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Storage Costs in Commodity Option Pricing∗
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Abstract. Unlike derivatives of financial contracts, commodity options exhibit distinct particularities owing to
physical aspects of the underlying. An adaptation of no-arbitrage pricing to this kind of derivative
turns out to be a stress test, challenging the martingale-based models with diverse technical and
technological constraints, with storability and short selling restrictions, and sometimes with the
lack of an efficient dynamic hedging. In this work, we study the effect of storability on risk neutral
commodity price modeling and suggest a model class where arbitrage is excluded for both commodity
futures trading and simultaneous dynamical management of the commodity stock. The proposed
framework is based on key results from interest rate theory.
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1. Introduction. Prospering economies are highly dependent on commodities. As a con-
sequence, sustainable commodity supply is a key factor for their future growth. Thus, the
commodity price risk becomes increasingly important. In the past, the price outbursts for
oil, biofuels, and agricultural products have clearly demonstrated that the commodity price
modeling and hedging deserve particular attention.

Despite the success of financial mathematics in many fields, we believe that the quantita-
tive understanding of commodity price risk is behind the state of the art and needs further
research. In the area of commodities, the models are less sophisticated, flexible, and consistent
than, for instance, in the theory of fixed income markets. Not surprisingly, many important
questions in commodity risk management cannot be addressed accordingly. For the sake of
concreteness, let us consider two commodities, electricity and gold, which are very different
in their nature and in their price behavior. Gold is, as a precious metal, a perfectly storable
good. Furthermore, gold is considered as an appreciated investment opportunity, particularly
during critical times. As a result, the price behavior of gold shows many similarities to a for-
eign currency. For instance, for gold loans, an interest rate (paid in gold) is available. On the
contrary, electricity is not economically storable. Strictly speaking, electrical energy delivered
at different points in time must be considered as different commodities. Electricity spot price
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730 JURI HINZ AND MAX FEHR

spikes occur regularly; each price jump is followed by a relatively fast price decay, returning
back to the normal price level. Such a pattern is not possible for the gold spot price. Consider
now a calendar spread call option, which can be viewed as a regular call written on the price
spread between commodity futures with different maturities. Such a contract is obviously
sensitive to spot price spikes. Evidently, the pricing and hedging of such an instrument must
depend on whether it is written on electricity or on gold. However, such a differentiation is
hardly possible within common risk neutral commodity price models. At the present level of
the theory, the practitioner is essentially left alone with the problem of how to adapt a given
commodity price model to account for a perfect storability or for an absolute nonstorability
of the underlying good.

Apparently, the lack of storage parameter in the common commodity price models is traced
to the very philosophy of commodity risk hedging. Physical commodities are cumbersome:
Their storage could be difficult and expensive, the quality may be deteriorated by storage, and
the supply may require a costly transportation. Furthermore, short positions in commodities
are almost impossible. Contrary to this, futures are clean financial instruments, predestined
to hedge against undesirable price changes. Accordingly, futures are frequently considered as
prime underlyings. Thus, the generic approaches in commodity modeling attempt to exclude
merely the financial arbitrage (achieved by futures and options trading), losing sight of the
physical arbitrage, which may result from the trading of financial contracts in addition to an
appropriate inventory management. At the present stage, the valuation of commodity options
sticks to the calculation of prices which exclude arbitrage within a given futures market,
thus neglecting the existing real storage opportunities. According to this, there is a need for
a unified model which encompasses all commodities, distinguishing particular cases by their
storability degree. Here, we are confronted with complex situations. The variety of storage cost
structures ranges from a simple quality deterioration (agricultural products) and dependence
on related commodities (fodder price may depend on livestock prices) to the availability of the
inventory capacities. Furthermore, economists argue that negative storage costs are useful for
describing the benefit or premium associated with holding an underlying product or physical
good rather than a financial contract (convenience yield arguments). This benefit may depend
on the inventory levels since the marginal yield of the physical stock decreases as the quantity
approaches a level larger than the business requires. To complete the perplexity, we should
mention that the inventory levels, in turn, are interrelated with commodity spot prices (the
inventories are full when the commodity is cheap) and also could exhibit seasonalities (harvest
times for agricultural products). The bottom line is that there is no simple approach to facing
the entire range of storage particularities. However, we hope that a simplified cost structure
is able to capture those storability aspects which are quantitatively essential for derivatives
pricing. An empirical study presented in this contribution supports this assumption.

The connection between spot and futures prices for commodities with restricted storability
and the valuation of storage opportunities have attracted research interest for a long time. In
this work, we emphasize, among others, the works [3], [5], [7], [8], [9], and [10]. Moreover, the
comprehensive book [6] presents a state-of-the-art exposition in the commodity derivatives
pricing. More specifically, commodity spread options are discussed in [4], in the recent works
[1], [2], and in the literature cited therein.

In what follows, we present an approach where a single parameter controls the maximallyD
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possible slope of contango, thus giving a storability constraint. This should yield commodity
option prices more realistic than those obtained from traditional models, especially when the
instrument under valuation explicitly addresses the storability aspects (like a calendar spread
option, a virtual storage, or a swing-type contract).

2. Risk neutral modeling. Common approaches to the valuation of commodity derivatives
(see [7]) are based on the assumptions that the commodity trading takes place continuously
in time without transaction costs and taxes and that no arbitrage exists for all commodity-
related trading strategies. In the class of spot price models, the evolution (St)t∈[0,T ] of the
commodity spot price is described by a diffusion dynamics

(2.1) dSt = St((−µt)dt+ σtdWt)

realized on a filtered probability space (Ω,F , (Ft, P )t∈[0,T ]) with the prespecified drift (µt)t∈[0,T ]

and volatility (σt)t∈[0,T ]. The process (Wt)t∈[0,T ] stands for a Brownian motion under the
so-called spot martingale measure Q. This measure represents a vehicle for excluding arbi-
trage opportunities for the trading of commodity-related financial contracts, predominantly
of futures. The assumption therefore is that at any time t ∈ [0, τ ] ⊂ [0, T ] the price Et(τ)
of the futures contract written on the price of a commodity delivered at τ is given by the
Q-martingale

(2.2) Et(τ) = EQ(Sτ |Ft) for all t ∈ [0, τ ] for each futures maturity τ ∈ [0, T ]

whose terminal value equals the spot price Sτ . Beyond this property, futures dynamics has
to fulfill a series of reasonable assumptions. First of all, the dynamics (2.1), (2.2) has to be
consistent with the futures curve (E∗

0(τi))
n+1
i=0 initially observed at the market in the sense that

E(Sτi |F0) = E∗
0(τi) for all listed maturity dates τ0, . . . , τn+1. Next, one has to ensure a certain

flexibility of the futures curve, at least in terms of the feasibility for changes between backwar-
dation and contango, which evidently occur in commodity markets. Moreover, some authors
have argued that the correct choice of the spot price process has to reflect the frequently no-
ticed mean-reverting property. However, we believe that this observation is disputable since
there is no obvious reason why a risk neutral dynamics must inherit the statistical proper-
ties evident from the perspective of the objective measure. Overall, the correct choice of the
commodity price dynamics turns out to be a challenging task, more so because the following
storability requirement needs to be considered:

(2.3)
Given a storage cost structure, the dynamics
(2.2) should exclude arbitrage opportunities
for futures and physical commodity trading.

