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Abstract. In this paper, we study the Heston stochastic volatility model in a regime where the maturity is
small but large compared to the mean-reversion time of the stochastic volatility factor. We derive a
large deviation principle and compute the rate function by a precise study of the moment generating
function and its asymptotic. We then obtain asymptotic prices for out-of-the-money call and put
options and their corresponding implied volatilities.
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1. Introduction. Large deviations theory provides a natural framework for approximating
the exponentially small probabilities associated with the behavior of a diffusion process over a
small time interval. In the context of financial mathematics, large deviations theory arises in
the computation of small-maturity, out-of-the-money (OTM) call or put option prices or the
probability of reaching a default level in a small time period. The theory of large deviations
has recently been applied to local and stochastic volatility models [3, 4, 5, 6, 14, 23] and
has given very interesting results on the behavior of implied volatilities near maturity. (An
implied volatility is the volatility parameter needed in the Black–Scholes formula in order to
match a call option price. It is common practice to quote prices in volatility through this
transformation.) In the context of stochastic volatility models, the rate function involved
in the large deviation estimates is given in terms of a distance function, which in general
cannot be calculated in closed form. For particular models, such as the SABR model [13, 15],
approximations obtained by expansion techniques have been proposed (see also [9, 12, 18]).

Multifactor stochastic volatility models have been studied during the last 10 years by
many authors (see, for instance, [8, 10, 12, 19, 20]). They are quite efficient in capturing
the main features of implied volatilities known as smiles and skews. They are usually not
simple to calibrate, in particular with respect to the stability of parameter estimation. In the
presence of separated time scales, an asymptotic theory has been proposed in [10, 11]. It has
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the advantage of capturing the main effects of stochastic volatility through a small number of
group parameters arising in the asymptotic. The fast time scale expansion is related to the
ergodic property of the corresponding fast mean-reverting stochastic volatility factor.

In this paper, we study the Heston stochastic volatility model in the regime in which the
maturity is small but large compared to the mean-reversion time of the stochastic volatility
factor. This is a realistic situation where, for instance, the maturity is one month and the
volatility mean-reversion time is of the order of a few days. We derive a large deviation
principle and compute the rate function by a precise study of the moment generating function
and its asymptotic.

1.1. The Heston model. We consider the risk-neutral Heston stochastic volatility model
for the price St and its square volatility Yt:

dSt = rStdt+ St
√
YtdW

1
t ,(1.1)

dYt = κ(θ − Yt)dt+ ν
√
YtdW

2
t ,(1.2)

whereW 1,W 2 are two standard Brownian motions with covariation d〈W 1,W 2〉t = ρdt, where
ρ is constant such that |ρ| < 1. The short rate r is constant, and throughout we assume
that 2κθ > ν2, ν, κ, θ, Y0 > 0, so that the square-root (or CIR) process (Yt) stays positive
at all times (see, for instance, [17]). In this paper, we are mainly interested in small-time
asymptotics for St when the stochastic volatility factor Yt runs on a fast scale.

1.2. Fast mean-reverting stochastic volatility scaling. By fast mean-reverting stochastic
volatility we mean that the rate of mean reversion κ is large. In order to ensure that volatility
is not “dying” or “exploding” we also impose that the volatility-of-volatility parameter ν be
large of the order of the square root of κ. In order to achieve this scaling, we introduce a small
parameter 0 < ε � 1, and we replace (κ, ν) by (κ/ε2, ν/ε) in (1.1)–(1.2) so that the model
becomes

dSt = rStdt+ St
√
YtdW

1
t ,(1.3)

dYt =
κ

ε2
(θ − Yt)dt+

ν

ε

√
YtdW

2
t .(1.4)

The small quantity ε2 represents the intrinsic time scale of the volatility process (Yt), or, in
other words, its decorrelation time (we refer the reader to [10] for more details). Observe

that the condition 2
(
κ
ε2

)
θ >

(
ν
ε

)2
is equivalent to 2κθ > ν2 and therefore independent of

ε. Derivatives and implied volatilities have been studied extensively in [10] for a range of
maturities and for general stochastic volatility processes by means of singular perturbation
techniques around the Black–Scholes model. In this regime, as ε → 0 and fixed maturity, a
call option can be approximated by its Black–Scholes price at a constant effective volatility
plus a small correction of order ε and proportional to ρ, involving the Delta and Gamma of
the leading order Black–Scholes price. In terms of the implied volatility surface, it turns out
that the skew is asymptotically affine in log-moneyness-to-maturity-ratio log(K/S)/T , which
leads to a particularly simple calibration procedure.
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128 JIN FENG, MARTIN FORDE, AND JEAN-PIERRE FOUQUE

1.3. Short-maturity scaling. Since here we are interested in short maturities, but long
compared with the volatility time scale ε2, we rescale time by the change of variable t �→ εt,
so that typical maturities will be of the order of ε. This regime will be of practical use when,
for instance, the maturity is a couple of weeks and the time scale for the volatility to mean
revert is of the order of a couple of days.

