.

For all x ∈ R, we have

arctan(x)− x = −
∫ x

0

y2

1 + y2
dy.

For k ∈ Z
d
, this yields

2

h
arctan

(h|k|2
2

)

− |k|2 = −2

h

∫ h|k|2/2

0

y2

1 + y2
dy.

Let γ ∈ [0, 2], it is lear that for all y ∈ R,

y2

1 + y2
≤ yγ .

Hene we have for all k ∈ Z
d
,

∣

∣

∣

2

h
arctan

(h|k|2
2

)

− |k|2
∣

∣

∣
≤ 2

h

∫ h|k|2/2

0
yγdy ≤ Chγ |k|2γ+2.

This shows that for all v,

∣

∣

∣
〈v| − 2

h
arctan

(h∆

2

)

|v〉 − 〈v| −∆|v〉
∣

∣

∣
≤ Chγ‖v‖2

H1+γ . (5.1)

Now we have

〈v |V (h) | v〉 − 〈v |V | v〉 =
∑

k≥1

Bk

k!
〈v | ikadkZ0(h)

(V ) | v〉

11



Reall that Z0(h) = −2 arctan
(

h∆
2

)

is a positive operator. The operator Z0(h)
1/2

is hene well de�ned, and for an operator W we have in omponents

(Z0(h)
1/2W )kℓ =

(

2 arctan
(h|k|2

2

)

)1/2
Wkℓ.

Hene we have for all α > 1,

‖Z0(h)
1/2W‖

α
≤

√
π‖W‖

α
and ‖WZ0(h)

1/2‖
α
≤

√
π‖W‖

α
.

Now using Lemma 4.2 and the fat that Z0(h) is symmetri, we have for all v
and all operator W

|〈v | adZ0(h)(W ) |v〉| ≤ (‖Z0(h)
1/2W‖

α
+ ‖WZ0(h)

1/2‖
α
)‖Z0(h)

1/2v‖ ‖v‖

≤ 2
√
π‖W‖

α
‖Z0(h)

1/2v‖ ‖v‖ .

Hene we have

∣

∣〈v |V (h) | v〉 − 〈v |V | v〉
∣

∣ ≤ 2
∑

k≥1

|Bk|
k!

πk−1/2‖V ‖
α
‖Z0(h)

1/2v‖ ‖v‖

≤ C‖V ‖
α
‖Z0(h)

1/2v‖ ‖v‖

Using (5.1) with γ = 0, this shows that

∣

∣〈v |V (h) | v〉 − 〈v |V | v〉
∣

∣ ≤ C‖V ‖
α
h‖u‖

H1
‖u‖ .

Finally, we easily have using (2.1) that

∣

∣〈v |W (h) | v〉
∣

∣ ≤ C‖V ‖
α
h‖u‖2 .

Summing the previous inequalities with γ = β in (5.1) we have that

〈u|S(h)|u〉 − 〈u|∆+ V |u〉 ≤ Chβ‖u‖2
H1+β + C‖V ‖

α
h‖u‖

H1 ‖u‖

and this yields the result.

6 Bounds for the numerial solution

We prove now Corollary 2.4. Note that Eqn. (2.4) is lassi.

Using the fat that V is symmetri, we have for all n, ‖un‖ = ‖u0‖ where

‖ · ‖ denotes the L2
norm.
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Using Lemma 4.2, we an write for all v ∈ L2
,

〈v|S(h)|v〉 = 1

h
〈v| − 2 arctan

(h∆

2

)

|v〉+ 〈v|V (h) + hW (h) | v〉

whene using (2.1), Lemma 4.2 and the fat that Z0 is a positive operator

|〈v|S(h)|v〉| ≥ 1

h
〈v| − 2 arctan

(h∆

2

)

|v〉 − C‖V ‖
α
‖v‖2 .

Hene using (2.4) we have that for all n,

1

h
〈un| − 2 arctan

(h∆

2

)

|un〉 ≤ 〈un|S(h)|un〉+ C‖V ‖
α
‖un‖2

≤ 〈u0|S(h)|u0〉+ C‖V ‖
α
‖u0‖2 .

Using (2.3) with β = 0, we �nd that there exists a onstant suh that for all n,

1

h
〈un| − 2 arctan

(h∆

2

)

|un〉 ≤ C0‖u0‖2H1 . (6.1)

Now we have for all x > 0

x >
1

2
=⇒ arctan x > arctan

(1

2

)

and x ≤ 1

2
=⇒ arctan x >

2x

3
. (6.2)

Applying this inequality to (6.1) by onsidering the set of frequenies h|k|2 ≤ 1
and h|k|2 > 1 immediately yields the result.

7 Higher order approximations

In this setion we further investigate the long time behaviour by numerial sim-

ulations and onsider higher-order numerial shemes.