Our approach aims to give an appropriate implementation of this principle such that particular
commodities may be distinguished by a single parameter which stands for their specific storage
costs.

In our approach, we utilize a connection between commodity and money market models
(see [8]), which needs to be briefly outlined next. Given the dynamics (2.1), the diffusion
parameter (σt)t∈[0,T ] obviously reflects the fluctuation of the spot price, whereas the drift termD
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732 JURI HINZ AND MAX FEHR

(µt)t∈[0,T ] needs to be adjusted accordingly, in order to match the observed initial futures curve

(E∗
0(τi))

n+1
i=0 and to reflect some of its typical changes. It turns out that by an appropriate

change of measure these questions can be naturally carried out in the framework of short rate
models. Namely, observe that the solution

Sτ = S0e
−

∫ τ
0 µsdse

∫ τ
0 σsdWs− 1

2

∫ τ
0 σ2

sds, τ ∈ [0, T ],

to (2.1) satisfies

Sτ = Ste
−

∫ τ
t µsdsΛτΛ

−1
t , 0 ≤ t ≤ τ ≤ T,

where, under appropriate assumptions on (σt)t∈[0,T ], the martingale

Λτ = e
∫ τ
0 σsdWs− 1

2

∫ τ
0 σ2

sds, τ ∈ [0, T ],

provides a measure change to a probability measure Q̃ which is equivalent to Q and is given
by

dQ̃ = ΛTdQ.

Using the measure Q̃, we obtain

Et(τ) = EQ
t (Sτ ) = EQ

t (Ste
−

∫ τ
t µsdsΛτΛ

−1
t ) = StEQ̃

t (e
−

∫ τ
t µsds)

with the proportion between the futures price and the spot price

Et(τ)/St = EQ̃
t (e

−
∫ τ
t µsds) =: Bt(τ), t ≤ τ.

Obviously, all desired properties of the futures curve evolution can be addressed in terms of the
dynamics of (Bt(τ))t∈[0,τ ], τ ∈ [0, T ]. This observation shows that by modeling (µt)t∈[0,T ] as a

short rate of an appropriate interest rate model (with respect to Q̃) one obtains a commodity
price model which inherits futures curve properties from the zero bond curve of the underlying
interest rate model. More generally, [8] argues that any commodity futures price model can
be constructed as

Et(τ) = StBt(τ), 0 ≤ t ≤ τ ≤ T,

by a separate realization of spot price (St)t∈[0,T ] and an appropriate zero bond (Bt(τ))0<t≤τ≤T

dynamics. Although such a rigid framework is not ideal for addressing storage cost issues,
we utilize an analogy between commodity and money markets and borrow ideas from LIBOR
markets to introduce storage cost restrictions into commodity modeling.

3. A risk neutral approach to storage costs. Let us agree that a commodity market on
the time horizon [0, T ] is modeled by adapted processes

(3.1) (St)t∈[0,T ], (Et(τi))t∈[0,τi], i = 0, . . . , n+ 1,

realized on (Ω,F , P, (Ft)∈[0,T ]) with the interpretation that (St)t∈[0,T ] is the spot price process
and (Et(τi))t∈[0,τi] denotes the price evolution of the futures maturing at τi ∈ {τ0, . . . , τn+1} ⊂
[0, T ]. For simplicity, we assume that τ0 = 0, τn+1 = T and that all maturity times differ by
a fixed tenor ∆ = τi+1 − τi for all i = 0, . . . , n. We shall agree on the following.D

ow
nl

oa
de

d 
06

/2
0/

13
 to

 1
38

.2
5.

78
.2

5.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STORAGE COSTS IN COMMODITY OPTION PRICING 733

Definition 3.1. The price processes (3.1) define a commodity market (which excludes ar-
bitrage for futures trading and simultaneous commodity stock management) if the following
conditions are satisfied:
(C0) (St)t∈[0,T ], (Et(τi))t∈[0,τi] for i = 0, . . . , n+ 1 are positive-valued processes.

(C1) There is no financial arbitrage in the sense that there exists a measure QE which is
equivalent to P and such that, for each i = 0, . . . , n + 1, the process (Et(τi))t∈[0,τi]
follows a martingale with respect to QE.

(C2) The initial values of the futures price processes (Et(τi))t∈[0,τi], i = 0, . . . , n + 1, fit

the observed futures curve (E∗
0(τi))

n+1
i=0 ∈ ]0,∞[n+1; i.e., it holds almost surely that

E0(τi) = E∗
0(τi) for all i = 0, . . . , n+ 1.

(C3) The terminal futures price matches the spot price: Eτi(τi) = Sτi for i = 0, . . . , n + 1.
(C4) There exists κ > 0 such that

(3.2) Et(τi+1)− κ ≤ Et(τi) for all t ∈ [0, τi], i = 1, . . . , n.

Let us explain why assumption (C4) is a convenient description of storage cost. For any
time t ≤ τi, consider the commodity forward prices Ft(τi), Ft(τi+1) and the prices pt(τi),
pt(τi+1) of zero bonds (whose face value is normalized to one) maturing at τi and τi+1, respec-
tively. To exclude arbitrage from physical storage facilities, we derive a relation between these
prices and the price kt(τi+1) of a contract which serves as a storage facility for one commodity
unit within [τi, τi+1]. Thereby, we assume that the price kt(τi+1) is agreed at time t and is
paid at τi+1. It turns out that to exclude the cash and carry arbitrage the prices must satisfy

(3.3) Ft(τi+1)− kt(τi)−
(

pt(τi)

pt(τi+1)
− 1

)
Ft(τi) ≤ Ft(τi), t ∈ [0, τi], i = 1, . . . , n+ 1.

This relation follows from the no-arbitrage assumption by examining a strategy, which fixes
the prices at time t, buys at time τi > t one commodity unit, stores it within [τi, τi+1], and
sells it at τi+1. Let us investigate in more detail the revenue from such a strategy.

Time τi-future τi+1-future Storage τi-bond τi+1-bond

t 1 long 1 short 1 long Ft(τi) long
pt(τi)

pt(τi+1)
Ft(τi) short

τi supply 1 short store cash flow Ft(τi)
pt(τi)

pt(τi+1)
Ft(τi) short

τi+1 expired delivery pay kt(τi+1) expired cash flow − pt(τi)
pt(τi+1)

Ft(τi)

Obviously, our agent starts with no initial capital since entering forward positions at time
t does not require any cash flow and both bond positions are balanced. Furthermore, the
strategy is self-financed. Namely, the capital required to buy one commodity unit at time τi
is financed by a cash flow from the expiring long bond position. At the end of this strategy,
the agent requires a capital kt(τi+1) to pay for the storage and pt(τi)

pt(τi+1)
Ft(τi) to close the short

bond position. However, our agent earns a revenue Ft(τi+1) from the delivery of the stored
commodity unit. Hence, the terminal capital is known with certainty in advance, at the initial
time t, and is equal to

Ft(τi+1)− kt(τi+1)−
pt(τi)

pt(τi+1)
Ft(τi).D
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734 JURI HINZ AND MAX FEHR

In order to exclude arbitrage, we have to suppose that this terminal wealth cannot be positive.
Thus, we obtain (3.3). Now, let us elaborate on the approximation (3.2) of (3.3). Consider
the cumulative effect

