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A NEW SCALING AND SQUARING ALGORITHM FOR THE
MATRIX EXPONENTIAL∗

AWAD H. AL-MOHY† AND NICHOLAS J. HIGHAM†

Abstract. The scaling and squaring method for the matrix exponential is based on the approx-
imation eA ≈ (rm(2−sA))2

s
, where rm(x) is the [m/m] Padé approximant to ex and the integers m

and s are to be chosen. Several authors have identified a weakness of existing scaling and squaring
algorithms termed overscaling, in which a value of s much larger than necessary is chosen, causing
a loss of accuracy in floating point arithmetic. Building on the scaling and squaring algorithm of
Higham [SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193], which is used by the MATLAB
function expm, we derive a new algorithm that alleviates the overscaling problem. Two key ideas
are employed. The first, specific to triangular matrices, is to compute the diagonal elements in the
squaring phase as exponentials instead of from powers of rm. The second idea is to base the back-
ward error analysis that underlies the algorithm on members of the sequence {‖Ak‖1/k} instead of
‖A‖, since for nonnormal matrices it is possible that ‖Ak‖1/k is much smaller than ‖A‖, and in-
deed this is likely when overscaling occurs in existing algorithms. The terms ‖Ak‖1/k are estimated
without computing powers of A by using a matrix 1-norm estimator in conjunction with a bound of
the form ‖Ak‖1/k ≤ max

(‖Ap‖1/p, ‖Aq‖1/q
)

that holds for certain fixed p and q less than k. The
improvements to the truncation error bounds have to be balanced by the potential for a large ‖A‖
to cause inaccurate evaluation of rm in floating point arithmetic. We employ rigorous error bounds
along with some heuristics to ensure that rounding errors are kept under control. Our numerical
experiments show that the new algorithm generally provides accuracy at least as good as the existing
algorithm of Higham at no higher cost, while for matrices that are triangular or cause overscaling it
usually yields significant improvements in accuracy, cost, or both.

Key words. matrix exponential, matrix function, scaling and squaring method, Padé approxi-
mation, backward error analysis, matrix norm estimation, overscaling, MATLAB, expm
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1. Introduction. The scaling and squaring method is the most popular method
for computing the matrix exponential. It is used, for example, in Mathematica (func-
tion MatrixExp), MATLAB (function expm), SLICOT (subroutine MB05OD) [17],
and the Expokit package [16]. It is also used in more general contexts, such as for
computing the group exponential of a diffeomorphism [2]. The method is based on
the approximation

(1.1) eA = (e2−sA)2
s ≈ rm(2−sA)2

s

,

where rm is the [m/m] Padé approximant to ex and the nonnegative integers m and s
are chosen in a prescribed way that aims to achieve full machine accuracy at minimal
cost. In practice the method behaves reliably in floating point arithmetic across a
wide range of matrices. The method does, however, have a weakness manifested in
a subtle phenomenon known as overscaling, in which a large ‖A‖ causes a larger
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Table 1.1

Errors and condition numbers for A in (1.2) and B = Q∗AQ. The columns headed “s” show
the values of s used by expm to produce the results in the previous column. The superscripts † and
‡ denote that a particular choice of s was forced: s = 0 for † and the s ∈ [0, 25] giving the most
accurate result for ‡.

b expm(A) s expm(A)† funm(A) expm(B) s expm(B)‡ s funm(B) κexp(A)

103 1.7e-15 8 1.9e-16 1.9e-16 2.8e-12 8 2.6e-13 4 2.9e-14 1.6e5
104 1.8e-13 11 7.6e-20 3.8e-20 4.0e-8 12 1.9e-10 1 4.1e-10 1.6e7
105 7.5e-13 15 1.2e-16 1.2e-16 2.2e-5 15 5.0e-7 4 1.3e-8 1.6e9
106 1.3e-11 18 2.0e-16 2.0e-16 8.3e-4 18 7.5e-6 13 7.5e-8 1.6e11
107 7.2e-11 21 1.6e-16 1.6e-16 1.2e2 22 6.9e-1 14 6.2e-4 1.6e13
108 3.0e-12 25 1.3e-16 1.3e-16 4.4e37 25 1.0e0 3 6.3e-2 1.6e15

than necessary s to be chosen, with a harmful effect on accuracy. We illustrate the
phenomenon with the matrix

(1.2) A =
[

1 b
0 −1

]
, eA =

[
e b

2 (e− e−1)
0 e−1

]
.

