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IMPROVED ALGORITHMS FOR CONVEX MINIMIZATION
IN RELATIVE SCALE*

PETER RICHTÁRIK†

Abstract. In this paper we propose two modifications to Nesterov’s algorithms for minimizing convex
functions in relative scale. The first is based on a bisection technique and leads to improved theoretical iteration
complexity, and the second is a heuristic for avoiding restarting behavior. The fastest of our algorithms pro-
duces a solution within relative error Oð1∕ kÞ of the optimum, with k being the iteration counter.

Keywords. convex optimization, relative scale, sublinearity, Nesterov’s smoothing technique, Löwner–
John ellipsoids
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1. Introduction. The theory of modern convex optimization almost uniformly as-
sumes boundedness of the feasible set.This assumption is usually artificially enforced even
for naturally unconstrained problems via the so-called “bigM”method. A clear advantage
of dealing with bounded sets is the availability of a scale in which one can measure the
absolute accuracy of a solution. However, care is needed when choosing the size of the
artificially imposed bounds: large feasible sets tend to slow algorithms down, whereas
small sets may lead to the exclusion of minimizers. Since there is no natural absolute scale
for measuring the solutions of an unconstrained problem, it seems to be reasonable to be
looking for solutions that are approximately optimal in relative scale. Although results of
this type are rare in the convex optimization literature, some work has recently been done
in this area [15], [16], [18], [19]. This contrasts with the enormous literature on combina-
torial optimization where approximation algorithms are studied extensively.

In particular, Nesterov [15] showed that the above obstacles can be overcome when
minimizing convex homogeneous functions over an affine subspace. The essence of his
approach involves computing an ellipsoidal rounding of the subdifferential of the objec-
tive function at the origin. This family of problems encompasses essentially all uncon-
strained convex minimization problems via a dimension-lifting procedure. However,
certain assumptions about the ellipsoidal rounding effectively limit the class of problems
that can be treated.

1.1. Contribution. In this paper we improve the algorithms of Nesterov [14], [15]
for solving unconstrained convex minimization problems within a prescribed error δ in
relative scale. We propose two modifications of the original method: the first is based on
a bisection technique and leads to improved theoretical iteration complexity. The second
is a heuristic for avoiding certain restarting behavior of the method. The fastest of our
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algorithms produces a solution within relative error Oð1 ∕ kÞ of the optimum, with k
being the iteration counter. The bisection idea was independently used by Chudak
and Eleutério [5] for obtaining the same theoretical improvement in complexity in
the context of several combinatorial problems.

1.2. Contents. The paper is organized as follows. In section 2 we formulate the
central sublinear minimization problem and briefly describe a dimension-lifting proce-
dure for converting an unconstrained minimization instance into a linearly constrained
sublinear minimization instance. Section 3 is devoted to defining basic notions and de-
riving key consequences of the necessary preprocessing stage of our algorithms: the com-
putation of a pair of Löwner–John ellipsoids of a certain set. The next two parts are
devoted to the description and analysis of algorithms. In section 4 we describe methods
based on a simple subgradient subroutine. We first summarize Nesterov’s results and
then improve them by incorporating a bisection speedup idea. We also modify the
methods, at no or only negligible cost in the theoretical complexity, to allow for a
“nonrestarting” behavior. In section 5 we propose more efficient methods, which are
grounded in Nesterov’s smoothing technique. These are of an order of magnitude faster
than those based on the subgradient routine. Next follows section 6 in which we briefly
summarize the theoretical complexities and remark on the scaling invariance of the
methods. In section 7 we describe several special cases to which the methods of this paper
apply. The final section is devoted to computational experiments.

1.3. Notation. Throughout the paper, E (possibly with subscripts) is a finite-
dimensional real vector space and E� is its dual, i.e., the space of all linear functionals
on E. The action of g ∈ E� on x ∈ E is written as hg; xi. Coordinates of a vector y ∈ Rl

are denoted by superscripts in brackets; for example, y ¼ ðyð1Þ; : : : ; yðlÞÞ, whereas sub-
scripts designate vector labels. By Rlþ we mean the nonnegative orthant of Rl. More
notation is introduced at the relevant spot in the text.

2. Sublinear minimization. The central problem of this paper is

φ�¼def min
x∈L

φðxÞ;ðPÞ

where L is an affine subspace of a finite-dimensional real vector space E not containing
the origin andφ∶E → R is a sublinear function: convex and (positively) homogeneous of
degree one. The last property means that the function is linear on every ray emanating
from the origin: φðτxÞ ¼ τφðxÞ for all τ ≥ 0 and x ∈ E. Note that convexity and homo-
geneity imply subadditivity. Define n ≔ dim E ¼ dim E�.

We will further make the assumption that the zero vector lies in the interior of the
(convex) subdifferential of φ evaluated at the origin:

0 ∈ int ∂φð0Þ:ð2:1Þ
Given the properties of φ, condition (2.1) essentially amounts to requiring that the
origin is the unique global minimizer of φ. The above assumptions imply that ∂φð0Þ
is a full-dimensional compact and convex subset of E� and that we can write1

1There is a one-to-one correspondence between finite sublinear functions and nonempty compact convex
sets via the relation φðxÞ ¼ maxfhg; xi∶g ∈ Gg (this is the support function of G). It then follows from the
definition of the subdifferential that G ¼ ∂φð0Þ. We refer the reader Rockafellar [20]. A detailed account of
the properties of sublinear functions and subdifferentials of convex functions can be found in Chapters IV
and V of Hiriart-Urruty and Lemaréchal [7]. For a more compact and up-to-date treatment see Borwein
and Lewis [4, Corollary 4.2.3].
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φðxÞ ¼ maxfhg; xi∶g ∈ ∂φð0Þg:ð2:2Þ

That is,φ is the support function of its subdifferential at the origin. For geometric under-
standing of the situation implied by the assumptions, it is helpful to note that the epi-
graph of φ is a convex cone in E×Rþ, whose only intersection with E× f0g is the
origin.

2.1. Approximate solutions. Our aim is to find an approximate solution of (P),
within relative error δ. The formal definition of the concept follows.

DEFINITION 1. A point x ∈ L is a δ-approximate solution to (P) if

φðxÞ ≤ ð1þ δÞφ�:

In proving theorems we will often use the equivalent inequality φðxÞ− φ� ≤
δ

1þδ
φðxÞ.
2.2. Treating unconstrained convex minimization. The general uncon-

strained convex minimization problem can be reformulated as a constrained sublinear
problem. Let us briefly describe the construction. If ϕ∶E → R is a convex function, its
perspective is the function φ∶E×Rþþ → R defined by

φðxÞ¼defφðy; τÞ ¼ τϕðy ∕ τÞ:

The function φ is clearly linear on every feasible ray leaving from the origin. In fact, it
can be shown that φ is convex on its domain (Hiriart-Urruty and Lemaréchal [7,
Proposition 2.2.1]). It is not in general possible to extend φ onto the entire space
E×R if we want to preserve both convexity and finiteness. However, there are at least
some important classes of functions for which this can be done. Consider the following
example.

Example 1. Define ϕðyÞ¼maxfjhai;yi þ bðiÞj∶i¼1; 2; : : : ;mg, where y ∈ E, a1; : : : ;
am ∈ E�, and b ∈ Rm. If we let x ¼ ðy; τÞ and a 0i ¼ ðai; bðiÞÞ for i ¼ 1; 2; : : : ;m, then for
τ > 0 we obtain

φðxÞ ¼ τϕðy∕ τÞ ¼ τ max
1≤i≤m

jhai; y ∕ τi þ bðiÞj ¼ max
1≤i≤m

jhai; yi þ bðiÞτj ¼ max
1≤i≤m

jha  0i; xij;

where the last equality defines a new inner product on E×R. Clearly, φ can be ex-
tended to a sublinear function defined on the entire space. Assumption (2.1) will be
satisfied if 0 ∈ int ∂φð0Þ ¼ convf�a 0i∶i ¼ 1; 2; : : : ;mg.

3. Ellipsoidal rounding and key inequalities. As a preprocessing phase,
Nesterov [15] first finds a positive definite operator G∶E → E� giving rise to a pair
of central ellipsoids in E�, one being contained in ∂φð0Þ and the other containing it.
This can be done using Khachiyan’s algorithm [9] or the recent method of Ahipaşaoğlu,
Sun, and Todd [1]. We thus assume that G and ρ ≥ 1 are available such that

BðG; 1Þ ⊆ ∂φð0Þ ⊆ BðG;ρÞ;ð3:1Þ

where BðG; γÞ¼deffg ∈ E�∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg;G−1gi

p
≤ γg defines an ellipsoid in E� of radius γ.

The iteration complexities of the algorithms of this paper depend on the parameter
ρ characterizing the quality of the ellipsoidal rounding (3.1). The following result, a
celebrated theorem of John [8], gives lower bounds on the quality of rounding admitted
by full-dimensional convex sets.
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PROPOSITION 2 (John [8]). Any convex bodyQ ⊂ E� admits a rounding by concentric
ellipsoids with ρ ≤ dim E�. IfQ is centrally symmetric, then there exists a rounding with
ρ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim E�p

.
To see that the above result gives tight bounds, consider the following simple

example.
Example 2. The rounding obtained by the inscribed and circumscribed balls of

(i) a regular n-simplex has quality ρ ¼ n,
(ii) the n-cube has quality ρ ¼ ffiffiffi

n
p

.
For recent work related to ellipsoidal rounding see Belloni and Freund [2] and the

references therein.