(3.4) kt(τi) +

(
pt(τi)

pt(τi+1)
− 1

)
Ft(τi) for all t ∈ [0, τi] and i = 1, . . . , n

of the storage costs and interest rates. If we propose a model which satisfies

(3.5) Ft(τi+1)− κ ≤ Ft(τi) for all t ∈ [0, τi] and i = 1, . . . , n,

then the arbitrage by cash and carry is excluded at least in those situations where (3.4) is
bounded from below by the parameter κ. In this context, the accuracy of the estimation

(3.6) kt(τi) +

(
pt(τi)

pt(τi+1)
− 1

)
Ft(τi) ≥ κ for all t ∈ [0, τi] and i = 1, . . . , n

is critical. Whether such an estimate is possible in practice and whether it yields models
which capture storability aspects of the commodity price evolution must be explicitly verified
in any particular situation. In any case, we believe that for certain commodities the left-hand
side of (3.6) can be reasonably approximated by a constant and deterministic parameter κ,
which justifies the assumption (3.5). Finally, we pass from (3.5) to (3.2) by the approximation
of the forward prices Ft(τi), Ft(τi+1) by futures prices Et(τi), Et(τi+1).

4. Storage costs as contango limit. In principle, κ can be estimated from the actual
physical storage costs and the interest rate effects. Consequently, for certain commodities
there exists a maximally possible steepness of the futures curve in contango situations, which
is known among traders as the contango limit. That is, such a rough estimate of κ could also
be obtained from historical data by inspecting the maximal increase of the historical futures
curves

κ = max{Et(τi+1)(ω)− Et(τi)(ω) : for all t ≤ τi < τi+1}
based on a representative data record. Let us illustrate this method.

Consider the history of soybean trading at the Chicago Board of Trade (CBOT). At this
exchange, the soybean futures expire in January, March, May, July, August, September, and
November. Each contract is listed one year prior to expiry. Let us suppose a fixed tenor ∆ of
two months. Thus, all prices of futures maturing in August are not considered. Within each
period [τi−1, τi], six futures prices with delivery dates τi, τi+1, . . . , τi+5 are available. Figure 1
shows a typical price evolution of six futures and the period where all six contracts are listed.
Moreover, Figure 2 illustrates the entire data set we use in this study. It encompasses the
end of the day futures prices ranging from 2000-10-02 to 2007-02-23. Figure 3 shows the
behavior of the difference of consecutive contracts in the entire data record. Note that this
picture clearly supports our viewpoint since there is a clear contango limit, represented by a
price which has never been hit by the difference Et(τi+1)−Et(τi). At the same time, there is
no limitation on the backwardation side since the differences Et(τi+1)− Et(τi) tilt seemingly
arbitrarily far downwards. To estimate the storage cost parameter, we use the historical data
depicted in Figure 2 and calculate κ by

(4.1) max{(Et(τi+1)− Et(τi))(ω) : t, τi, τi+1 where price observations are available}D
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Figure 1. The price evolution of six consecutive futures contracts. Vertical lines separate a two month
period where all six contracts are traded.
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Figure 2. Soybean closing daily prices from CBOT in cents per bushel.

giving 24 US cents per bushel for two months. Thus, setting κ ≈ 26 could give a reasonable
futures price model which excludes cash and carry arbitrage for soybeans. Still, there is no
guarantee why the difference Et(τi+1) − Et(τi) in a future trajectory does not exceed 26. As
discussed before, a reliable estimation of κ should be based on a study of storage costs and
on bond prices. However, we believe that (4.1) may serve as a reasonable approximation.

Not surprisingly, similar analysis on other commodities shows that a clear historical con-
tango limit can also be observed for other storable agricultural products and for precious
metals but not for assets with limited storability (oil, gas, and electricity) and for perishable
goods (like livestock).
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5. Modeling commodity dynamics. This section is devoted to the construction of com-
modity markets which satisfy the axioms formulated in Definition 3.1. Here the main task is to
establish a dynamics for martingales (Et(τi))t∈[0,τi] (i = 1, . . . , n+1) which obeys the storage
restriction (C4) and, at the same time, possesses a certain flexibility in the movements of the
futures curve. Fortunately, similar problems occurred in the theory of fixed income markets
and have been treated successfully. As a paradigm, we use the forward LIBOR market model,
also known as the BGM approach, named after A. Brace, D. Gatarek, and M. Musiela. In
their context, the dynamics of zero bonds (pt(τi))t∈[0,τi] with the fixed tenor ∆ = τi+1 − τi,
i = 1, . . . , n, is described in terms of the so-called simple rates (Lt(τi))t∈[0,τi] defined by

(5.1) pt(τi+1) =
pt(τi)

1 +∆Lt(τi)
for i = 1, . . . , n, t ∈ [0, τi],

whose dynamics is modeled by stochastic differential equations

(5.2) dLt(τi) = Lt(τi)(βt(τi)dt+ γt(τi)dWt), i = 1, . . . , n,

where the deterministic volatilities (γt(τi))t∈[0,τi] are freely chosen for i = 1, . . . , n, whereas
the drifts (βt(τi))t∈[0,τi] for i = 1, . . . , n are determined by this choice. The importance of the
BGM formulation is that each simple rate (Lt(τi))t∈[0,τi] follows a geometric Brownian motion
with respect to the forward measure corresponding to the numeraire (pt(τi+1))t∈[0,τi]. This
fact yields explicit formulae for Caplets and therefore provides an important tool, implicit cal-
ibration, for this fixed-income model class. We suggest transferring this successful concept to
commodity markets by proposing a similar framework, where futures are consecutively inter-
related by stochastic exponentials, similarly to simple rates in (5.1). As in the BGM setting,
it turns out that this concept provides appropriate tools for the implicit model calibration.
The idea is to link the dynamics (Et(τi), Et(τi+1))t∈[0,τi] by

(5.3) Et(τi+1) =
Et(τi) + κ

1 + Zt(τi)
, t ∈ [0, τi], i = 1, . . . , n,
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STORAGE COSTS IN COMMODITY OPTION PRICING 737

where, likewise to the simple rate (5.2), the simple ratio (Zt(τi))t∈[0,τi] follows a diffusion

(5.4) dZt(τi) = Zt(τi)(αt(τi)dt+ σt(τi)dWt), t ∈ [0, τi], i = 1, . . . , n,

where (σt(τi))t∈[0,τi] and (αt(τi))t∈[0,τi] denote the volatilities and the drifts, respectively. We
will see later that the drifts follow from the choice of simple ratio volatilities and other model
ingredients. Before entering the details of the construction, let us emphasize that (5.3) indeed
ensures (3.2) by the nonnegativity of (Zt(τi))t∈[0,τi], which is a consequence of (5.4), under
appropriate conditions.

