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Abstract. This paper provides stability theorems for the feasible set of optimization problems
posed in locally convex topological vector spaces. The problems considered in this paper have an
arbitrary number of inequality constraints and one constraint set. Di¤erent models are discussed,
depending on the properties of the constraint functions (linear or not, convex or not, but at least
lower semicontinuous) and one closed constraint set (but not necessarily convex). The parameter
space is formed by systems of the same type as the nominal one (with the same space of variables and
the same number of constraints), where the constraint set can be perturbed or not, equipped with
the metric of the uniform convergence on the positive multiples of a �xed barrelled neighborhood of
zero. In �nite dimensions, this topology describes the unifom convergence on compact sets and, in
the particular case that the constraints are linear, the uniform convergence of the vector coe¢ cients.
The paper examines, in a uni�ed way, the lower and upper semicontinuity, and the closedness, of the
feasible set mapping, the stable consistency of the constraint system with respect to arbitrary and
right-hand side perturbations, Tuy and Robinson regularities, and other desirable stability properties
of the feasible set.

Key words. feasible set, stability, in�nite optimization, semi-in�nite optimization

AMS subject classi�cation. 90C31, 90C48, 90C34, 49K40

1. Introduction. Many optimization problems are formulated in the form

(P) inf f(x)
s.t. ft(x) � 0;8t 2 T ;

x 2 C;

where T is an arbitrary (possibly in�nite, possibly empty) index set, C � X is the
constraint set, the decision space X is a locally convex Hausdor¤ topological vector
space (possibly Rn), and the constraint functions ft are extended, i.e., ft : X !
R [ f+1g for all t 2 T: In this paper we analyze the stability of the feasible set of
(P), say F; under several types of perturbations of the data preserving the decision
space X and the index set T:

The main questions regarding the stability of the feasible set in optimization
problems were already posed in 1975 by S.M. Robinson: "What happens to the so-
lution set when the data are subject to small perturbations? In particular, will the
perturbed system be solvable? If so, will the solution set change gradually?" ([46],
where X is a Banach space and ft is a¢ ne for all t 2 T ). Answering these questions,
it is possible to extend this analysis to other relevant elements of the problem: "If a
mathematical program lacks continuity, then small changes in parameters or functions
(often due to inexact estimates of the parameters or functions) may result in large
changes in the optimal solutions or in the optimal objective function values or both.
Another possibly even more important need for continuity in mathematical programs
is the fact that digital computers operate with �nite arithmetic and often produce
signi�cant roundo¤ errors over time. Continuity of the mathematical program being
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solved gives credence to the belief that the algorithmic process being used may lead to
an optimal or near-optimal solution of the problem. Lack of continuity, on the other
hand, could mean that the algorithm is yielding something far from optimal" ([23],
where X = Rn and T is arbitrary). In [12] the authors emphasize the need of stability
analysis of the feasible set for an in�nite-dimensional optimization problem arising in
the optimal control of a system of n water reservoirs R1; R2; :::; Rn: The model is
based on the realistic assumption that if more raining water �ows into the reservoirs
that they can hold, the rest can be sold to a neighboring dry region, provided that
the demand of the region is satis�ed. Conversely, if the in�ows are short, and the
reservoirs have free capability for additional water, some water can be bought from
outside to meet the inner demand. In this problem a set of decision variables are the
rates xi(t) at which water is fed from Ri at time (we assume that xi; i = 1; 2; :::; n;
are continuous functions in the operating interval of time [a; b]), and a second group
of variables yi; i = 1; 2; :::; n; provides the "selling" rate of water from Ri at t, which
is given by dyi(t) (now it makes sense to require that functions yi; i = 1; 2; :::; n; are
of bounded variation, since these planned in�ows (dyi(t) > 0) or out�ows (dyi(t) < 0)
take place in punctual instants of time in [a; b]). Constraints come from the need of
satisfying the overall demand at each instant t 2 [a; b]; and not exceeding the capa-
bility of each reservoir along all the operating time. Since the raining in�ows and
demand are necessarily uncertain, it is a crucial issue to study the stability of this
problem with respect to perturbations of the uncertain data.

In this paper, we consider the e¤ect on the solution set of the constraint system

� := fft(x) � 0; t 2 T ; x 2 Cg;

also represented by its corresponding data set, fft; t 2 T ; Cg ; of perturbing any con-
straint function ft; t 2 T; and possibly the constraint set C; under the condition that
these perturbations preserve certain properties of the constraints. In particular, we
analyze the continuity properties (in the sense of [?], [4] or [47]) of the feasible set
mapping associating to each perturbed system its corresponding solution set. The
parameter space, generically denoted by �; is a given family of systems with the same
decision space and index set as �; satisfying its relevant properties and such that

�1 =
�
f1t ; t 2 T ; C1

	
2 �)

�
f1t + �; t 2 T ; C1

	
2 � 8� 2 R

(i.e., closedness of � with respect to the addition of a �xed constant to the constraint
functions) if T 6= ;: The corresponding feasible set mapping is F : �� X such that

F(�1) = fx 2 X : f1t (x) � 0;8t 2 T ; x 2 C1g
= fx 2 X : g1(x) � 0; x 2 C1g; if T 6= ;;

where g1 := supt2T f
1
t denotes the marginal function of �1:

Observe that changes in the representation of F = F(�) could provoke changes
in the parameter space (e.g., the aggregation of nonnegative linear combinations of
the functional constraints in � could enlarge the index set although it does not a¤ect
the solution set). This paper considers seven main parameter spaces, namely
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�1 :=
��
f1t ; t 2 T ; C1

	
: f1t : X ! R [ f+1g 8t 2 T and ; 6= C1 � X

	
;

�2 :=
�
�1 2 �1 : f1t is lsc 8t 2 T and C1 is closed

	
;

�3 :=
�
�1 2 �2 : the local minima of g1 are global, C1 is convex,

and F(�1) � intC1g ;

�4 :=
�
�1 2 �2 : the local minima of g1 are global and C1 = X

	
;

�5 :=
�
�1 2 �2 : f1t convex 8t 2 T and C1 is convex

	
;

�6 :=
�
�1 2 �5 : f1t is �nite-valued 8t 2 T and C1 = C0

	
; and

�7 :=
�
�1 2 �2 : f1t = ut + �t; (ut; �t) 2 X� � R 8t 2 T; and C1 = X

	
;

where lsc stands for lower semicontinuous, C0 is a �xed closed convex subset ofX (e.g.,
the whole space X or the solution set of the subsystem of nonperturbable constraints,
which could include equations, sign constraints, etc.), and X� denotes the topological
dual of X: The above parameter spaces are related by inclusion as the following
diagram shows:

�4 � �3 � �2 � �1
[ [
�7 � �6 � �5

Observe that �1;�2;�5;�6; and �7 are closed with respect to (w.r.t.) perturbations
of the right-hand side (RHS), i.e., replacing 0 by (possibly di¤erent) scalars in each
constraint. Concerning �3; the functions whose local minima are global have been
characterized in [50] in terms of the lower semicontinuity of the feasible set mapping
corresponding to fx 2 Rn : g (x) � 0g 2 �3 (with a unique index) w.r.t. the right-
hand side (RHS) scalar, in [36] in terms of generalized convexity, and in [26] in terms
of arcwise quasiconvexity (the �rst two papers with X = Rn and the 3rd one with X
being a metric space). A class of functionals arising in control problems that enjoy
this local-global property has been identi�ed in [5]. The next simple example shows a
signi�cant element of �4��5 with X = Rn and T 6= ; arbitrary.

Example 1.1. Let � = fft; t 2 T ;Rng be such that ft (x) = hat; xi � bt; where
at = (at1; :::; atn) 2 Rn+� f0ng and bt 2 R; t 2 T; and hat; xi := mini2I+(at) ati jxij ;
where I+ (at) := fi 2 f1; :::; ng : ati > 0g : In this case, the restriction of the marginal
function of �; g; to Rn+ is an lsc ICAR (acrostic of �increasing and convex along
rays�) function. Then, according to [48], g satis�es the following two properties:
(i) Given x; y 2 Rn; if jxij � jyij for all i = 1; :::; n; then g (x) � g (y) :
(ii) Given x 2 Rn� f0ng ; the function gx : R+ 7! R+ such that gx (�) = g (�x) is
convex.
Now we prove that the local minima of g are global. In fact, (i) implies that 0n is a
global minimum. Thus we must show that g (x) = g (0n) for any local minimum x:
Otherwise, if g (x) > g (0n) and � 2 [0; 1[ ; (ii) yields

g (�x) = gx ((1� �) 0 + �1) � (1� �) gx (0) + �gx (1)
= (1� �) g (0n) + �g (x) = g (x)� (1� �) [g (x)� g (0n)] < g (x) ;
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and taking �% 1 we conclude that x is not a local minimum.