Performing the change of variable t �→ εt in (1.3)–(1.4) gives rise to the rescaled process
denoted by (Sε,t, Yε,t) and defined by

dSε,t = εrSε,tdt+ Sε,t
√
εYε,tdW

1
t ,(1.5)

dYε,t =
κ

ε
(θ − Yε,t)dt+

ν√
ε

√
Yε,tdW

2
t ,(1.6)

where we have used that (W 1
εt,W

2
εt) = (

√
εW 1

t ,
√
εW 2

t ) in distribution, therefore preserving
the constant correlation ρ.

We will use the discounted price S̃ε,t = e−rεtSε,t which satisfies

(1.7) dS̃ε,t = S̃ε,t
√
εYε,tdW

1
t .

It will also be useful to consider the log-price Xε,t = logSε,t which satisfies

(1.8) dXε,t = rεdt− 1

2
εYε,tdt+

√
εYε,tdW

1
t .

In both cases Yε,t satisfies (1.6), and we note that

(1.9) S̃ε,t = x exp

(
− ε
2

∫ t

0
Yε,sds+

√
ε

∫ t

0

√
Yε,sdW

1
s

)
.

1.4. Main results. In section 2 we derive the following result, which describes the asymp-
totic behavior of Xε,t as ε→ 0 for fixed t > 0.

Theorem 1.1. Assume Xε,0 = x0. For each t > 0, {Xε,t : ε > 0} satisfies the large deviation
principle with good rate function

I(q;x0, t) = Λ∗(q − x0; 0, t),

where Λ∗ is the Legendre transform of Λ

Λ∗(q;x, t) ≡ sup
p∈R

{qp − Λ(p;x, t)},

and Λ(p;x, t) : R×R×R+ �→ R ∪ {+∞} is given explicitly by

Λ(p;x, t) = xp+
κθt

ν2

(
(κ− νρp)−

√
(κ− ρνp)2 − ν2p2

)
(1.10)

for − κ

ν(1− ρ)
≤ p ≤ κ

ν(1 + ρ)
,

= +∞ otherwise.
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The function Λ(p;x, t), and the rate function Λ∗(q) given below, are plotted in Figure 1
in section 2.3 in the three cases ρ > 0, ρ = 0, and ρ < 0.

Lemma 1.2. The rate function Λ∗ is given explicitly by

Λ∗(q; 0, t) = qp(q; t)− Λ(p(q; t); 0, t),

where p(q; t) is defined by

p(q; t) =
κ

ν(1− ρ2)

(
−ρ+ qν + κθtρ√

(qν + κθtρ)2 + (1− ρ2)κ2θ2t2

)
(1.11)

∈ int(Dom(Λ)) =

(
− κ

ν(1− ρ)
,

κ

ν(1 + ρ)

)
.

Λ∗(q; 0, t) is finite for all q ∈ R; it is strictly increasing for q > 0 and strictly decreasing
for q < 0; and Λ∗(0; 0, t) = 0.

Λ∗(q; 0, t) is continuous in (q, t) ∈ R×R+.

Remarks.
1. Λ∗(q;x, t) = Λ∗(q − x; 0, t) since the only x dependence in Λ is the linear term xp.
2. Note also the scaling property Λ(p;x, t) = tΛ(p; xt , 1). In the following we choose to

keep the t-dependence.
3. In this asymptotic regime, the limiting quantities Λ and Λ∗ do not depend on the

starting level of volatility y, and they depend on the κ (mean-reversion rate) and ν
(volatility-of-volatility) parameters only through their ratio ν/κ.

4. The previous remark will also apply to asymptotic option prices and implied volatilities
described below. In this regime, therefore, the relevant features of the Heston model
are captured by just three parameters: the ergodic mean θ, the correlation ρ, and the
ratio ν/κ. They control, respectively, the implied volatility skew’s level, slope, and
convexity.

The proof of Theorem 1.1 is the object of section 2 and is concluded after Lemma 2.4. The
proof of Lemma 1.2 is given at the end of section 2.

A practical application of this result is the following rare event estimate for pricing OTM
options of small maturity, derived in section 2.2.