We perform the simulations with d = 1, u0 = 2/(2 − cos(x)) and V (x) =
cos(x)+ sin(6x). In the next �gures, we show the maximal size of the osillations

of the trunated H1
norm

(

20
∑

k=−20

(1 + |k|2)|unk |2
)1/2

(7.1)

along the numerial solution un from t = 0 to t = 50, and for stepsize ranging

from h = 0.01 to h = 0.1.
As expeted, we see that this quantity is uniformly bounded for the splitting

sheme (1.5) (Figure 1).

13
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Figure 1: Midpoint approximation of the exponential.

As explained in Remark 2.6, our methods easily extends to the Strang splitting

sheme (2.6). Considering the alternative Strang splitting

R(−ih∆/2) exp(−ihV )R(−ih∆/2),

the same argument does not apply straightforwardly. The obstrution ours in

Lemma 4.3 where R(−ih∆) is replaed by R(−ih∆/2)2 in the de�nition of the

operator Z0, transforming π by 2π in inequality (4.1).

Nevertheless, as shown in Figure 2, the same uniform onservation phenomenon

an be observed. This might be justi�ed using the fat that the operator Z1 de-

�ned in (4.3) still makes sense in this situation.

Next we onsider shemes of the form

exp(ihV )
s
∏

j=1

R(−γjh∆) (7.2)

where γj ∈ R, j = 1, . . . , s are oe�ients satisfying γ1 + . . . + γs = 1. Suh an

approximation will be a higher order approximation of the splitting sheme (1.3)

for suitable γj satisfying given algebrai onditions (see for instane [8, Chap

III℄). Of ourse, all these shemes remain sympleti and preserve the L2
norm.
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Figure 2: Strang splitting R(−ih∆/2) exp(−ihV )R(−ih∆/2).

14



In Figures 3, 4 and 5, we onsider suessively lassial symmetri omposition

methods of order 4, 6 and 8 (see [8, Chap V℄ and the referenes therein). The

method of order 4 is the triple jump method for whih s = 3,

γ1 = γ3 =
1

2− 21/3
, and γ2 = − 21/3

2− 21/3
. (7.3)

The methods of order 6 orresponds to the methods given by Yoshida (see [15℄

and [8, Setion V.3.2℄) and requires s = 7, while the method of order 8 is the

methods given by Suzuki & Umeno, see [14℄, and requires s = 15.
What we observe is that for the method of order 4, the situation is similar

to the previous ases (regularity onservation), but for the methods of order 6
and 8, resonanes appear: for spei� values of the stepsize, the regularity of the

numerial solution deteriorates.

0.02 0.04 0.06 0.08 0.1
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h

Figure 3: Order 4 approximation of the exponential.
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Figure 4: Order 6 approximation of the exponential.

Finally, we plot in Figure 6 the same simulation for the �exat� splitting

sheme (1.5). In this last situation, it is known that the resonanes appear for

step sizes h suh that h(k2 − ℓ2) is lose to a multiple of 2π for some k and ℓ ∈ Z

(see [3℄).

The fat that the method of order 4 possesses a modi�ed energy an easily

seen: With the values of γ1, γ2 and γ3 given in (7.3), we have

R(−γ1h∆)R(−γ2h∆)R(−γ3h∆) = exp(iZ0)
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Figure 5: Order 8 approximation of the exponential.
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Figure 6: Exat splitting.

where

Z0 = −4 arctan
( h∆

2(2− 21/3)

)

+ 2arctan
( 21/3h∆

2(2 − 21/3)

)

= −G(h∆/2) (7.4)

with

G(x) = 4 arctan
( x

2− 21/3
)

− 2 arctan
( 21/3x

2− 21/3
)

.

It is easy to see that for all x > 0 G(x) is an inreasing funtion suh that

G(x) ∈ (0, π). Hene Lemma 4.3 remains valid for this Z0. Using the same

tehniques as before, and bounds like (6.2) still valid for the funtion G(x), we
an show the existene of a modi�ed energy for this method, explaining the

absene of resonanes.

Note that in the same spirit, we ould onsider symmetri omposition meth-

ods based on the order two Strang splitting (2.6) to build higher order methods

of the form

s
∏

j=1

exp(iγjhV/2)R(−iγjh∆) exp(iγjhV/2)

to approximate (1.1). A general strategy to show the existene of a modi�ed

energy for this method would be to searh for an operator Z(t) suh that for all

16



t > 0,

exp(iZ(t)) =

s
∏

j=1

exp(iγjtV/2)R(−iγjh∆) exp(iγjtV/2)

with

Z0 = −
s
∑

j=1

2 arctan(hγj∆/2).

In the ase of the triple jump method, this operator an be written (7.4), and the

same argument as above shows the existene of a modi�ed energy for this method

by using the same kind of tehniques. We do not give the details here. The

derivation of higher order methods possessing a modi�ed energy is an interesting

question that will be addressed in future studies.
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