When the parameter space of a given MP problem does not appear in the above
list, it is usually easy to build up its corresponding stability theory by adapting the
relative to some close space in the above list. In particular, if �j+1 � � � �j ;
any su¢ cient condition for the feasible set mapping corresponding to �j ; say Fj ;
to be closed (lsc, usc) at � 2 �j guaranties that F is closed (lsc, usc) at � 2 �:
Analogously, any necessary condition for Fj+1 to be closed (lsc, usc) at � 2 �j+1 is
also necessary for F to be closed (lsc, usc) at � 2 �: In this paper we analyze the
continuity properties of the feasible set mapping F at the nominal system � relative to
arbitrary perturbations of the constraint functions or just the RHS function (replacing
the null function with certain u 2 RT ) whereas the constraint set will remain �xed
or not in the di¤erent models. To do so we endow the basic space of parameters �1
with a suitable topology and consider � � �1 equipped with the induced topology.

The closest antecedents of our study are [2] and [3], about F7 with C0 � Rn
possibly nonclosed and nonconvex (linear semi-in�nite systems with set constraint),
[20], [21] and [19, Chapter 6], about F7 with C0 = X = Rn (linear semi-in�nite
systems). A particular case was �rst studied during the 1980s: [8] and [16] considered
� � �7 formed by linear systems (called continuous) fut (x) + �t � 0; t 2 Tg such
that T is a compact Hausdor¤ space and the functions u(�) : T ! Rn and �(�) : T ! R
are continuous on T (this study was later completed in [19, Chapter 6], where it
was shown that the behavior of F for continuous semi-in�nite linear systems and
for general linear semi-in�nite systems is quite similar, despite that perturbations
are restricted to be continuous functions). Other antecedents are [42], about F7
with C0 = X (linear in�nite systems), and [44], about F6 with C0 = X = Rn
(convex semi-in�nite systems). In [42] the decision space is X = Y �; where Y is
some metrizable locally convex Hausdor¤ topological vector space, so that X� can be
identi�ed with Y if X� is endowed with the weak� topology, i.e., the parameter space
is �7: [20], [21], and [44] provided the fundamentals for the stability analysis of the
optimal set mapping and the optimal value function in linear and convex semi-in�nite
optimization from the same set-valued perspective (see [19, Chapter 10] and [17],
respectively). The parameter space of the so-called min-type semi-in�nite systems,
whose constraint functions are the restriction to C0 = X = Rn++ of the constraint
functions ft of Example 1.1, with at 2 Rn++; is then close to �3 and its stability
theory ([43]) is almost identical to the one of F3 developed in this paper (in this case
X is not a linear space). All the data de�ning � (except the constraint set) were
considered perturbable in the mentioned papers, whereas in [14] we characterized
the lower semicontinuity and the subdi¤erentiability at � 2 �5 of the optimal value
function under perturbations of the RHS function 0 (i.e., the stability perspective of
[35]). Let us mention that, in the �nite dimensional setting, with �xed constraint
set C0 = Rn; there exists a third stability perspective, consisting of introducing a
parametrization mapping describing particular types of perturbations of (P). Under
suitable smoothness assumptions on these mappings it is possible to obtain strong
topological properties of the feasible set and the optimal set mappings, as well as the
geometrical analysis of the trajectory described by the optimal solution, if it unique
(see, e.g., [30] and [32]). In particular, the so-called extended Mangasarian-Fromovitz
constraint quali�cation (EMFCQ, in brief) was introduced in the semi-in�nite setting
in [32] inspired in a condition given in [24] (see [31] for a parametric counterpart).
In linear semi-in�nite optimization, the relationship between EMFCQ, the Robinson
c.q., and the metric regularity of the feasible set mapping is explored in [9] and
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[10]. [33] is focused on the study of metric regularity in connection with EMFCQ
of certain parametrized nonlinear semi-in�nite systems with C1-data and subject to
RHS perturbations. The �nite dimension of the decision space seems to be substantial
in this kind of stability analysis. The stability theory of the feasible set in semi-
in�nite programming has been reviewed in [18], where the connection between lower
semicontinuity of F and constraint quali�cations (e.g., Slater-type and interior-type
conditions) are discussed. There exists a wide literature on constraint quali�cations in
convex (and extended convex) in�nite dimensional optimization, where they provide
optimality conditions and duality theorems (see, e.g., [6], [15], [28], [29], [36], [38],
[39], [40], and [41]).

The paper is organized as follows. §2 introduces most stability concepts considered
in this paper. Among the stability concepts left aside in our study, let us mention those
related with the dimension of F (dimensional stability and topological stability) and
the metric regularity of the inverse mapping F�1; a theory still in progress in the linear
semi-in�nite context (see, e.g., [19], [9], and references therein). §3 introduces a metric
on any parameter space � � �1; and shows that �j is complete if j = 1; 2; 5; 6; 7:
The de�nition of such a metric is inspired in [44] although the size of the perturbation
of an individual function is de�ned here in a slightly di¤erent way and a suitable
measure of the perturbation of the constraint set has also been introduced. The
completeness of � could be useful in order to characterize the metric regularity of
F�1 by adapting powerful results on metric regularity in Banach spaces (e.g., [27]
and references therein). §4 shows that F is closed on any � � �2: The main result
in §5 is Theorem 5.1, which characterizes the lower semicontinuity of F at a given
� 2 � when either � � �3 or � � �5 by means of conditions (ii)-(vi) or conditions
(ii)-(viii), respectively. All the results in §3-§5 are valid, then, for normable spaces.
In the last two sections X is either a normable space or certain type of topological
space with no linear structure. In §6, we adapt the concept of Robinson regularity to
systems posed on a normable space X; and we characterize this property for � � �5:
Finally, in §7, we characterize the upper semicontinuity of F : � � X when either
X = Rn or X is a metrizable locally compact and sigma-compact (i.e., union of a
countable family of compact sets) space X; with � subspace of �2 or some space of
systems with continuous constraints, respectively. Recall that the decision space in
[43], X = Rn++; is a metric locally compact and sigma-compact topological space.

The main novelty of this paper in comparison with the previous ones is the key
role played here by the parameter space, which allows us to give very general results
(showing, for instance, that the closedness of the feasible set mapping only requires
lower semicontinuity of the constraint function and closedness of the constraint set)
and, from a methodological perspective, the use of in�nite dimensional convex analy-
sis, nets (instead of sequences) and linear representations of F involving epigraphs
of the conjugates of the constraint functions (instead of their subddiferentials, which
could not exist in our general framework).

2. Preliminaries. The dual space of X is denoted by X�: For a set D � X; we
denote with convD and coneD the convex hull of D and the convex conical hull of D[
f0g ; respectively. If D = fds; s 2 Sg ; denoting by R(S) the linear space of mappings
from S to R with �nite support and by R(S)+ its positive cone, we can write coneD =nP

s2S �sds : � 2 R
(S)
+

o
and convD =

nP
s2S �sds : � 2 R

(S)
+ ;

P
s2S �s = 1

o
: From

the topological side, we denote by N (x) the family of all the neighborhoods of x 2 X
and by clD the closure of D; if D � X; and the closure of D w.r.t. the weak�
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topology, if D � X��R: The indicator function �D is de�ned as �D(x) = 0 if x 2 D,
and �D(x) = +1 if x =2 D: D is a nonempty closed convex set if and only if �D is a
proper lsc convex function.

Now let h : X ! R [ f+1g: The e¤ective domain, the graph, and the epigraph
of h are dom h = fx 2 X : h(x) < +1g; gphh = f(x; 
) 2 X � R : h(x) = 
g,
and epi h = gphh + cone f(0; 1)g (with the convention that A + ; = ; + A = ;),
respectively, whereas the conjugate function of h; h� : X� ! R[f�1g, is de�ned by

h�(v) = supfhv; xi � h(x) : x 2 dom hg:

It is well-known that, if h is a proper lsc convex function, then h� enjoys the same
properties and its conjugate, denoted by h�� : X ! R [ f�1g, de�ned by

h�(x) = supfhv; xi � h�(v) : v 2 dom h�g;

coincides with h: ��C is the support function of C; whose epigraph epi �
�
C is a closed

convex cone.
If fft; t 2 Tg is a family of proper convex lsc functions such that dom (supt2T ft) 6=

;; one has that

epi

�
sup
t2T

ft

��
= cl conv

 [
t2T

epi f�t

!
(2.1)

(see, e.g., [7], [40], and [41]).
Let � = fft(x) � 0; t 2 T ;x 2 Cg be consistent and let v 2 X� and � 2 R: Then

the asymptotic Farkas�Lemma (Theorem 4.1 in [13]) establishes that

ft(x) � 0 8t 2 T; x 2 C =) v(x) � �

if and only if

(v; �) 2 cl cone

 [
t2T

epi f�t [ epi ��C

!
: (2.2)

From the separation theorem, (2.2), and the equation

cl cone

 [
t2T

epi f�t [ epi ��C

!
= cl cone

( [
t2T

epi f�t

!
+ epi ��C

)
;

when T 6= ; ([13]) we get the following linear representations of F (i.e., linear systems
whose solution set is F ):(

v(x) � �; (v; �) 2
 [
t2T

epi f�t

!
+ epi ��C ;x 2 X

)
; if T 6= ;; (2.3)

and (
v(x) � �; (v; �) 2

[
t2T

epi f�t [ epi ��C ;x 2 X
)
: (2.4)
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Observing that v(x) � � if and only if v(x) � 1
k � � for all k 2 N if and only if

kv(x) � k�+ 1 for all k 2 N; we can replace in (2.4) epi ��C with"[
k2N

(k epi ��C)