3.1. Geometry induced by rounding. The rounding operator G defines an in-
ner product on E via hx; yiG ≔ hGx; yi, which in turn induces the norm kxkG ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffihx; xiG
p

. The dual space E� can be equipped with the dual norm kgk�G ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg;G−1gi

p
. Notice that these norms are themselves sublinear functions and as such

admit a representation similar to (2.2):

kxkG ¼ maxfhg; xi∶kgk�G ≤ 1gð3:2Þ

with ∂k · kGð0Þ ¼ fg ∈ E�∶kgk�G ≤ 1g, and

kgk�G ¼ maxfhg; xi∶kxkG ≤ 1gð3:3Þ

with ∂k · k�Gð0Þ ¼ fx ∈ E∶kxkG ≤ 1g. Also observe that the first and last sets in (3.1) are
balls in E�, with respect to the dual norm, of radii 1 and ρ, respectively.

3.2. Subgradients in the primal space. By defining

∂GφðxÞ¼deffh ∈ E∶φðyÞ ≥ φðxÞ þ hh; xiG for all y ∈ Eg;

the subgradients of φ can be thought of as being elements of E as opposed to elements of
E�. This will enable us to talk about taking steps in E in the “direction” of a negative
subgradient. There is a one-to-one correspondence linking the two concepts:

∂GφðxÞ ¼ G−1½∂φðxÞ�:ð3:4Þ

3.3. Inequalities. In view of (2.2) and (3.2), taking the maximum of the linear
functional h·; xi over the sets in (3.1) gives

kxkG ≤ φðxÞ ≤ ρkxkG; x ∈ E;ð3:5Þ

which together with subadditivity of φ implies that φ is ρ-Lipschitz:

φðxþ hÞ ≤ φðxÞ þ φðhÞ ≤ φðxÞ þ ρkhkG:

From now on we will denote by x� an arbitrary optimal solution of (P) and by x0 the
minimum norm element of the feasible region—the projection of the origin onto L. From
(3.5) we then obtain

φðx0Þ
ρ

≤ kx0kG ≤ kx�kG ≤ φ� ≤ φðx0Þ ≤ ρkx0kG:ð3:6Þ
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Since kx� − x0kG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx�k2G − kx0k2G

q
and x0 ≠ 0 due to the assumption that L does not

pass through the origin, we also obtain

kx� − x0kG < kx�kG ≤ φ� ≤ φðxÞ; x ∈ L:ð3:7Þ

4. Algorithms based on a subgradient subroutine. Subgradient algorithms
were studied intensively in the 1960s and 1970s by a number of researchers, among them
Ermoliev, Polyak, and Shor. For comprehensive texts we refer the reader to Shor [21]
and Goffin [6]. For our purposes we will manage with a result about the performance of a
standard constant step-length subgradient algorithm applied to a convex Lipschitz func-
tion [12, section 3.2.3].

4.1. A constant step-length subgradient algorithm. The subgradient algo-
rithm we are going to describe works in a more general setting than that of problem
(P). For the sake of this subsection only, consider the problem of minimizing a convex
Lipschitz continuous function φ∶E → R with Lipschitz constant γ over a simple closed
convex set Q1:

φ�¼def minfφðxÞ∶x ∈ Q1g:ðPsgÞ

By simple set we mean one allowing for easy computation of projections onto it (symbol
proj will denote the projection operator). In this setting E is assumed to be equipped
with an inner product. Problem (P) is a special case of (Psg) with

• φ having additional properties,
• γ ¼ ρ and Q1 ¼ L, and
• E made Euclidean by the introduction of the inner product induced by G.

The following is a standard result (see, for example, Nesterov [12, Theorem 3.2.2]).
PROPOSITION 3. If kx� − x0k ≤ R for some x0 ∈ E, minimizer x� of (Psg), and R > 0,

then the output x ¼ Subgradðφ; Q1; x0; R; NÞ of Algorithm 1 run on an instance of pro-
blem (Psg) satisfies

φðxÞ− φ� ≤
γRffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p :ð4:1Þ

ALGORITHM 1. (SUBGRAD) CONSTANT STEP-LENGTH SUBGRADIENT SCHEME.
1: Input: φ, Q1, x0, R, N ;
2: κ ¼ Rffiffiffiffiffiffiffiffi

Nþ1
p ;

3: for k ¼ 0 to N − 1
4: pick g ∈ ∂φðxkÞ if g ¼ 0 then xk is optimal and exit;
5: xkþ1 ¼ projQ1

ðxk − κ g
kgkÞ;

6: end for
7: Output: xk with best objective value

For Proposition 3 to hold it suffices to require that φ be Lipschitz on the ball around
x� with radius R.

4.2. Basic algorithmic ideas. As the previous subsection indicates, the basic idea
for solving (P) will be that of using the subgradient method (Algorithm 1). The main
issue with this algorithm, apart from the fact that it is slow (it requires Oð1 ∕ ϵ2Þ
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iterations to output an ϵ-optimal solution in the additive sense), is the need to supply an
initial point x0 and an upper bound R on kx� − x0k.

The particular choice of x0 as the projection of the origin onto the feasible set of (P)
makes sense for at least two reasons. First, notice that if the ellipsoidal rounding of ∂φð0Þ
is perfectly tight (ρ ¼ 1), then by (3.5) we have φðxÞ≡ kxkG, and therefore x0 is the
optimal solution of (P). In fact, notice that by (3.6),

φðx0Þ ≤ ρφ�;ð4:2Þ

and hence x0 is a ðρ− 1Þ-approximate solution of (P). The better the rounding, the
better the approximation factor. Second, (3.7) offers the readily available upper bound
R ¼ φðx0Þ. Of course, φ� would be better; the issue is that it is not known.

4.2.1. Good but unavailable upper bound. Let us formally apply Algorithm 1
to (P) with R ¼ φ�. To achieve the required relative accuracy, it then suffices to run it
for N ¼ bρ2 ∕ δ2c iterations because, by Proposition 3,

φðxÞ− φ� ≤
ρRffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p ≤
ρφ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 ∕ δ2

p ¼ δφ�:

4.2.2. Available but bad upper bound. Since the previous upper bound is un-
known, it seems reasonable to instead use the worse (but available) bound R ¼ φðx0Þ. If
we wish to guarantee a solution within relative error δ, we need to take N ¼ bρ4 ∕ δ2c
iterations. The argument is exactly the same and uses (4.2).

4.2.3. Iteratively updated upper bound. Tomove toward the better of the two
extremes, Nesterov [15] proposed a scheme (Algorithm 2) which uses the subgradient
method as a subroutine, iteratively decreasing the known upper bound. This algorithm
starts by running the subgradient method for Oðρ2 ∕ δ2Þ iterations with the available
upper bound φðx0Þ. In the case when the subgradient subroutine is doing well and man-
ages to decrease the objective value by a constant factor, the previously available upper
bound also decreases by the same factor. This improved bound is then used to run the
next subgradient subroutine, again starting from x0.

ALGORITHM 2. (SUBSEARCH) SUBGRADIENT SEARCH SCHEME.
1: Input: φ, L, x0, ρ, β > 0, δ;
2: x̂0 ¼ x0, c ¼ eβ, k ¼ 1;
3: N ¼ bc2ρ2ð1þ 1

δ
Þ2c;

4: x̂k ¼ Subgradðφ;L; x0;φðx̂k−1Þ; NÞ;
5: while φðx̂kÞ < φðx̂k−1Þ ∕ c do
6: k ¼ kþ 1;
7: x̂k ¼ Subgradðφ;L; x0;φðx̂k−1Þ; NÞ;
8: end while
9: Output: x̂k

The performance of Algorithm 2 is substantially better than the naive one-time
application of the subgradient method with the bad but available upper bound. How-
ever, it underperforms the one-time application of the subgradient method with the good
but unknown upper bound by a factor of Oðln ρÞ. The performance of the method, as
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analyzed by Nesterov [15], is summarized in Proposition 4. We include the proof because
it is short and offers insight into the subsequent improvements we propose in the follow-
ing subsections. We will also refer to parts of it later.

PROPOSITION 4 (Nesterov [15, Theorem 3]). Algorithm 2 returns a δ-approximate
solution of (P) and takes at most

e2βρ2

�
1þ 1

δ

�
2
�
1þ 1

β
ln ρ

�
ð4:3Þ

steps of the subgradient method. If β is a constant, then the number of steps is

O

�
ρ2

δ2
ln ρ

�
:ð4:4Þ

The optimal choice is β ¼ 1
2 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2t

p
− tÞ≈ 1

2, with t ¼ ln ρ.
Proof. Assume that the algorithm stops at iteration k, failing to satisfy the “while”

clause at step 5. In view of (3.6) we have

φðx0Þ
ρ

≤ φ� ≤ φðx̂k−1Þ <
φðx0Þ
eβðk−1Þ ;

and by comparing the first and the last term in this chain of inequalities we conclude
that the number of calls of the subgradient subroutine is at most 1þ β−1 ln ρ.
The bound (4.3) is obtained by multiplying this by N from step 3 of the algorithm.
Minimizing (4.3) in β gives the final statement. It remains to show that the output
is as specified. Indeed, using the termination rule from step 5 and applying Proposition 3
to the last call of the subgradient subroutine, we get

φðx̂kÞ− φ� ≤
ρφðx̂k−1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p ≤

ρeβφðx̂kÞffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p ≤
δ

1þ δ
φðx̂kÞ ▯

4.3. Bisection improvement. Each outer iteration of Algorithm 2, possibly
except the last one, produces a guaranteed upper bound on the distance of x0 from
the set of minimizers of (P)—better by a constant factor than the one available before.
Loosely speaking, we will show that by allowing for guesswork it is possible to improve
the theoretical performance of this algorithm (the same improvement was independently
obtained by Chudak and Eleutério [5] in the context of combinatorial applications). The
key observation is formulated in the following lemma.

