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PROBLEMS*
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Abstract. This paper provides stability theorems for the feasible set of optimization problems
posed in locally convex topological vector spaces. The problems considered in this paper have an
arbitrary number of inequality constraints and one constraint set. Different models are discussed,
depending on the properties of the constraint functions (linear or not, convex or not, but at least
lower semicontinuous) and one closed constraint set (but not necessarily convex). The parameter
space is formed by systems of the same type as the nominal one (with the same space of variables and
the same number of constraints), where the constraint set can be perturbed or not, equipped with

the metric of the uniform convergence on the positive multiples of a fixed barrelled neighborhood of
zero. In finite dimensions, this topology describes the unifom convergence on compact sets and, in
the particular case that the constraints are linear, the uniform convergence of the vector coefficients.
The paper examines, in a unified way, the lower and upper semicontinuity, and the closedness, of the
feasible set mapping, the stable consistency of the constraint system with respect to arbitrary and
right-hand side perturbations, Tuy and Robinson regularities, and other desirable stability properties
of the feasible set.
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1. Introduction. Many optimization problems are formulated in the form

(P) inf f(z)
s.t. fi(x) <0Vt eT;
x € C,

where T' is an arbitrary (possibly infinite, possibly empty) index set, C C X is the
constraint set, the decision space X is a locally convex Hausdorff topological vector
space (possibly R™), and the constraint functions f; are extended, i.e., f; : X —
R U {+o0} for all t € T. In this paper we analyze the stability of the feasible set of
(P), say F, under several types of perturbations of the data preserving the decision
space X and the index set T.

The main questions regarding the stability of the feasible set in optimization
problems were already posed in 1975 by S.M. Robinson: "What happens to the so-
lution set when the data are subject to small perturbations? In particular, will the
perturbed system be solvable? If so, will the solution set change gradually?" ([46],
where X is a Banach space and f; is affine for all ¢ € T'). Answering these questions,
it is possible to extend this analysis to other relevant elements of the problem: "If a
mathematical program lacks continuity, then small changes in parameters or functions
(often due to inexact estimates of the parameters or functions) may result in large
changes in the optimal solutions or in the optimal objective function values or both.
Another possibly even more important need for continuity in mathematical programs
is the fact that digital computers operate with finite arithmetic and often produce
significant roundoff errors over time. Continuity of the mathematical program being
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solved gives credence to the belief that the algorithmic process being used may lead to
an optimal or near-optimal solution of the problem. Lack of continuity, on the other
hand, could mean that the algorithm is yielding something far from optimal" ([23],
where X = R™ and T is arbitrary). In [12] the authors emphasize the need of stability
analysis of the feasible set for an infinite-dimensional optimization problem arising in
the optimal control of a system of n water reservoirs Ry, Rs,..., R,. The model is
based on the realistic assumption that if more raining water flows into the reservoirs
that they can hold, the rest can be sold to a neighboring dry region, provided that
the demand of the region is satisfied. Conversely, if the inflows are short, and the
reservoirs have free capability for additional water, some water can be bought from
outside to meet the inner demand. In this problem a set of decision variables are the
rates z;(t) at which water is fed from R; at time (we assume that x;, i = 1,2,...,n,
are continuous functions in the operating interval of time [a, b]), and a second group
of variables y;, i = 1,2, ...,n, provides the "selling" rate of water from R; at ¢, which
is given by dy;(t) (now it makes sense to require that functions y;, ¢ = 1,2,...,n, are
of bounded variation, since these planned inflows (dy;(t) > 0) or outflows (dy;(t) < 0)
take place in punctual instants of time in [a,b]). Constraints come from the need of
satisfying the overall demand at each instant ¢ € [a,b], and not exceeding the capa-
bility of each reservoir along all the operating time. Since the raining inflows and
demand are necessarily uncertain, it is a crucial issue to study the stability of this
problem with respect to perturbations of the uncertain data.

In this paper, we consider the effect on the solution set of the constraint system
o:={fi(zx) <0,teT; z€C},

also represented by its corresponding data set, {f;,t € T'; C}, of perturbing any con-
straint function f;, t € T, and possibly the constraint set C, under the condition that
these perturbations preserve certain properties of the constraints. In particular, we
analyze the continuity properties (in the sense of [?], [4] or [47]) of the feasible set
mapping associating to each perturbed system its corresponding solution set. The
parameter space, generically denoted by ©, is a given family of systems with the same
decision space and index set as o, satisfying its relevant properties and such that

or={flteT; Ci}e0={fl+a,teT; C;} eOVaeR

(i.e., closedness of © with respect to the addition of a fixed constant to the constraint
functions) if T # (). The corresponding feasible set mapping is F : © = X such that

Flo) ={xeX:fl(z)<0VteT; zcC}
={zeX:g'(x) <0; z€C}, if T#0,

where g' := sup,cp f} denotes the marginal function of oy.

Observe that changes in the representation of F' = F(o) could provoke changes
in the parameter space (e.g., the aggregation of nonnegative linear combinations of
the functional constraints in o could enlarge the index set although it does not affect
the solution set). This paper considers seven main parameter spaces, namely
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Or:={{fiteT; C1}: f} 1 X >RU{+oo} Vt€T and 0 £ C; C X},
Oy = {01 €0;: flislscVt € T and Oy is closed},

O3 := {01 € O, : the local minima of ¢! are global, C; is convex,
and F(o1) CintC4},

Oy = {01 € O, : the local minima of ¢g' are global and C; = X} ,
Of = {01 € Oy : fl convex Vt € T and C is conveX} ,
B¢ := {01 € O : f} is finite-valued Vt € T and C; = Co} , and

O = {01692:ft1=ut+at7(ut, Oét)EX*XRVﬁGT, andClzX},

where Isc stands for lower semicontinuous, Cy is a fixed closed convex subset of X (e.g.,
the whole space X or the solution set of the subsystem of nonperturbable constraints,
which could include equations, sign constraints, etc.), and X* denotes the topological
dual of X. The above parameter spaces are related by inclusion as the following
diagram shows:

Oy C O3 C By C 0O
@] @]
©; C O C Oj

Observe that 01,04, 05,04, and O7 are closed with respect to (w.r.t.) perturbations
of the right-hand side (RHS), i.e., replacing 0 by (possibly different) scalars in each
constraint. Concerning O3, the functions whose local minima are global have been
characterized in [50] in terms of the lower semicontinuity of the feasible set mapping
corresponding to {z € R": g(x) <0} € ©3 (with a unique index) w.r.t. the right-
hand side (RHS) scalar, in [36] in terms of generalized convexity, and in [26] in terms
of arcwise quasiconvexity (the first two papers with X = R™ and the 3rd one with X
being a metric space). A class of functionals arising in control problems that enjoy
this local-global property has been identified in [5]. The next simple example shows a
significant element of @4\ ©5 with X = R™ and T # () arbitrary.

EXAMPLE 1.1. Let 0 = {fi,t € T;R™} be such that fi (x) = (ar,z) — by, where
at = (ag1, -, an) € RENAO0,} and by € R, t € T, and (a¢, x) := miner, (q,) ati |24,
where I (a;) :={i € {1,...,n} : ay; > 0}. In this case, the restriction of the marginal
function of o, g, to R is an Isc ICAR (acrostic of “increasing and convexr along
rays”) function. Then, according to [48], g satisfies the following two properties:

(i) Given x,y € R™, if |x;| > |y;| for alli=1,...,n, then g (z) > g (y) -

(ii) Given x € R™ {0,}, the function g, : Ry — Ry such that g, (\) = g(A\x) is
conver.

Now we prove that the local minima of g are global. In fact, (i) implies that 0y, is a

global minimum. Thus we must show that g (T) = g (0,) for any local minimum Z.
Otherwise, if g (T) > g (0,) and X € [0,1], (i) yields

gAT) =gz (1=X)0+ A1) < (1—=X)gz(0) + gz (1)
=1-Xg0,)+A (@) =9@) - 1-AN)[g9(@) —g(0,)] <g(@),
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and taking A /' 1 we conclude that T is not a local minimum.