Corollary 1.3. Suppose that log-moneyness is positive, log(KS0
) > 0, and t > 0 fixed. Then

lim
ε→0+

ε logE[e−rεt(Sε,t −K)+|Sε,0 = S0, Yε,0 = y0] = −Λ∗
(
log

(
K

S0

)
; 0, t

)

independently of the initial square-volatility level y0. Note that the maturity of the option is
T = εt, which goes to zero in the limit. The discounting factor e−rεt plays no role in this
asymptotic result.

Moreover, the asymptotic implied volatility can be computed. Let σε(t, x) denote the
Black–Scholes implied volatility for the European call option with strike price K, OTM so
that x = log(K/S0) > 0, with short maturity T = εt for t > 0 fixed, and computed under the
dynamics given by (1.3), (1.4). In section 2.3 we prove the following result.
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Corollary 1.4.

lim
ε→0+

σ2ε (t, x) =
x2

2Λ∗(x; 0, t)t
, x = log

(
K

S0

)
> 0.

Similarly, by considering OTM put options, one obtains the same formula for x < 0. The
at-the-money (ATM) volatility is obtained by taking the limit x → 0 (a precise statement is
given in Lemma 2.6).

In fact, the results in Corollaries 1.3 and 1.4 hold for any fast mean-reverting stochastic
volatility model (other than Heston’s) which satisfies a large deviation principle, as in Theorem
1.1, provided the asymptotic rate function satisfies the following: Λ∗(q; 0, t) is finite for all
q ∈ R; it is strictly increasing for q > 0 and strictly decreasing for q < 0; and Λ∗(0; 0, t) = 0.
This last remark is easily justified by going through the proofs of these results given in sections
2.2 and 2.3.

2. Moment generating function and its asymptotic. Much of our analysis relies on an
explicit calculation of a moment generating function and evaluating its limit. First we define
the quantity

Λε(p) = Λε(p;x, y, t) = ε logE[e
p
ε
Xε,t |Xε,0 = x, Yε,0 = y]

= ε logE[S
p
ε
ε,t|Sε,0 = ex, Yε,0 = y]

= εrpt+ ε logE[S̃
p
ε
ε,t|S̃ε,0 = ex, Yε,0 = y],(2.1)

where Sε,t, Yε,t,Xε,t, and S̃ε,t are defined in section 1.3. Using (1.9) and introducing a Brownian
motion W 3 independent of W 2, the moments of S̃ε,t can be formally rewritten as follows:

E[S̃
p
ε
ε,t|S̃ε,0 = ex, Yε,0 = y]

= e
xp
ε E[e

− p
2

∫ t
0 Yε,sds+

p√
ε

∫ t
0

√
Yε,sdW 1

s |Yε,0 = y]

= e
xp
ε E[e

− p
2

∫ t
0 Yε,sds+

pρ√
ε

∫ t
0

√
Yε,sdW 2

s +
p
√

1−ρ2√
ε

∫ t
0

√
Yε,sdW 3

s |Yε,0 = y]

= e
xp
ε E[e

− p
2

∫ t
0
Yε,sds+

pρ√
ε

∫ t
0

√
Yε,sdW 2

s +
p2(1−ρ2)

2ε

∫ t
0
Yε,sds|Yε,0 = y]

= e
xp
ε E[e

pρ√
ε

∫ t
0

√
Yε,sdW 2

s − p2ρ2

2ε

∫ t
0 Yε,sdse

p(p−ε)
2ε

∫ t
0
Yε,sds|Yε,0 = y],

where we integrated with respect to the independent Brownian motion W 3 and redistributed
the bounded variation terms. Using the Girsanov transform, one obtains that

(2.2) E[S̃
p
ε
ε,t|S̃ε,0 = ex, Yε,0 = y] = e

xp
ε EQ[e

p(p−ε)
2ε

∫ t
0
Zε,sds|Zε,0 = y],

where, under the measure Q, the process Zε,t satisfies the equation

(2.3) dZε,t =
1

ε
(κθ − (κ− νρp)Zε,t) dt+

ν√
ε

√
Zε,tdW

Q
t ,

driven by a Brownian motion WQ. The result (2.2)–(2.3) is given in Lemma 2.3 in Andersen
and Piterbarg [2] (with a proof in B.1 of their supplementary material). Note that the proof
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of (2.2) in Andersen and Piterbarg [2] allows the possibility of “+∞ = +∞.” Although the
statement of their Lemma 2.3 is limited to the case of p(p − ε) > 0, the proof is not limited
to that case, allowing p ∈ R.