Now, let us construct a model which fulfills the axioms from Definition 3.1. We begin with
a complete filtered probability space (Ω,F , QE , (Ft)t∈[0,T ]) where the filtration is the augmen-

tation (by the null sets in FW
T ) of the filtration (FW

t )t∈[0,T ] generated by the d-dimensional
Brownian motion (Wt)t∈[0,T ]. All processes are supposed to be progressively measurable. For
equidistant futures maturity dates

0 = τ0 < τ1 < · · · < τn+1 = T ∈ [0, T ], ∆ = τi+1 − τi, i = 0, . . . , n,

and the initial futures curve (E∗
0(τi))

n+1
i=1 ∈ ]0,∞[n+1, we construct a commodity market where

futures prices follow

(5.5) dEt(τi) = Et(τi)Σt(τi)dWt, t ∈ [0, τi], E0(τi) = E∗
0(τi), i = 1, . . . , n+ 1,

and obey (C0)–(C4) with a given storage cost parameter κ > 0. In a separate section, we
discuss how the volatility term structure

(Σt(τi))t∈[0,τi], i = 1, . . . , n + 1,

and its dimension d ∈ N are determined from a model calibration procedure.
First, we outline the intuition behind our construction. Given the local QE-martingale

(Et(τi))t∈[0,τi] as in (5.5), the Itô formula shows how, given (σt(τi))t∈[0,τ ], to settle the drift
(αt(τi))t∈[0,τ ] in (5.4) such that (5.3) becomes a martingale. With this principle, we construct
(Et(τi+1))t∈[0,τi] from given (Et(τi))t∈[0,τi] and (σt(τi))t∈[0,τi]. To proceed, we need to extend
this price process by (Et(τi+1))t∈[τi,τi+1] to the expiry date. This is effected by

dEt(τi+1) = Et(τi+1)Σt(τi+1)dWt, t ∈ [τi, τi+1],

where the volatility in front of delivery (Σt(τi+1))t∈[τi,τi+1] is exogenously given by

(5.6) Σt(τi+1) := ψt for all t ∈ [τi, τi+1], i = 0, . . . , n,

with a prespecified process (ψt)t∈[0,T ]. Having thus established (Et(τi+1))t∈[0,τi+1], the same
procedure is applied iteratively to determine all remaining futures (Et(τj+1))t∈[0,τj+1] with
j = i+ 1, . . . , n.

In the following lemma, we call a d-dimensional process (Xt)t∈[0,τ ] bounded if ‖Xt‖ < C
holds for all t ∈ [0, τ ] almost surely, for some C ∈ [0,∞[.D
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738 JURI HINZ AND MAX FEHR

Lemma 5.1. Let (Et)t∈[0,τ ] be a positive-valued martingale following dEt = EtΣtdWt with
a bounded volatility process (Σt)t∈[0,τ ]. If (σt)t∈[0,τ ] is bounded, then there exists a unique
strong solution to

(5.7)
dZt

Zt
= −σt

((
EtΣt

Et + κ
− Ztσt

Zt + 1

)
dt− dWt

)
, Z0 := Z∗

0 > 0.

Moreover,

(5.8) E′
t =

Et + κ

1 + Zt
, t ∈ [0, τ ],

follows the martingale dynamics

(5.9) dE′
t = E′

tΣ
′
tdWt, t ∈ [0, τ ],

with bounded

(5.10) Σ′
t =

EtΣt

Et + κ
− Ztσt

Zt + 1
, t ∈ [0, τ ].

Proof. Write (5.7) as

(5.11) dZt = F (Z)tdt+ ZtσtdWt, Z0 = Z∗
0 > 0,

where the functional F acts on the processes Z = (Zt)t∈[0,τ ] by

(5.12) F (Z)t = −Ztσt

(
EtΣt

Et + κ
− Ztσt

Zt + 1

)
, t ∈ [0, τ ].

To avoid technical difficulties in (5.7) occurring when the denominator Zt + 1 vanishes, we
first discuss a stochastic differential equation similar to (5.11)

(5.13) dZt = F̃ (Z)tdt+ ZtσtdWt, Z0 = Z∗
0 > 0,

where the functional F̃ acts by F̃ (Z)t := F (Z)t1{Zt≥0} for t ∈ [0, τ ] on each process Z =
(Zt)t∈[0,τ ]. Since supt∈[0,τ ] ‖σt‖ ≤ C ∈ [0,∞[ by assumption, the diffusion term in (5.13) is
Lipschitz continuous:

‖Ztσt − Z ′
tσt‖ ≤ C|Zt − Z ′

t| for all t ∈ [0, τ ].

Thus, to ensure the existence and uniqueness of the strong solution to (5.13) it suffices to
verify the Lipschitz continuity of F̃ in the sense that there exists C̃ ∈ [0,∞[ such that

(5.14) ‖F̃ (Z)t − F̃ (Z ′)t‖ ≤ C̃|Zt − Z ′
t| for all t ∈ [0, τ ].

The decomposition F̃ (Z)t = f̃1(t, Zt) + f̃2(t, Zt) + f̃3(t, Zt) with

f̃1(t, z) = −1{z≥0}z
Et

Et + κ
σtΣt,

f̃2(t, z) = −1{z≥0}z
1

z + 1
σtσt,

f̃3(t, z) = 1{z≥0}zσtσtD
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STORAGE COSTS IN COMMODITY OPTION PRICING 739

for all t ∈ [0, τ ], z ≥ 0 shows that C̃ ≥ supt∈[0,τ ](|σtΣt| + 2|σtσt|) yields a Lipschitz constant

in (5.14); here C̃ ∈ [0,∞[ holds since both (Σt)t∈[0,τ ] and (σt)t∈[0,τ ] are bounded processes by
assumption.

Let (Zt)t∈[0,τ ] be the unique strong solution to (5.13). In order to show that this process
also solves (5.7), it suffices to verify that Zt ∈ ]0,∞[ holds almost surely for all t ∈ [0, τ ].
Indeed, the positivity follows from the stochastic exponential form

dZt = Zt

(
F̃ (Z)t
Zt

dt+ σtdWt

)

, Z0 = Z∗
0 > 0,

with bounded drift coefficient

(5.15)
F̃ (Z)t
Zt

= −σt
(

EtΣt

Et + κ
− Ztσt

Zt + 1

)
1{Zt≥0}, t ∈ [0, τ ].

To show the uniqueness, we argue that any solution (Z ′
t)t∈[0,τ ] to (5.11) coincides with (Zt)t∈[0,τ ]

on the stochastic interval prior the first entrance time of (Z ′
t)t∈[0,τ ] into ]−∞, 0] since on this

interval (Z ′
t)t∈[0,τ ] solves (5.13). Furthermore, (Z ′

t)t∈[0,τ ] is a continuous process, being a strong
solution to (5.11) by assumption. The continuity of (Z ′

t)t∈[0,τ ] shows that (Z
′
t)t∈[0,τ ] matches

(Zt)t∈[0,τ ] on the entire interval [0, τ ]. Finally, (5.9) is verified by a straightforward application
of the Itô formula.

Using the common stopping technique, Lemma 5.1 extends in a straightforward way from
bounded to continuous processes.

Proposition 5.2. Let (Et)t∈[0,τ ] be a positive-valued martingale following dEt = EtΣtdWt

with a continuous volatility process (Σt)t∈[0,τ ]. If (σt)t∈[0,τ ] is continuous, then there exists a
unique strong solution to

(5.16)
dZt

Zt
= −σt

((
EtΣt

Et + κ
− Ztσt

Zt + 1

)
dt− dWt

)
, Z0 := Z∗

0 > 0.