When the parameter space of a given MP problem does not appear in the above
list, it is usually easy to build up its corresponding stability theory by adapting the
relative to some close space in the above list. In particular, if ©;41 C © C O,
any sufficient condition for the feasible set mapping corresponding to ©;, say Fj,
to be closed (Isc, usc) at o € ©; guaranties that F is closed (Isc, usc) at o € ©.
Analogously, any necessary condition for ;1 to be closed (Isc, usc) at ¢ € ©;44 is
also necessary for F to be closed (Isc, usc) at ¢ € ©. In this paper we analyze the
continuity properties of the feasible set mapping F at the nominal system o relative to
arbitrary perturbations of the constraint functions or just the RHS function (replacing
the null function with certain v € R”) whereas the constraint set will remain fixed
or not in the different models. To do so we endow the basic space of parameters ©
with a suitable topology and consider © C ©; equipped with the induced topology.

The closest antecedents of our study are [2] and [3], about F7; with Cy C R™
possibly nonclosed and nonconvex (linear semi-infinite systems with set constraint),
[20], [21] and [19, Chapter 6], about F7 with Cyp = X = R" (linear semi-infinite
systems). A particular case was first studied during the 1980s: [8] and [16] considered
© C Oy formed by linear systems (called continuous) {u: (x) + ar <0,¢t € T} such
that 7" is a compact Hausdorff space and the functions u¢y : T'— R" and o) : T'— R
are continuous on T (this study was later completed in [19, Chapter 6], where it
was shown that the behavior of F for continuous semi-infinite linear systems and
for general linear semi-infinite systems is quite similar, despite that perturbations
are restricted to be continuous functions). Other antecedents are [42], about Fr
with Cy = X (linear infinite systems), and [44], about Fs with Cp = X = R”
(convex semi-infinite systems). In [42] the decision space is X = Y™, where Y is
some metrizable locally convex Hausdorff topological vector space, so that X™* can be
identified with Y if X* is endowed with the weak* topology, i.e., the parameter space
is ©7. [20], [21], and [44] provided the fundamentals for the stability analysis of the
optimal set mapping and the optimal value function in linear and convex semi-infinite
optimization from the same set-valued perspective (see [19, Chapter 10] and [17],
respectively). The parameter space of the so-called min-type semi-infinite systems,
whose constraint functions are the restriction to Cp = X = R’} of the constraint
functions f; of Example 1.1, with a; € R’ ,, is then close to O3 and its stability
theory ([43]) is almost identical to the one of F3 developed in this paper (in this case
X is not a linear space). All the data defining o (except the constraint set) were
considered perturbable in the mentioned papers, whereas in [14] we characterized
the lower semicontinuity and the subdifferentiability at o € O5 of the optimal value
function under perturbations of the RHS function 0 (i.e., the stability perspective of
[35]). Let us mention that, in the finite dimensional setting, with fixed constraint
set Cyp = R", there exists a third stability perspective, consisting of introducing a
parametrization mapping describing particular types of perturbations of (P). Under
suitable smoothness assumptions on these mappings it is possible to obtain strong
topological properties of the feasible set and the optimal set mappings, as well as the
geometrical analysis of the trajectory described by the optimal solution, if it unique
(see, e.g., [30] and [32]). In particular, the so-called extended Mangasarian-Fromovitz
constraint qualification (EMFCQ), in brief) was introduced in the semi-infinite setting
in [32] inspired in a condition given in [24] (see [31] for a parametric counterpart).
In linear semi-infinite optimization, the relationship between EMFCQ, the Robinson
c.q., and the metric regularity of the feasible set mapping is explored in [9] and
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[10]. [33] is focused on the study of metric regularity in connection with EMFCQ
of certain parametrized nonlinear semi-infinite systems with C'-data and subject to
RHS perturbations. The finite dimension of the decision space seems to be substantial
in this kind of stability analysis. The stability theory of the feasible set in semi-
infinite programming has been reviewed in [18], where the connection between lower
semicontinuity of F and constraint qualifications (e.g., Slater-type and interior-type
conditions) are discussed. There exists a wide literature on constraint qualifications in
convex (and extended convex) infinite dimensional optimization, where they provide
optimality conditions and duality theorems (see, e.g., [6], [15], [28], [29], [36], [38],
[39], [40], and [41]).

The paper is organized as follows. §2 introduces most stability concepts considered
in this paper. Among the stability concepts left aside in our study, let us mention those
related with the dimension of F' (dimensional stability and topological stability) and
the metric regularity of the inverse mapping F !, a theory still in progress in the linear
semi-infinite context (see, e.g., [19], [9], and references therein). §3 introduces a metric
on any parameter space © C ©1, and shows that ©; is complete if j = 1,2,5,6,7.
The definition of such a metric is inspired in [44] although the size of the perturbation
of an individual function is defined here in a slightly different way and a suitable
measure of the perturbation of the constraint set has also been introduced. The
completeness of © could be useful in order to characterize the metric regularity of
F~! by adapting powerful results on metric regularity in Banach spaces (e.g., [27]
and references therein). §4 shows that F is closed on any © C ©,. The main result
in §5 is Theorem 5.1, which characterizes the lower semicontinuity of F at a given
o € © when either © C O3 or © C O35 by means of conditions (ii)-(vi) or conditions
(ii)-(viii), respectively. All the results in §3-§5 are valid, then, for normable spaces.
In the last two sections X is either a normable space or certain type of topological
space with no linear structure. In §6, we adapt the concept of Robinson regularity to
systems posed on a normable space X, and we characterize this property for © C Os.
Finally, in §7, we characterize the upper semicontinuity of F : © = X when either
X = R™ or X is a metrizable locally compact and sigma-compact (i.e., union of a
countable family of compact sets) space X, with © subspace of ©2 or some space of
systems with continuous constraints, respectively. Recall that the decision space in
[43], X = R% ., is a metric locally compact and sigma-compact topological space.

The main novelty of this paper in comparison with the previous ones is the key
role played here by the parameter space, which allows us to give very general results
(showing, for instance, that the closedness of the feasible set mapping only requires
lower semicontinuity of the constraint function and closedness of the constraint set)
and, from a methodological perspective, the use of infinite dimensional convex analy-
sis, nets (instead of sequences) and linear representations of F' involving epigraphs
of the conjugates of the constraint functions (instead of their subddiferentials, which
could not exist in our general framework).

2. Preliminaries. The dual space of X is denoted by X*. For a set D C X, we
denote with conv D and cone D the convex hull of D and the convex conical hull of DU
{0}, respectively. If D = {d,,s € S}, denoting by R(®) the linear space of mappings
from S to R with finite support and by RS_S) its positive cone, we can write cone D =
{LoesAods : A e R L and conv D = {57, g Ay s A € R, S A =1} From
the topological side, we denote by N (z) the family of all the neighborhoods of z € X
and by cl D the closure of D, if D C X, and the closure of D w.r.t. the weak*
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topology, if D C X* x R. The indicator function §p is defined as dp(x) =0 if x € D,
and dp(x) = 400 if x ¢ D. D is a nonempty closed convex set if and only if dp is a
proper lIsc convex function.

Now let h: X — RU {+4o00}. The effective domain, the graph, and the epigraph
of h are dom h = {x € X : h(z) < +oo}, gphh = {(z,7) € X xR : h(z) = v},
and epi h = gphh + cone {(0,1)} (with the convention that A+ 0 = 0 + A = (),
respectively, whereas the conjugate function of h, h* : X* — RU{+oo}, is defined by

h*(v) = sup{(v,z) — h(x) : € dom h}.

It is well-known that, if h is a proper lsc convex function, then h* enjoys the same
properties and its conjugate, denoted by h** : X — R U {£o0}, defined by

h*(x) = sup{{v,z) — h"(v) : v € dom h™},

coincides with h. ¢, is the support function of C, whose epigraph epidy, is a closed
convex cone.

If { f;,t € T} is a family of proper convex Isc functions such that dom (sup,cp fi) #
(0, one has that

epi (sup ft> = clconv U epi f (2.1)
tet teT

(see, e.g., [7], [40], and [41]).
Let 0 = {fi(z) < 0,t € T;x € C} be consistent and let v € X* and « € R. Then
the asymptotic Farkas’ Lemma (Theorem 4.1 in [13]) establishes that

filx) KOVteT, € C = v(z)<a
if and only if
(v,a) € clcone (U epi f; Uepi 52) ) (2.2)
teT
From the separation theorem, (2.2), and the equation
clcone (U epi f} Uepi&é) = clcone { <U epiff) + epiég} ,
teT teT

when T # 0 ([13]) we get the following linear representations of F' (i.e., linear systems
whose solution set is F'):

{v(w) <a, (v,a) € (U epi ft*> +epidy;x € X} , i T #£ 0, (2.3)
teT
and
{v(m) <a, (v,a) € U epi f; Uepidg;x € X} . (2.4)

teT
6



Observing that v(z) < a if and only if v(z) — + < a for all k € N if and only if

kv(xz) < ka+1 for all k € N, we can replace in (2.4) epidg with

[U (kepidy)

keN

+(0,1) = (epidy) + (0,1).