LEMMA 5. If φ� ≤ R and N ¼ bρ2 ∕ β2c for some β > 0, then

x ¼ Subgradðφ;L; x0; R;NÞ

satisfies

φðxÞ− βR ≤ φ� and φðxÞ ≤ ð1þ βÞR:ð4:5Þ

Proof. By Proposition 3 we have φðxÞ− φ� ≤ ρR ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
≤ βR, and hence

φðxÞ ≤ φ� þ βR ≤ ð1þ βÞR. ▯
The above result essentially states that for any positive R we can, at the cost of

Oðρ2 ∕ β2Þ iterations of the subgradient method (Algorithm 1), either get a certificate
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thatφ� ≤ ð1þ βÞR (if x satisfies φðxÞ ≤ ð1þ βÞR) or thatR < φ� (ifφðxÞ > ð1þ βÞR).
In any case, we either get an upper or lower bound on φ�.

Note that thanks to (3.6), we are in the possession of an initial lower and upper
bound on φ�: if we set L0 ¼ kx0kG and R0 ¼ φðx0Þ, then φðx0Þ

ρ
≤ L0 ≤ φ� ≤ R0,

with

R0

L0

≤ ρ:ð4:6Þ

Assume that at step k we have Lk ≤ φ� ≤ Rk, with qk¼defRk ∕ Lk > 1þ β (see
Figure 1). Pick R so that

Lk < R < ð1þ βÞR < Rk:ð4:7Þ

For this R let x be given by Lemma 5. There are two possibilities. If φðxÞ ≤ ð1þ βÞR,
then in view of (4.5) we can update

Lkþ1 ¼ maxfφðxÞ− βR;Lkg; Rkþ1 ¼ minfRk;φðxÞg ≤ ð1þ βÞR:ð4:8Þ

If φðxÞ > ð1þ βÞR, then we can set

Lkþ1 ¼ R; Rkþ1 ¼ minfRk;φðxÞg:ð4:9Þ

This bisection procedure is then repeated until qk < ð1þ τÞð1þ βÞ for some τ > 0.
The following lemma states how much improvement in qk can be obtained by a single
bisection step.

LEMMA 6. Assume Lk ≤ φ� ≤ Rk, qk > 1þ β, and β > 0. After a single bisection
step with R ¼ ½LkRk ∕ ð1þ βÞ�1 ∕ 2, we obtain Lkþ1 ≤ φ� ≤ Rkþ1 satisfying

qkþ1 ≤ ð1þ βÞ1 ∕ 2q1∕ 2k :ð4:10Þ

Proof. It is easy to see that (4.7) holds. Observing that R is chosen so that
ð1þ βÞR ∕ Lk ¼ Rk ∕ R, in view of (4.8) and (4.9) we obtain

qkþ1 ¼
Rkþ1

Lkþ1

≤ max

�ð1þ βÞR
Lk

;
minfRk;φðxÞg

R

�
≤

Rk

R
¼ ð1þ βÞ1 ∕ 2q1∕ 2k : ▯

The ideas outlined above lead to Algorithm 3, whose performance is analyzed in the
next theorem.

FIG. 1. Bisection step k.
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ALGORITHM 3. (SUBBIS) SUBGRADIENT BISECTION SCHEME.
1: Input: φ, L, x0, ρ, β, τ, δ;
2: k ¼ 0, L0 ¼ kx0kG , R0 ¼ φðx0Þ, c ¼ ð1þ τÞð1þ βÞ, N ¼ bρ2 ∕ β2c;
3: while Rk ∕ Lk > c do

4: R ¼
ffiffiffiffiffiffiffiffi
LkRk

1þβ

q
, x ¼ Subgradðφ;L; x0; R;NÞ;

5: if φðxÞ ≤ ð1þ βÞR then
6: set Rkþ1, Lkþ1 as in (4.8)
7: else
8: set Rkþ1, Lkþ1 as in (4.9)
9: end if

10: k ¼ kþ 1
11: end while
12: N ¼ bR2

k

L2
k

ρ2ð1þ 1
δ
Þ2c, x ¼ Subgradðφ;L; x0; Rk; NÞ;

13: Output: x

THEOREM 7. Algorithm 3 returns a δ-approximate solution of (P) and takes at most

ρ2

β2

�
1þ log2

�
ln ρ

lnð1þ τÞ
��

þ ð1þ τÞ2ð1þ βÞ2ρ2

�
1þ 1

δ

�
2

ð4:11Þ

steps of the subgradient subroutine. If β is a constant, the number of steps is

O

�
ρ2

�
1

δ2
þ ln ln ρ

��
:ð4:12Þ

Proof. Let us first analyze the bisection phase (the “while” loop). The repeated use
of Lemma 6 gives

qk ≤ ð1þ βÞ12q1
2

k−1 ≤ ð1þ βÞ12ð1þ βÞ14 · · · ð1þ βÞ 1

2kq
1

2k

0 ≤
ð4.6Þ

ð1þ βÞρ 1

2k :

The smallest integer k for which ð1þ βÞρ 1

2k ≤ ð1þ τÞð1þ βÞ is k� ¼ dlog2ðln ρ ∕
lnð1þ τÞÞe, and hence the total number of lower-level subgradient method iterations
of the bisection phase is at most Nbis ¼ ρ2β−2k�. The statement then follows by
adding Nbis and the number of iterations needed for the finalization phase (step 12).
It remains to show that the output of the algorithm is as specified. Notice that
Lk ≤ φðxÞ, and Proposition 3 applied to the subgradient method call at step 12 give

φðxÞ− φ� ≤
ρRkffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p ≤
ρ Rk

Lk
φðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p ≤

δ

1þ δ
φðxÞ: ▯

4.4. Nonrestarting algorithms. AlgorithmsSubSearch andSubBis (Algorithms 2
and 3) use the subgradient subroutine always started from one point, denoted x0, which
is defined as the projection of the origin onto the feasible set. This point is indeed special,
as it allows for the key inequalities (3.6) and (3.7), which in turn drive the analysis in
both algorithms. The first of these inequalities makes x0 indispensable as the starting
point of the very first subgradient subroutine call in both algorithms, making it possible
to construct initial lower and upper bounds on φ�. It is hard to think of a different read-
ily computable point that could serve the same purpose.
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The issue we are going to touch upon in this subsection concerns the use of x0 as the
starting point in all subsequent calls of the subroutine. In our view, restarting from this
particular point seems to be convenient for the sake of the proofs rather than efficient
algorithmically. Let us elaborate on this a bit. Both algorithms mentioned above can be
viewed as simultaneously optimizing (solving (P)) and searching for a good upper
bound on kx0 − x�kG in order to look less like the “do-it-all-with-the-available-but-
bad-upper-bound” and more like the “do-it-all-with-the-good-but-unavailable-upper-
bound” algorithm. Combining these two goals is possible because φ� is both the optimal
value of (P) and an upper bound on kx0 − x�kG . It seems likely that the optimization
goal could be attained faster if we could use the current best point, as opposed to x0, to
start every call of the subroutine. Although both algorithms gather information about
increasingly better iterates fx̂kg, this knowledge is used only to update the upper bound
on kx0 − x�kG in the next call of the subgradient subroutine and not to start the sub-
routine itself from a better point. There is a good reason for that though: even if some
point x̂k obtained along the way in one of the algorithms was much better than x0 in
terms of its objective value, there are no theoretical guarantees that kx̂k − x�kG will be
smaller. Starting the subgradient subroutine from such a point thus means combining a
probable advantage with a possible disadvantage. A simple observation reveals that the
disadvantage factor is under control. Indeed, for any x ∈ L,

kx− x�kG ≤ kxkG þ kx�kG ≤
ð3.7Þ

kxkG þ φ� ≤ kxkG þ φðxÞ ≤
ð3.5Þ

2φðxÞ:ð4:13Þ

This means that whenever the subgradient method outputs some point x, we have an
upper bound on kx− x�kG available. Therefore, on the next call we can run the method
starting at x with R ¼ kxkG þ φðxÞ.

4.4.1. Nonrestarting version of SubSearch. Algorithm 4 is a modified version
of Algorithm 2 in the spirit of the preceding discussion. The theoretical performance is
unchanged.