Moreover,

(5.17) E′
t =

Et + κ

1 + Zt
, t ∈ [0, τ ],

follows the martingale dynamics

(5.18) dE′
t = E′

tΣ
′
tdWt, t ∈ [0, τ ],

with continuous

(5.19) Σ′
t =

EtΣt

Et + κ
− Ztσt

Zt + 1
, t ∈ [0, τ ].

Proof. Introduce a sequence of stopping times

ϑk = inf{t ∈ [0, τ ] : max(‖σt‖, ‖Σt‖) ≥ k}, k ∈ N.D
ow

nl
oa

de
d 

06
/2

0/
13

 to
 1

38
.2

5.
78

.2
5.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

740 JURI HINZ AND MAX FEHR

Since both processes (σt)t∈[0,τ ] and (Σt)t∈[0,τ ] are continuous, we have limk→∞ ϑk = τ ; hence
the monotonically increasing sequence of stochastic intervals [0,ϑk], k ∈ N, covers the entire
time horizon:

(5.20)
⋃

k∈N
[0,ϑk] = Ω× [0, τ ].

Now, by stopping (σt)t∈[0,τ ] and (Σt)t∈[0,τ ] at the time ϑk, one obtains bounded processes

(σ(k)t := σt∧τk)t∈[0,τ ], (Σ(k)
t := Σt∧τk)t∈[0,τ ].

Further, define (E(k)
t )[0,τ ] as the solution to

dE(k)
t = E(k)

t Σ(k)
t dWt, E(k)

0 = E0.

If follows that for each k ∈ N the processes (E(k)
t )t∈[0,τ ], (Σ

(k)
t )t∈[0,τ ], and (σ(k)t )t∈[0,τ ] satisfy the

assumptions of Lemma 5.1, which yields the corresponding processes (Z(k)
t )t∈[0,τ ], (E

′(k)
t )t∈[0,τ ],

and (Σ′(k)
t )t∈[0,τ ]. By construction, the next set of processes coincides with the previous one

on the common stochastic interval

Z(k)
t (ω) = Z(k+1)

t (ω)

Σ′(k)
t (ω) = Σ′(k+1)

t (ω)

E′(k)
t (ω) = E′(k+1)

t (ω)





for all t ∈ [0,ϑk(ω)], ω ∈ Ω, k ∈ N.

Thus, their limits

Zt := lim
k→∞

Z(k)
t , Σ′

t := lim
k→∞

Σ′(k)
t , E′

t := lim
k→∞

E′(k)
t , t ∈ [0, τ ],

are well defined on [0, τ ] because of (5.20) and satisfy the assertions (5.16)–(5.19).
Remark. For later use, let us point out that the volatility process (Σ′

t)t∈[0,τ ] resulting from
(5.19) can be written as a function

(5.21) Σ′
t = s(E′

t, Et,Σt,σt) :=
EtΣt +E′

tσt
Et + κ

− σt, t ∈ [0, τ ].

The representation (5.21) follows directly from (5.19) by using

Zt

Zt + 1
= 1− 1

1 + Zt
= 1− E′

t

Et + κ
, t ∈ [0, τ ],

where the last equality is a consequence of (5.17). Let us point out that in the limiting
case, where the contango limit is almost reached, i.e., E′

t ≈ Et + κ, the volatility Σ′
t can be

approximated as

Σ′
t ≈

EtΣt

Et + κ
≈ EtΣt

E′
t
;
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thus the dynamics (E′
t)t∈[0,T ] follows that of (Et)t∈[0,T ], because of

dE′
t = E′

tΣ
′
tdWt ≈ E′

t
EtΣt

E′
t
dWt = EtΣtdWt = dEt.

This observation shows that the restriction Et+ κ ≥ E′
t necessarily causes strong correlations

of the process increments if the prices Et and E′
t come close to the contango limit. On this

account the sensitivity of the model to the choice of storage cost parameter κ can be significant.
Now consider the entire construction of futures prices. Starting with

(5.22)






E∗
0(τi) ∈ ]0,∞[ for i = 1, . . . , n+ 1, initial futures curve,

(ψt)t∈[0,T ], in-front-of-maturity futures volatility (continuous),

(σt(τi))t∈[0,τi], i = 1, . . . , n, simple ratio volatilities (continuous),

we apply the following procedure.
Initialization. Start with E0(τ1) = E∗

0(τ1), . . . , E0(τn+1) = E∗
0(τn+1).

Recursion. Given initial values Eτi−1(τi), . . . , Eτi−1(τn+1), define

Et(τi), . . . , Et(τn+1) for all t ∈ [τi−1, τi]

successively for all i = 1, . . . , n by the following recursive procedure started at i := 1:
(i) Extend the next maturing futures price to its delivery date τi by

(5.23)
Σt(τi) = ψt,

dEt(τi) = Et(τi)Σt(τi)dWt,
t ∈ [τi−1, τi];

then proceed with the other futures.
(ii) For j = i, . . . , n, starting with the initial condition

Zτi−1(τj) =
Eτi−1(τj) + κ

Eτi−1(τj+1)
− 1

solve the stochastic differential equation

dZt(τj)

Zt(τj)
= −σt(τj)

(
Et(τj)Σt(τj)

Et(τj) + κ
− Zt(τj)σt(τj)

Zt(τj) + 1

)
dt+ σt(τj)dWt

for t ∈ [τi−1, τi] and define for all t ∈ [τi−1, τi]

Σt(τj+1) =
Et(τj)Σt(τj)

Et(τj) + κ
− Zt(τj)σt(τj)

Zt(τj) + 1
,

Et(τj+1) =
Et(τj) + κ

1 + Zt(τj)
.

(iii) If i < n+ 1, we set i := i+ 1 and proceed with the recursion onto [τi, τi+1]; otherwise
we finish the loop.D
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742 JURI HINZ AND MAX FEHR

To see that this procedure is well defined, we apply the results of Lemma 5.1 to the
recursion step replacing Et, Σt, σt, Zt by Et(τi), Σt(τi), σt(τi), Zt(τi), respectively. The
presented construction yields futures prices (Et(τi))t∈[0,τi] for i = 1, . . . , n+1 which obviously
satisfy (C0), (C1), (C2), (C4) from Definition 3.1. The last requirement (C4) follows from

Et(τi+1)− κ < Et(τi) ⇐⇒ Zt(τi) > 0,

where the existence of Zt(τi) ≥ 0 for all t ∈ [0, τi] is ensured by the assumptions (5.22)
and Lemma 5.1. Note that we do not consider (C3) since the spot price is not covered by
the above construction. If required, the spot price can be constructed in accordance with
assumption (C3). (See (5.24) below.)

Remark. Let us elaborate on simplifying assumptions, which we adopted in the present
approach in order to highlight the limitations and possible extensions of the model. First, our
framework is easily extendable to a nonequidistant maturity grid. By assuming that the tenors
∆i := τi+1 − τi depend on i = 0, . . . , n, we have to introduce different storage costs (κi)ni=0,
supposing that each κi is valid for the corresponding interval [τi, τi+1]. At this point, let us
mention that our construction also works if the parameter κi is random, provided that it is
known with certainty prior to τi, just before the beginning of corresponding interval [τi, τi+1].
Next, note that we address the futures prices directly, without reference to the spot price.
More precisely, the spot price occurs from the construction merely at the grid points (τi)

n+1
i=1 ,

being the terminal futures price Sτi = Eτi(τi), i = 1, . . . , n + 1. Since the spot price is not
quoted for most commodities, we believe this gives almost no limitation of model applicability.
However, if for some reason a spot price model is required, then the prices (Sτi)

n+1
i=1 can be

interpolated accordingly, for instance, linearly:

(5.24) St =
t− τi

τi+1 − τi
Et(τi+1) +

τi+1 − t

τi+1 − τi
Eτi(τi), t ∈ [τi, τi+1], i = 1, . . . , n.