Thus

{v(x) <a, (v,a) € U epi f; U [(epidg) + (0,1)] ;2 € X} . (2.5)

teT

is another linear representation of F.
Let {As}sea be a net of subsets of X associated with the directed set (A, <). We
define the set of limit points of this net as the set

for all U € N(z) there exists § € A such that
UnNAg # 0 for every §' € A such that § < ¢

B X for all U € N(x), U intersects As
=" for all § in some residual subset of A |’

LéiA(;:{.’L‘EX’

and the set of cluster points of the net as the set

IgsA,;{IGX

for all U € N'(z) and for every 6 € A there
exists 6’ € A such that 6 < ¢ and UN Ay # 0

Jeex for all U € N'(z), U intersects As
" for all 0 in some cofinal subset of A |~

Clearly Lis As C Lss As and both sets are closed, whether or not the terms of the net
are closed. We say that {As}sca converges in the sense of Kuratowski-Painlevé to
the closed set A if Lig As = Lss As = A.

The domain of the feasible set mapping F : © = X, where O is some space of pa-
rameters equipped with the metric defined in (3.5), is dom F ={o € © : F (o) # 0}.
Obviously, if o = {fi,t € T;C} € dom F, then f; is proper for all ¢ € T. The main
objective of this paper is the characterization of the following (local or global) desir-
able properties of F, which adapt to our general framework similar ones appeared in
the works mentioned in §1.

Fis closed at 0 = {f;,t € T'; C} € © if for all nets {o5}sea C © and {x5}5.5 C
X satisfying x5 € F(os) for all § € A, lims o5 = o and lims x5 = x, one has x € F(o).
F is said to be closed if it is closed at o for all o € ©. Obviously, F is closed if and
only if its graph, gphF := {(c,2) € ©® x X : x € F (o)}, is a closed set in the product
space.

F is lower semicontinuous at o € © in the Kuratowski-Berge sense (lsc, in brief)
if, for each open set W C X such that W N F (o) # 0, there exists an open set V C ©,
containing o, such that W N F(o1) # 0 for each o1 € V. F is said to be Isc if it is Isc
at o for all o1 € O©.

F is upper semicontinuous at o € © in the Kuratowski-Berge sense (usc, in brief)
if, for each open set W C X such that F(o) C W, there exists an open set V' C ©,
containing o, such that F(o1) C W for each o1 € V.

We say that o satisfies the strong Slater condition if there exists some & € C' and
some p > 0 such that fi(Z) < —p for all t € T (i.e., g(Z) < —p). In such a case, T is
called strong Slater (SS) point of o with associated constant p.
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Moreover, we say that o is Tuy regular if there exists € > 0 such that for any
w € RT and any nonempty convex set C; C X satisfying o1 := {fi(z) —w; < 0,t €
Tz € C1} € © and max{sup,cp |wi|,d(0¢c,0¢c,)} < €, where d(d¢,0¢,) is given
by (3.2), one has F(o1) # 0. This desirable property inspired in [49] means that
sufficiently small perturbations of the RHS scalars and the constraint set preserve the
consistency of the nominal system.

Other stability concepts are introduced in §5 and §6.

3. The parameter spaces. In order to define a suitable topology on the pa-
rameter space © we introduce, first, the distance between two extended functions in
the sense of the uniform convergence on the positive multiples of the closure of a
fixed barrelled neighborhood of zero, say B, and second, from this distance, another
one between inequality systems posed in X and indexed with T'. Obviously, the sets

By := kB, k € N, are also barrelled neighborhoods of zero such that |J By = X.
kEN
Since By C intBgyq for all k, we have also |J intBy = X. If X is normable, we shall
keN
take as B a bounded barrel (see, for instance, [25, §10 C]).

Let V1 be the set of all functions of the form f: X — RU {+oc0}. For each pair
of functions f,h € V;, we define

di(f,h) :=sup [f(z) — h(z)|, k € N;
x€ By

“+oo
d(f,h) = 27" min{1,di(f, h)}.
k=1

Here, by convention, we understand that (+00) — (+00) =0, | — 00| = 400, | + 00| =
+00.

It is worth noting that d(f, h) = 0 implies that, for any k € N, |f(z) — h(z)| =0
for all z € By. By our convention, either f(z) = h(z) = 400 or f(z) = h(z) € R. As
Uk Br = X, f(z) = h(z) for all x € X. Moreover, it is easy to verify that (Vi,d) is a
metric space.

Observe that, given a nonempty set C; C X, Cy # C, if

k1 :=min{k e N: B,NC # B, NC1}, (3.1)
then
d(6c,dc,) =21 7M. (3.2)

LEMMA 3.1. Let k € N and € > 0 be given. There exists p > 0 such that
di(f,h) < € for each pair f,h € Vi satisfying d(f,h) < p.
Proof. Let € € (0,1). Take p > 0 such that p < 27%¢. If f,h € V; then

d(f,h) < p=2""min{1,dy(f, h)} < 2 "¢
= min{l,di(f,h)} <e
= dk(f, h) < €.

1
LEMMA 3.2. For each € > 0, there exist k € N and p > 0 such that d(f,h) < €
for each pair f,h € V1 satisfying di(f,h) < p.
8



Proof. Let ¢ > 0. Take k € N such that > ;°r, 27" < . Choose p € ]0,1]

satisfying Pzz‘:l 27T < 5.
Note that d;(f, h) < di(f, h) whenever ¢ < k. If di.(f,h) < p, then

k +oo
h) =2 2" min{ldi(f,h)}+ D 27 min{l,d;(f,h)}

=1 i=k+1

<22 p+Z2‘< +f

i=k+1

We say that a sequence of extended functions f, : X — RU {+o0}, n € N,
converges uniformly to f : X — RU {400} on a set Y C X when for all € > 0 there
exists ng € N such that |f,(z) — f(z)| < e for all x € Y and for all n > ng. Recalling
the above convention, this is equivalent to assert that Y Ndom f,, = Y Ndom f for all
n > ng and the restriction of f,, to the later set converges uniformly (in the sense of
finite-valued functions) to the restriction of f,, to the same set.

PropPOSITION 3.3. Let f, fn € Vi,n=1,2,.... Then d(fn,f) — 0 if and only if
the sequence { fn},cyn converges uniformly to f on By, for all k € N.
Proof. Tt is immediate consequence of the previous lemmas. [

As a consequence of Proposition 3.3, the topology on Vi is the same for any
other barrelled neighborhood of zero B such that there exist positive scalars o and 3
satisfying B C B C SB.If X is a normed space, any barrelled neighborhood of zero B
satisfies this condition relative to the unit ball B. Then the above topology is intrinsic.
In the particular case that X = R", this topology describes the uniform convergence
on the compact subsets of R™ (as in [44]), and its restriction to ©7 coincides with the
topology of the uniform convergence introduced in [23], which is commonly used in
the stability analysis in linear semi-infinite optimization. Obviously, other metrics on
V1 could be considered instead of d. For instance,

oy @) —h )
PR = S T T @) - @)

adopting the convention that % = 1 describes the topology of the uniform conver-
gence on the whole space X. The advantage of p on d is that it is always intrinsic
to X. The serious inconvenient of p is that the corresponding topology is too rich for
developing a stability theory dealing with arbitrary perturbations of the constraint
functions and the constraint set.

Now, let C,C,,, n € N, be subsets of X. From Proposition 3.3 (or from (3.2)),
the convergence d¢, — dc as n — oo (i.e., lim, d(d¢, ,dc) — 0) is characterized as
follows:

COROLLARY 3.4. ¢, — d¢ if and only if for any k € N there exists ny, € N such
that C, N B, = C'N By for all n > ny.

Let V; be the space of the constraint functions corresponding to parameter space
0;,j=1..,71ie, V1 = (RU {+00})™ (the set of extended functions from X to
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RU {+00}),

Vo :={f€Vi: fislsc},

V; :={f € V5 : the local minima of f are global},j = 3,4,
Vs :={f € V3: f is convex},

Ve :={f € V5 : f is finite-valued} , and

V= X

Observe that the improper function {+oo0}”~ (with constant value +o0) is an accu-
mulation point of V;, j = 1,...,5, because {+oo}X = limy, 6}, where x, € X\ By
for all £ € N. The topology of V7 describes the uniform convergence of the continuous
linear functionals on B.