ALGORITHM 4. (SUBSEARCHNR) NONRESTARTING SUBGRADIENT SEARCH SCHEME.
1: Input: φ, L, x0, ρ, δ;
2: x̂0 ¼ x0, c ¼ ffiffiffi

e
p

, k ¼ 1;
3: N ¼ bc2ρ2ð1þ 1

δ
Þ2c, N  0 ¼ b4c2ρ2ð1þ 1

δ
Þ2c, R ¼ φðx̂0Þ;

4: x̂k ¼ Subgradðφ;L; x̂0; R; NÞ;
5: while φðx̂kÞ < φðx̂k−1Þ ∕ c do
6: k ¼ kþ 1;
7: R ¼ kx̂k−1kG þ φðx̂k−1Þ;
8: x̂k ¼ Subgradðφ;L; x̂k−1; R;N

 0Þ;
9: end while

10: Output: x̂k

THEOREM 8. Algorithm 4 outputs a δ-approximate solution of (P). The number of
calls of the subgradient subroutine is at most 1þ 2 ln ρ, and the total number of lower-
level subgradient steps is hence at most

4eρ2

�
1þ 1

δ

�
2

ð1þ 2 ln ρÞ ¼ O

�
ρ2

δ2
ln ρ

�
:ð4:14Þ
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Proof. The proof of the upper bound on the number of the outer level iterations is
exactly the same as for Algorithm 2. If the algorithm terminates with k ¼ 1, it is iden-
tical to Nesterov’s, and the result follows (we can drop the constant 4 in this case).
For k > 1, the analysis is analogous:

φðx̂kÞ− φ� ≤
ρRffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p ≤
ð4.13Þ ρ2φðx̂k−1Þ

2cρ

�
1þ 1

δ

� ≤
δ

1þ δ
φðx̂kÞ: ▯

4.4.2. Nonrestarting bisection algorithm. The following fact plays the role of
Lemma 5 in the design and analysis of a nonrestarting bisection algorithm (Algorithm 5).

LEMMA 9. Let x 0 ∈ L and assume φ� ≤ R. If we let N ¼ bρ2 ∕ β2c for some β > 0,
then

x ¼ Subgradðφ;L; x 0; Rþ kx 0kG;NÞ
satisfies

φðxÞ− βðkx 0kG þ RÞ ≤ φ� and φðxÞ ≤ ð1þ βÞRþ βkx 0kG:ð4:15Þ

Proof. By (4.13) we have kx 0 − x�kG ≤ kx 0kG þ R, and hence by Proposition 3,

φðxÞ− φ� ≤ ρ
kx 0kG þ Rffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p ≤ βðkx 0kG þ RÞ:

Rearranging the expression gives the first inequality in (4.15); the second inequality
follows from (3.5). ▯

The idea of updating the lower and upper bounds is analogous to the restarting
version of the algorithm. Assume that at step k we have Lk ≤ φ� ≤ Rk, with
qk ¼ Rk ∕ Lk > 1þ β. Pick R so that (4.7) holds and x 0 such that Rk ¼ φðx 0Þ, and let
x be given by Lemma 9. Again, we have two possibilities. Notice that if
φðxÞ ≤ ð1þ βÞRþ βkx 0kG, then since kx 0kG ≤ φðx 0Þ ¼ Rk, we have

φðxÞ ≤ ð1þ βÞRþ βRk ≤
ð4.7Þ

Rk;ð4:16Þ

as long as β ≤ 1. We can thus update

Lkþ1 ¼ maxfφðxÞ− βðkx 0kG þ RÞ; Lkg; Rkþ1 ¼ φðxÞ:ð4:17Þ
If φðxÞ > ð1þ βÞRþ βkx 0kG , we can set

Lkþ1 ¼ R; Rkþ1 ¼ minfRk;φðxÞg:ð4:18Þ
The improvement in qk after a single bisection step is given in the following result.
LEMMA 10. Assume Lk ≤ φ� ≤ Rk, qk > 1þ β, and 0 < β ≤ 1. After a single bisec-

tion step with R ¼ ½LkRk ∕ ð1þ βÞ�1∕ 2, we obtain Lkþ1 ≤ φ� ≤ Rkþ1 satisfying

qk ≤
�
βþ 1ffiffiffi

2
p

�
qk−1:ð4:19Þ

Proof. Note that (4.7) holds. In view of (4.17), (4.16), and (4.18) we get
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qkþ1 ¼
Rkþ1

Lkþ1

≤ max

�ð1þ βÞRþ βRk

Lk

;
minfRk;φðxÞg

R

�

≤
ð1þ βÞRþ βRk

Lk

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

p ffiffiffiffiffi
qk

p þ βqk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

qk

s
qk þ βqk <

ffiffiffi
1

2

r
qk þ βqk: ▯

THEOREM 11. Algorithm 5 run with β satisfying 0 < β < 1− 1ffiffi
2

p returns a
δ-approximate solution of (P) and takes at most

ρ2

β2

�
1þ ln ρ− ln½ð1þ τÞð1þ βÞ�

− lnðβþ 1 ∕
ffiffiffi
2

p Þ

�
þ 4ð1þ τÞ2ð1þ βÞ2ρ2

�
1þ 1

δ

�
2

ð4:20Þ

steps of the subgradient subroutine. If τ and β are chosen as constants, this becomes

O

�
ρ2

δ2 þ ρ2 ln ρ

�
:ð4:21Þ

Proof. Let us first analyze the bisection phase. Repeated use of Lemma 10 gives
qk ≤ ðβþ 1 ∕

ffiffiffi
2

p Þkq0 ≤ ðβþ 1 ∕
ffiffiffi
2

p Þkρ. The smallest integer k for which the last expres-
sion drops below c ¼ ð1þ τÞð1þ βÞ is k� ¼ dlnðρ ∕ cÞ ∕ lnð1 ∕ ðβþ 1 ∕

ffiffiffi
2

p ÞÞe ¼ Oðln ρÞ,
and hence the total number of lower-level subgradient method iterations of the bisection
phase is Nbis ¼ bρ2 ∕ β2ck�. The guarantee (4.20) follows by adding Nbis and N from
step 13. The output of the algorithm is as specified; the analysis is identical to that
in Theorem 8. ▯

Note that the nonrestarting version of the bisection algorithm has a slightly worse
complexity bound—we have lost one logarithm in (4.21) in comparison with (4.12).
However, the bisection strategy separates the δ from the logarithmic term when com-
pared to the bound (4.14) for the SubSearch algorithm.

ALGORITHM 5. (SUBBISNR) NONRESTARTING SUBGRADIENT BISECTION SCHEME.
1: Input: φ, L, x0, ρ, β, τ, δ;
2: k ¼ 0, x 0 ¼ x0, L0 ¼ kx0kG, R0 ¼ φðx0Þ;
3: c ¼ ð1þ τÞð1þ βÞ, N ¼ bρ2 ∕ β2c;
4: while Rk ∕ Lk > c do

5: R ¼
ffiffiffiffiffiffiffiffi
LkRk

1þβ

q
, x ¼ Subgradðφ;L; x 0; kx 0kG þ R;NÞ;

6: if φðxÞ ≤ ð1þ βÞRþ βkx 0kG then
7: set Lkþ1, Rkþ1 as in (4.17)
8: else
9: set Lkþ1, Rkþ1 as in (4.18)

10: end if
11: x 0 ¼ x, k ¼ kþ 1
12: end while
13: N ¼ b4 R2

k

L2
k

ρ2ð1þ 1
δ
Þ2c, x ¼ Subgradðφ;L; x 0; kx 0kG þ Rk;NÞ;

14: Output: x

5. Algorithms based on smoothing. We have seen in section 4 that problem (P)
allows for simple algorithms that require Oðδ−2Þ iterations of the subgradient method.
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We have improved Nesterov’s subgradient search algorithm (Algorithm 2), which
needs Oðρ2δ−2 ln ρÞ iterations, by incorporating a simple bisection idea and obtained
Algorithm 3 with the slightly better Oðρ2δ−2 þ δ−2 ln ln ρÞ complexity. That is, we
have improved the dependence on the rounding parameter ρ but not on the error
parameter δ.

We start in the following subsection by briefly describing Nesterov’s smoothing
technique [13] and the implied algorithm for smooth minimization of nonsmooth func-
tions. It is not our intention to describe the approach in full generality; rather, we will
adapt the results to the setting of problem (P)—the minimization of a nonnegative sub-
linear (convex and homogeneous) function vanishing at the origin only.

5.1. The setting. Nesterov [13] considers a rather general nonsmooth convex op-
timization problem and shows that it is possible to solve it in Oðϵ−1Þ iterations of a
gradient-type method if a solution within absolute error ϵ is sought. His novel approach
involves two phases. The first is a preprocessing phase in which one approximates the
objective function by a smooth function with Lipschitz continuous gradient. The second
phase amounts to running an optimal smooth method [11], [12] with complexity
Oðϵ−1 ∕ 2Þ applied to the smooth function.