#
+ (0; 1) = (epi ��C) + (0; 1) :

Thus (
v(x) � �; (v; �) 2

[
t2T

epi f�t [ [(epi ��C) + (0; 1)] ;x 2 X
)
: (2.5)

is another linear representation of F:
Let fA�g�2� be a net of subsets of X associated with the directed set (�;�):We

de�ne the set of limit points of this net as the set

Li
�
A� =

�
x 2 X

���� for all U 2 N (x) there exists � 2 � such that
U \A�0 6= ; for every �0 2 � such that � � �0

�
=

�
x 2 X

���� for all U 2 N (x); U intersects A�for all � in some residual subset of �

�
;

and the set of cluster points of the net as the set

Ls
�
A� =

�
x 2 X

���� for all U 2 N (x) and for every � 2 � there
exists �0 2 � such that � � �0 and U \A�0 6= ;

�
=

�
x 2 X

���� for all U 2 N (x); U intersects A�for all � in some co�nal subset of �

�
:

Clearly Li� A� � Ls� A� and both sets are closed, whether or not the terms of the net
are closed. We say that fA�g�2� converges in the sense of Kuratowski-Painlevé to
the closed set A if Li� A� = Ls� A� = A:

The domain of the feasible set mapping F : �� X; where � is some space of pa-
rameters equipped with the metric de�ned in (3.5), is domF = f� 2 � : F (�) 6= ;g :
Obviously, if � = fft; t 2 T ;Cg 2 domF ; then ft is proper for all t 2 T: The main
objective of this paper is the characterization of the following (local or global) desir-
able properties of F ; which adapt to our general framework similar ones appeared in
the works mentioned in §1.

F is closed at � = fft; t 2 T ; Cg 2 � if for all nets f��g�2� � � and fx�g�2� �
X satisfying x� 2 F(��) for all � 2 �, lim� �� = � and lim� x� = x; one has x 2 F(�).
F is said to be closed if it is closed at � for all � 2 �. Obviously, F is closed if and
only if its graph, gphF := f(�; x) 2 ��X : x 2 F (�)g ; is a closed set in the product
space.

F is lower semicontinuous at � 2 � in the Kuratowski-Berge sense (lsc, in brief)
if, for each open set W � X such that W \F(�) 6= ;, there exists an open set V � �,
containing �, such that W \ F(�1) 6= ; for each �1 2 V: F is said to be lsc if it is lsc
at � for all �1 2 �:

F is upper semicontinuous at � 2 � in the Kuratowski-Berge sense (usc, in brief)
if, for each open set W � X such that F(�) � W , there exists an open set V � �,
containing �, such that F(�1) �W for each �1 2 V:

We say that � satis�es the strong Slater condition if there exists some �x 2 C and
some � > 0 such that ft(�x) < �� for all t 2 T (i.e., g (�x) < ��). In such a case, �x is
called strong Slater (SS) point of � with associated constant �:
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Moreover, we say that � is Tuy regular if there exists � > 0 such that for any
w 2 RT and any nonempty convex set C1 � X satisfying �1 := fft(x) � wt � 0; t 2
T ;x 2 C1g 2 � and maxfsupt2T jwtj; d(�C ; �C1)g < �; where d(�C ; �C1) is given
by (3.2), one has F(�1) 6= ;: This desirable property inspired in [49] means that
su¢ ciently small perturbations of the RHS scalars and the constraint set preserve the
consistency of the nominal system.

Other stability concepts are introduced in §5 and §6.

3. The parameter spaces. In order to de�ne a suitable topology on the pa-
rameter space � we introduce, �rst, the distance between two extended functions in
the sense of the uniform convergence on the positive multiples of the closure of a
�xed barrelled neighborhood of zero, say B; and second, from this distance, another
one between inequality systems posed in X and indexed with T . Obviously, the sets
Bk := kB; k 2 N; are also barrelled neighborhoods of zero such that

S
k2N

Bk = X:

Since Bk � intBk+1 for all k, we have also
S
k2N

intBk = X: If X is normable, we shall

take as B a bounded barrel (see, for instance, [25, §10 C]).
Let V1 be the set of all functions of the form f : X ! R [ f+1g. For each pair

of functions f; h 2 V1, we de�ne

dk(f; h) := sup
x2Bk

jf(x)� h(x)j; k 2 N;

d(f; h) :=
+1X
k=1

2�kminf1; dk(f; h)g:

Here, by convention, we understand that (+1)� (+1) = 0; j �1j = +1; j+1j =
+1:

It is worth noting that d(f; h) = 0 implies that, for any k 2 N, jf(x)� h(x)j = 0
for all x 2 Bk. By our convention, either f(x) = h(x) = +1 or f(x) = h(x) 2 R. AsS
k Bk = X, f(x) = h(x) for all x 2 X. Moreover, it is easy to verify that (V1; d) is a

metric space.
Observe that, given a nonempty set C1 � X; C1 6= C; if

k1 := minfk 2 N : Bk \ C 6= Bk \ C1g; (3.1)

then

d(�C ; �C1) = 2
1�k1 : (3.2)

Lemma 3.1. Let k 2 N and � > 0 be given. There exists � > 0 such that
dk(f; h) < � for each pair f; h 2 V1 satisfying d(f; h) < �.

Proof. Let � 2 (0; 1). Take � > 0 such that � < 2�k�. If f; h 2 V1 then

d(f; h) < �) 2�kminf1; dk(f; h)g < 2�k�
) minf1; dk(f; h)g < �
) dk(f; h) < �:

Lemma 3.2. For each � > 0; there exist k 2 N and � > 0 such that d(f; h) < �
for each pair f; h 2 V1 satisfying dk(f; h) < �.
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Proof. Let � > 0. Take k 2 N such that
P+1

i=k+1 2
�i < �

2 . Choose � 2 ]0; 1[
satisfying �

Pk
i=1 2

�i < �
2 :

Note that di(f; h) � dk(f; h) whenever i � k. If dk(f; h) < �, then

d(f; h) =
kX
i=1

2�iminf1; di(f; h)g+
+1X
i=k+1

2�iminf1; di(f; h)g

�
kX
i=1

2�i�+
+1X
i=k+1

2�i <
�

2
+
�

2
= �:

We say that a sequence of extended functions fn : X ! R [ f+1g; n 2 N;
converges uniformly to f : X ! R [ f+1g on a set Y � X when for all � > 0 there
exists n0 2 N such that jfn(x)� f(x)j < � for all x 2 Y and for all n � n0: Recalling
the above convention, this is equivalent to assert that Y \dom fn = Y \dom f for all
n � n0 and the restriction of fn to the later set converges uniformly (in the sense of
�nite-valued functions) to the restriction of fn to the same set.

Proposition 3.3. Let f; fn 2 V1; n = 1; 2; :::. Then d(fn; f) ! 0 if and only if
the sequence ffngn2N converges uniformly to f on Bk; for all k 2 N.

Proof. It is immediate consequence of the previous lemmas.

As a consequence of Proposition 3.3, the topology on V1 is the same for any
other barrelled neighborhood of zero eB such that there exist positive scalars � and �
satisfying �B � eB � �B: IfX is a normed space, any barrelled neighborhood of zero eB
satis�es this condition relative to the unit ball B: Then the above topology is intrinsic.
In the particular case that X = Rn; this topology describes the uniform convergence
on the compact subsets of Rn (as in [44]), and its restriction to �7 coincides with the
topology of the uniform convergence introduced in [23], which is commonly used in
the stability analysis in linear semi-in�nite optimization. Obviously, other metrics on
V1 could be considered instead of d: For instance,

� (f; h) := sup
x2X

jf (x)� h (x)j
1 + jf (x)� h (x)j ;

adopting the convention that +1
+1 = 1 describes the topology of the uniform conver-

gence on the whole space X: The advantage of � on d is that it is always intrinsic
to X: The serious inconvenient of � is that the corresponding topology is too rich for
developing a stability theory dealing with arbitrary perturbations of the constraint
functions and the constraint set.