PROPOSITION 3.5. (V},d) is a complete metric space for j =2,5,6,7.

Proof. First, we prove that (V1, d) is complete. Let {f,,} be a Cauchy sequence
in (V1,d), i.e., d(fn, fm) — 0 as n,m — oc.

Let € > 0. For any fixed £k € N, by Lemma 3.1, there exists p > 0 such that
di(f,h) < € for each pair f, h € V; satisfying d(f, h) < p.

Since d(fn, fm) — 0 as n,m — oo, there is ng > 0 such that d(f,, fm) < p and
hence, dg(fn, fm) < € for all m,n > ng. This means that

neN

sup | fn(z) = fm(z)| <e.

r€ By,
By our convention, for each x € By, either f,(x) = fm(x) = 400 or {fn(x), fm(2)} C
R for all n,m > ny. In the first case, let f(z) = +o0. For the second case, { f,.(2)}, cn
is a Cauchy sequence in R and hence, converges to some point in R which we denote
by f(z). It is obvious that the sequence {f,},y converges uniformly to f on B.
Since k is taken arbitrarily, it follows that f € V; and also that d(f,,f) — 0 as
n — oo by Proposition 3.3.

Now we show that Vs is a closed subspace of V. Let { fn}neN C Vs be such
that d(f, f) — 0. We must prove that f is Isc. Let g € X and A € R be such
that f (zo) > A. Let € € ]0,1[ such that f(z¢) > A + €. Let k,n9 € N be such that
To € int By and

|fn(z) — f(2)] < % Vz € B VYn > ng. (3.3)

If f(zo) = 400, fno(xo) = 400 > A+ € by (3.3). Because f,, is Isc, there exists
V € N (zg) such that

Fuo(@) > X + g Vz e V. (3.4)

Otherwise, from (3.3), fn,(z0) > f(20) — § > A+ § and we get again (3.4) for some
V e N (zg). If z € VNintBy, from (3.3) and (3.4), we get f(z) > A. Consequently,
fislsc at xg. So Vs is closed.

The proof of the closedness of Vs, Vg, and V7 is left to the reader. 1

The next example shows that Proposition 3.5 is not true for j = 3,4.
EXAMPLE 3.6. Let X =R and {fn},,cy C V3 such that
o, fr<l,
fn(z) = Zi’f, ifxe]l,—mil[,
T — 17 fo > M7
n
10




n € N (the unique local minimum of f,, 0, is global). Then d(f,, f) — 0, where

||, ifz <1,
f@)=4 1, if v €]1,2[,
x—1, ifz>2,

whose set of local minima, {0} U]1,2], only contains a global minimum, 0, so that
f & Vs (see Figures 1-2).

Tg
1
Lol
1 5 g
Figure 1: Graph of f,.
A T9
1
4l
| >
Figure 2: Graph of f.
Given 0 = {fy,t € T;C},01 = {ftl,t € T;Cl} € O, we define
| max{sup,erd(fi, f}),d(6c,0c,)}, T #0,
d(0—7 Jl) o { d((SCv 601)7 if 7= 0. (35)
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PROPOSITION 3.7. (©,d) is a metric space for all © C ©1. Moreover, (©,d) is
complete if © is a closed subset of ©1. In particular, (©;,d) is complete, j = 2,5,6,7.

Proof. 1t is sufficient to prove that (©1,d) is a complete metric space and that
©, is closed for j = 2,5,6,7. We prove the statement assuming that 7" # () (the proof
is simpler if 7' = ().

In order to show that (01, d) is a metric space it is sufficient to verify the triangu-
lar inequality. Let o = {f;,t € T;C}, 01 = {ftl,t eT; C’l} and oy = {ff,t erT; Cg}
be systems from ©;. We have

d(o,01) + d(o1,02) =
= max{sup d(ftv ft1)7 d(507 601)} + max{sup d(ftla ft2)v d(501 ; 5C2)}
teT teT

Z max{fgjl? d(ft7 ftl) + fg]l? d(ftlﬂ ftz)’ d(éca 501) + d<6C17602)}
> max{igjlz{d(fﬁ ftl) + d(ftla ftz)}a d(dca 601) + d(501 ) 502)}

> max{sup d(ft,ff), d(6¢,0¢c,)} = d(o,02).
teT

Now we prove that (01,d) is complete. Let {0, }nen be a Cauchy sequence in
(©1,d).

We first prove its convergence for the case where C' = X. Suppose that o, =
{fi,t € T; X} for all n € N. Let € € ]0,1] be fixed. We must show that there is
a system o € ©1 such that d(o,,0) — 0 as n tends to infinity. For any k € N, by
Lemma 3.1, there is p;,, > 0 such that

d(f,h) <p, = di(f,h) <e (3.6)

As {0 }nen is a Cauchy sequence, there exists ng > 0 such that for any m,n > no,
one has

d(Un,O'm) = Supd(fglvfgn) < P,

teT
which gives
a(fi, f") < pp, Vte€ T, Vm,n > ng. (3.7
It follows from (3.6) that
de(f5 1) = sup |f{(x) — f[(z)| <€, VEET, Ym,n > ny. (3.8)

x€ By

By an argument as in the proof of Proposition 3.5, for each ¢ € T, there exists a
function f; € V; such that d(f7*, ft) — 0 asn — oco. Let o :={f;,t € T; X }.

We now prove that d(o,,0) — 0 as n — oo.

With e > 0 fixed, by Lemma 3.2, there exist ky and p, > 0 such that for any
fv h € Vl,

d, (f? h) <po = d(fv h) <€ (39)

Since d(o,, 0y ) — 0, there exists nq > 0 such that for all n,m > ny,

00
d(anyarrL) = sup d(ftnv ftm) = Supz 27ldi( tnv ftm) < p027k0'
teT teT i=1
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This yields
dro (f1'5 J1") < po, VEET,
which, in turn, implies that (letting m — o)
dio (1 ft) < pgs Yt E€T,Vn > ny.
By (3.9), the last inequality yields

supd(f, fi) < €,Yn > ny.
teT

Therefore, d(o,,0) — 0 as n tends to oo.

We now turn to the case where o, = {f{’,t € T; C,, } for all n € N. Since {0}, }nen
is a Cauchy sequence, d(d¢,,d¢,,) — 0 as n, m tends to infinity. By the completeness
of (V1,d), there exists h € V; such that d(dc,,h) — 0 as n — oo. Since d¢g, — h
pointwise, h (x) € {0,400} for all z € X. Then h = §¢, where C := domh # ). Then
d(d¢,,0¢c) — 0 as n — oo.

Let 0 :={fi,t € T;C}. Combining the two parts of the proof, we conclude that
d(op,0) — 0 as n — oco. Consequently, (01,d) is complete.

The closedness of ©;, j = 2,5,6,7, follows from Proposition 3.5. I

Consider the sequence {0, }nen such that o, = {f,;R} C O3, where f, is the
function defined in Example 3.6. It is easy to see that d(¢,,0) — 0, where o =
{f;R} ¢ ©3. Thus O3 is not closed.

In the rest of the paper, for the sake of simplicity, we will write d(o, 1) instead
of d(o,01) whenever there is no ambiguity.

The next example emphasizes that the properties of the feasible set mapping at
the nominal system o are not determined by its feasible set F' (recall that © depends
on the index set, and so on the particular form of o).

EXAMPLE 3.8. Let C C X be a nonempty closed convex set. We analyze the
Isc property of the feasible set mapping at three different representations of C, with T
empty, singleton, and T infinite, respectively.
(a) Let o = {x € C} € Os. The elements of O can be expressed here as o1 = {x € C1}
with C1 C X nonempty, closed and convex. Let W be an open set in X such that
WNC # 0. Takez € WNC. Let k € N be such that T € By. If # ¢ C) then
T € (B NC)\(B; N C1) so that k1 < k (k1 was defined in (3.1)). Thus, k < k;
implies T € Cy. Consequently, d(c,01) = d(5c,,6c) < 2'7F implies that k < ki
(according to (3.1)), so that T € Cy and Fs (1) "W = C1 N W # 0. Then Fs is lsc
at o.
(b) Fs is not lsc at 0 = {d0c(z) < 0;2 € X} € O3 because o1 := {Jc(x) + € < 0;z €
X} & dom Fy for e =d(o,01) > 0 arbitrarily small.
(c) Let 0 = {v(z) < a, (v,a) €epidy+(0,1);x € X} € O, obtained from (2.5).
It is easy to show that any solution of o is an SS-point of o. In §5 we prove that
the strong Slater condition characterizes the lsc property of F7 at . Observe that the
elimination of "+ (0,1)” from the index set of o provides another linear representation
of C (from (2.4)) such that Fr cannot be lsc at that system because arbitrarily small
perturbations of (0,0) € epidy of the type (0, —€) provide inconsistent systems.
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4. Closedness. Being F (o) a closed subset of X for all o € © is a necessary
condition for the closedness of F : © =% X. Thus F; is not closed (consider o =
{ft,t € T;C} such that fy = 0 for all ¢ € T and C is nonclosed). The feasible set
mapping F satisfies this necessary condition when © C O3, which turns out to be
also sufficient according to the next result.