We will describe the model for sublinear functions. Consider the following more
general version of problem (P), with φ replaced by an arbitrary sublinear function
and L (or L intersected with a large ball) replaced by a compact and convex subset
Q1 of E1 ≔ E:

φ� ≔ min
x

fφðxÞ∶x ∈ Q1g:ðP 0Þ

Notice that φ can be written as

φðxÞ ¼ max
g

fhg; xi∶g ∈ ∂φð0Þg.ð5:1Þ

To allow for some modeling flexibility, the purpose of which will be clear later, we will
instead consider the following family of representations of the objective function:

φðxÞ ¼ max
y

fhAx; yi∶y ∈ Q2g:ð5:2Þ

Here we are introducing a new finite-dimensional real vector space E2, a linear operator
A∶E1 → E�

2, and a compact and convex set Q2 ⊂ E2.
DEFINITION 12. The adjoint of A is the operator A�∶E2 → E�

1 defined via

hAx; yi ¼ hA�y; xi for all x ∈ E1; y ∈ E2:

We assume that the spaces E1 and E2 are equipped with norms k · k1 and k · k2,
respectively2, and the dual spaces E�

1 and E�
2 with the corresponding dual norms

kgk�1 ≔ maxfhg; xi∶kxk1 ≤ 1g and khk�2 ≔ maxfhh; yi∶kyk2 ≤ 1gð5:3Þ

for g ∈ E�
1 and h ∈ E�

2.

2The numbers are subscripts referring to the spaces in which the norms are defined and are not intended to
suggest the use of the l1 and l2 norms.
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DEFINITION 13. The norm of A is defined by

kAk1;2 ≔ max
x;y

fhAx; yi∶kxk1 ¼ 1; kyk2 ¼ 1g:ð5:4Þ

One can similarly define kA�k2;1.
It follows easily from the definition that

kAk1;2 ¼ max
x

fkAxk�2∶kxk1 ¼ 1g ¼ kA�k2;1 ¼ max
y

fkA�yk�1∶kyk2 ¼ 1g:ð5:5Þ

Example 3. Consider the function

φ∞ðxÞ ≔ max
i

fjhai; xij∶i ¼ 1; 2; : : : ;mg;

where x ∈ E1 ¼ Rn, ai ∈ E�
1 ¼ Rn, and hg; xi ¼ P

n
i¼1 g

ðiÞxðiÞ. Note that in the following
three representations of φ∞ the structure of the set Q2 gets simpler as the dimension of
the space E2 increases.

1. E2 ¼ E�
2 ¼ Rn, Q2 ¼ convf�ai∶i ¼ 1; 2; : : : ;mg, and A ¼ I . This seems to be

the most natural and straightforward representation.
2. E2 ¼ E�

2 ¼ Rm, Q2 ¼ fy ∈ Rm∶
P

m
i¼1 jyðiÞj ≤ 1g, and A is the m× n matrix

with rows a1; : : : ; am. In this case we have

φ∞ðxÞ ¼ max

�Xm
i¼1

yðiÞhai; xi∶
Xm
i¼1

jyðiÞj ≤ 1

�
:

3. E2 ¼ E�
2 ¼ R2m,Q2 is the unit simplex inR2m, andA is the 2m× nmatrix with

rows composed of a1; : : : ; am and −a1; : : : ;−am:

φ∞ðxÞ ¼ max

�Xm
i¼1

ðyðiÞ1 − y
ðiÞ
2 Þhai; xi∶

Xm
i¼1

y
ðiÞ
1 þ y

ðiÞ
2 ¼ 1; y

ðiÞ
1 ; y

ðiÞ
2 ≥ 0

�
:

If we let θðyÞ¼def minxfhA�y; xi∶x ∈ Q1g, then because both Q1 and Q2 are convex and
compact and hA�y; xi≡ hy;Axi is bilinear, we can apply a standard minimax result and
rewrite ðP  0Þ as follows:

φ� ¼ θ�¼def max
y

fθðyÞ∶y ∈ Q2g:ðP 00Þ
5.2. Smoothing and an efficient smooth method. In the first phase of

Nesterov’s approach, the objective function of (P′) is approximated by a smooth convex
function with Lipschitz continuous gradient. An approximation with errorOðϵÞ has gra-
dient with Lipschitz constant of Oð1 ∕ ϵÞ. The second phase consists of applying to (P)
(with the objective function replaced by its smooth approximation) an efficient smooth
method (Algorithm 6) requiring Oð1 ∕ ffiffiffi

ϵ
p Þ iterations of a gradient type. The smooth

algorithm is capable of producing points x̂ and ĝ feasible to both (P′) and (P″), respec-
tively, such that φðx̂Þ− θðĝÞ ¼ Oð1 ∕ ϵÞ. Because φ� ¼ θ�, these points are approximate
optimizers in their respective problems (in the additive sense).

The smoothing approach assumes the availability of prox-functions d1 and d2 for the
sets Q1 and Q2, respectively. These are continuous and strongly convex nonnegative
functions defined on these sets, with convexity parameters σ1 and σ2, respectively.
Let x0 be the center of the set Q1 (think Q1 ¼ L):
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x0 ≔ arg min
x

fd1ðxÞ∶x ∈ Q1g:ð5:6Þ

We assume that d1 vanishes at its center, and hence the above properties imply

d1ðxÞ ≥
1

2
σ1kx− x0k21:

For example, if d1ðxÞ ≔ 1
2 kxk21 (so σ1 ¼ 1) and Q1 is the intersection of L and a

large-enough ball centered at the origin, then x0 coincides with its earlier definition.
Notice that for d1ðxÞ ¼ 1

2 kxk21 − 1
2 kx0k21 we have d1ðxÞ ¼ 1

2 kx− x0k21 for x ∈ L.
In an analogous fashion we define the center y0 ofQ2 and assume that d2 vanishes at

y0. Therefore

d2ðyÞ ≥
1

2
σ2ky− y0k22:

Finally, let D1 and D2 satisfy D1 ≥ maxxfd1ðxÞ∶x ∈ Q1g and D2 ≥ maxyfd2ðyÞ∶
y ∈ Q2g.

PROPOSITION 14 (Nesterov [13, Theorem 1]). For μ > 0, the function

φμðxÞ ≔ max
y

fhAx; yi− μd2ðyÞ∶y ∈ Q2gð5:7Þ

is a continuously differentiable uniform approximation of φ:

φμðxÞ ≤ φðxÞ ≤ φμðxÞ þ μD2 for all x ∈ E1:ð5:8Þ

Moreover, if we denote by yμðxÞ the (unique) maximizer from (5.7), then the gradient of
φμðxÞ is given by ∇φμðxÞ ¼ A�yμðxÞ and is Lipschitz continuous with constant

γμ ¼ 1

μσ2

kAk21;2:ð5:9Þ

The smooth version of (P′) therefore is

min
x

fφμðxÞ∶x ∈ Q1g:ðP 0
smÞ

The main result of [13] is the following theorem.
THEOREM 15 (Nesterov [13, Theorem 3]). If we apply Algorithm 6 to problem (P  0

sm)
with smoothing parameter

μ ¼ 2kAk1;2
N þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1

σ1σ2D2

s
ð5:10Þ

and if x ¼ Smoothðφμ; γμ; Q1; x0; NÞ, then3

φðxÞ− φ� ≤
4kAk1;2
N þ 1

ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

σ1σ2

s
:ð5:11Þ

3The original theorem states the result as a gap between φðxÞ and θðyÞ for a certain y ∈ Q2.
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ALGORITHM 6. (SMOOTH) EFFICIENT SMOOTH METHOD.
1: Input: f , γ, Q1, x0, N ;
2: for k ¼ 0 to N do
3: Compute ∇fðxkÞ;
4: yk ¼ arg minfh∇f ðxkÞ; x− xki þ γ

2 kx− xkk21∶x ∈ Q1g;
5: zk ¼ arg minfPk

i¼0
iþ1
2 h∇f ðxiÞ; x− xii þ γ

σ1
d1ðxÞ∶x ∈ Q1g;

6: xkþ1 ¼ 2
kþ3 zk þ kþ1

kþ3 yk;
7: end for
8: Output: yN

5.3. The main result. We will use the above theorem in the same way as
Proposition 3 to devise a Oð1 ∕ δÞ-algorithm for finding a δ-approximate solution of
(P). Algorithms of this type, formulated for several specific choices of objective func-
tions, were proposed already by Nesterov [14], [15]. These methods are similar in spirit
to Algorithm 2, recursively updating an upper bound on φ�. We give an improved ver-
sion of this algorithm applicable to the problems considered in the cited papers. Our
contribution lies mainly in improving the theoretical complexity by incorporating a bi-
section speedup. As in the previous section, it is possible to formulate a nonrestarting
version of our algorithm by sacrificing the double logarithm in the theoretical complex-
ity for a single one.

5.3.1. Preliminaries. Let us return to problem (P), using the representation (5.2)
for the objective function (hence Q1 ¼ L), and approach it with the tools described in
the previous subsections. LetE1 ≔ E and assume thatG∶E1 → E�

1 defines an ellipsoidal
rounding of ∂φð0Þ ¼ A�Q2 such that (3.1) holds. Notice that the inequalities (3.5), (3.6),
and (3.7) are implied by (3.1). To be able to obtain an algorithm guaranteeing a
δ-approximate solution in relative scale, it is crucial to choose kxk1 ≡ kxkG , x ∈ E1.