Our computations are carried out in MATLAB 7.6 (R2008a), which uses IEEE double
precision arithmetic with unit roundoff u = 2−53 ≈ 1.1 × 10−16. We computed the
exponential of A using expm, which implements the algorithm of Higham [10], and
funm, which is applicable to general matrix functions and implements the Schur–
Parlett method of Davies and Higham [3], [11, Sec. 10.4.3]. For b ranging from 103

to 108, the normwise relative errors in the Frobenius norm are shown in the columns
of Table 1.1 headed “expm(A)” and “funm(A)”. We see that while funm provides
full accuracy in every case, the accuracy for expm deteriorates with increasing b. As
b increases so does the chosen s in (1.1), with m equal to 13 in each case, which
is the maximum value that expm allows. For b = 108 the diagonal elements of eA

are approximated by rm(x)2
25 ≈ (

(1 + x/2)/(1− x/2)
)225

with x = ±2−25 ≈ ±10−8.
Approximately half the digits of x are lost in forming 1±x and the repeated squarings
can only amplify the loss. The essential problem is loss of significance due to too large
a choice of s. If we force expm to take smaller values of s (still with m = 13) we find
that the accuracy of the computed exponential increases as s decreases, until a result
correct to full machine precision is obtained for s = 0, as shown in the column of
the table headed “expm(A)†”. Note that s = 0 corresponds to disregarding the large
values of a12 completely.

To gain some more insight we note the following expression for the exponential
of a block 2× 2 block triangular matrix (see, e.g., [11, Problem 10.12], [18]):

(1.3) exp
([

A11 A12

0 A22

])
=

⎡
⎣ eA11

∫ 1

0

eA11(1−s)A12e
A22s ds

0 eA22

⎤
⎦ .

Note that A12 appears only in the (1,2) block of eA, where it enters linearly. This
suggests that the approximation procedure for eA should be unaffected by ‖A12‖ and
should depend only on ‖A11‖ and ‖A22‖. And if A11 and A22 are upper triangular
this argument can be recurred to reason that only the diagonal elements of A should
influence the parameters m and s. The need for exponentials of triangular matrices
does arise in practice, for example in the solution of radioactive decay equations [15],
[20].
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972 AWAD H. AL-MOHY AND NICHOLAS J. HIGHAM

In practice A is most often full, rather than (block) triangular. Of course a full
matrix A can be reduced by unitary similarities to a triangular matrix T via a Schur
decomposition, but applying the scaling and squaring method to T is not numerically
equivalent to applying it to A. To investigate possible overscaling for full matrices
we repeated the experiment above using B = Q∗AQ, where A is as in (1.2) and Q
is a random orthogonal matrix, different for each b. The relative normwise errors
are shown in the second group of columns of Table 1.1. We see that both expm and
funm produce errors increasing with b, those from expm being somewhat larger. The
column headed “expm(B)‡” shows that by forcing an optimal choice of s, expm can be
made significantly more accurate, so expm is again suffering from overscaling.

To determine whether the computed results from expm are acceptable we need to
know the condition number of the problem, which is

(1.4) κexp(A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖eA+E − eA‖
ε‖eA‖ .

We evaluated this condition number in the Frobenius norm (for which κexp(A) =
κexp(B)) using a combination of [11, Alg. 3.17] and [1, Alg. 6.4], implemented in a
modified version of expm cond from the Matrix Function Toolbox [8]. The results
are shown in the final column of Table 1.1. For a stable method we expect an error
bounded by a modest multiple of κexp(A)u. Thus funm is performing stably but expm
is behaving unstably, especially for b = 107, 108.

For the original A, the errors for expm are all substantially less than κexp(A)u, but
of course this condition number allows arbitrary perturbations and so is not appro-
priate for this triangular A. For structured condition numbers for (block) triangular
matrices see Dieci and Papini [5].

Our simple 2× 2 example reveals two things. First, that for triangular matrices
overscaling can happen because of large off-diagonal elements. Second, that for full
matrices overscaling is also possible and may cause unstable behavior of the scaling
and squaring method.

The goal of this work is to modify the scaling and squaring method in order to
overcome the overscaling problem. To this end we employ two novel ideas, one specific
to triangular matrices and one applying to general matrices.

Triangular matrices. For the triangular matrix (1.2) we noted that the diagonal
elements are calculated inaccurately by expm for large |b|. A simple solution is to
replace the diagonal elements of the computed exponential by eaii . To benefit the
off-diagonal elements as well, we can replace the values rm(2−saii)2

j

in the squaring
phase by e2j−saii , thereby attenuating the propagation of errors.