Such a choice comes close to the frequently used approximation of the spot price by the price of
the futures contract with nearest maturity. Finally, let us mention that by the reconstruction
of the spot price through interpolation the model can be extended towards a continuous system
of maturities by defining futures price evolution

Et(τ) = EQE
(Sτ | Ft) for all t ∈ [0, τ ], τ ∈ [0, T ].

Obviously, such an extension provides at any time t a futures curve (Et(τ))τ∈[t,T ] which is
given by the underlying discrete curve (Et(τi))τi≥t interpolated by the procedure used in the
construction of the spot price. In particular, the linear interpolation (5.24) yields a continuous
and piecewise linear futures curve which respects the same contango limit as the discrete
model.

Finally, we emphasize that one of the main advantages of our model is a perfect time
consistency of the futures curve evolution, whereas to the best of our knowledge all approaches
in commodity modeling existing so far suffer from an inconsistency. For instance, defined by
few parameters, common spot price based commodity models (see [10]) are not able to match
an arbitrary initial futures curve. From this perspective, the futures price based models
(discussed in, among others, [4], [8]) are more appropriate since they provide an exact fitD
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to the futures curve at the beginning. However, starting from such an initial curve, the
model-based futures curve evolution is in general not able to capture the real-world futures
curve change. This does not occur in our model since we describe a finite number of futures
contracts, in accordance with the common market practice. Namely, starting from the initial
curve (E0(τi))

n+1
i=1 , the futures curve (Et(τi))

n+1
i=1 at a later time t ∈ [τ0, τ1] can be arbitrary,

with the only restriction that it respect the contango limit. To see this, observe that the
distribution of

Et(τ1),
Et(τ2)

Et(τ1) + κ
=

1

Zt(τ1) + 1
, . . . ,

Et(τn+1)

Et(τn) + κ
=

1

Zt(τn) + 1

is equivalent to the Lebesgue measure on ]0,∞[× ]0, 1[n, which is ensured by our construction
of the next to maturity future and of the simple ratio processes from geometric Brownian
motions, using appropriate volatility structures.

6. Model calibration. This section is devoted to the calibration of the parameters of
our model. In the case that an appropriate type of calendar spread is actively traded on the
market, an implicit calibration is possible. Otherwise one has to rely on a historical calibration
based on principal component analysis. Alternatively, an approximation of calendar spread
option prices which is described in section 8 could also be used for an implicit calibration.

Implicit calibration. As mentioned previously, the model inherits the implied calibration
features from the BGM paradigm. Namely, for the case where interest rates and simple ratio
volatilities are deterministic, the fair prices (Cs)s∈[0,t] of the calendar spread option maturing
at t with the terminal payoff

(6.1) Ct = (Et(τi) + κ− (1 +K)Et(τi+1))
+ (t ≤ τi < τi+1)

are given by

(6.2) Cs = e−r(t−s)Es(τi+1)BS

(
Es(τi) + κ− Es(τi+1)

Es(τi+1)
,K, t, s, 0,

D(s, t, τi)√
t− s

)
, s ∈ [0, t],

where BS(x, k, t, s, ρ, v) stands for the standard Black–Scholes formula

BS(x, k, t, s, ρ, v) := xN (d+)− e−ρ(t−s)kN (d−),

d+ =
1

v
√
t− s

[
log
(x
k

)
+

(
ρ+

1

2
v2
)
(t− s)

]
,

d− = d+ − v
√
t− s

and D(s, t, τi) =
∫ t
s ‖σu(τi)‖

2du. Consider the measure Qτi+1 , given by

dQτi+1 =
Eτi+1(τi+1)

E0(τi+1)
dQE .

By the change of measure technique, the process

Zt(τi) =
Et(τi) + κ− Et(τi+1)

Et(τi+1)
, t ∈ [0, τi],D
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follows a martingale with respect to Qτi+1 with stochastic differential

dZt(τi) = Zt(τi)σt(τi)dW
τi+1
t

driven by the process (W
τi+1
t )t∈[0,τi] of Brownian motion with respect to Qτi+1 . Since the

simple ratio volatility (σt(τi))t∈[0,τi] is deterministic by assumption, (Zt(τi))t∈[0,τi] follows a
geometric Brownian motion with respect to Qτi+1 , which we use to derive

Cs = e−r(t−s)EQE
((Et(τi) + κ− (1 +K)Et(τi+1))

+|Fs)

= e−r(t−s)EQE

(
Eτi(τi+1)

(
Et(τi) + κ− Et(τi+1)

Et(τi+1)
−K

)+

|Fs

)

= e−r(t−s)Es(τi+1)EQτi+1
((Zt(τi)−K)+|Fs).

Note that the observation of the implied volatilities through (6.2) yields information on the
term structure of the simple ratio volatilities. This kind of implicit calibration is possible
if the market lists a sufficient number of calendar spread calls with appropriate parameters
(K + 1) and κ as in (6.1). Realistically, one cannot assume that there is always trading in
such specific instruments. Hence, the identification of the volatility structure from historical
data may become unavoidable.

Historical calibration. Next, we present a method for the historical model calibration based
on principal component analysis (PCA). This methodology has been applied for calibration
of fixed income market models (see [4]) and has been successfully adapted to the estimation
of futures volatilities in commodity and energy markets. In general, this technique requires
appropriate assumptions on time homogeneity. A typical hypothesis here is that the volatility
is time dependent through the time to maturity only. Under this condition, the volatility term
structure is identified by measuring the quadratic covariation of appropriate processes. Let
us adapt this technique to our case.

In our approach, the model is defined by the volatility processes (ψt)t∈[0,T ] and (σt(τi))t∈[0,τi],
i = 1, . . . , n, giving next to maturity futures prices and the simple ratio processes:

dEt(τi) = Et(τi)ψtdWt, t ∈ [τi−1, τi], i = 1, . . . , n+ 1,

dZt(τi) = Zt(τi)(αt(τi) + σt(τi)dWt), t ∈ [0, τi], i = 1, . . . , n.

We now consider the following assumption:

There exist v0, v1, . . . , vm ∈ Rd such that ψt = v0 for all t ∈ [0, T ] and

σt(τi) =
∑m

k=1 v
k1]∆(k−1),∆k](τi − t) holds for all t ∈ [0, T ] and i = 1, . . . ,m.