If we wish to apply Algorithm 6, we need to supply to it a bounded subset of L
containing the minimizer. Observe that as long as we are in the possession of an upper
bound R on φ�, (3.7) guarantees that all minimizers of (P) lie in the set

Q1ðRÞ¼defL ∩ fx∶kx− x0kG ≤ Rg:

The point x0—the projection of the origin onto L in the G-norm—is the center of Q1ðRÞ
as defined in (5.6) if we choose the prox-function for Q1ðRÞ to be

d1ðxÞ ≔
1

2
kx− x0k2G:

In this case σ1 ¼ 1 and D1 ¼ maxfd1ðxÞ∶x ∈ Q1ðRÞg ¼ 1
2R

2. We leave the choice of d2
purposely open to allow for fine tuning for particular applications.

A direct consequence of Theorem 15 with the settings described above is the follow-
ing analogue of Lemma 5.

LEMMA 16. If φ� ≤ R, β > 0, and we set

N ¼
�
2

ffiffiffi
2

p kAk1;2
β

ffiffiffiffiffiffi
D2

σ2

s 	
; μ ¼

ffiffiffi
2

p kAk1;2R
N þ 1

ffiffiffiffiffiffiffiffiffiffiffi
1

σ2D2

s
;

and γμ as in (5.9), then
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x ¼ Smoothðφμ; γμ; Q1ðRÞ; x0; NÞ

satisfies

φðxÞ− βR ≤ φ� and φðxÞ ≤ ð1þ βÞR:

The above lemma leads to a bisection algorithm (Algorithm 7) in the same way
as we have seen it in the section on subgradient algorithms. The main result
follows.

ALGORITHM 7. (SMOOTHBIS) SMOOTH BISECTION SCHEME.
1: Input: φ, x0, ρ, β, τ, δ;
2: k ¼ 0, x ¼ x0, L0 ¼ kx0kG , R0 ¼ φðx0Þ;
3: c ¼ ð1þ τÞð1þ βÞ, N ¼ b2

ffiffi
2

p kAk1;2
β

ffiffiffiffiffi
D2

σ2

q
c;

4: while Rk ∕ Lk > c do

5: R ¼
ffiffiffiffiffiffiffiffi
LkRk

1þβ

q
, μ ¼

ffiffi
2

p kAk1;2R
Nþ1

ffiffiffiffiffiffiffiffi
1

σ2D2

q
, γμ ¼ kAk21;2

μσ2
;

6: x ¼ Smoothðφμ; γμ; Q1ðRÞ; x0; NÞ;
7: if φðxÞ ≤ ð1þ βÞR then
8: set Lkþ1, Rkþ1 as in (4.8)
9: else

10: set Lkþ1, Rkþ1 as in (4.9)
11: end if
12: k ¼ kþ 1;
13: end while
14: N ¼ b2 ffiffiffi

2
p

Rk

Lk
kAk1;2ð1þ 1

δ
Þ

ffiffiffiffiffi
D2

σ2

q
c, μ ¼

ffiffi
2

p kAk1;2Rk

Nþ1

ffiffiffiffiffiffiffiffi
1

σ2D2

q
, γμ ¼ kAk21;2

μσ2
;

15: x ¼ Smoothðφμ; γμ; Q1ðRkÞ; x0; NÞ;
16: Output: x

THEOREM 17. Algorithm 7 returns a δ-approximate solution of (P) and takes at most

2
ffiffiffi
2

p
kAk1;2

ffiffiffiffiffiffi
D2

σ2

s �
1

β



log2

�
ln ρ

lnð1þ τÞ
��

þ ð1þ τÞð1þ βÞ
�
1þ 1

δ

��
ð5:12Þ

steps of the smooth optimization subroutine. If β and τ are constants, this becomes

O

�
kAk1;2

ffiffiffiffiffiffi
D2

σ2

s �
ln ln ρþ 1

δ

��
:ð5:13Þ

A reasonable practical choice of the paramaters β and τ is

β ¼
ffiffiffi
δ

p
; τ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β

ln 2

r
− 1

�
:ð5:14Þ

5.4. A direct representation of the objective function. We can get rid of
the dependence on kAk1;2 in (5.13) by identifying E2 with E�

1 (and consequently E1
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with E�
2). In this case we can simply choose A ¼ I and consider the following structural

model for the objective function:

φðxÞ ¼ max
g

fhg; xi∶g ∈ Q2g:

Let us set kgk2 ¼ kgk�1 ¼ kgk�G and select the following prox-function forQ2 (with center
at the origin):

d2ðgÞ ¼
1

2
ðkgk�GÞ2:

Clearly σ2 ¼ 1 andD2 ≤ 1
2ρ

2; the second inequality follows from the ellipsoidal rounding
inclusion (3.1). Also observe that since k · k�2 ≡ k · k1, we have

kAk1;2 ¼ maxfkAxk�2∶kxk1 ¼ 1g ¼ maxfkxk1∶kxk1 ¼ 1g ¼ 1:

Substituting the values of these parameters into (5.13) gives the complexity

O

�
ρ

�
1

δ
þ ln ln ρ

��
:

Remark 1. Observe that, in principle, we do not lose generality by “excluding” A
because we can simply set the “new” Q2 to be equal to the “old” A�Q2. However, this
sacrifice in modeling flexibility means that Q2 always coincides with ∂φð0Þ, which
has to be of a simple structure for the algorithm to work efficiently. This is mainly
due to the need to compute derivatives of φμ, which amounts to solving (5.7)—a con-
cave quadratic maximization problem over Q2. If this problem can not be solved effi-
ciently (say, in a closed form), the method will likely be impractical.

6. Scaling and complexity.

6.1. Scaling. It is natural to ask the following question, how do the “relative-scale”
algorithms developed in this paper perform when we scale the objective function? Note
that if we replaceA by tA for some t > 0 (effectively scaling φ by t > 0), then (3.1) holds
with G replaced by t2G. Therefore, the inequalities in section 3.3 are valid, and so are all
the results of this paper. Note that, in particular, the values of ρ and kAk1;2 remain
unchanged. Looking at (4.4), (4.12), (4.14), (4.21), and (5.13), we see that the iteration
complexities of the algorithms discussed in the paper are not affected by scaling.

6.2. Complexity comparison. Table 1 compares the iteration complexities of
the algorithms discussed in this paper.

TABLE 1
Summary of iteration complexities.

Method name Algorithm # Number of iterations

SubSearch 2 Oðρ2δ−2 ln ρÞ
SubBis 3 Oðρ2δ−2 þ ρ2 ln ln ρÞ

SubSearchNR 4 Oðρ2δ−2 ln ρÞ
SubBisNR 5 Oðρ2δ−2 þ ρ2 ln ρÞ
SmoothBis 7 Oðρδ−1 þ ρ ln ln ρÞ
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7. Applications. In this section we apply the fastest of the algorithms developed
in this paper—the bisection algorithm based on smoothing SmoothBis—to several pro-
blems of the form (P).

7.1. Minimizing the maximum of absolute values of linear functions. In
this subsection we consider problem (P) with the objective function from Example 3:

minfφ∞ðxÞ∶x ∈ Lg:ð7:1Þ

Many seemingly unrelated problems can be reformulated in the above form. For
example, by (7.1) one can model

• the truss topology design problem,
• the problem of the construction of a c-optimal statistical design, and
• the problem of finding a solution of an underdetermined linear system having

the smallest l1 norm.
In all the examples above the feasible set L is a hyperplane. We will now show how one
can solve problem (7.1) using the results of section 5. A different approach for solving the
problems above, simultaneously and in relative scale, was recently proposed by
Richtárik [17], [19]. The iteration complexity is also Oð1

δ
Þ, but the approach uses very

different techniques.

7.1.1. Applying the algorithm. We will work with the last of the three repre-
sentations for the objective function from Example 3:

φ∞ðxÞ ¼ maxfjhai; xij∶i ¼ 1; 2; : : : ;mg ¼ max
y

fhAx; yi∶y ∈ Q2g

with Q2 being the unit simplex in R2m and A the 2m× n matrix with rows ai, −ai,
i ¼ 1; : : : ;m. In addition, assume that the vectors ai, i ¼ 1; : : : ;m, span E�

1 ¼ Rn.
It seems natural to choose kyk2 ≔

P
ijyðiÞj so that kyk2 ¼ 1 for all y ∈ Q2. If we let

d2ðyÞ ≔ ln 2mþ
X2m
i¼1

yðiÞ ln yðiÞ

and define 0× ln 0 ≔ limτ↓0 τ ln τ ¼ 0, then by the following lemma, d2 is a prox-
function on Q2 with center y0 ≔ ð 1

2m ; : : : ; 1
2mÞ.

LEMMA 18. The prox-function d2 is strongly convex onQ2, with respect to k · k2, with
convexity parameter σ2 ¼ 1.

Proof. It suffices to show that d2ðyÞ ≥ 1
2 ky− y0k22. This can be proved by elemen-

tary means using only the Cauchy–Schwarz inequality (see, e.g., Borwein and Lewis
[4, Exercise 3.3.25(d)]) or, using differentiation and properties of convex functions,
(Nesterov [13, Lemma 3]). ▯

It is easy to see that D2 ¼ supfd2ðyÞ∶y ∈ Q2g ¼ ln 2m (the supremum is attai-
ned at each of the boundary vertices). Finally, let us compute the norm of the linear
operator A:

kAk1;2 ¼ max
kxk1¼1

kAxk�2 ¼ max
kxkG¼1

kAxk∞ ¼ max
kxkG¼1

φðxÞ ≤
ð3.5Þ

ρ:

In view of (5.9) we have γμ ≤ ρ2

μ
. It is shown in Nesterov [13, Lemma 4] that
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φμðxÞ ¼ μ ln

�
1

2m

Xm
i¼1

½ehai;xi∕ μ þ eh−ai;xi ∕ μ�
�
:

Since ∂φð0Þ ¼ convf�ai∶i ¼ 1; 2; : : : ;mg is a centrally symmetric subset ofRn, we may
assume that a good rounding, with ρ ¼ Oð ffiffiffi

n
p Þ, is available to us. It can be computed

efficiently in Oðn2m ln mÞ arithmetic operations. For details about algorithms we refer
to [1], [10], [14], [22], [23].