Full matrices. For full matrices we introduce a new way of sharpening the trun-
cation error bounds that are used in the derivation of the method. This allows the
method to take a potentially smaller s, and hence evaluate the Padé approximant at a
larger-normed matrix and require fewer squarings. We will argue that the sharpening
is likely to have a particularly beneficial effect when overscaling is possible.

Our key idea is to exploit the sequence {‖Ak‖1/k}. It is easy to see that

(1.5) ρ(A) ≤ ‖Ak‖1/k ≤ ‖A‖, k = 1: ∞,

where ρ is the spectral radius, and moreover ‖Ak‖1/k → ρ(A) as k → ∞ [13,
Cor. 5.6.14]. Figure 1.1 plots the sequence {‖Ak‖1/k

2 }20k=1 for 54 nonnormal 16 × 16
matrices A, normalized (without loss of generality) so that ‖A‖2 = 1, drawn from the
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Fig. 1.1. {‖Ak‖1/k
2 }20

k=1 for 54 16 × 16 matrices A with ‖A‖2 = 1.

MATLAB function gallery, from the Matrix Computation Toolbox [7], and from
the eA literature. We see that typically the sequence is decreasing, although very
nonmonotonic behavior is possible. It is this decrease that we will exploit.

In the derivation of the scaling and squaring algorithm of [10] a power series

h�(x) =
∞∑

k=�

ck xk

has to be bounded at the matrix argument A (or, more precisely, 2−sA, but we drop
the scale factor for now), where � = 2m + 1. The bound used previously is [10], [11,
Sec. 10.3]

(1.6) ‖h�(A)‖ ≤
∞∑

k=�

|ck|‖A‖k.

The following theorem provides a sharper bound.
Theorem 1.1. Let h�(x) =

∑∞
k=� ck xk be a power series with radius of con-

vergence ω, and let h̃�(x) =
∑∞

k=� |ck|xk. For any A ∈ Cn×n with ρ(A) < ω we
have

(1.7) ‖h�(A)‖ ≤ h̃�(‖At‖1/t),

where ‖At‖1/t = max{‖Ak‖1/k : k ≥ � and ck 	= 0}.
Proof. The existence of t is guaranteed since the sequence {‖Ak‖1/k} is bounded

above and convergent, as noted above. We have

‖h�(A)‖ ≤
∞∑

k=�

|ck|‖Ak‖ =
∞∑

k=�

|ck|
(
‖Ak‖1/k

)k

≤
∞∑

k=�

|ck|
(
‖At‖1/t

)k

= h̃�(‖At‖1/t).
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2

Fig. 1.2. For the 2 × 2 matrix A in (1.9), ‖Ak‖2 and various bounds for k = 1: 20.

The bound (1.7) is clearly sharper than (1.6) since ‖At‖1/t ≤ ‖A‖, and it can be
arbitrarily smaller. In particular, if A 	= 0 is nilpotent and � ≥ n then the bound (1.7)
is zero while (1.6) is nonzero unless h�(x) ≡ 0. Note that as essentially a special case
of Theorem 1.1, if the sequence {‖Ak‖}k≥i is nonincreasing then

(1.8) ‖Ak‖ ≤ (‖Ai‖1/i
)k

, k ≥ i.

To see why (1.7) may help to avoid overscaling, consider the matrix

(1.9) A =
[

0.9 500
0 −0.5

]
,

for which the 2-norms of the powers of A decay monotonically for k ≥ 5, despite the
large (1,2) element. Figure 1.2 plots ‖Ak‖2, the crude bound ‖A‖k2 , and the more
refined bounds (‖A5‖1/5

2 )k valid for k ≥ 5 and (‖A10‖1/10
2 )k valid for k ≥ 10, by (1.8).

The crude bound is an extreme overestimate and the refined bounds are a significant
improvement. The reason for the improvement is that when A is powered the large
(1,2) element multiplies the diagonal elements and there is both multiplicative and
subtractive cancellation, resulting in little or no growth. The refined bounds take
advantage of this. For the power series h�, such a reduction in the bound for ‖Ak‖
translates into a reduction in the bound for h�(A), and this in turn can lead to a much
smaller s being chosen in the scaling and squaring method.