2.1. Explicit evaluation of Λε. The following two inequalities play important roles:

(ρνp− κ)2 ≥ p(p− ε)ν2,(2.4)

ρνp < κ.(2.5)

When (2.4) and (2.5) are both satisfied, then by results concerning exponential functionals
of CIR processes (see, e.g., Corollary 3 of Albanese and Lawi [1] or Theorem 3.1 of Hurd and
Kuznetsov [16]) we have

EQ[e
p(p−ε)

2ε

∫ t
0 Zε,sds|Zε,0 = y] = em(t)−n(t)y ,

where

m(t) = mε(t) =
κθt

ν2
(b− b̄) +

2κθ

ν2
log

(
b̄eb̄t/2

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

)
,

n(t) = nε(t) =
−p(p− ε)

ε

(
sinh( b̄t2 )

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

)
,

b̄ =
1

ε

√
(κ− νρp)2 − ν2p(p− ε) ,

b =
κ− νρp

ε
,

and consequently, Λε defined in (2.1) is given explicitly by

(2.6) Λε(p;x, y, t) = εrpt+ xp+ ε (mε(t)− nε(t)y) .

Note that when the limit exists as ε → 0+, the only contribution from ε (mε(t)− nε(t)y)
comes from the first term of m(t), which leads to formula (1.10) for Λ(p;x, t).

Next, we show that if (2.4) or (2.5) is violated, then Λε = +∞. First, we sort out (2.4)–
(2.5) more explicitly. The inequality (2.4) is equivalent to

c1,ε ≤ p ≤ c2,ε ,

where

c1,ε =
(εν − 2κρ) −

√
(εν − 2κρ)2 + 4κ2(1− ρ2)

2ν(1 − ρ2)
≤ 0,

c2,ε =
(εν − 2κρ) +

√
(εν − 2κρ)2 + 4κ2(1− ρ2)

2ν(1 − ρ2)
≥ 0.

We denote the case ε = 0 as follows:

c1 = − κ

ν(1− ρ)
, c2 =

κ

ν(1 + ρ)
.
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Then in the limit ε→ 0+, (2.4) becomes

(2.7) (ρνp− κ)2 ≥ p2ν2 ⇔ c1 ≤ p ≤ c2.

Lemma 2.1. For ε small enough,

(2.8) c1 < c1,ε < 0 < c2 < c2,ε.

Moreover, (2.5) always holds if (2.4) is satisfied for ε small enough. In fact,

1. if 0 < ρ < 1, then c2 < c2,ε <
κ
ρν ;

2. if −1 < ρ < 0, then κ
ρν < c1 < c1,ε;

3. if ρ = 0, then (2.5) always holds.

Proof. Equation (2.8) follows from the definition by direct verification.

Assume that ρ > 0. Then (1 + ρ)−1 < ρ−1, and therefore c2 =
κ

ν(1+ρ) <
κ
ρν , since c2 < c2,ε

and limε c2,ε = c2, c2 < c2,ε <
κ
ρν when ε is small enough.

The other case follows by a similar computation (note that if −1 < ρ < 0, then ρ−1 <
−(1− ρ)−1, implying κ

ρν < c1).

We have the following result.

Lemma 2.2. Λε(p) is lower semicontinuous and convex in p. For ε > 0 small enough, (2.6)
holds when c1,ε ≤ p ≤ c2,ε.

Proof. The lower semicontinuity and convexity of Λε(p) follow from its definition as a
logarithmic transform of moment generating function for Xε,t.

The other conclusion follows from Lemma 2.1.

Using the convexity of Λε, we conclude next that Λε(p) = +∞ whenever p �∈ [c1,ε, c2,ε]
(again, when ε > 0 is small enough). This is implied by the behavior of ∂pΛε for p ∈ (c1,ε, c2,ε).
From (2.6), we get

∂pΛε = εrt+ x+ ε∂pm− εy∂pn

= εrt+ x+ ε
2κθ

ν2

(
∂b̄

b̄
+
t

2
∂b− (∂b̄)(1 + t

2b) cosh(
b̄t
2 ) + (∂b)(1 + t

2 b̄) sinh(
b̄t
2 )

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

)

+ y

(
(2p− ε) sinh( b̄2t) + (p2 − pε)(∂b̄) t2 cosh(

b̄
2t)

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

− (p2 − pε)
(1 + t

2 b̄)(∂b) sinh
2( b̄2 t) + (∂b̄)(1 + t

2b) sinh(
b̄
2 t) cosh(

b̄
2 t)

(b̄ cosh( b̄t2 ) + b sinh( b̄t2 ))
2

)
.