Now, let C;Cn, n 2 N, be subsets of X. From Proposition 3.3 (or from (3.2)),
the convergence �Cn ! �C as n ! 1 (i.e., limn d(�Cn ; �C) ! 0) is characterized as
follows:

Corollary 3.4. �Cn ! �C if and only if for any k 2 N there exists nk 2 N such
that Cn \Bk = C \Bk for all n � nk:

Let Vj be the space of the constraint functions corresponding to parameter space
�j ; j = 1; :::; 7; i.e., V1 = (R[f+1g)X (the set of extended functions from X to

9



R[f+1g),

V2 := ff 2 V1 : f is lscg ;
Vj := ff 2 V2 : the local minima of f are globalg ; j = 3; 4;
V5 := ff 2 V3 : f is convexg ;
V6 := ff 2 V5 : f is �nite-valuedg ; and
V7 := X�:

Observe that the improper function f+1gX (with constant value +1) is an accu-
mulation point of Vj ; j = 1; :::; 5; because f+1gX = limk �fxkg; where xk 2 X�Bk
for all k 2 N: The topology of V7 describes the uniform convergence of the continuous
linear functionals on B:

Proposition 3.5. (Vj ; d) is a complete metric space for j = 2; 5; 6; 7:
Proof. First, we prove that (V1; d) is complete. Let ffngn2N be a Cauchy sequence

in (V1; d), i.e., d(fn; fm)! 0 as n;m!1.
Let � > 0. For any �xed k 2 N, by Lemma 3.1, there exists � > 0 such that

dk(f; h) < � for each pair f; h 2 V1 satisfying d(f; h) < �.
Since d(fn; fm) ! 0 as n;m ! 1, there is nk > 0 such that d(fn; fm) < � and

hence, dk(fn; fm) < � for all m;n > nk. This means that

sup
x2Bk

jfn(x)� fm(x)j < �:

By our convention, for each x 2 Bk, either fn(x) = fm(x) = +1 or ffn(x); fm(x)g �
R for all n;m > nk. In the �rst case, let f(x) = +1. For the second case, ffn(x)gn2N
is a Cauchy sequence in R and hence, converges to some point in R which we denote
by f(x). It is obvious that the sequence ffngn2N converges uniformly to f on Bk:
Since k is taken arbitrarily, it follows that f 2 V1 and also that d(fn; f) ! 0 as
n!1 by Proposition 3.3.

Now we show that V2 is a closed subspace of V1: Let ffngn2N � V2 be such
that d(fn; f) ! 0: We must prove that f is lsc. Let x0 2 X and � 2 R be such
that f (x0) > �: Let � 2 ]0; 1[ such that f (x0) > � + �: Let k; n0 2 N be such that
x0 2 intBk and

jfn(x)� f(x)j <
�

2
8x 2 Bk 8n � n0: (3.3)

If f(x0) = +1; fn0(x0) = +1 > � + � by (3.3). Because fn0 is lsc, there exists
V 2 N (x0) such that

fn0(x) > �+
�

2
8x 2 V: (3.4)

Otherwise, from (3.3), fn0(x0) > f(x0)� �
2 > �+

�
2 and we get again (3.4) for some

V 2 N (x0). If x 2 V \ intBk; from (3.3) and (3.4), we get f(x) > �: Consequently,
f is lsc at x0: So V2 is closed.

The proof of the closedness of V5; V6; and V7 is left to the reader.
The next example shows that Proposition 3.5 is not true for j = 3; 4:

Example 3.6. Let X = R and ffngn2N � V3 such that

fn (x) =

8<:
jxj ; if x � 1;
x+n
n+1 ; if x 2

�
1; 2n+1n

�
;

x� 1; if x � 2n+1
n ;
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n 2 N (the unique local minimum of fn; 0; is global). Then d(fn; f)! 0; where

f (x) =

8<: jxj ; if x � 1;
1; if x 2 ]1; 2[ ;
x� 1; if x � 2;

whose set of local minima, f0g [ ]1; 2] ; only contains a global minimum, 0; so that
f =2 V3 (see Figures 1-2).

Figure 1: Graph of fn:

Figure 2: Graph of f:

Given � = fft; t 2 T ;Cg ; �1 =
�
f1t ; t 2 T ;C1

	
2 �j , we de�ne

d(�; �1) :=

�
maxfsupt2T d(ft; f1t ); d(�C ; �C1)g; if T 6= ;;
d(�C ; �C1); if T = ;: (3.5)
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Proposition 3.7. (�;d) is a metric space for all � � �1: Moreover, (�;d) is
complete if � is a closed subset of �1: In particular, (�j ;d) is complete; j = 2; 5; 6; 7:

Proof. It is su¢ cient to prove that (�1;d) is a complete metric space and that
�j is closed for j = 2; 5; 6; 7: We prove the statement assuming that T 6= ; (the proof
is simpler if T = ;).

In order to show that (�1;d) is a metric space it is su¢ cient to verify the triangu-
lar inequality. Let � = fft; t 2 T ;Cg ; �1 =

�
f1t ; t 2 T ;C1

	
and �2 =

�
f2t ; t 2 T ;C2

	
be systems from �1. We have

d(�; �1) + d(�1; �2) =

= maxfsup
t2T

d(ft; f
1
t ); d(�C ; �C1)g+maxfsup

t2T
d(f1t ; f

2
t ); d(�C1 ; �C2)g

� maxfsup
t2T

d(ft; f
1
t ) + sup

t2T
d(f1t ; f

2
t ); d(�C ; �C1) + d(�C1 ; �C2)g

� maxfsup
t2T
fd(ft; f1t ) + d(f1t ; f2t )g; d(�C ; �C1) + d(�C1 ; �C2)g

� maxfsup
t2T

d(ft; f
2
t ); d(�C ; �C2)g = d(�; �2):

Now we prove that (�1;d) is complete. Let f�ngn2N be a Cauchy sequence in
(�1;d).

We �rst prove its convergence for the case where C = X. Suppose that �n =
ffnt ; t 2 T ;Xg for all n 2 N. Let � 2 ]0; 1[ be �xed. We must show that there is
a system � 2 �1 such that d(�n; �) ! 0 as n tends to in�nity. For any k 2 N; by
Lemma 3.1, there is �k > 0 such that

d(f; h) < �k ) dk(f; h) < �: (3.6)

As f�ngn2N is a Cauchy sequence, there exists n0 > 0 such that for any m;n � n0,
one has

d(�n; �m) = sup
t2T

d(fnt ; f
m
t ) < �k;

which gives

d(fnt ; f
m
t ) < �k; 8t 2 T; 8m;n � n0: (3.7)

It follows from (3.6) that

dk(f
n
t ; f

m
t ) = sup

x2Bk

jfnt (x)� fmt (x)j < �; 8t 2 T; 8m;n � n0: (3.8)

By an argument as in the proof of Proposition 3.5, for each t 2 T , there exists a
function ft 2 V1 such that d(fnt ; ft)! 0 as n!1. Let � := fft; t 2 T ;Xg:

We now prove that d(�n; �)! 0 as n!1.
With � > 0 �xed, by Lemma 3.2, there exist k0 and �0 > 0 such that for any

f; h 2 V1,

dk0(f; h) < �0 ) d(f; h) < �: (3.9)

Since d(�n; �m)! 0, there exists n1 > 0 such that for all n;m � n1,

d(�n; �m) = sup
t2T

d(fnt ; f
m
t ) = sup

t2T

1X
i=1

2�idi(f
n
t ; f

m
t ) < �02

�k0 :
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This yields

dk0(f
n
t ; f

m
t ) < �0; 8t 2 T;

which, in turn, implies that (letting m!1)

dk0(f
n
t ; ft) � �0; 8t 2 T;8n � n1:

By (3.9), the last inequality yields

sup
t2T

d(fnt ; ft) � �;8n � n1:

Therefore, d(�n; �)! 0 as n tends to 1:
We now turn to the case where �n = ffnt ; t 2 T ;Cng for all n 2 N. Since f�ngn2N

is a Cauchy sequence, d(�Cn ; �Cm)! 0 as n;m tends to in�nity. By the completeness
of (V1; d); there exists h 2 V1 such that d(�Cn ; h) ! 0 as n ! 1: Since �Cn ! h
pointwise, h (x) 2 f0;+1g for all x 2 X: Then h = �C ; where C := domh 6= ;: Then
d(�Cn ; �C)! 0 as n!1:

Let � := fft; t 2 T ;Cg. Combining the two parts of the proof, we conclude that
d(�n; �)! 0 as n!1. Consequently, (�1;d) is complete.

The closedness of �j ; j = 2; 5; 6; 7; follows from Proposition 3.5.

Consider the sequence f�ngn2N such that �n = ffn;Rg � �3; where fn is the
function de�ned in Example 3.6. It is easy to see that d(�n; �) ! 0; where � =
ff ;Rg =2 �3: Thus �3 is not closed.

In the rest of the paper, for the sake of simplicity, we will write d(�; �1) instead
of d(�; �1) whenever there is no ambiguity.

The next example emphasizes that the properties of the feasible set mapping at
the nominal system � are not determined by its feasible set F (recall that � depends
on the index set, and so on the particular form of �).

Example 3.8. Let C � X be a nonempty closed convex set. We analyze the
lsc property of the feasible set mapping at three di¤erent representations of C; with T
empty, singleton, and T in�nite, respectively.
(a) Let � = fx 2 Cg 2 �5: The elements of �5 can be expressed here as �1 = fx 2 C1g
with C1 � X nonempty, closed and convex. Let W be an open set in X such that
W \ C 6= ;: Take �x 2 W \ C: Let �k 2 N be such that �x 2 B�k: If �x =2 C1 then
�x 2 (B�k \ C)�(B�k \ C1) so that k1 � �k (k1 was de�ned in (3.1)). Thus, �k < k1
implies �x 2 C1: Consequently, d(�; �1) = d(�C1 ; �C) < 21�

�k implies that �k < k1
(according to (3.1)), so that �x 2 C1 and F5 (�1) \W = C1 \W 6= ;: Then F5 is lsc
at �:
(b) F5 is not lsc at � = f�C(x) � 0;x 2 Xg 2 �5 because �1 := f�C(x) + � � 0;x 2
Xg 62 domF5 for � = d(�; �1) > 0 arbitrarily small.
(c) Let � = fv(x) � �; (v; �) 2 epi ��C + (0; 1) ;x 2 Xg 2 �7; obtained from (2.5).
It is easy to show that any solution of � is an SS-point of �: In §5 we prove that
the strong Slater condition characterizes the lsc property of F7 at �: Observe that the
elimination of �+(0; 1)�from the index set of � provides another linear representation
of C (from (2.4)) such that F7 cannot be lsc at that system because arbitrarily small
perturbations of (0; 0) 2 epi ��C of the type (0;��) provide inconsistent systems.
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4. Closedness. Being F (�) a closed subset of X for all � 2 � is a necessary
condition for the closedness of F : � � X: Thus F1 is not closed (consider � =
fft; t 2 T ;Cg such that ft = 0 for all t 2 T and C is nonclosed). The feasible set
mapping F satis�es this necessary condition when � � �2; which turns out to be
also su¢ cient according to the next result.