In essence, what we are doing is using the behavior of the first few powers of
A to extract information about the nonnormality of A. In the scaling and squaring
method we will exploit the powers that must be computed anyway during the course
of the algorithm, thereby gaining potentially improved accuracy and reduced cost.
This idea has already been used in an ad hoc way by Hargreaves and Higham [6],
who in the context of computing the matrix cosine express error bounds in terms of
‖A2‖1/2 instead of ‖A‖, but here we are exploiting the idea more systematically.
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This paper is organized as follows. We begin, in section 2, by showing how to
improve the squaring phase of the scaling and squaring method for triangular matrices.
In section 3 we summarize the scaling and squaring algorithm of Higham. Section 4
presents new bounds for norms of matrix powers that are then exploited in section 5
to produce a new algorithm that is often more accurate, more efficient, or both.
Numerical experiments that illustrate the benefits of the new algorithm are given in
section 6, and section 7 presents conclusions.

Finally, we make connections with earlier work. The overscaling phenomenon was
first identified by Kenney and Laub [14]. It was later analyzed by Dieci and Papini
[4] for the case of block 2 × 2 block upper triangular matrices (Aij)2i,j=1. The latter
analysis suggests that if the scaling and squaring method is used with s determined
so that 2−s‖A11‖ and 2−s‖A22‖ are appropriately bounded, without consideration
of ‖A12‖, then an accurate approximation to eA will still be obtained. However, no
algorithm for general A was proposed in [4].

2. Squaring phase for triangular matrices. Our new approach for triangu-
lar matrices was inspired by the practical observation that the scaling and squaring
method seems to be immune to overscaling for nilpotent triangular matrices T—
those with zero diagonal elements. Indeed, the diagonal entries of rm(2−sT ) are
correctly computed as ones and remain as ones through the squaring process. Now
for a general upper triangular matrix T , the scaling and squaring method computes
rm(2−sT ) =: Ds + Fs, where Ds is diagonal and Fs is strictly upper triangular, and
then forms

Di−1 + Fi−1 = (Di + Fi)2, i = s : −1 : 1,

after which D0 + F0 ≈ eT . Hence we have the recurrence

Di−1 = D2
i

Fi−1 = Di Fi + Fi Di + F 2
i

}
i = s : −1 : 1.(2.1)

Clearly, errors in the computation of the Di propagate into the off-diagonals contained
in Fi−1. Indeed a single error εI (say) in Di transmits into Fi−1 as 2εFi and into
Di−1 as 2εDi, so there is potential exponential error growth. We can virtually remove
errors in the diagonal and thereby attenuate the overall error growth by computing
Di = exp(2−idiag(T )) at each stage instead of computing Ds = rm(2−sdiag(T )) and
then repeatedly squaring. Thus the final steps of the scaling and squaring method
are rewritten as follows.

Code Fragment 2.1.

1 Form X = rm(2−sT ). % First phase of method (unchanged).
2 Replace diag(X) by exp(2−sdiag(T )).
3 for i = s− 1:−1: 0
4 X ← X2

5 Replace diag(X) by exp(2−idiag(T )).
6 Replace (first) superdiagonal of X by explicit formula

for superdiagonal of exp(2−iT ) from [11, eq. (10.42)].
7 end

Note that we have gone further in line 6 by computing the correct superdiagonal as
well, since it is available from an accurate formula at negligible cost.

We give a numerical example to illustrate the benefits of this approach. We take
the matrix formed by the MATLAB code, with n = 8,
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Code Fragment 2.1

Fig. 2.1. Relative errors from Code Fragment 2.1 and expm mod for a single 8 × 8 matrix with
s = 0: 53.

T = gallery(’triw’,n,-1); T(1,n) = 1e4; T(1:n+1:n^2) = -(1:n).^2

The MATLAB function expm chooses s = 11 and m = 13 for this matrix and produces
a relative error 8.4× 10−14. For s from 0 to 53 we compare Code Fragment 2.1, using
m = 13, with a modified version expm mod of expm that accepts a user-specified
choice of s. The normwise relative errors for both methods are plotted in Figure 2.1.
The optimum value of s for expm mod is 4, for which a relative error 4.9 × 10−16 is
achieved; as s increases the relative error deteriorates rapidly until it reaches 1 at
s = 53. However, Code Fragment 2.1 remains fully accurate for all s ≥ 4, showing
the effectiveness of the strategy of injecting the correct diagonal into the recurrence.