When p → c+1,ε, or c
−
2,ε, then b̄ → 0+ and ∂pb̄ → ±∞. By Lemma 2.1, in both cases we have

limp b > 0. Therefore, by the above expression for ∂pΛε, we conclude that, for ε > 0 small
enough,

(2.9) lim
p→c+1,ε

∂pΛε(p) = −∞, lim
p→c−2,ε

∂pΛε(p) = ∞.

Since Λε is convex and lower semicontinuous, the limits (2.9) imply the following result.
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Lemma 2.3. For ε > 0 small enough, Λε is given by (2.6) when c1,ε ≤ p ≤ c2,ε, and +∞
otherwise.

Proof. The proof follows from Lemma 3.1 given in the appendix.
The following result follows easily.
Lemma 2.4. The function Λ given in (1.10) is lower semicontinuous and essentially smooth

in p. Moreover, Λε(·;x, y, t) Γ-converges to Λ(·;x, t) (see Definition 3.2). In particular, for
each x ∈ R, y > 0, t > 0, we have the following:

1. For every p ∈ R, there exists {pε} with pε → p such that

lim
ε→0+

Λε(pε;x, y, t) = Λ(p;x, t).

2. For every p ∈ R and every pε → p,

lim inf
ε→0+

Λε(pε;x, y, t) ≥ Λ(p;x, t).

By Lemma 3.3, Theorem 1.1 follows.
We now give the proof of Lemma 1.2, where we derive an explicit formula for Λ∗, the

Legendre transform of Λ defined by (1.10).

Proof of Lemma 1.2. By the essential smoothness property of Λ(p) = Λ(p; 0, t) in p, the
equation

∂

∂p
(qp− Λ(p)) = 0

has a solution p ∈ int(Dom(Λ)) = (− κ
ν(1−ρ) ,

κ
ν(1+ρ)), which equivalently solves

(2.10) q = ∂pΛ =
κθt

ν

(
−ρ+ (κ− ρνp)ρ+ νp√

(κ− ρνp)2 − ν2p2

)
.

If νq = −ρκθt, it follows from (2.10) that p = − κρ
ν(1−ρ2)

and therefore that (1.11) is

satisfied.
If νq �= −ρκθt, then (2.10) is a quadratic equation in p with the sign condition

κρ+ ν(1− ρ2)p

νq + ρκθt
> 0.

One can easily verify that p given by (1.11) is the only root satisfying the sign condition.
Consequently, the expression of Λ∗(q; 0, t) follows.

It follows by direct verification that Λ∗(0; 0, t) = 0, and that Λ∗(q; 0, t) is continuous,
finitely defined for all q ∈ R.

Also by direct calculation, ∂pΛ(0; 0, t) = 0 and

∂ppΛ(p; 0, t) =
κ3θt

((κ− ρνp)2 − ν2p2)3/2
> 0.

Therefore, for p ∈ int(Dom(Λ)), ∂pΛ(p; 0, t) is negative when p < 0 and is positive when p > 0.
By a convex analysis result, q = ∂pΛ(p; 0, t), p ∈ int(Dom(Λ)) if and only if p = ∂qΛ

∗(q; 0, t).
Consequently, Λ∗(q; 0, t) is strictly increasing when q > 0 and strictly decreasing for q < 0,
and it achieves its minimum (zero) when q = 0.
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2.2. Pricing. We now prove Corollary 1.3.
Recall that Sε,t = eXε,t and Sε,0 = S0. For δ > 0 we have

E[(Sε,t −K)+] ≥ E[1{Sε,t−K>δ}(Sε,t −K)+](2.11)

≥ δP (Sε,t > K + δ).

By Theorem 1.1, it follows that

lim inf
ε→0+

ε logE[(Sε,t −K)+] ≥ lim inf
ε→0+

ε logP (Xε,t > log(K + δ))

≥ − inf
q>log(K+δ)

Λ∗(q − log S0; 0, t) = −Λ∗
(
log

(
K + δ

S0

)
; 0, t

)
.

The last equality follows from the fact that log(KS0
) > 0 and that Λ∗(q; 0, t) is nondecreasing

for q in the region q ≥ 0 (see Lemma 1.2). Taking δ → 0+, by continuity of Λ∗, we obtain the
desired lower bound.

To show the upper bound, we note that for p, q > 1 such that p−1 + q−1 = 1,

E[(Sε,t −K)+] ≤ E1/p[|(Sε,t −K)+|p]E1/q [1{Sε,t−K≥0}] .