THEOREM 4.1. F is closed for any © C O,.

Proof. We assume that T # (). It is enough to prove that F5 is closed because F
is the restriction of F5 to © C Os.

Consider 0 = {f;,t € T;C} € Oy. Let {0s}sen C Oa, where o5 = {f2,t €
T;C5},6 € A, and {zs}sea C X be nets satisfying

li§n os =0, li;nxts =2z, and x5 € Fa(os) for all 6 € A. (4.1)

We will show that Z € Fy(o). To this aim, we observe firstly that for any fixed ¢t € T,
we have

fe(@) < liminf f(zs)- (4.2)
by the lower semicontinuity of fz. On the other hand, since

lim d(0,05) =lim max {supd(fi, ), d(0c.dc,)} =0,
t

one gets lims d(f5, fg) = 0, which, together with Lemma 3.1, gives

lim d(fe, f0) =0, VkeN. (4.3)

Since {zs}sca is a convergent net, without loss of generality, assume that {x5}sen C
int By, for k € N large enough. By definition of di, for each § € A,

|filxs) = £ (x5)] < di(fr, £7),

and hence,

fe(xs) < fo(xs) + di(fe, £2) < di(fe £2), YO € A

as f2(z5) <0 by the fact that z5 € F2(0s). Combining this, (4.3), and (4.2) we get
f:(®) < 0.

By the same argument as above, recalling that C is closed, we can prove that
dc(Z) <0or 7 € C. Consequently, T € Fo(o). 1

Obviously, the feasible set mapping F is still closed for © C ©, when the only
admissible perturbations involve the RHS function. The next result is a consequence
of Theorem 4.1 and the axiom of choice.

PROPOSITION 4.2. Let © C ©s. If {o5}sen C domF and limsos = o, then
Lss F(o5) C F(o).
Proof. Take a fixed zp € Lss F(0s), and consider the set

A:={(0,U) € Ax N(xo): Flos)NU # 0}.
Observe that A is a directed set via the product order

(5,U)< (0, U)=d§=8 and U DU
14



Therefore, by picking for each (J,U) € A a point x5y € F(0os) NU, we build a net
{2,0)}5,07ea in X. It is easy to see that this net converges to the point xg.

Through (A, <) we shall generate a subnet of {os}sea. In fact if we consider the
function h : A — A defined by h(d,U) = 4, the following conditions are satisfied:

(a) (6,U) < (8',U") = h(5,U) < h(&',U").

(b) The set h(A) is cofinal in (A, X). To see this, take a fixed 6 € A and any
U € N(w). Then, there will exist &' € A such that § < § and F(os)NU # 0.
Therefore, (§',U) € A and § < h(8',U).

As a consequence of (a) and (b), {ox(s,0)}s,0)en is a subnet of {o5}sea and,
so, lims,t7) op(s,0) = 0. Then, the closedness of F and x5,y € F(0o5) = F(one,0))
together entail zg € F(o). 11

EXAMPLE 4.3. Let 0 = {f; R} be such that

22 -2, ifrxeD,
flx)y=4¢ 1, if x = 1,
400, otherwise,

where D = |—1,1[ (see Figure 3). It is easy to show that o € ©1\O2, F1 is not closed
at o (because Fi(o) = D is nonclosed) and, taking a constant net s = o for all
§ € A, we get Lss Fi(os) = c1D ¢ Fi(c) = D. Thus the results in this section fail
for F1.

-2

Figure 3: Graph of f

5. Lower semicontinuity. The main result of the paper provides different char-
acterizations of the lower semicontinuity of the feasible set mapping.
THEOREM 5.1. F islsc if T =0 and © C ©1. Otherwise, consider the following
statements associated with o = {fi,t € T;C} € dom F :
(i) F is lsc at o;
(i) o € int dom F;
(iii) o is Tuy regular;
(iv) o satisfies the strong Slater condition;
(v) F = cl Fsg, where Fsg is the set of all strong Slater points of o;
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(vi) For every net {os}scn converging to o, the net of sets {F(os)}sen converges to
F(o) in the sense of Kuratowski-Painlevé;

(vii) 0 & cl conv { (U epift*> +epi§é} : and

teT

(viii) 0 & clconv { <U epif,?‘) U [epide + (O, 1)]} :

teT
Then, (i)= (ii)= (iii)=(iv) if o € ©O1, (i)-(vi) are equivalent to each other if o €
O3 U Os, and (i)-(viii) are equivalent to each other if o € Os.

Proof. Let T = () and ©® C ©;. F is trivially lsc at any o € O\ (dom F), and
also at any o € dom F by the argument of Example 3.8 (a). Thus we can assume that
T#0and 0 ={f;,t € T;C} € dom F. We shall prove that (¢) = (i1) = (i) = (iv)
it o € Oy, that (iv) = (i), (i) = (v) = (iv), and (i) = (vi) = (i1) if 0 € O3 U Os,
and, finally, that (vii) < (iv) < (viii) if o € Op.

(i) = (it) Let 0 € © C O4. Suppose that F is Isc at 0. Then for any open subset
W C X with WNF(o) # 0, there exists € > 0 such that for any o1 € ©, d(g,01) < €
implies F(o1) N W # @, which proves that o € int dom F.

(i4) = (#it) Let 0 € © C ©4. Suppose that o € int dom F. Let € > 0 be a number
such that

d(o,01) <e = o1 €domF. (5.1)

By Lemma 3.2, there exist k£ € N and p > 0 such that d(f,h) < € for each pair of
functions f, h € V; satisfying di(f, h) < p. Without loss of generality, we can assume
that p < e. Let w € RT and C; C X such that o1 := {fi(z) —w; < 0,t € T;x €
C1} € © and

max {sup |wt|,d(60,5cl)} <p<e (5.2)
teT

Then for any t € T, di(f}, f;) < p, which implies d(f}, f;) < e. In turn, this and (5.2)
imply d(o,01) < € and hence, 01 € dom F by (5.1). Thus, ¢ is Tuy regular.

(#91) = (iv) Let 0 € © C ©4. Suppose now that o is Tuy regular. Then, for some
€ > 0, the system o1 = {f; — ws,t € T;C1} € O is consistent whenever

max {sup |wel; d(éc,écl)} < e (5.3)
teT
Let wy = —5 for all £ € T and C; = C. Since 01 € © (because O is closed w.r.t.

constant perturbations of the RHS function) and (5.3) holds, o1 is consistent. It is
obvious that any & € F(o1) is a SS-point of o.

(tv) = (i) Let 0 € ©3UBO;5. Let W C X be an open set such that W N F(o) # 0.
Let z € WNF(0), and & € C and p > 0 such that fi() < —pforallt € T.

First we assume o € ©3. Since F(o) C int C, we can assume W C int C' without
loss of generality.

If g (z) = 0, then Z is not a global optimizer of g because ¢ (Z) < —p < 0. Since
g € V3, T cannot be local minimum of g so that there exists some € W such that
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g(%) < 0. Let := —g (%) > 0 and k € N be such that & € Bg. Let € > 0 such that
d(c1,0) < € implies that |f}(Z) — fi(Z)| < £ for all ¢ € T. Then

ftl(g) < fu(@) + g < g(@) + g = —g forallteT.

On the other hand, since £ € W C C, by the argument of Example 3.8 (a),
d(o1,0) < 2'7F implies that T € C;. Hence, T € W N F(o;) whenever o; € O3
satisfies d(o1,0) < min {e, 21_’“} .