(6.3)

In other words, (6.3) states that the in-front-of-maturity futures follow constant and deter-
ministic volatility and that the deterministic simple ratio volatility is piecewise constant and
time dependent through the time to maturity only. Under the assumption (6.3), the vectors
v0, v1, . . . , vm ∈ Rd are recovered from the quadratic covariation

(6.4) vkvl∆ = [Xk(i),X l(i)]τi − [Xk(i),X l(i)]τi−1 ,D
ow

nl
oa

de
d 

06
/2

0/
13

 to
 1

38
.2

5.
78

.2
5.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STORAGE COSTS IN COMMODITY OPTION PRICING 745

where the processes (Xk
t (i))t∈[τi−1,τi], i = 1, . . . , n + 1, k = 0, . . . ,m, are given by

X0
t (i) := lnEt(τi),(6.5)

Xk
t (i) := lnZt(τi−1+k) = ln

(
Et(τi−1+k) + κ

Et(τi+k)
− 1

)
, k = 1, . . . ,m,(6.6)

for t ∈ [τi−1, τi]. Consider historical futures prices, where within each trading period [τi−1, τi]
futures prices for m+ 1 subsequent maturity dates τi, . . . , τi+m are available. For such data,
calculate the observations

Xk
tj (i)(ω), tj ∈ ]τi−1, τi], k = 0, . . . ,m, i = 1, . . . ,m,

from (6.5), (6.6) at discrete times tj where the corresponding futures prices are available.
With this data set, approximate the quadratic covariation (6.4) by

V k,l(i) =
∑

(tj ,tj+1)∈]τi−1,τi]2

(Xk
tj+1

(i) −Xk
tj (i))(X

l
tj+1

(i)−X l
tj (i)), k, l = 0, . . . ,m.

For a representative history and sufficiently high data frequency, we can suppose that the
empirical quadratic covariation

(6.7) V k,l :=
1

∆(n+ 1)

n+1∑

i=1

V k,l(i), k, l = 0, . . . ,m,

estimates
V k,l = vkvl, k, l = 0, . . . ,m,

the Gram’s matrix of v0, . . . , vn. The orthonormal eigenvectors of V = (V k,l)mk,l=0 give the

diagonalization V = ΦΛΦ+ as follows: The columns Φ = (Φj,k)mj,k=0 are given by eigenvectors

φ0, . . . ,φm and the corresponding eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λm (which we agree to place in
descending order) are the diagonal entries of Λ. Following the philosophy of PCA, the model
based on

(6.8) v̂k := (λ1/2j Φj,k)
m
j=0, k = 0, . . . ,m,

in (6.3) (instead of vk) fits the historical observations since the quadratic covariation in (6.4)
is correctly reflected due to

(6.9) v̂kv̂l = V k,l for k, l = 0, . . . ,m.

An important problem is whether the observed historical data could be approximatively de-
scribed by the same type of model but with a reduced number d′ < d of stochastic factors.
In other words, the question is whether a model driven by d′ < d Brownian motions would
be sufficient to reproduce the observed empirical quadratic covariance. Note that if the user
decides to reduce the dimension to d′ < d, then a reasonable approximation of the measured
quadratic covariance is attained by dropping λd′ , . . . ,λm, the smallest eigenvalues. In thisD
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case, (6.8) reduces to v̂k := (λ1/2j Φj,k)d
′

j=0 for k = 0, . . . ,m with v̂kv̂l ≈ V k,l for k, l = 0, . . . ,m
instead of (6.9). Clearly, the dimension reduction is a trade-off between the accuracy of the
covariance approximation and the dimension of underlying Brownian motion. For instance, a
rule of thumb could be to reduce the dimension to d′ if the remaining factors describe 95% of
the covariance:

d′−1∑

j=0

λj ≥ 0.95
m∑

j=0

λj .

7. Empirical results. Let us return to the soybean trading from section 4. There we
estimated the historical contango limit κ = 26, which we will use in the following calibration.
With this parameter, the realization of the logarithmic simple ratios can be computed and
their quadratic covariations can be estimated as explained above.

For the entire soybean data set, from 2000-10-02 to 2007-02-23, the Gram matrix V from
(6.7) is obtained as

(7.1) V ≈





0.06 −0.01 0.00 0.02 0.04 0.04
−0.01 1.45 −0.09 0.04 0.05 −0.18
0.00 −0.09 0.98 −0.16 0.07 −0.04
0.02 0.04 −0.16 0.96 −0.40 0.10
0.04 0.05 0.07 −0.40 2.37 −1.79
0.04 −0.18 −0.04 0.10 −1.79 5.86




.

For this symmetric matrix one obtains the following eigenvalue decomposition,

(7.2) Φ ≈





0.00 0.02 0.00 −0.02 −0.05 1.00
−0.04 −0.18 0.96 0.21 −0.01 0.01
−0.01 0.15 −0.16 0.84 −0.49 −0.01
0.04 −0.39 0.00 −0.41 −0.82 −0.04
−0.39 0.81 0.19 −0.28 −0.27 −0.04
0.92 0.36 0.12 −0.08 −0.08 −0.02




,

where the orthonormal eigenvectors are displayed as the columns and the corresponding eigen-
values are given by

(7.3) λ0 ≈ 6.63, λ1 ≈ 1.78, λ2 ≈ 1.45, λ3 ≈ 1.01, λ4 ≈ 0.74, λ5 ≈ 0.05.

As shown in the previous section, the volatility vectors are calculated by (6.8). Based on (7.2)
and (7.3) one obtains the following volatility vectors for our soybean market:

(7.4)

v0 = [ 0.01 0.03 0.00 −0.02 −0.04 0.23 ]+,

v1 = [ −0.09 −0.24 1.16 0.21 −0.01 0.00 ]+,

v2 = [ −0.03 0.20 −0.19 0.84 −0.43 0.00 ]+,

v3 = [ 0.11 −0.53 0.01 −0.41 −0.71 −0.01 ]+,

v4 = [ −1.00 1.08 0.23 −0.28 −0.23 −0.01 ]+,

v5 = [ 2.37 0.48 0.14 −0.08 −0.07 0.00 ]+.D
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8. Option pricing. This section is devoted to the pricing and hedging of European options
written on storable underlyings. First, we show how to compute a hedging strategy, based on a
partial differential equation. However, as this equation is typically high dimensional, a Monte
Carlo simulation could be the appropriate method to price the options in our framework. As
the Monte Carlo simulation is straightforward, we do not discuss this method in detail but
apply it to examine the risk neutral distribution of the spread option payoff. We find out that
this distribution is close to lognormal, which suggests that calendar spread option prices could
be approximated by a Black–Scholes-type formula. Here, we build on the model we calibrated
in the previous sections. Hence we assume the settings of Lemma 5.1, i.e.,

(8.1)

the volatilities (ψu)u∈[0,T ] and

(σu(τi))u∈[0,T ] for all i = 1, . . . , n+ 1

are bounded and deterministic





.

Consider k + 1 futures prices

(8.2) (Eu(τi), Eu(τi+1), . . . , Eu(τi+k)) , u ∈ [τi−1, τi], i+ k ≤ n+ 1,

listed within the interval [τi−1, τi]. By construction, all of these processes follow

dEu(τi+j) = Eu(τi+j)Σu(τi+j)dWu, u ∈ [τi−1, τi], j = 0, . . . , k,

where, according to (5.21), the volatility is given by a function

Σu(τi+j) = s(j)(u,Eu(τi), . . . , Eu(τi+j)), u ∈ [τi−1, τi],

which can be calculated recursively:
(i) if j = 0, then s(0)(u,Eu(τi)) = ψu;
(ii) if j > 0, then

(8.3)
s(j)(u, (Eu(τi+l))

j
l=0) = s(Eu(τi+j), Eu(τi+j−1), s

(j−1)(u, (Eu(τi+l))
j−1
l=0 ),σu(τi+j−1)),

where s(·) is the function introduced in (5.21).
That is, due to Proposition 5.2, the vector of processes (8.2) follows a unique strong solution
to

dEu(τi+j) = Eu(τi+j)s
(j)(u,Eu(τi), . . . , Eu(τi+j))dWu, u ∈ [τi−1, τi], j = 0, . . . , k;

hence (8.2) is a Markov process.
Let us now consider the valuation of derivatives, written on commodity futures prices.