Therefore

ε logE[(Sε,t −K)+] ≤ ε

p
logE[(Sε,t)

p] + ε

(
1− 1

p

)
log P (Sε,t ≥ K)

≤ 1

p
Λε(εp) +

(
1− 1

p

)
ε logP (Sε,t ≥ K) .

Taking limp→+∞ lim supε→0+ on both sides and noting that limε→0+ Λε(εp) = 0, we deduce
(by Theorem 1.1) the desired upper bound

lim sup
ε→0+

ε logE[(Sε,t −K)+] ≤ −Λ∗
(
log

(
K

S0

)
; 0, t

)
.

2.3. Implied volatility. We prove Corollary 1.4, which gives the asymptotic behavior of the
implied volatility σε(t, x). Throughout, we denote the log-moneyness by x = log(K/S0) > 0,
and for simplicity σε(t, x) = σε, t and x being fixed in the following analysis.

First, we show that

(2.12) lim
ε→0+

σε
√
εt = 0.

By Lemma 1.2, Λ∗(x; 0, t) > 0. Let 0 < δ < Λ∗(x; 0, t). By the definition of σε and Corol-
lary 1.3, for ε > 0 small enough

e−(Λ∗(x;0,t)−δ)/ε ≥ E[(Sε,t −K)+]

= erεtS0Φ

(
−x+ rεt+ 1

2σ
2
ε εt

σε
√
εt

)
−KΦ

(
−x+ rεt− 1

2σ
2
ε εt

σε
√
εt

)
,
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where we have used the Black–Scholes formula and denoted by Φ the N (0, 1) cumulative
distribution function. Since E[(Sε,t − K)+] ≥ 0, one deduces that the right-hand side must
converge to zero as ε → 0+. Let l ≥ 0 be the limit of σε

√
εt along a converging subsequence;

then l must satisfy

S0Φ

(
−x
l
+
l

2

)
−KΦ

(
−x
l
− l

2

)
= 0 ,

with x = log(K/S0) > 0. One can easily check that l = 0 is the only solution, and therefore
(2.12) holds.

The following estimate on Φ using its derivative denoted by φ is classical and will be useful
(we refer the reader to [21, section 14.8], for instance).

Lemma 2.5. For x > 0,

(2.13)

(
x+

1

x

)−1

φ(x) ≤ 1− Φ(x) ≤ 1

x
φ(x).

Next, we establish the lower bound for the limit in Corollary 1.4. We will use the classical
notation

d1 =
log
(
S0
K

)
+ rεt+ σ2

ε
2 εt

σε
√
εt

.

Let δ > 0; by the definition of σε(t) and Corollary 1.3, for ε > 0 small enough, we have

e−(Λ∗(x;0,t)+δ)/ε ≤ E[(Sε,t −K)+]

≤ erεtS0Φ (d1) = erεtS0 (1− Φ (−d1))
≤ erεtS0

(
1

−d1

)
φ (−d1) ,

where the last line follows from (2.13). By (2.12) and S0 < K, we know that limε→0+ d1 = −∞.
Taking (ε log) on both sides, one sees that the leading order term on the right-hand side is
given by

−ε
(
log(S0

K )
)2

2(σε
√
εt)2

= − x2

2σ2ε t
.

Therefore any limit point of σε along a converging subsequence (εn) will satisfy

(2.14) −(Λ∗(x, ; 0, t) + δ) ≤ − x2

2 limεn→0+ σ2εnt

for all δ > 0 and consequently the desired lower bound.

Next, we justify the upper bound. To avoid confusion, we denote by P the measure under
which Sε is defined in section 1.3 and by PBS = PBS(σε) the measure under which Sε follows
the Black–Scholes model with constant volatility σε = σε(t, x):

dSε,s = Sε,s (rds+ σεdWs) ,D
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where W is a Brownian motion under PBS (note that here t is fixed and the maturity of the
call option is εt). Then, using the classical notation

d2 =
log
(

S0
K+δ

)
+ rεt− σ2

ε
2 εt

σε
√
εt

,

one obtains

e−(Λ∗(x;0,t)−δ)/ε ≥ EP [(Sε,t −K)+] = EPBS [(Sε,t −K)+]

≥ δPBS(Sε,t > K + δ)

= δ (1− Φ (−d2))
≥ δ

( −d2
1 + d22

)
φ(−d2),

where the second inequality follows by (2.11). Arguing as above, in the case of the lower
bound, we know that limε→0+ d2 = −∞. Taking (ε log) on both sides, the leading order term
on the right-hand side is given by

−
(
log( S0

K+δ )
)2

2σ2ε t
,

and therefore, along any converging subsequence,

−(Λ∗(x; 0, t) − δ) ≥ −
(
log(K+δ

S0
)
)2

2 limεn→0+ σ
2
εnt

.