Now we assume o € Oy. For A € ]0,1], we consider z(\) = (1 — \)Z 4+ A& € C.
This is a SS-point of ¢ because, for each t € T', we have

fr(@(N) < (1= N fi(@) + Afi(2) < —Ap. (5.4)

Let k € N be such that &,Z € By, so that 2()\) € By, for all A € ]0,1]. Recalling

the reasoning in Example 3.8 (a), for every closed convex set Cf, it holds
d(6c,,00) < 2'7F = 2(\) € C; YA €]0,1]. (5.5)
On the other hand, by Lemma 3.1, there exists p > 0 such that, for every ¢t € T,

d(ftlvf) <p = dk(ftlvft) <L (56)

So, if 01 = {ftl,t eT; Cl} € O satisfies d(01,0) < p, then

i @(N) = fe(eN)| < di(f7 fr) = min{1,di(f, fi)}
<2%d(f!, f) < 2%d(o1,0). (5.7)

Let A €10,1]. According to (5.4), (5.5), (5.6), and (5.7), if
d(oy,0) <min{2'7% p,27%\p}
(positive number depending on \), we have z(\) € C; and
fE (@) < fi(z(\) +2%d(01,0) <0, VtE T,

ie., z(\) € F(o1) for o1 close enough to o.
Since limy_,oxz(\) =z € W, z(A) € W for A > 0 small enough, so that W N
F(o1) # 0 for o1 close enough to o.

(1) = (v) Let 0 € ©® C ©s. Since Fsg C F(o) and F(o) is closed, we get
cl(Fsg) C F(o). We now suppose that F(o)\cl(Fss) # 0. Then for any point x;
in this set, there exists an open set W with £y € W and W Ncl(Fss) = (). Since
F is Isc at o, there is € > 0 such that F(o1) N W # 0 whenever d(o,01) < e. Take
o1:={ft +eteT;C} € 0. Then it is clear that d(c,01) = € and F(o1) C Fss. By
the Isc property of F, WNF(o1) # 0, which contradicts the fact that WNcl(Fss) = 0.
Therefore, cl(Fsg) = F(o).

(v) = (iv) It is obvious since cl(Fsg) = F(o) # 0.
(1) = (vi) Let 0 € © C O2. The inclusion Lis F(os5) C F(o) is a consequence

of the lower semicontinuity of F at o (by the same argument as in [47, Section 5B]).
In order to prove the reverse inclusion, consider an arbitrary zo € F(o). Since F
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is lsc at o, for each U € N(zg) there will exist a neighborhood V of o such that
UnNF(c') # 0 for each ¢/ € V. Assume that §o € A is such that § € A and §p < &
entail o5 € V and, hence, U N F(cs) # (). Consequently = € Lis F(os), and we have
actually proved that F(c) C Lis F(os). Since Proposition 4.2 has already established
that Lss F(os) C F(o), the general inclusion Lis F(os5) C Lss F(os) gives rise to the
aimed equality Lis F(os) = Lss F(os).

(vi) = (i7) Let 0 € © C O;. Reasoning by contradiction, if (i7) does not hold, i.e.,
o ¢ int dom F, we can find a sequence {o} }ren converging to o such that F(oy) = 0,
k=1,2,..., and so Liy F(oy) = Lsi F(or) = 0 # F(o), which contradicts (vi).

(iv) < (vii) We have dom (sup,cp fi) N C # 0 because o € dom F. By (2.1) and
[7, Corollary 6(b)] one has

cleonv (U,ep epi fi + epidy) = cl (clconv (Userepi f7) +epidg)
= cl (epi (supyer fi)" + epid) = epi (supyep fi + 6¢)" .

Thus (vii) holds if and only if 0 ¢ epi (sup,er fi + 0¢)", i-e., (Supyer ft +0¢)" (0) >
0, if and only if there exist p > 0 such that (sup,cr fi + 6¢)* (0) > p if and only if
there exist p > 0 and T € C such that f; (T) < —p for all t € T if and only if (iv) is
true.

(iv) < (viit) We have dom (sup,cp {fi,0c —1}) # 0. Applying again (2.1) it
follows that

cleonv (U,erepi fi U [epidg + (0,1)]) = cleonv (Uyeq epi ff Uepi (6c — 1))

= epi (supyer {f1, 00 — 1})" .

Thus (vidi) holds if and only if (sup,cr {fi,dc — 1})* (0) > 0 if and only if there exist
p >0, p<1,such that (sup,ep {ft,0¢ — 1})" (0) > p if and only if there exist p > 0
and Z € C such that sup,c {fi,dc — 1} (T) < —p if and only if (iv) is true.

This concludes the proof. i

We have shown that statements (i)-(vi) in Theorem 5.1 are equivalent in Og
whereas (i)-(viii) are equivalent in ©5. The next three simple examples (with |T'| = 1)
show that none of the properties defining ©3 and O3 are superfluous. There, state-
ments (44)-(iv), (vii), and (viii) hold whereas (i), (v) and (vi) fail.

EXAMPLE 5.2. Let 0 = {f;C} € O3\ (03 U O5) be such that f (x) = 2*> — 1 and
C={-1,0,1} C R (C is not convezx). We have F = C, Fss = {0}, f*(v) = 1—2 +1,
and 05 (v) = |v|. Then

clconv (epi f* + epidy) = clconv (epi f* U [epidg + (0,1)]) = epih,

where h (v) = % +1, ifv e [-2,2], and h(v) = |v|, otherwise.

EXAMPLE 5.3. Let o = {f; C} be such that f (v) = 1—2% and C = [~1, +00[ C R;
o € O\ (O3 UO5) because F = {—1} U [1, 400 € intC and f is nonconver. We
have Fss = ]1,4o00[, f* = +oo, and §5 (v) = —v, if v < 0, and 65 (v) = +oo,
otherwise. On the other hand, taking, forn € N, o, = {f + %;C’} € O9, we have
Falon) = [w/"T“,—l—oo[, and this sequence converges to [1,+o0[. Observe that here
the set of (vit) is empty.
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ExamMpPLE 5.4. Consider X = R and the functions defined in Fxample 3.6.
Let 0 = {f — L;R} € O\ (O3U0O5) (because the local-global property fails) and
on = {fn—1;R} C Os. It is easy to see that d(oy,0) — 0, Fa(oy,) = [-1,1] for all
n €N and Fa(o) = [-1,2]. Finally, ox = d(0y and

1, ifve[-1,3],
(fil)*(ru): 21}7 Zf’UE]%,l],

400, otherwise.

The latter example shows that, in contrast with convexity and extended convexity,
continuity (or even smoothness) plays no role in the context of lower semicontinuity
(consider, e.g., o = {f; R}, with f (z) = = (z — 1)°).

REMARK 5.5. From the proof of [(iv) = (i)], given & € C such that f, (%) < —p
forallt € T (i.e., & is an SS-point of o with associated constant p), if d(o1,0) <
min{2' 7%, p, 271" p}, then & = z(1) is an SS-point of o1, with associated constant &.

REMARK 5.6. Ifo = {f;,t€T;C} € ©gsNdomF and C = X (ey., 0 €
©7 Ndom F), then epidy = cone{(0,1)} and f} is a proper convez lsc function for
allt €T, so that epi fi + epidy = epi fi for allt € T. Thus

clconv { (U epi f;) + epidg} C clconv { (U epiff) U [epidg + (O, 1)]} ,

teT teT
(5.8)
i.e., condition (vii) in Theorem 5.1 is weaker than condition (viii), and both conditions
are equivalent whenever —1 is a lower bound for some constraint function fi (in which
case (0,1) € epi f{ and both sets in (5.8) coincide). The next example shows that the
sets in (5.8) are generally different.
EXAMPLE 5.7. Let X =R, and 0 = {f;R} € O5 Ndom F, with f () =z +1, if
x <0 and f(x) = +oo, otherwise. Since g = o103, and f*(v) = =1, if v > 1, and
+o00, otherwise, we have

cleonv {epi f* +epids} = (1,—1) +R%
and

cleonv {epi f* U [epi o + (0,1)]} = conv {(1,-1), (0, 1)} +R3.