Theorem 4.1. F is closed for any � � �2:
Proof. We assume that T 6= ;: It is enough to prove that F2 is closed because F

is the restriction of F2 to � � �2:
Consider � = fft; t 2 T ;Cg 2 �2: Let f��g�2� � �2; where �� = ff�t ; t 2

T ;C�g; � 2 �, and fx�g�2� � X be nets satisfying

lim
�
�� = �; lim

�
x� = ex; and x� 2 F2(��) for all � 2 �: (4.1)

We will show that ex 2 F2(�). To this aim, we observe �rstly that for any �xed �t 2 T ,
we have

f�t(ex) � lim inf
�

f�t(x�): (4.2)

by the lower semicontinuity of f�t: On the other hand, since

lim
�
d(�; ��) = lim

�
max

�
sup
t
d(ft; f

�
t ); d(�C ; �C�)

	
= 0;

one gets lim� d(f�t; f��t ) = 0, which, together with Lemma 3.1, gives

lim
�
dk(f�t; f

�
�t ) = 0; 8k 2 N: (4.3)

Since fx�g�2� is a convergent net, without loss of generality, assume that fx�g�2� �
intBk for k 2 N large enough. By de�nition of dk, for each � 2 �;

jf�t(x�)� f��t (x�)j � dk(f�t; f��t );

and hence,

f�t(x�) � f��t (x�) + dk(f�t; f��t ) � dk(f�t; f��t ); 8� 2 �

as f��t (x�) � 0 by the fact that x� 2 F2(��). Combining this, (4.3), and (4.2) we get
f�t(ex) � 0.

By the same argument as above, recalling that C is closed, we can prove that
�C(ex) � 0 or ex 2 C. Consequently, ex 2 F2(�).

Obviously, the feasible set mapping F is still closed for � � �2 when the only
admissible perturbations involve the RHS function. The next result is a consequence
of Theorem 4.1 and the axiom of choice.

Proposition 4.2. Let � � �2: If f��g�2� � domF and lim� �� = �; then
Ls� F(��) � F(�):

Proof. Take a �xed x0 2 Ls� F(��), and consider the set

� := f(�; U) 2 ��N (x0) : F(��) \ U 6= ;g:

Observe that � is a directed set via the product order

(�; U) � (�0; U 0), � � �0 and U � U 0:
14



Therefore, by picking for each (�; U) 2 � a point x(�;U) 2 F(��) \ U; we build a net
fx(�;U)g(�;U)2� in X: It is easy to see that this net converges to the point x0:

Through (�;�) we shall generate a subnet of f��g�2�: In fact if we consider the
function h : �! � de�ned by h(�; U) = �; the following conditions are satis�ed:

(a) (�; U) � (�0; U 0)) h(�; U) � h(�0; U 0):
(b) The set h(�) is co�nal in (�;�): To see this, take a �xed � 2 � and any

U 2 N (x0): Then, there will exist �0 2 � such that � � �0 and F(��0) \ U 6= ;.
Therefore, (�0; U) 2 � and � � h(�0; U):

As a consequence of (a) and (b), f�h(�;U)g(�;U)2� is a subnet of f��g�2� and,
so, lim(�;U) �h(�;U) = �: Then, the closedness of F and x(�;U) 2 F(��) = F(�h(�;U))
together entail x0 2 F(�):

Example 4.3. Let � = ff ;Rg be such that

f (x) =

8<: x2 � 2; if x 2 D;
1; if x = �1;
+1; otherwise,

where D = ]�1; 1[ (see Figure 3). It is easy to show that � 2 �1��2; F1 is not closed
at � (because F1(�) = D is nonclosed) and, taking a constant net �� = � for all
� 2 �; we get Ls� F1(��) = clD * F1(�) = D: Thus the results in this section fail
for F1:

Figure 3: Graph of f

5. Lower semicontinuity. The main result of the paper provides di¤erent char-
acterizations of the lower semicontinuity of the feasible set mapping.

Theorem 5.1. F is lsc if T = ; and � � �1: Otherwise, consider the following
statements associated with � = fft; t 2 T ;Cg 2 domF :
(i) F is lsc at �;
(ii) � 2 int domF ;
(iii) � is Tuy regular;
(iv) � satis�es the strong Slater condition;
(v) F = clFSS ; where FSS is the set of all strong Slater points of �;
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(vi) For every net f��g�2� converging to �; the net of sets fF(��)g�2� converges to
F(�) in the sense of Kuratowski-Painlevé;

(vii) 0 62 cl conv
( [

t2T
epi f�t

!
+ epi ��C

)
; and

(viii) 0 62 cl conv
( [

t2T
epi f�t

!
[ [epi ��C + (0; 1)]

)
:

Then, (i))(ii))(iii))(iv) if � 2 �1; (i)-(vi) are equivalent to each other if � 2
�3 [�5; and (i)-(viii) are equivalent to each other if � 2 �5:

Proof. Let T = ; and � � �1: F is trivially lsc at any � 2 �� (domF) ; and
also at any � 2 domF by the argument of Example 3.8 (a). Thus we can assume that
T 6= ; and � = fft; t 2 T ;Cg 2 domF : We shall prove that (i)) (ii)) (iii)) (iv)
if � 2 �1; that (iv) ) (i); (i) ) (v) ) (iv); and (i) ) (vi) ) (ii) if � 2 �3 [ �5;
and, �nally, that (vii), (iv), (viii) if � 2 �5:

(i)) (ii) Let � 2 � � �1: Suppose that F is lsc at �: Then for any open subset
W � X with W \F(�) 6= ;, there exists � > 0 such that for any �1 2 �; d(�; �1) < �
implies F(�1) \W 6= ;; which proves that � 2 intdomF .

(ii)) (iii) Let � 2 � � �1: Suppose that � 2 intdomF . Let � > 0 be a number
such that

d(�; �1) � � =) �1 2 domF : (5.1)

By Lemma 3.2, there exist k 2 N and � > 0 such that d(f; h) < � for each pair of
functions f; h 2 Vj satisfying dk(f; h) < �: Without loss of generality, we can assume
that � < �: Let w 2 RT and C1 � X such that �1 := fft(x) � wt � 0; t 2 T ;x 2
C1g 2 � and

max

�
sup
t2T

jwtj; d(�C ; �C1)
�
< � < �: (5.2)

Then for any t 2 T; dk(f1t ; ft) < �; which implies d(f1t ; ft) < �: In turn, this and (5.2)
imply d(�; �1) < � and hence, �1 2 domF by (5.1). Thus, � is Tuy regular.

(iii)) (iv) Let � 2 � � �1: Suppose now that � is Tuy regular. Then, for some
� > 0; the system �1 = fft � wt; t 2 T ;C1g 2 � is consistent whenever

max

�
sup
t2T

jwtj; d(�C ; �C1)
�
< �: (5.3)

Let wt = � �
2 for all t 2 T and C1 = C: Since �1 2 � (because � is closed w.r.t.

constant perturbations of the RHS function) and (5.3) holds, �1 is consistent. It is
obvious that any ~x 2 F(�1) is a SS-point of �:

(iv)) (i) Let � 2 �3 [�5: Let W � X be an open set such that W \F(�) 6= ;:
Let �x 2W \ F(�); and x̂ 2 C and � > 0 such that ft(x̂) � �� for all t 2 T:

First we assume � 2 �3: Since F(�) � intC; we can assume W � intC without
loss of generality.

If g (�x) = 0; then �x is not a global optimizer of g because g (x̂) � �� < 0: Since
g 2 V3; �x cannot be local minimum of g so that there exists some ex 2 W such that
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g (ex) < 0: Let � := �g (ex) > 0 and ek 2 N be such that ex 2 Bek: Let � > 0 such that
d(�1; �) < � implies that jf1t (ex)� ft(ex)j < �

2 for all t 2 T: Then

f1t (ex) < ft(ex) + �2 � g(ex) + �2 = ��2 for all t 2 T:
On the other hand, since ex 2 W � C; by the argument of Example 3.8 (a),

d(�1; �) < 21�
ek implies that ex 2 C1: Hence, ex 2 W \ F(�1) whenever �1 2 �3

satis�es d(�1; �) < min
n
�; 21�

eko :
Now we assume � 2 �5: For � 2 ]0; 1] ; we consider x(�) = (1 � �)�x + �x̂ 2 C.