Sending δ → 0+ gives the desired upper bound, which concludes the proof of Corollary 1.4.

To summarize, we proved that in this regime (fast mean-reverting volatility and short
maturity) the asymptotic implied volatility of an OTM call option (x > 0) is given by

σ(t, x)2 =
x2

2Λ∗(x; 0, t)t
,

where Λ∗ is given in Lemma 1.2. The same formula for x < 0 is derived similarly by considering
OTM put options. Using the explicit formula for Λ∗(x; 0, t), one can derive the ATM limit

lim
x→0

σ(t, x)2 = θ

by checking that near zero p(q; t) = q
θt +O(q2) and Λ(p; 0, t) = θt

2 p
2+O(p3), and consequently

Λ∗(q; 0, t) = q
( q
θt

)
− θt

2

( q
θt

)2
+O(q3) =

q2

2θt
+O(q3).

In fact, we can also derive the limit as ε→ 0+ of the ATM volatility σε(t, 0).D
ow

nl
oa

de
d 

10
/0

1/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASYMPTOTICS FOR A FAST MEAN-REVERTING HESTON MODEL 137

Lemma 2.6. The asymptotic ATM volatility is given by

lim
ε→0+

σε(t, 0)
2 = lim

x→0
σ(t, x)2 = θ .

Proof. This is not a large deviation result but rather an averaging result of the type
studied in [10]. Since it involves convergence in distribution, it is more convenient to work
with put options whose payoffs are continuous and bounded. The ATM volatility is defined
by the unique positive number σε(0, t) satisfying

E[(S0 − Sε,t)
+] = S0Φ(−d2)− erεtS0Φ(−d1) ,

where here

(2.15) d1,2 =
(r ± 1

2σε(0)
2)
√
εt

σε(0)
,

and we have denoted σε(0, t) = σε(0) since t is fixed. Using (1.5) and dividing on both sides
by

√
ε S0, one gets

E

[(
−√

ε

∫ t

0
r
Sε,s
S0

ds−
∫ t

0

Sε,s
S0

√
Yε,sdW

1
s

)+
]

(2.16)

=
1√
ε

(
Φ(−d2)− erεtΦ(−d1)

)
.

One easily obtains the convergence in probability to zero of the following integrals:

√
ε

∫ t

0
r
Sε,s
S0

ds and

∫ t

0

(
Sε,s
S0

− 1

)√
Yε,sdW

1
s .

The convergence of the quadratic variation of the martingale term,
∫ t
0 Yε,s ds → σ̄2t, implies

the convergence in distribution(
−√

ε

∫ t

0
r
Sε,s
S0

ds−
∫ t

0

Sε,s
S0

√
Yε,sdW

1
s

)
→
∫ t

0
σ̄dW 1

s = σ̄W 1
t ,

where σ̄2 is the ergodic average of the square volatility Yε,·, that is,

σ̄2 =

∫ +∞

0
yΓ(dy) ,

where Γ is the invariant distribution of the ergodic process Y defined by (1.2). A complete
proof of this result involves introducing a solution ψ of the Poisson equation

Lψ(y) = y − σ̄2 ,

where L is the infinitesimal generator of the process Y , and using Itô’s formula to show that∫ t

0

(
Yε,s − σ̄2

)
ds =

∫ t

0
Lψ(Yε,s)ds = ε (ψ(Yε,t)− ψ(Y0))−

√
ε

∫ t

0
σψ′(Yε,s)Yε,sdW 2

s
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Figure 1. Here we have plotted Λ, Λ∗, and the implied volatility in the small-ε limit as a function of
the log-moneyness x = log(K/S0). The parameters are t = 1, ergodic mean θ = .04, convexity ν/κ = 1.74
(κ = 1.15, ν = .2), and skew ρ = −.4 (dashed blue), ρ = 0 (solid black), ρ = +.4 (dotted red).

converges to zero (we refer the reader to [10] for details).

In this case, the invariant distribution is a Gamma with mean θ, and consequently σ̄2 = θ.
Therefore, the left-hand side of (2.16) converges to E[(σ̄W 1

t )
+] = σ̄

√
t/
√
2π =

√
θt/

√
2π. By

direct inspection of the right-hand side of (2.16) and the relation (2.15) between d1,2 and
σε(0), one deduces that σε(0) must converge to θ as ε→ 0+.