6. Robinson regularity. We can aggregate another characterization of the Isc
property of F to the list in Theorem 5.1 when X is a normable space and B is a
bounded barrel. Then the gauge associated with B, i.e.,

pp(z) :=1inf{n >0: x € nB}

is actually a norm, the pgz—topology is exactly the original topology in X [25, §10 C],
and the sets {2 B : n=1,2,...} form a local base in X. We shall represent by 0 the
distance associated with pg. Obviously, if X is a normed space and B is the closed
unit ball, then §p is the distance associated with this norm. The next definition is
inspired in [46].
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Let T # (). The feasible set mapping F : © = X is said to be Robinson reqular at
o={fi,t € T;C} € O if for each T € F(0), there exist ¢, 5 > 0 such that € C; and

(SB(.%, .7:(0'1)) < BmaX {0791(.%')} ’

for any o1 € © such that d(o,01) < € (¢g* denotes the marginal function of o1). Here,
by convention, we understand that §(Z, () = +oo.

THEOREM 6.1. Let X be a normable space, B be a bounded barrel, and let
o=A{f,t € T;C} € domF, with T # 0. If F is Robinson regular at o € O3 U Oy,
then F is lsc at 0. The converse statement holds if o € Os.

Proof. Suppose that F is Robinson regular at ¢ € ©3 U O5. Take any = € F.
Then there are real numbers ¢, 8 > 0 such that for any o1 with d(o,01) < €, one has
T € Oy and

35(2, F(01)) < Bmax[0, g (2)]. (6.1)

Let k be an integer number such that # € kB. If d(oy,0) < 2=%¢ then di(fe, 1) <
€. In particular, we have

ftl(i) <e+ fi(T) <e¢ VEeT.

This and (6.1) show that (%, F(01)) < 400, which implies F(o1) #  and hence,
the statement (ii) in Theorem 5.1 holds. The lower semicontinuity of F follows from
this theorem.

Now we assume that o € O5.

Assume that F is Isc at . By Theorem 5.1 (ii), Fy := F(01) # 0 if o1 = {f},t €
T;C,} € © is close enough to o.

Let T € F = F5(0). If 65(Z, F1) = 0 then the conclusion holds trivially. Assume
then that 65(Z, F1) > 0, and let 7 := 65(z, F1). Since {1B: n=1,2,..} is a local
base in X, there exists ' > 0 such that (Z +r7'B) N F; = 0.

By the separation theorem, there exists v € X*\ {0} such that

v(z) <@ —rn'2) =v(@) —rn'v(z), Vz € Fy, Vz € B.
This leads us to

v(z) < Zlgg['u(%) —rn'v(z)] = v(T) — rn, Yo € Fi,

where 1 := 7 sup, g v(2) is a nonnegative real number because B is bounded, 0 € B,
and ' > 0. From (2.2) we get

(v,0(Z) —rn) €cl cone{ <U epi (ftl)*> + epiéa}.
teT
Then there exist nets {\“}aea C Rf% {uftaea C dom(f1)*, {w*}aea C doméy,

and {8%}aea C Ry, t € T such that

limg (3 ,cr Afuf(z) + w*(z)) = v(z), Vo € X,
limg (3 er A (F) " (uf) + 0, (W) + B%) = v(@) — .



Therefore,

i {Sier NP (@) = (1) ()] +0%(0) = 62, (0 = B} g
=wv(z) —v(Z) +rn, Yz € X. :

Note that for each v € A, t € T, and each z € X,

fi@) = (f1) (@) = uf (z) = (F)"(uf),
and if z € C; then w®(z) — 05, (w*) < 0. We now can derive from (6.2) that

v(z) —v(T) +rn < Asup fH(x), Vo € O, (6.3)
teT

where A :=limsup >, A, A € RU {400}

We will see that A is finite. Indeed, if Z is an SS-point of o (it exists by Theorem
5.1 (iv)) associated with p > 0 then for oy closed enough to o, Z is also an SS-point of
o1, associated with & (recall Remark 5.5), i.e., z € Cy and f}(z) < —& forallt € T.
Letting = Z in (6.3), we get

0(&) — v(@) < v(&) — v(@) +rn < A(-5),
which implies that A < +o00 and

< 2 2 _
A< ;v(m —-z) < ;|v(z) —v(Z)]. (6.4)

We now observe that by the same argument as in Example 3.8 (a), T € C
whenever o1 is close enough to o. So letting = Z in (6.3), we get

m < Ag'(@),
which, together with (6.4), gives
0p(T, Fr) =1 < Bg" (T),
where 8 := p—2n|'u(3?) — v(Z)|. The conclusion follows. I

EXAMPLE 6.2. Let X =R, B = [-1,1], f(x) = —2?%, and 0 = {f;R} € O3.
Assume that Fs is Robinson regular at o, with constant 5 > 0. Take x = 0 € F and
the sequence {on},cy such that o, = {fn;R} € O3, with f, = f + <, n € N. Then

we have d (o, 0) — 0, F3 (0y) :]—oo7 —ﬁ [U]%,—i—oo[ , 05(T, Fs(0y)) = ﬁ and

max {0, 9" (Z)} = L, n € N. Since ﬁ < % for n large enough, multiplying by n both
members of this inequality and taking limits as n — oo we get a contradiction. Hence
Fs is lsc (because Fgg = R\ {0} ) but it is not Robinson regular at o.

7. Upper semicontinuity. In this section we give sufficient conditions for the
usc property of the feasible set map at a consistent system o under perturbations of
all the data. Obviously, these conditions are also sufficient in the case that we restrict
ourselves to perturbations of the RHS function. We also characterize the usc property
(Theorems 7.4 and 7.9) but, in contrast with the Isc counterpart (Theorem 5.1), such
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characterization, which also remains valid for RHS perturbations, does not involve
the data. Also in contrast with the lsc property, T = @ does not imply the upper
semicontinuity of the feasible set mapping everywhere.

EXAMPLE 7.1. Let B be the closed unit ball in X = R?, C = epia? and C,, =
epi h,,, where

—nzy —n?,  ifr < —n,
hn (xl) = CC%, fol € ]_nan[7
2nx; — n?, if t1 > n,

n € N. Then C,, £ W := C+B for alln € N, with C C W. Since C,,N(kB) = CN(kB)
foralln >k, d(d¢,,0¢c) — 0 as n — oo (by Corollary 3.4), so that F; is not usc at
c={zxeC},j=1,..,7 (in short, j > 1).

We first establish the usc property of 7 N K when K is a compact set of X at
every consistent system. The next lemma can be seen as a local counterpart of the
Closed Graph Theorem in [1, Theorem 17.11], which proves the equivalence between
the closedness of the graph and the upper semicontinuity everywhere.

LEMMA 7.2. If K is a compact subset of X then the truncated map F:0= X,
© C O9, defined by

F(o1) = (FNK)(o1) = F(o1)NK for all o1 € O,

is usc at any o € domF.

Proof. Let o0 € domF. We observe firstly that the closedness of F at o entails the
closedness of F at this parameter.

Assume that F is not usc at o. Then there is an open set W such that .7-"( )y W
and for any neighborhood V of ¢ there exists oy € V and xy € f(av) with xy & W.
Note that {zy} is a net in K\ W directed by inclusion (we are using the axiom of
choice). Since K is compact, there is a subnet of {zy } converging to a point in K, say
x € K. Then x € K\ W since this set is relatively closed in K, but then x ¢ .7-'( ),

which contradicts the closedness of F at o. Consequently, F is usc at 0. |

PROPOSITION 7.3. If© C ©g and Cy is compact, then F is usc at any o € domF.

Proof. Tt is straightforward consequence of Lemma 7.2 taking K = Cy. 1

According to Proposition 7.5(ii) below, the boundedness of F (o) entails the upper
semicontinuity of F at ¢ when X = R™ and © C Og, but this property is seriously
troublesome when X is an infinite-dimensional normed space (where boundedness of
F(c) does not imply upper semicontinuity of F at ¢ any longer [42, Example 3]).

7.1. Upper semicontinuity in R™. The next result characterizes the usc prop-
erty of F provided the decision space X is locally compact, in which case X is finite
dimensional and, so, isomorphic to R™ ([34, §15.7 (1)]). The sufficient part is totally
general and its proof is a straightforward consequence of statement (iii) in [22, Lemma
2]. For j = 6,7, this result generalizes the corresponding ones in [21] and [44] because
we consider here a fixed set constraint Cy C R™ and extended constraint functions f;,
teT.

THEOREM 7.4. Let o0 € domF, © C Oy. Then F is usc at o if and only if there
exists a compact set K and a positive number € such that

Floi\K C F(o)\K for all 01 € © with d(o,01) < €
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In the present setting (i.e., X = R™) the usc property of F for © C O3 follows
from the boundedness of F(o) as claimed in the next proposition, whose proof goes
along the ways as those of [44, Lemma 4.3, Proposition 4.2] with a minor modification
to treat with the Isc property of the functions and the set constraints involved.