7.1.2. Complexity. If follows from (5.13) that Algorithm 7 has the complexity

O

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln m

p �
ln ln nþ 1

δ

��
:

This improves the result of Nesterov [14], where the author gives the bound

O

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln m

p

δ
ln n

�
:

7.2. Minimizing the sum of absolute values of linear functions. Consider
problem (P) with the following objective function:

φ1ðxÞ ¼
Xm
i¼1

jhai; xij:

As usual, we assume that the vectors a1; a2; : : : ; am span E�
1.

7.2.1. Applying the algorithm. Let E1 ¼ E�
1 ¼ Rn and E2 ¼ E�

2 ¼ Rm, and let
us represent φ1 as

φ1ðxÞ ¼ max
y

fhAx; yi∶y ∈ Q2g;ð7:2Þ

where Q2 ¼ fy ∈ Rm∶jyðiÞj ≤ 1; i ¼ 1; 2; : : : ;mg and A is the m× n matrix with
rows a1; : : : ; am. Usually we first find a rounding of ∂φ1ð0Þ, and using the rounding op-
erator we define a norm on E1. Because of the simple structure of Q2, we will instead
start by defining kyk2 ≔ ðPiðyðiÞÞ2Þ1 ∕ 2 and noting that this leads to a

ffiffiffiffiffi
m

p
-rounding

of Q2:

BðI ; 1Þ ⊆ Q2 ⊆ BðI ; ffiffiffiffiffi
m

p Þð7:3Þ
with I∶Rm → Rm denoting the identity operator. We will show now how this natu-
rally leads to a rounding operator defined on E1, enjoying the same quality of
rounding.

LEMMA 19 (Nesterov [15, Lemma 2]). If the vectors a1; : : : ; am span Rm, then
kxk1 ≔ kAxk�2 defines a norm on Rn. Moreover, if we let G ≔ ATA (a positive definite
matrix), then k · k1 ≡ k · kG and BðG; 1Þ ⊆ ∂φð0Þ ¼ ATQ2 ⊆ BðG;

ffiffiffiffiffi
m

p Þ.
Let us define d2ðyÞ ≔ 1

2 kyk22 so that the convexity parameter of this prox-function is
σ2 ¼ 1. It follows from (7.3) that D2 ¼ maxfd2ðyÞ∶y ∈ Q2g ≤ 1

2m. Finally,

kAk1;2 ¼ maxfkAxk�2∶kxk1 ¼ 1g ¼ maxfkxk1∶kxk1 ¼ 1g ¼ 1:
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7.2.2. Complexity. It follows from (5.13) that Algorithm 7 has the complexity

O

� ffiffiffiffiffi
m

p �
1

δ
þ ln ln m

��
:

This improves the following bound of Nesterov [15]:

O

� ffiffiffiffiffi
m

p
ln m

δ

�
:

7.3. Minimizing the maximum of linear functions over a simplex. The mo-
tivation for this problem is the computation of the value of a two-person zero-sum
matrix game with nonnegative coefficients: Let Â ∈ Rm×n be a real matrix with non-
negative entries and rows a1; : : : ; am. Consider the following game. There are two
players: a row player (R) and a column player (C). Player R chooses a probability dis-
tribution y over the rows of matrix Â, and C chooses a probability distribution x over
the columns. After that, C pays yTÂx dollars to R. Assume the players are conservative;
that is, C wishes to minimize his worst-case loss and R wants to maximize his worst-case
win. That is, C prefers to choose strategy

x� ∈ arg min
x∈Δn

max
y∈Δm

yTÂx;

and, similarly, R wishes to choose strategy

y� ∈ arg max
y∈Δm

min
x∈Δn

yTÂx:

The set Δn (resp., Δm) denotes the unit simplex in Rn (resp., Rm). A classical result by
von Neumann [24] says that4

φ� ≔ min
x∈Δn

max
y∈Δm

yTÂx ¼ max
y∈Δm

min
x∈Δn

yT Âx:

The value φ� is called the value of the game. Note that if we let Q1 ≔ Δn and

φðxÞ ¼ maxfhai; xi∶i ¼ 1; 2; : : : ;mg;

then we can write φ� ¼ minxfφðxÞ∶x ∈ Q1g:

7.3.1. Applying the algorithm. First observe that

∂φð0Þ ¼ convfai∶i ¼ 1; 2; : : : ;mg;

which fails to satisfy (2.1) due to the assumption on nonnegativity of the entries of Â. To
remedy this situation, we will follow a trick suggested by Nesterov [14]. Notice that we
are interested in φ as defined on Δn only, which is a subset of the nonnegative orthant.
Let us therefore define

φ̂ðxÞ¼def maxfhai; jxji∶i ¼ 1; 2; : : : ;mg;

4For a modern proof based on Fenchel duality, we refer to, for example, Exercise 4.2.16 in Borwein and
Lewis [4].
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where jxj ¼ ðjx1j; : : : ; jxnjÞ and observe that φ̂ðxÞ ¼ φðxÞ for all x ∈ Rnþ, and

∂φ̂ð0Þ ¼ conv
[m
i¼1

fg∶ − ai ≤ g ≤ aig:

It is particularly interesting to note that ∂φ̂ð0Þ is a sign-invariant set, one that with
every point g contains all points obtained by arbitrarily changing the signs of the co-
ordinates of g. In fact, ∂φ̂ð0Þ is the smallest sign-invariant set containing ∂φð0Þ. Nesterov
shows that sign-invariant convex bodies admit a more efficient rounding algorithm than
the more general centrally symmetric sets mainly due to the possibility of working only
with diagonal positive definite matrices defining the rounding.

Instead of rounding ∂φð0Þ, one can therefore find an ellipsoidal rounding of ∂φ̂ð0Þ
(defined by a diagonal positive definite matrix G) with ρ ¼ Oð ffiffiffi

n
p Þ and then deduce

inequality (3.5), which holds for all x ∈ Rnþ (Nesterov [14, Lemma 5]). The smoothing
of φ (and hence of φ̂ on the domain of interest) can be performed in complete analogy
with the situation in subsection 7.1. The choice of the representation of the objective
function, the choice of the prox-function for Q2, and the implied bounds are all identical
(the only change is that the dimension drops from 2m to m).

7.3.2. Complexity. The iteration complexity of Algorithm 3 as applied to the
problem of computing the value of a two-person matrix game with nonnegative coeffi-
cients is

O

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln m

p �
1

δ
þ ln ln n

��
:

This improves the result of Nesterov [14, Algorithm 4.4], where the author gives the
bound

O

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln m

p

δ
ln n

�
:

8. Computational experiments. In this section we perform computational tests
on problems of the structure described in section 7.1:

minfφ∞ðxÞ≡maxfjhai; xij; i ¼ 1; : : : ;mg∶hd; xi ¼ 1g:ð8:1Þ

All experiments were done on a Windows XP desktop with Intel Core 2 Quad Q8300
CPU at 2.5 GHz with 3.46 GB of RAM. Algorithm 7 is run with constants β, τ as given
in (5.14). Rounding of the centrally symmetric set ∂φ∞ð0Þ ¼ convf�ai; i ¼ 1; : : : ;mg
was in all cases done by Khachiyan’s algorithm [9] with ρ ¼ 1.1

ffiffiffi
n

p
.

8.1. Data: Truss topology design. The data A ¼ ½a1; : : : ; am� ∈ Rn×m and d ∈
Rn was generated using a formulation of the truss topology design (TTD) problem in the
form (8.1). For details of the derivation we refer to [3, section 1.3.5] and [15], [19]. A brief
description of the problem will suffice for our purposes: A two-dimensional (2D) rectan-
gle of size a× b is discretized into a× b equidistant nodes. The a nodes “on the left” are
attached to a wall, and a 2D force is applied at all the remaining nodes. There are a total
of aðb− 1Þ free nodes; the vector of forces is thus of dimension n ¼ 2aðb− 1Þ. In our
formulation this vector is d (and always represents a single horizontal unit force applied
at the right-middle node in the rightward direction). The TTD problem ttdða; bÞ is the
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problem of designing a structure of bars with endpoints in the nodes, with total weight of
all the bars limited such that the total compliance of the truss is minimized. Compliance
is a quantity proportional to the work performed by the system after the forces are ap-
plied until the nodes and bars are displaced to equilibrium. Dimension m represents the
total number of potential bars. In all of the problems we allow any two nodes to be
connected; overlapping bars are not allowed.

8.2. Rounding. Table 2 lists six ttdða; bÞ test problems and quantities L0, R0, q0,
and ρ obtained after the initial rounding phase (i.e., computation of G satisfying (3.1)).
For convenience, matrix A has in each case been scaled so that the optimal value of each
problem is 1. This does not affect the algorithms (see section 6.1) and allows for straight-
forward comparison between methods that work in relative scale and absolute scale, due
to the fact these two notions then coincide.