This is a SS-point of � because, for each t 2 T , we have

ft(x(�)) � (1� �)ft(�x) + �ft(x̂) � ���: (5.4)

Let k 2 N be such that x̂; �x 2 Bk, so that x(�) 2 Bk for all � 2 ]0; 1] : Recalling
the reasoning in Example 3.8 (a), for every closed convex set C1; it holds

d(�C1 ; �C) < 2
1�k ) x(�) 2 C1 8� 2 ]0; 1] : (5.5)

On the other hand, by Lemma 3.1, there exists � > 0 such that, for every t 2 T;

d(f1t ; f) < � ) dk(f
1
t ; ft) < 1: (5.6)

So, if �1 =
�
f1t ; t 2 T ;C1

	
2 � satis�es d(�1; �) < �, then

jf1t (x(�))� ft(x(�))j � dk(f1t ; ft) = minf1; dk(f1t ; ft)g
� 2kd(f1t ; ft) � 2kd(�1; �): (5.7)

Let � 2 ]0; 1] : According to (5.4), (5.5), (5.6), and (5.7), if

d(�1; �) < minf21�k; �; 2�k��g

(positive number depending on �), we have x(�) 2 C1 and

f1t (x(�)) � ft(x(�)) + 2kd(�1; �) < 0; 8t 2 T;

i.e., x(�) 2 F(�1) for �1 close enough to �:
Since lim�!0 x(�) = �x 2 W , x(�) 2 W for � > 0 small enough, so that W \

F(�1) 6= ; for �1 close enough to �:

(i) ) (v) Let � 2 � � �2: Since FSS � F(�) and F(�) is closed, we get
cl(FSS) � F(�). We now suppose that F(�)�cl(FSS) 6= ;. Then for any point x1
in this set, there exists an open set W with x1 2 W and W \ cl(FSS) = ;. Since
F is lsc at �, there is � > 0 such that F(�1) \W 6= ; whenever d(�; �1) � �. Take
�1 := fft + �; t 2 T ;Cg 2 �: Then it is clear that d(�; �1) = � and F(�1) � FSS . By
the lsc property of F ; W \F(�1) 6= ;, which contradicts the fact thatW \cl(FSS) = ;.
Therefore, cl(FSS) = F(�).

(v)) (iv) It is obvious since cl(FSS) = F(�) 6= ;.

(i) ) (vi) Let � 2 � � �2: The inclusion Li� F(��) � F(�) is a consequence
of the lower semicontinuity of F at � (by the same argument as in [47, Section 5B]).
In order to prove the reverse inclusion, consider an arbitrary x0 2 F(�): Since F
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is lsc at �; for each U 2 N (x0) there will exist a neighborhood V of � such that
U \ F(�0) 6= ; for each �0 2 V . Assume that �0 2 � is such that � 2 � and �0 � �
entail �� 2 V and, hence, U \ F(��) 6= ;: Consequently x0 2 Li� F(��); and we have
actually proved that F(�) � Li� F(��): Since Proposition 4.2 has already established
that Ls� F(��) � F(�); the general inclusion Li� F(��) � Ls� F(��) gives rise to the
aimed equality Li� F(��) = Ls� F(��):

(vi)) (ii) Let � 2 � � �1: Reasoning by contradiction, if (ii) does not hold, i.e.,
� =2 int domF ; we can �nd a sequence f�kgk2N converging to � such that F(�k) = ;,
k = 1; 2; :::; and so Lik F(�k) = Lsk F(�k) = ; 6= F(�); which contradicts (vi):

(iv), (vii) We have dom (supt2T ft) \ C 6= ; because � 2 domF : By (2.1) and
[7, Corollary 6(b)] one has

cl conv
�S

t2T epi f
�
t + epi �

�
C

�
= cl

�
cl conv

�S
t2T epi f

�
t

�
+ epi ��C

�
= cl

�
epi (supt2T ft)

�
+ epi ��C

�
= epi (supt2T ft + �C)

�
:

Thus (vii) holds if and only if 0 =2 epi (supt2T ft + �C)
�
; i.e., (supt2T ft + �C)

�
(0) >

0; if and only if there exist � > 0 such that (supt2T ft + �C)
�
(0) > � if and only if

there exist � > 0 and x 2 C such that ft (x) < �� for all t 2 T if and only if (iv) is
true.

(iv) , (viii) We have dom (supt2T fft; �C � 1g) 6= ;: Applying again (2.1) it
follows that

cl conv
�S

t2T epi f
�
t [ [epi ��C + (0; 1)]

�
= cl conv

�S
t2T epi f

�
t [ epi (�C � 1)

��
= epi (supt2T fft; �C � 1g)

�
:

Thus (viii) holds if and only if (supt2T fft; �C � 1g)
�
(0) > 0 if and only if there exist

� > 0; � < 1; such that (supt2T fft; �C � 1g)
�
(0) > � if and only if there exist � > 0

and x 2 C such that supt2T fft; �C � 1g (x) < �� if and only if (iv) is true.
This concludes the proof.

We have shown that statements (i)-(vi) in Theorem 5.1 are equivalent in �3
whereas (i)-(viii) are equivalent in �5: The next three simple examples (with jT j = 1)
show that none of the properties de�ning �3 and �5 are super�uous. There, state-
ments (ii)-(iv), (vii), and (viii) hold whereas (i); (v) and (vi) fail.

Example 5.2. Let � = ff ;Cg 2 �2� (�3 [�5) be such that f (x) = x2 � 1 and
C = f�1; 0; 1g � R (C is not convex). We have F = C; FSS = f0g ; f� (v) = v2

4 + 1;
and ��C (v) = jvj : Then

cl conv (epi f� + epi ��C) = cl conv (epi f
� [ [epi ��C + (0; 1)]) = epih;

where h (v) = v2

4 + 1; if v 2 [�2; 2] ; and h (v) = jvj ; otherwise.

Example 5.3. Let � = ff ;Cg be such that f (x) = 1�x2 and C = [�1;+1[ � R;
� 2 �2� (�3 [�5) because F = f�1g [ [1;+1[ " intC and f is nonconvex. We
have FSS = ]1;+1[ ; f� = +1; and ��C (v) = �v; if v � 0; and ��C (v) = +1;
otherwise. On the other hand, taking, for n 2 N; �n =

�
f + 1

n ;C
	
2 �2; we have

F2(�n) =
hq

n+1
n ;+1

h
; and this sequence converges to [1;+1[ : Observe that here

the set of (vii) is empty.
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Example 5.4. Consider X = R and the functions de�ned in Example 3.6.
Let � = ff � 1;Rg 2 �2� (�3 [�5) (because the local-global property fails) and
�n = ffn � 1;Rg � �3: It is easy to see that d(�n; �) ! 0; F2(�n) = [�1; 1] for all
n 2 N and F2(�) = [�1; 2] : Finally, ��R = �f0g and

(f � 1)� (v) =

8<: 1; if v 2
�
�1; 12

�
;

2v; if v 2
�
1
2 ; 1
�
;

+1; otherwise.

The latter example shows that, in contrast with convexity and extended convexity,
continuity (or even smoothness) plays no role in the context of lower semicontinuity
(consider, e.g., � = ff ;Rg ; with f (x) = x (x� 1)2).

Remark 5.5. From the proof of [(iv) ) (i)]; given x̂ 2 C such that ft(x̂) � ��
for all t 2 T (i.e., x̂ is an SS-point of � with associated constant �), if d(�1; �) <
minf21�k; �; 2�1�k�g; then x̂ = x(1) is an SS-point of �1; with associated constant �2 :

Remark 5.6. If � = fft; t 2 T ;Cg 2 �6 \ domF and C = X (e.g., � 2
�7 \ domF), then epi ��C = cone f(0; 1)g and f�t is a proper convex lsc function for
all t 2 T; so that epi f�t + epi ��C = epi f�t for all t 2 T: Thus

cl conv

( [
t2T

epi f�t

!
+ epi ��C

)
� cl conv

( [
t2T

epi f�t

!
[ [epi ��C + (0; 1)]

)
;

(5.8)
i.e., condition (vii) in Theorem 5.1 is weaker than condition (viii); and both conditions
are equivalent whenever �1 is a lower bound for some constraint function ft (in which
case (0; 1) 2 epi f�t and both sets in (5.8) coincide). The next example shows that the
sets in (5.8) are generally di¤erent.