PROPOSITION 7.5. Let o € domF, © C ©s. If F(0) is bounded then the following
statements hold:

(i) F is uniformly bounded in some neighborhood of o.

(i) F is usc at o.

Proof. Let 0 € domF, © C ©5. We assume T # (). We need to prove (i) only
since (ii) follows immediately from (i).

Let B be the closed unit ball in R™. Suppose that F := F(o) C puB for some
@ > 0. Assume that (i) does not hold. Then, there exist sequences {o,.} C © and
{2z} C R™ such that d(o,0,) < %,2, € F, := F(0,) with [|z.|| > r for all r € N.

Nowlet)\r:H?;—’:H. Then with » > 3, 0 < A\, < 1 and A\, — 0 as r — oo.
Furthermore, without loss of generality, we can assume that \.z, — z as r — oo with
2]l = 3p.

We now take Z € F and set w, := Az + (1 — \.)Z. It turns out that w, — 2+
as r — oo.

Fix t € T. Then, for each r, the convexity of f] gives

fi(we) S A ff (z0) + (1= A) f{(Z) < (1= A) f{ (). (7.1)

Now for any € > 0, by the Isc of f;, and by the convergence of the sequence {w;},
there exist a relative compact neighborhood V' of z +  and an integer rg such that
w, € V and such that

fiz+2) — fi(w,) <e (7.2)

for all 7 > rg. On the other hand, since d(o,0,) — 0, it follows from the definition
of this convergence and (7.5) that there is a compact set B, such that c1V C B,
and the sequence {f]} converges uniformly to f; on B,, which entails that there is
an integer 71 > rg such that

fe(wy) — fi (wy) < e for all r > ry. (7.3)
Therefore, if r > max{ry,3u} then, combining (7.2) and (7.3), we get
fi(z +2) = f{ (wy) = fi(z +2) = fe(wr) + felw,) — fi (wr) < 2¢,
or equivalently,
filz +2) < f(w;) + 2.
This, together with (7.1) gives
filz+2) < (1= A)ff () + 26,

which, in turn, gives rise to fi(z + Z) < fi(Z) + 2¢ < 2e since the sequence {f{}
converges to fi, A\, > 0asr — oo, and T € F.

Consequently, we get fi(z + Z) < 0 for any ¢ € T since the last inequality holds
for any € > 0 and for any ¢t € T

23



The same argument applies to the sequence {0¢, }. Thus we also get d¢(z+Z) < 0,
which shows that z +Z € C. So, z+Z € F, but ||z + Z| > ||z]| — ||Z|| > 2p, which
contradicts the fact that F' C pB. Finally, we may conclude that there exists some
7 > 0 such that Fy = F(o1) C 7B for any o1 € O satisfying d(o,01) < 1. 11

The next example shows that both statements in Proposition 7.5 fail for j = 3.

EXAMPLE 7.6. Let o = {f;R}, with f(z) = 2%exp (z) and o = {fx;R} such
that fr, = f — % € Vs, k € N. All these systems are in O3 because the unique local
minimum of their constraint function, 0, is global. Let x, < y,. < z. be the three real
roots of f (z) = %, with x, — o0 and y,,z, — 0. We have d (0., 0) — 0, F3(0) = {0},
and Fs(o,) = |—00,z,) U [yr, 2r], 7 € N. Thus Fs is neither uniformly bounded nor
usc at o although Fs(o) is compact.

In the following corollary we provide a sufficient condition for the upper semicon-
tinuity of Fj, for j > 5, which relies on the nominal data.

COROLLARY 7.7. Let o € domF, © C Os. Then, the following conditions are both
equivalent to the boundedness of F(o) and, so, they imply the upper semicontinuity of
Fato:

(i) (0,1) € int cone { (U epift*> U [epidg + (O, 1)]} .
teT
(i) The projection of the cone above on the space of the first n coordinates is R™.

Proof. Tt is a straightforward consequence of [19, Theorem 9.3]. I

In [11] a characterization of the upper semicontinuity of F7 is given in terms
of the so-called reinforced system associated with the nominal system o, although
checking this condition is rather difficult. In [8] another characterization of the upper
semicontinuity of F is provided in the particular setting of continuous linear semi-
infinite programming, and this conditions is that F (o) is either bounded or the whole
space R"™.

7.2. Upper semicontinuity in locally compact sigma-compact spaces.
Let X be a locally compact topological space (without linear structure, noncompact).
We also assume that X is sigma-compact; i.e. (see [34, page 22]), there exists a
sequence {K, } ey of compact sets such that

K, Cint K,1,¥r €N, X = J K, =] int K,. (7.4)
r=1 r=1
Moreover,
For all compact set K C X, Jrg such that K C K,,. (7.5)

Consider the space of all real-valued continuous functions on X, C(X), endowed
with the uniformly convergent topology, 7, on compact subsets of X. A base of 7-
neighborhoods of 0 consists of the set of functions f such that sup |f(z)| < €, where

zeK

e > 0 and K is a compact subset of X. Moreover, C(X) is a locally convex, complete
space with the topology defined by all the seminorms pg (f) := sup |f(z)|, where K
reK

is a compact subset of X.
Under the assumptions, C(X) is a Fréchet space (i.e., locally convex, complete,
and metrizable). Moreover, its topology is defined by countably many seminorms pg,
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([34, page 250]). But then the metric that generates the topology in C(X) can be
defined by

o0

p(f,h) = 2 "min{l,pk, (f — h)}, f,h€C(X) (7.6)

r=1

(compare with the metric d defined in V; in §3). It is easy to see that the conclusions
of technical Lemmas 3.1 and 3.2 in §3 still hold (with the same proof) for the metric
p on C(X), with d, replaced here by pg,..

Let T be an arbitrary index set as before and let

Os = {{f}, teT;X}: fl eC(X)VteT}.
Given o = {fi,t € T; X}, o1 = {f},t € T; X} € Og, we define

d(o,01) :=sup p(fi, 1)
teT

If © C Og, then (0,d) is a metric space, which is complete when © is closed in
Og (same proof as in Proposition 3.7). We are now in a position to establish the
closedness and the upper semicontinuity of the feasible set mapping F. The proof of
the next result is similar to those of Theorem 4.1 and Proposition 4.2 and will be
omitted.

THEOREM 7.8. Let © C Og. Then the following statements hold:

(i) F is closed.

(i1) If {os}sen C domF and lims o5 = o, then LssF(os) C F(o).

Concerning the lsc property, we have seen that continuity is irrelevant, i.e., for the
statements in Theorem 5.1, (2) = (i) = (i4) = (iv) but (iv) # (7) (recall Example
5.4).

THEOREM 7.9. Let 0 € domF, © C Og, and let X be metrizable. Then F is usc
at o if and only if there exist a compact set K and a positive number € such that

Flo1)\K C F(o)\K for all 01 € © with d(o,01) < €. (7.7)

Proof. For simplicity, we write in this proof F, := F(o,) for all o, € ©.

Assume that (7.7) holds. Let W be an open set containing F'. Since F is closed
at o (by Theorem 7.9, part (i)) and K is compact, it follows from Lemma 7.2 that
the map F N K is usc at 0. So, there will exist certain €; > 0, €; < ¢, such that for
each o1 satisfying d(o,01) < €1, one has

FENKCW.
Now, by assumption Fi\ K C F\ K, so that

F = (FNK)U(F\K)
CWU(F\K)CW,

which shows that F is usc at o.



Now we suppose that condition (7.7) is not satisfied. Let {K, }ren be a sequence
of compact sets in X satisfying (7.4). Then, there exist sequences {0, },.eny C domF
and {z, }reny C X satisfying

1
d r E)
(0,0,) < .
z, € FEN\NK,,
xr & FNK,

for all » € N. Thus, 0, — o and z, € K, for every r > m (since the sequence { K, } en
is nested). It is easy to see that such sequence {z,},eny has no accumulation point.
In fact, if 2o is an accumulation point of this sequence then zg must be contained
in some intK, 11, which entails that int K, ; is a neighborhood of z that contains
only a finite number of elements of the sequence {z,}. This is impossible.

Since z, € F.\F, 0, — 0, as r — 00, and {,},en has no accumulation point,
F is not usc at o as a consequence of the Dolecki condition ([4, Lemma 2.2.2]). The
proof is complete. I
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