In Figure 1 we show plots of the functions Λ and Λ∗ and of the implied volatility smile/skew
obtained in the limit ε→ 0+.
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3. Appendix.

3.1. A property of convex functions in R.
Lemma 3.1. Suppose Λ : R �→ R̄ is convex and for some c ∈ R

lim inf
x→c−

Λ(x) > −∞ and lim
x→c−

∂Λ(x) = +∞ ;

then Λ(y) = +∞ for all y > c. Similarly, if for some c ∈ R

lim sup
x→c+

Λ(x) > −∞ and lim
x→c+

∂Λ(x) = −∞ ,

then Λ(y) = +∞ for all y < c.
Proof. Let y > c > x, and denote δ = y − c > 0. Then

Λ(y) ≥ Λ(x) + ∂Λ(x)(y − x).

Taking x→ c− gives

Λ(y) ≥ lim inf
x→c−

Λ(x) + lim sup
x→c−

∂Λ(x)δ = +∞.

3.2. Gärtner–Ellis theorem via Γ-convergence. We generalize the Gärtner–Ellis theorem
(see, e.g., Theorem 2.3.6 in Dembo and Zeitouni [7]) for Euclidean space valued random
variables.

Definition 3.2. Let sequence Λn,Λ : Rd �→ R̄. We say that Λn Γ-converges to Λ (denoted

Λn
Γ→ Λ) if, for all p ∈ Rd,

1. ( limsup inequality) there exists a sequence of {pn} converging to p such that

Λ(p) ≥ lim sup
n→∞

Λn(pn);

2. ( liminf inequality) for every sequence {pn} converging to p, we have

Λ(p) ≤ lim inf
n→∞ Λn(pn).

Let {Xn : n = 1, 2, . . .} be a sequence of Rd-valued random variables, and denote

Λn(p) =
1

n
logE[enpXn ], p ∈ Rd.

Lemma 3.3. Suppose that the limsup property in Γ-convergence holds for Λn to a Λ :
Rd �→ R̄. Then the large deviation upper bound holds for all compact F ⊂ Rd:

(3.1) lim sup
n→∞

1

n
log P (Xn ∈ F ) ≤ − inf

x∈F
Λ∗(x).

Furthermore, if 0 ∈ interior (D(Λ)), then {Xn} is exponentially tight and (3.1) holds for all
closed F ⊂ Rd.
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In addition to the above, suppose that the liminf property in Γ-convergence holds for Λn

to a Λ : Rd �→ R̄, and assume Λ(0) = 0. Then the following upper bound holds:

(3.2) lim inf
n→∞

1

n
log P (Xn ∈ G) ≥ − inf

x∈G∩F
Λ∗(x), G open in Rd,

where F is the set of exposed points of Λ∗ with exposing hyperplane in interior (D(Λ)), where
D(Λ) = {x : Λ(x) <∞}.

If Λ is lower semicontinuous and essentially smooth (see, e.g., Definition 2.3.5 in Dembo
and Zeitouni [7]), then infx∈G∩F Λ∗(x) = infx∈G Λ∗(x) for all G open, and Λ∗ is a good rate
function.

Proof. The upper bound (3.1) for compact set F has been shown in Theorem 1.2 of
Zabell [22] for more general case. Under the condition 0 ∈ interior(D(Λ)), the exponential
tightness follows (see, e.g., the proof on pages 48–49 of [7]).

We prove the lower bound (3.2) by highlighting the new ingredients needed to modify [7].
For each y ∈ F and η ∈ interior(D(Λ)) the exposing hyperplane for y, by the limsup inequality
of Λn to Λ, there exists ηn → η such that Λn(ηn) <∞. We define a new probability measure

dμ̃n

dPX−1
n

(z) = en(ηn·z−Λn(ηn)).

Using the liminf inequality of Λn to Λ, then, as in [7],

lim
δ→0

lim inf
n→∞

1

n
log P (Xn ∈ B(y, δ)) ≥ −Λ∗(y) + lim

δ→0+
lim inf
n→∞

1

n
log μ̃n(B(y, δ)).

Now let Λ̃(·) = Λ(·+ η)− Λ(η). Then Λ̃(0) = 0 and 0 ∈ interior(D(Λ̃)). Let

Λ̃n(p) =
1

n

∫
Rd

enpxμ̃n(dx).

Then Λ̃n
Γ→ Λ̃. The rest of the proof follows verbatim that in [7], concluding that

lim inf
n→∞

1

n
log μ̃n(B(y, δ)) = 0.

Hence (3.2) follows.
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