This approach can be extended to quasi-triangular matrices T , which are block
triangular matrices whose diagonal blocks Tii are 1× 1 or 2× 2. Such T arise in the
real Schur decomposition of a real matrix, in which case the 2 × 2 blocks Tii have
distinct eigenvalues that are nonreal complex conjugates. We need to compute the
exponentials of the diagonal blocks

A =
[

a b
c d

]
,

which we assume have distinct eigenvalues λ1, λ2. From the general formula f(A) =
f(λ1)I + f [λ1, λ2](A− λ2I), where f [λ1, λ2] is a divided difference [11, Prob. 1.9], we
obtain

eA =
eλ1 − eλ2

λ1 − λ2
A +

(
eλ1 − λ2

eλ1 − eλ2

λ1 − λ2

)
I.
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The eigenvalues of A are (a + d ± μ)/2, where μ =
√

(a− d)2 + 4bc. After some
manipulation we obtain

(2.2)

eA = e(a+d)/2

[
cosh(μ/2) + 1

2 (a− d) sinch(μ/2) b sinch(μ/2)
c sinch(μ/2) cosh(μ/2)− 1

2 (a− d) sinch(μ/2)

]
,

where

sinch(x) =
{

sinh(x)/x, x 	= 0,
1, x = 0.

This formula is not always evaluated to high relative accuracy, so the use of extra
precision in its evaluation might be justified.

Combining this formula with an initial real Schur decomposition we have the
following outline applicable to any A ∈ Rn×n.

Code Fragment 2.2.

1 Compute the real Schur decomposition, A = QTQ∗,
with block q × q upper quasi-triangular T = (Tij).

2 Form X = rm(2−sT ).
3 Replace diag(Xii) by exp(2−sdiag(Tii)), i = 1: q, using (2.2).
4 for i = s− 1:−1: 0
5 X ← X2

6 Replace diag(Xii) by exp(2−idiag(Tii)), i = 1: q, using (2.2).
7 end
8 X ← QXQ∗

Note that this approach has the advantage that it works entirely in real arith-
metic, in contrast to the Schur–Parlett method specialized to the exponential, which
necessarily uses the complex Schur form [3], [11, Sec. 10.4.3].

Our main interest is in improving the scaling and squaring method for full matrices
without using a Schur decomposition. In the next section we summarize the derivation
of the existing algorithm on which we will work.

3. The existing scaling and squaring algorithm. In this section we review
the scaling and squaring algorithm of Higham [10]. Write the [m/m] Padé approxi-
mant of ex as rm(x) = pm(x)/qm(x). We will later need the properties that pm has
positive coefficients and qm(x) = pm(−x).

Let νm = min{ |t| : qm(t) = 0 } and

Ωm = {X ∈ C
n×n : ρ(e−Xrm(X)− I) < 1 and ρ(X) < νm }.

The functions

(3.1) h2m+1(X) = log(e−X rm(X))

are defined for X ∈ Ωm, where log denotes the principal logarithm, and so for X ∈
Ωm we have rm(X) = eX+h2m+1(X). Now choose s so that 2−sA ∈ Ωm. Then
rm(2−sA)2

s

= eA+2sh2m+1(2−sA) =: eA+ΔA and the matrix ΔA = 2sh2m+1(2−sA)
represents the backward error resulting from the approximation of eA by the scaling
and squaring method. Over Ωm, the functions h2m+1 have a power series expansion

h2m+1(X) =
∞∑

k=2m+1

ck Xk.
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Table 3.1

Parameters θm needed in Algorithms 3.1 and 5.1 and upper bounds for κA(qm(A)).

m θm κA(qm(A))

3 1.495585217958292e-2 1.0e0
5 2.539398330063230e-1 1.3e0
7 9.504178996162932e-1 2.6e0
9 2.097847961257068e0 8.2e0

13 (Alg. 3.1) 5.371920351148152e0 2.2e2
13 (Alg. 5.1) 4.25 7.1e1

Higham [10] employs the bound1

‖ΔA‖
‖A‖ =

‖h2m+1(2−sA)‖
‖2−sA‖ ≤ h̃2m+1(‖2−sA‖)

‖2−sA‖ ,(3.2)

where h̃2m+1(x) =
∑∞

k=2m+1 |ck|xk. For m = 1: 21, he uses high precision arithmetic
to compute the values

(3.3) θm = max{ θ : h̃2m+1(θ)/θ ≤ u },

some of which are listed in Table 3.1. He finds that θm < νm. Thus in exact arith-
metic, ‖ΔA‖ ≤ u‖A‖ if s is chosen so that ‖2−sA‖ ≤ θm and rm(2−sA)2

s

is used to
approximate eA. Higham’s cost analysis eliminates even degrees of Padé approximants
and reveals that m = 13 is the optimal degree to use when scaling is required. When
‖A‖ ≤ θ13, his algorithm chooses the first m ∈ {3, 5, 7, 9, 13} such that ‖A‖ ≤ θm.