Note that for all problems φðx0Þ is already quite close to the optimal value. It is
within 2.7% of optimum in the ttdð5; 5Þ case, and within a factor of 2.33 in the
ttdð9; 9Þ case. We know from (4.2) that φðx0Þ ≤ ρ must hold; the actual initial function
values for our problems are much better than this bound. This suggests that the round-
ing stage does a very good job in preprocessing the problem for the optimization stage 5.

8.3. Nonrestarting versus restarting. In this test we will contrast the behavior
of the nonrestarting variant of the subgradient search scheme (SubSearchNR) against
its restarting version (SubSearch). Let us equip both methods with the additional abil-
ity to quit the subgradient subroutine at step k in case a point x is found for which
φðxÞ < φðx̂k−1Þ ∕ c. It is particularly interesting to see what happens for extremely small
values of the decrease factor: we will choose c ¼ 1þ 10−8. This choice essentially means
that the subgradient subroutine will be left immediately after a point is found which is
better than the current best point (it also means that the theoretical complexity of both
methods blows up). The nonrestarting method should have a clear advantage: it starts
the next subgradient subroutine from the current best point, and hence it should not
take too long before a new better point is found. In contrast, the restarting version starts
the whole process again from x0. Both methods will run their next call of the subgradient
subroutine with smaller stepsizes. Method SubSearchNR with extremely small c can in
view of (4.13) be interpreted as a subgradient method which adjusts its stepsize as soon
as it gets new information about the distance of the current best point to the set of
minimizers, which happens every time a new best point is found.

The results of this comparison, for the ttdð9; 9Þ problem, are given in Table 3. For
both methods we list the number of lower-level subgradient iterations N it takes to

TABLE 2
Initialization by ellipsoidal rounding (φ� ¼ 1).

Problem n m L0 ¼ kx0kG R0 ¼ φðx0Þ q0 ¼ R0 ∕ L0 ρ ¼ 1.1
ffiffiffi
n

p

ttdð3; 3Þ 12 28 0.4005 1.4188 3.5429 3.8105

ttdð5; 5Þ 40 200 0.4053 1.0266 2.5332 6.9570

ttdð7; 7Þ 84 748 0.3855 1.9134 4.9634 10.0817

ttdð9; 9Þ 144 2040 0.3717 2.3301 6.2690 13.2000

ttdð21; 5Þ 200 3332 0.5257 2.1363 4.0637 15.5563

5For an Oð1∕ δÞ algorithm in which the rounding and optimization stages coincide, see [19].
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achieve a certain relative accuracy level δ̂ (this is not the target accuracy δ that enters
the method as an input). The number in the parentheses is the number of subgradient
steps in the last call of the subgradient subroutine, the one in which the δ̂-approximate
point was found. The difference between the two methods is clear. For any given
accuracy δ̂, the total number of subgradient steps of the nonrestarting method
(SubSearchNR) is approximately equal to the number of subgradient steps of the last
call of the subgradient subroutine in the restarting version (SubSearch). Notice that the
choice of δ has a huge effect on the performance of both methods, as it directly affects the
stepsize of the subgradient subroutines. Smaller δ leads to bigger N ∼ ð1þ 1

δ2
Þ, which in

turn leads to smaller stepsize κ ¼ Rffiffiffiffiffiffiffiffi
Nþ1

p . A similar but milder effect occurs for the smooth

methods as well: small δ increasesN , which decreases the smoothing parameterμ, which
increases the Lipschitz constant Lμ of ∇φμ, which in turn leads to smaller steps via
(8.3) (t ¼ Lμ ∕ 2).

8.4. Relativity speedup. In this test we compare the fastest of our methods,
SmoothBis (Algorithm 7), to Smooth (Algorithm 6) applied to the smoothed version
of each problem directly, in the spirit of Theorem 15.We set δ ¼ 0.01 for SmoothBis and
ϵ ¼ 0.01 for Smooth (these settings have the same meaning as φ� ¼ 1 in all test pro-
blems). For each of the test problems and both algorithms we list the number of itera-
tions N of the smooth subroutine (each comprising two subproblems of the form (8.2)),
time t in seconds, and the accuracy δ̂, ϵ̂ at termination. Both algorithms are run for the
full number of iterations, as prescribed by theory. The results are given in Table 4, and
the bar structure of the resulting optimal trusses in Figure 2. Note that the method
working in relative scale (SmoothBis) is faster on all test problems except ttdð3; 3Þ, both
in terms of speed and iteration count. That is, we do not pay for obtaining a result in
relative scale; quite to the contrary, we benefit from it.

TABLE 3
Nonrestarting versus restarting: ttdð9; 9Þ.

SubSearchNR SubSearch

δ̂ δ ¼ 0.1 δ ¼ 0.01 δ ¼ 0.1 δ ¼ 0.1

10% 117 (3) 631 (6) 2,821 (69) 107,722 (433)
9% 134 (3) 703 (9) 3,666 (98) 122,493 (495)
8% 181 (31) 827 (15) 5,473 (116) 150,703 (592)
7% 207 (4) 1084 (12) 6,830 (167) 201,754 (862)
6% 223 (2) 1387 (9) 7,591 (213) 292,715 (1,125)
5% 420 (33) 1744 (5) 8,572 (278) 374,557 (1,468)

TABLE 4
Relativity speedup.

Smooth (Alg 6), ϵ ¼ 0.01 SmoothBis (Alg 7), δ ¼ 0.01

Problem N t ϵ̂ N (saving) t (saving) δ̂

ttdð3; 3Þ 2,594 0.2 0 0 <10−20 2,990 0.3 0 0 <10−20

ttdð5; 5Þ 7,863 1.1 0 0 5.6× 10−4 6,030 (23.3%) 0.9 0 0 (21.0%) 4.9× 10−4

ttdð7; 7Þ 15,091 7.3 0 0 3.6× 10−4 9,344 (38.2%) 4.2 0 0 (42.5%) 3.2× 10−4

ttdð9; 9Þ 22,245 54.4 0 0 6.3× 10−4 13,053 (41.3%) 32.2 0 0 (40.8%) 5.7× 10−4

ttdð21; 5Þ 27,891 140.5 0 0 4.8× 10−4 15,961 (42.8%) 77.7 0 0 (44.7%) 4.3× 10−4
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8.5. Bisection speedup. Letusnowcompare the smoothbisection scheme,SubBis
(Algorithm 7), with Algorithm 3.9 of Nesterov [14] (let us call it SmoothSearch)—a
smooth analogue of Algorithm 2 in which the role of the subgradient subroutineSubgrad
is replaced by Smooth. The iteration complexity of SmoothSearch is

ffiffiffi
8

p
eρð1þ ln ρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2mÞ

p �
1þ 1

δ

�

with each step comprising of two operations of type (8.2). Table 5 compares the meth-
ods on a single problem, ttdð9; 9Þ, for several target relative accuracies δ. Results si-
milar to these were observed also for the other test problems, and we therefore do not
list them. In particular, for each δ and both methods, we list the number of iterations
N , running time t in seconds, and the accuracy level δ̂ at termination. Both methods
are run for the full number of iterations as prescribed by the iteration complexity ana-
lysis. For the faster method (SmoothBis) we also list the percentage savings in itera-
tion count and time as compared to the slower method. Notice that for both
algorithms, the number of iterations increases linearly with decreasing δ, as predicted
by the theory. In all cases the termination accuracy is higher than the target accuracy
by a bit more than an order of magnitude. Finally, observe that the advantage of
SmoothBis grows, both in speed and number of iterations, with increasing accuracy
demand.

FIG. 2. Bar structure of optimal trusses (δ ¼ 0.001).

TABLE 5
Bisection speedup: ttdð9; 9Þ.

SmoothSearch SmoothBis

δ N t real δ N (saving) t (saving) real δ

0.05 6,145 18.1 0 0 2.2× 10−3 3,289 (46.5%) 12.3 0 0 (32.0%) 2.4× 10−3

0.01 29,555 68.9 0 0 4.8× 10−4 13,053 (55.8%) 33.7 0 0 (51.1%) 5.7× 10−4

0.005 58,818 125.0 0 0 2.4× 10−4 24,694 (58.0%) 57.3 0 0 (54.2%) 3.0× 10−4

0.001 292,919 575.3 0 0 4.8× 10−5 116,153 (60.4%) 225.9 0 0 (60.7%) 6.0× 10−5

0.0005 585,546 1078.1 0 0 2.4× 10−5 229,065 (60.9%) 440.7 0 0 (59.1%) 3.0× 10−5
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8.6. Algorithm 6. Steps 4–5 of Algorithm 6 are of the form

minfhs; xi þ tkx− x̄k2G∶hd; xi ¼ 1; kx− x0kG ≤ Rg;ð8:2Þ

where hd; x̄i ¼ 1 and t > 0. The solution is given by

x ¼ x0 −
1

2ðtþ αÞG
−1ðs 0 þ λdÞ; where

s 0¼sþ2tGðx0−x̄Þ; λ¼hs 0; x0i; v ¼ ks 0 þ λdk�G; α ¼
� v

2R − t; v ≥ 2Rt;

0; otherwise:
ð8:3Þ
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