Example 5.7. Let X = R; and � = ff ;Rg 2 �5 \ domF ; with f (x) = x+ 1, if
x � 0 and f (x) = +1; otherwise: Since ��C = �f0g; and f� (v) = �1; if v � 1; and
+1; otherwise, we have

cl conv fepi f� + epi ��Cg = (1;�1) + R2+

and

cl conv fepi f� [ [epi ��C + (0; 1)]g = conv f(1;�1) ; (0; 1)g+ R2+:

6. Robinson regularity. We can aggregate another characterization of the lsc
property of F to the list in Theorem 5.1 when X is a normable space and B is a
bounded barrel. Then the gauge associated with B; i.e.,

�B(x) := inff� > 0 : x 2 �Bg

is actually a norm, the �B�topology is exactly the original topology in X [25, §10 C],
and the sets f 1nB : n = 1; 2; :::g form a local base in X: We shall represent by �B the
distance associated with �B : Obviously, if X is a normed space and B is the closed
unit ball, then �B is the distance associated with this norm. The next de�nition is
inspired in [46].
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Let T 6= ;: The feasible set mapping F : �� X is said to be Robinson regular at
� = fft; t 2 T ;Cg 2 � if for each ex 2 F(�), there exist �; � > 0 such that ex 2 C1 and

�B(ex;F(�1)) � �max�0; g1(ex)	 ;
for any �1 2 � such that d(�; �1) < � (g1 denotes the marginal function of �1). Here,
by convention, we understand that �B(~x; ;) = +1:

Theorem 6.1. Let X be a normable space, B be a bounded barrel, and let
� = fft; t 2 T ;Cg 2 domF ; with T 6= ;: If F is Robinson regular at � 2 �3 [ �5;
then F is lsc at �: The converse statement holds if � 2 �5:

Proof. Suppose that F is Robinson regular at � 2 �3 [ �5: Take any ex 2 F .
Then there are real numbers �; � > 0 such that for any �1 with d(�; �1) < �, one hasex 2 C1 and

�B(ex;F(�1)) � �max[0; g1(ex)]: (6.1)

Let ek be an integer number such that ex 2 ekB. If d(�1; �) < 2�ek� then dek(ft; f1t ) <
�. In particular, we have

f1t (ex) � �+ ft(ex) � �; 8t 2 T:
This and (6.1) show that �B(ex;F(�1)) < +1; which implies F(�1) 6= ; and hence,
the statement (ii) in Theorem 5.1 holds. The lower semicontinuity of F follows from
this theorem.

Now we assume that � 2 �5:
Assume that F is lsc at �: By Theorem 5.1 (ii), F1 := F(�1) 6= ; if �1 = ff1t ; t 2

T ;C1g 2 � is close enough to �.
Let ex 2 F = F5(�). If �B(ex; F1) = 0 then the conclusion holds trivially. Assume

then that �B(ex; F1) > 0; and let r := �B(ex; F1). Since f 1nB : n = 1; 2; :::g is a local
base in X; there exists �0 > 0 such that (ex+ r�0B) \ F1 = ;.

By the separation theorem, there exists v 2 X��f0g such that

v(x) � v(ex� r�0z) = v(ex)� r�0v(z); 8x 2 F1; 8z 2 B:
This leads us to

v(x) � inf
z2B

[v(ex)� r�0v(z)] = v(ex)� r�; 8x 2 F1;
where � := �0 supz2B v(z) is a nonnegative real number because B is bounded, 0 2 B;
and �0 > 0: From (2.2) we get

(v; v(ex)� r�) 2 cl conen [
t2T

epi (f1t )
�

!
+ epi��C1

o
:

Then there exist nets f��g�2� � R(T )+ ; fu�t g�2� � dom(f1t )�; fw�g�2� � dom ��C1
and f��g�2� � R+; t 2 T such that

lim�
�P

t2T �
�
t u

�
t (x) + w

�(x)
�
= v(x); 8x 2 X;

lim�
�P

t2T �
�
t (f

1
t )
�(u�t ) + �

�
C1(w

�) + ��
�
= v(ex)� r�:
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Therefore,

lim�
�P

t2T �
�
t [u

�
t (x)� (f1t )�(u�t )] + w�(x)� ��C1(w

�)� ��
	

= v(x)� v(ex) + r�; 8x 2 X: (6.2)

Note that for each � 2 �, t 2 T , and each x 2 X,

f1t (x) = (f
1
t )
��(x) � u�t (x)� (f1t )�(u�t );

and if x 2 C1 then w�(x)� ��C1(w
�) � 0. We now can derive from (6.2) that

v(x)� v(ex) + r� � �� sup
t2T

f1t (x); 8x 2 C1; (6.3)

where �� := lim sup
�

P
t2T �

�
t ;
�� 2 R [ f+1g:

We will see that �� is �nite. Indeed, if �x is an SS-point of � (it exists by Theorem
5.1 (iv)) associated with � > 0 then for �1 closed enough to �, �x is also an SS-point of
�1, associated with

�
2 (recall Remark 5.5), i.e., �x 2 C1 and f

1
t (�x) � ��

2 for all t 2 T .
Letting x = �x in (6.3), we get

v(�x)� v(ex) � v(�x)� v(ex) + r� � ��(��
2
);

which implies that �� < +1 and

�� � 2

�
v(ex� �x) � 2

�
jv(ex)� v(�x)j: (6.4)

We now observe that by the same argument as in Example 3.8 (a), ex 2 C1
whenever �1 is close enough to �. So letting x = ex in (6.3), we get

r� � ��g1(ex);
which, together with (6.4), gives

�B(ex; F1) = r � �g1(ex);
where � := 2

�� jv(ex)� v(�x)j. The conclusion follows.
Example 6.2. Let X = R; B = [�1; 1] ; f (x) = �x2; and � = ff ;Rg 2 �3:

Assume that F3 is Robinson regular at �; with constant � > 0: Take ex = 0 2 F and
the sequence f�ngn2N such that �n = ffn;Rg 2 �3; with fn = f + 1

n ; n 2 N: Then
we have d (�n; �)! 0; F3 (�n) =

i
�1;� 1p

n

h
[
i
1p
n
;+1

h
; �B(ex;F3(�n)) = 1p

n
and

max f0; gn (ex)g = 1
n ; n 2 N: Since

1p
n
� �

n for n large enough, multiplying by n both
members of this inequality and taking limits as n!1 we get a contradiction. Hence
F3 is lsc (because FSS = R� f0g) but it is not Robinson regular at �:

7. Upper semicontinuity. In this section we give su¢ cient conditions for the
usc property of the feasible set map at a consistent system � under perturbations of
all the data. Obviously, these conditions are also su¢ cient in the case that we restrict
ourselves to perturbations of the RHS function. We also characterize the usc property
(Theorems 7.4 and 7.9) but, in contrast with the lsc counterpart (Theorem 5.1), such
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characterization, which also remains valid for RHS perturbations, does not involve
the data. Also in contrast with the lsc property, T = ; does not imply the upper
semicontinuity of the feasible set mapping everywhere.

Example 7.1. Let B be the closed unit ball in X = R2; C = epix21 and Cn =
epihn; where

hn (x1) =

8<: �2nx1 � n2; if x1 � �n;
x21; if x1 2 ]�n; n[ ;
2nx1 � n2; if x1 � n;

n 2 N: Then Cn *W := C+B for all n 2 N; with C �W: Since Cn\(kB) = C\(kB)
for all n � k; d (�Cn ; �C)! 0 as n!1 (by Corollary 3.4), so that Fj is not usc at
� = fx 2 Cg ; j = 1; ::::; 7 (in short, j � 1).

We �rst establish the usc property of F \ K when K is a compact set of X at
every consistent system. The next lemma can be seen as a local counterpart of the
Closed Graph Theorem in [1, Theorem 17.11], which proves the equivalence between
the closedness of the graph and the upper semicontinuity everywhere.

Lemma 7.2. If K is a compact subset of X then the truncated map eF : �� X;
� � �2; de�ned byeF(�1) := (F \K)(�1) = F(�1) \K for all �1 2 �;

is usc at any � 2 domF :
Proof. Let � 2 domF :We observe �rstly that the closedness of F at � entails the

closedness of eF at this parameter.
Assume that eF is not usc at �. Then there is an open setW such that eF(�) �W

and for any neighborhood V of � there exists �V 2 V and xV 2 eF(�V ) with xV 62W .
Note that fxV g is a net in K�W directed by inclusion (we are using the axiom of
choice). Since K is compact, there is a subnet of fxV g converging to a point in K, say
x 2 K: Then x 2 K�W since this set is relatively closed in K; but then x 62 eF(�),
which contradicts the closedness of eF at �. Consequently, eF is usc at �.

Proposition 7.3. If � � �6 and C0 is compact, then F is usc at any � 2 domF :

Proof. It is straightforward consequence of Lemma 7.2 taking K = C0:

According to Proposition 7.5(ii) below, the boundedness of F(�) entails the upper
semicontinuity of F at � when X = Rn and � � �6; but this property is seriously
troublesome when X is an in�nite-dimensional normed space (where boundedness of
F(�) does not imply upper semicontinuity of F at � any longer [42, Example 3]).

7.1. Upper semicontinuity in Rn. The next result characterizes the usc prop-
erty of F provided the decision space X is locally compact, in which case X is �nite
dimensional and, so, isomorphic to Rn ([34, §15.7 (1)]). The su¢ cient part is totally
general and its proof is a straightforward consequence of statement (iii) in [22, Lemma
2]. For j = 6; 7; this result generalizes the corresponding ones in [21] and [44] because
we consider here a �xed set constraint C0 � Rn and extended constraint functions ft;
t 2 T:

Theorem 7.4. Let � 2 domF ; � � �2: Then F is usc at � if and only if there
exists a compact set K and a positive number � such that

F(�1)�K � F(�)�K for all �1 2 � with d(�; �1) < �:
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In the present setting (i.e., X = Rn) the usc property of F for � � �5 follows
from the boundedness of F(�) as claimed in the next proposition, whose proof goes
along the ways as those of [44, Lemma 4.3, Proposition 4.2] with a minor modi�cation
to treat with the lsc property of the functions and the set constraints involved.