Given the European option with payoff f((Eτ (τi+j))kj=0) at maturity τ ∈ [τi−1, τi], its expected
payoff conditioned on time t ∈ [τi−1, τ ] is given by

E(f((Eτ (τi+j))
k
j=0) | Ft) =: g((Et(τi+j))

k
j=0)D
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748 JURI HINZ AND MAX FEHR

with an appropriate function g(·) whose existence follows from the Markov property. Fur-
thermore, Itô’s formula shows that this function can be determined as g(·) = φ(t, ·) from the
solution to the partial differential equation

∂

∂u
φ(u, e0, . . . , ek)(8.4)

= −1

2

k∑

j,l=0

∂2

∂ej∂el
φ(u, e0, . . . , ek)Eu(τi+j)Eu(τi+l)s

(j)(u, e0, . . . , ej)s
(l)(u, e0, . . . , el)

for (u, e0, . . . , ek) ∈ ]t, τ [× ]0,∞[k+1 subject to the boundary condition

φ(τ, e0, . . . , ek) = f(e0, . . . , ek) for (e0, . . . , ek) ∈ ]0,∞[k+1.

Finally, from the stochastic integral representation one obtains

f((Eτ (τi+j))
k
j=0)− g((Et(τi+j))

k
j=0) =

k∑

j=0

∫ τ

t

∂

∂ej
φ(u,Eu(τi), . . . , Eu(τi+k))dEu(τi+j),

and the hedging strategy for the European contingent claim becomes evident. Holding at any
time u ∈ [t, τ ] the position

hu(τi+j) =
∂

∂ej
φ(u,Eu(τi), . . . , Eu(τi+k))pu(τ)

in the futures contract with maturity τi+j, the European option payoff can be perfectly repli-
cated starting with the initial endowment

(8.5) pt(τ)g((Et(τi+j))
k
j=0).

Namely, by transferring the initial endowment and all cash flows from futures settlements to τ
by a zero bond maturing at τ , we determine the wealth of this strategy as

k∑

j=0

∫ τ

t

1

pu(τ)
hu(τi+j)dEu(τi+j) +

pt(τ)g((Et(τi+j))kj=0)

pt(τ)
= f((Eτ (τi+j))

k
j=0),

which matches the contingent claim of our option. In the case that the replication is required
from a date t earlier than τi−1, the same arguments need to be repeated for the previous
intervals.

Note that our model is inherently not complete. For instance, on the very last interval
[τn, τn+1] only one future is traded, but the number of uncertainty sources is still d > 1.
However, the above considerations show that under the assumption (8.1) a European option,
written on futures, can be replicated by appropriate positions in futures traded prior to the
expiry date of the option and in zero bonds maturing at this date.

Since the dimension of the partial differential equation (8.4) could be high and there is
no evident price approximations even for the simplest plain-vanilla options, we believe thatD

ow
nl

oa
de

d 
06

/2
0/

13
 to

 1
38

.2
5.

78
.2

5.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STORAGE COSTS IN COMMODITY OPTION PRICING 749

0 50 100 150

55
0

60
0

65
0

70
0

75
0

80
0

time in days

pr
ic

e 1st maturity
2d maturity
3d maturity
4th maturity
5th maturity
6th maturity

Figure 4. A simulation of futures prices. Vertical lines separate two month periods.

Monte Carlo simulation could be an appropriate way to price derivative instruments within
our model. To discuss an application, we turn to the valuation of a calendar spread option.
Here, we utilize the parameters obtained from the soybean example presented above. Note
that, as previously, futures prices are expressed in US cents per bushel, and ∆ stands for the
two month duration between expiry dates, τi = i∆, i = 1, . . . , n+1. The payoff of a calendar
spread option depends on the price difference of commodities delivered at different times. For
instance, it may provide the holder with the payment (Et(τ) − Et(τ ′) − K)+ at maturity t,
where τ and τ ′ are future delivery dates satisfying t < τ < τ ′. Based on a Monte Carlo
simulation, we examine the distribution of the difference Et(τ ′) − Et(τ) for the parameters
t = τ = 4∆, τ ′ = 6∆. Having supposed that the initial futures curve is flat (E0(τi) = 800)6i=1,
5000 realizations are generated. Figure 4 depicts a typical path resulting from a single run of
the Monte Carlo method. The estimated density Et(τ) − Et(τ ′) is shown in Figure 5. Note
the clear similarity to the shifted lognormal distribution. Next, we give a detailed discussion
of this observation. First, the storage costs for two periods (four months) is recognized as the
correct shift parameter. Indeed, Et(τ)−Et(τ ′) > −2κ holds by construction, so an appropriate
choice of the shift parameter corresponds to the expiry dates difference τ ′ − τ . To compare
now the distribution of ln(Et(τ)−Et(τ ′)+2κ) to the appropriately scaled normal distribution,
we plot in Figure 6 the estimated density of

(8.6) ln
(
Et(τ)− Et(τ

′) + 2κ
)

in comparison to the normal density, whose first two moments are chosen to match those
estimated for (8.6). That is, a close approximation in distribution

(8.7) Et(τ)− Et(τ
′)

d≈ exp(X)− 2κ, where X is Gaussian,D
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Figure 5. The density of Et(τ )− Et(τ ′) exhibits a similarity to the lognormal density.
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Figure 6. The density of (8.6) (black) in comparison to the normal distribution (red).

seems to be possible. This can be used to derive an approximation for the price of spread
options, where by assuming the equality in (8.7) a Black–Scholes-type formula is obtained.
This observation is according to the approximative pricing schemes for spread and basket
options extensively studied in [1], [2], [4] and in the literature cited therein.

9. Conclusion. In this work, we have addressed the role of storage costs in commodity
price modeling. By appropriate interpretation of the no-arbitrage principle, we formulate a
minimal set of model assumptions which exclude arbitrage opportunities for futures trading
and simultaneous management of a stylized storage facility. In the presented commodity model
class, the storage cost plays the role of a constant parameter, which bounds the steepness of
the futures curve in any contango situation. This bound, well known as the contango limit
in commodity trading, forms an intrinsic ingredient of the proposed martingale-based futures
price dynamics. Following the expertise from the interest rate theory, we demonstrate howD
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STORAGE COSTS IN COMMODITY OPTION PRICING 751

to construct and to calibrate commodity models which correspond to our assumptions. An
empirical study of soybean futures trading illustrates this concept. Moreover, we discuss
the valuation of calendar spread options. Here, numerical experiments raise the hope that
an appropriately shifted lognormal distribution may give an excellent approximation for the
payoff distributions of calendar spreads. This issue could be important for efficient pricing
and hedging of calendar spread options.
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