Proposition 7.5. Let � 2 domF ; � � �5: If F(�) is bounded then the following
statements hold:

(i) F is uniformly bounded in some neighborhood of �:
(ii) F is usc at �:
Proof. Let � 2 domF ; � � �5: We assume T 6= ;: We need to prove (i) only

since (ii) follows immediately from (i).
Let B be the closed unit ball in Rn. Suppose that F := F(�) � �B for some

� > 0. Assume that (i) does not hold. Then, there exist sequences f�rg � � and
fzrg � Rn such that d(�; �r) < 1

r ; zr 2 Fr := F(�r) with kzrk > r for all r 2 N.
Now let �r =

3�
kzrk . Then with r > 3�, 0 < �r < 1 and �r ! 0 as r ! 1.

Furthermore, without loss of generality, we can assume that �rzr ! z as r !1 with
kzk = 3�.

We now take �x 2 F and set wr := �rzr +(1��r)�x. It turns out that wr ! z+ �x
as r !1.

Fix t 2 T . Then, for each r, the convexity of frt gives

frt (wr) � �rfrt (zr) + (1� �r)frt (�x) � (1� �r)frt (�x): (7.1)

Now for any � > 0, by the lsc of ft, and by the convergence of the sequence fwrg,
there exist a relative compact neighborhood V of z + �x and an integer r0 such that
wr 2 V and such that

ft(z + �x)� ft(wr) < � (7.2)

for all r � r0. On the other hand, since d(�; �r) ! 0, it follows from the de�nition
of this convergence and (7.5) that there is a compact set Br0 such that clV � Br0

and the sequence ffrt g converges uniformly to ft on Br0 , which entails that there is
an integer r1 � r0 such that

ft(wr)� frt (wr) < � for all r � r1: (7.3)

Therefore, if r > maxfr1; 3�g then, combining (7.2) and (7.3), we get

ft(z + �x)� frt (wr) = ft(z + �x)� ft(wr) + ft(wr)� frt (wr) < 2�;

or equivalently,

ft(z + �x) � frt (wr) + 2�:

This, together with (7.1) gives

ft(z + �x) � (1� �r)frt (�x) + 2�;

which, in turn, gives rise to ft(z + �x) � ft(�x) + 2� � 2� since the sequence ffrt g
converges to ft, �r ! 0 as r !1, and �x 2 F .

Consequently, we get ft(z + �x) � 0 for any t 2 T since the last inequality holds
for any � > 0 and for any t 2 T .
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The same argument applies to the sequence f�Crg: Thus we also get �C(z+�x) � 0;
which shows that z + �x 2 C. So, z + �x 2 F , but kz + �xk � kzk � k�xk � 2�, which
contradicts the fact that F � �B: Finally, we may conclude that there exists some
r > 0 such that F1 = F(�1) � rB for any �1 2 � satisfying d(�; �1) < 1

r :

The next example shows that both statements in Proposition 7.5 fail for j = 3:

Example 7.6. Let � = ff ;Rg ; with f (x) = x2 exp (x) and �k = ffk;Rg such
that fk = f � 1

k 2 V3; k 2 N: All these systems are in �3 because the unique local
minimum of their constraint function, 0; is global. Let xr < yr < zr be the three real
roots of f (x) = 1

r ; with xr !1 and yr; zr ! 0: We have d (�r; �)! 0; F3(�) = f0g ;
and F3(�r) = ]�1; xr] [ [yr; zr] ; r 2 N: Thus F3 is neither uniformly bounded nor
usc at � although F3(�) is compact.

In the following corollary we provide a su¢ cient condition for the upper semicon-
tinuity of Fj ; for j � 5; which relies on the nominal data.

Corollary 7.7. Let � 2 domF ; � � �5: Then, the following conditions are both
equivalent to the boundedness of F(�) and, so, they imply the upper semicontinuity of
F at � :

(i) (0; 1) 2 int cone
( [

t2T
epi f�t

!
[ [epi ��C + (0; 1)]

)
:

(ii) The projection of the cone above on the space of the �rst n coordinates is Rn:
Proof. It is a straightforward consequence of [19, Theorem 9.3].

In [11] a characterization of the upper semicontinuity of F7 is given in terms
of the so-called reinforced system associated with the nominal system �; although
checking this condition is rather di¢ cult. In [8] another characterization of the upper
semicontinuity of F is provided in the particular setting of continuous linear semi-
in�nite programming, and this conditions is that F(�) is either bounded or the whole
space Rn.

7.2. Upper semicontinuity in locally compact sigma-compact spaces.
Let X be a locally compact topological space (without linear structure, noncompact).
We also assume that X is sigma-compact; i.e. (see [34, page 22]), there exists a
sequence fKrgr2N of compact sets such that

Kr � int Kr+1;8r 2 N; X =
1[
r=1

Kr =
1[
r=1

int Kr: (7.4)

Moreover,

For all compact set K � X; 9r0 such that K � Kr0 : (7.5)

Consider the space of all real-valued continuous functions on X; C(X); endowed
with the uniformly convergent topology, � ; on compact subsets of X: A base of � -
neighborhoods of 0 consists of the set of functions f such that sup

x2K
jf(x)j < �, where

� > 0 and K is a compact subset of X. Moreover, C(X) is a locally convex, complete
space with the topology de�ned by all the seminorms pK(f) := sup

x2K
jf(x)j, where K

is a compact subset of X.
Under the assumptions, C(X) is a Fréchet space (i.e., locally convex, complete,

and metrizable). Moreover, its topology is de�ned by countably many seminorms pKr
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([34, page 250]). But then the metric that generates the topology in C(X) can be
de�ned by

�(f; h) =
1X
r=1

2�rminf1; pKr
(f � h)g; f; h 2 C(X) (7.6)

(compare with the metric d de�ned in V1 in §3). It is easy to see that the conclusions
of technical Lemmas 3.1 and 3.2 in §3 still hold (with the same proof) for the metric
� on C(X); with dr replaced here by pKr

:

Let T be an arbitrary index set as before and let

�8 :=
�
ff1t ; t 2 T ;Xg : f1t 2 C(X) 8t 2 T

	
:

Given � = fft; t 2 T ;Xg; �1 = ff1t ; t 2 T ;Xg 2 �8; we de�ne

d(�; �1) := sup
t2T

�(ft; f
1
t ):

If � � �8; then (�; d) is a metric space, which is complete when � is closed in
�8 (same proof as in Proposition 3.7). We are now in a position to establish the
closedness and the upper semicontinuity of the feasible set mapping F : The proof of
the next result is similar to those of Theorem 4.1 and Proposition 4.2 and will be
omitted.

Theorem 7.8. Let � � �8: Then the following statements hold:
(i) F is closed.
(ii) If f��g�2� � domF and lim� �� = �; then Ls�F(��) � F(�):

Concerning the lsc property, we have seen that continuity is irrelevant, i.e., for the
statements in Theorem 5.1, (i) ) (ii) ) (iii) ) (iv) but (iv) ; (i) (recall Example
5.4).

Theorem 7.9. Let � 2 domF ; � � �8; and let X be metrizable. Then F is usc
at � if and only if there exist a compact set K and a positive number � such that

F(�1)�K � F(�)�K for all �1 2 � with d(�; �1) < �: (7.7)

Proof. For simplicity, we write in this proof Fr := F(�r) for all �r 2 �:
Assume that (7.7) holds. Let W be an open set containing F . Since F is closed

at � (by Theorem 7.9, part (i)) and K is compact, it follows from Lemma 7.2 that
the map F \K is usc at �. So, there will exist certain �1 > 0, �1 < �, such that for
each �1 satisfying d(�; �1) < �1, one has

F1 \K �W:

Now, by assumption F1�K � F�K, so that

F1 = (F1 \K) [ (F1�K)
�W [ (F�K) �W;

which shows that F is usc at �:
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Now we suppose that condition (7.7) is not satis�ed. Let fKrgr2N be a sequence
of compact sets in X satisfying (7.4). Then, there exist sequences f�rgr2N � domF
and fxrgr2N � X satisfying

d(�; �r) <
1

r
;

xr 2 Fr�Kr;

xr 62 F�Kr

for all r 2 N: Thus, �r ! � and xr 62 Km for every r � m (since the sequence fKrgr2N
is nested). It is easy to see that such sequence fxrgr2N has no accumulation point.
In fact, if x0 is an accumulation point of this sequence then x0 must be contained
in some intKr0+1, which entails that intKr0+1 is a neighborhood of x0 that contains
only a �nite number of elements of the sequence fxrg. This is impossible.

Since xr 2 Fr�F; �r ! �; as r ! 1, and fxrgr2N has no accumulation point,
F is not usc at � as a consequence of the Dolecki condition ([4, Lemma 2.2.2]). The
proof is complete.
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[6] Boţ, R.I., Csetnek, E.R., Wanka, G., Regularity conditions via quasi-relative interior in convex
programming, SIAM. J. Optim. 19 (2008) 217-233.
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