For m = 3, 5, 7, 9, Higham uses the evaluation scheme

pm(A) = A

(m−1)/2∑
k=0

b2k+1A2k +
(m−1)/2∑

k=0

b2kA2k =: (um + vm)(A),(3.4)

where A2k = A2k. For m = 13, he uses the scheme

p13(A) = A
[
A6(b13A6 + b11A4 + b9A2) + b7A6 + b5A4 + b3A2 + b1I

]
(3.5)

+ A6(b12A6 + b10A4 + b8A2) + b6A6 + b4A4 + b2A2 + b0I

=: (u13 + v13)(A),

where A2 = A2, A4 = A2
2, and A6 = A2A4. Since qm(A) = pm(−A), we have

qm(A) = (−um + vm)(A) and rm(A) is obtained from the equation

(3.6) (−um + vm)(A)rm(A) = (um + vm)(A).

The algorithm of [10] can be summarized as follows.
Algorithm 3.1 (scaling and squaring algorithm for the matrix exponential).

This algorithm evaluates the matrix exponential X = eA of A ∈ Cn×n by the scaling
and squaring method. It uses the parameters θm given in Table 3.1. The algorithm is
intended for IEEE double precision arithmetic.

1In fact, (3.2) is a slightly sharper variant of the bound used by Higham [10], but it leads to the
same parameters.
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1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ θm, evaluate X = rm(A) using (3.4) and (3.6), quit, end
3 end
4 A← 2−sA with s = �log2(‖A‖1/θ13)

5 Evaluate r13(A) using (3.5) and (3.6).
6 X = r13(A)2

s

by repeated squaring.
Cost: (πm + s)M + D, where m is the degree of Padé approximant used and πm

(tabulated in [10, Table 2.2]) is the cost of evaluating pm and qm.

4. Practical bounds for norm of matrix power series. The bound for
‖h�(A)‖ in Theorem 1.1 is not readily usable in the form stated since it employs
‖At‖1/t and we will rarely know the value of t. We now develop a more convenient
form of bound that will be used in the next section to improve Algorithm 3.1. We
denote by N the set of positive integers.

Lemma 4.1. For any k ≥ 1 such that k = pm1 + qm2 with p, q ∈ N and
m1, m2 ∈ N ∪ {0},

‖Ak‖1/k ≤ max
(‖Ap‖1/p, ‖Aq‖1/q

)
.

Proof. Let δ = max(‖Ap‖1/p, ‖Aq‖1/q). The bound follows from the inequality

‖Ak‖ ≤ ‖Apm1‖‖Aqm2‖
≤

(
‖Ap‖1/p

)pm1
(
‖Aq‖1/q

)qm2

≤ δpm1δqm2 = δk.

Theorem 4.2. Define h� and h̃� as in Theorem 1.1 and suppose ρ(A) < ω and
p ∈ N. Then

(a) ‖h�(A)‖ ≤ h̃�

(
max(‖Ap‖1/p, ‖Ap+1‖1/(p+1))

)
if � ≥ p(p− 1).

(b) ‖h�(A)‖ ≤ h̃�

(
max(‖A2p‖1/(2p), ‖A2p+2‖1/(2p+2))

)
if � ≥ 2p(p− 1) and h� is

even.
Proof. For the first part, let Xp = {m ∈ N : m ≥ p(p − 1) } and Yp = { (p +

1)m1 + pm2 : m1, m2 ∈ N∪{0} }. We have Xp ⊂ Yp since any element k ∈ Xp can be
written as k = pq+r with q ≥ p−1 and 0 ≤ r < p. Then k = (p+1)r+p(q−r) ∈ Yp,
since q − r ≥ p− r − 1 ≥ 0. Hence by Lemma 4.1 we have

‖Ak‖1/k ≤ max{ ‖Ap+1‖1/(p+1), ‖Ap‖1/p }, k ≥ p(p− 1),

and the result follows from Theorem 1.1. Part (b) follows similarly from the relations

{ � : � even, � ≥ 2p(p− 1) } = 2Xp ⊂ 2Yp

= { (2p + 2)m1 + 2pm2 : m1, m2 ∈ N ∪ {0} }.
To illustrate Theorem 4.2, suppose � = 12. In view of the inequality ‖A2k‖1/(2k) ≤

‖Ak‖1/k, the p that minimizes max(‖Ap‖1/p, ‖Ap+1‖1/(p+1)) subject to � ≥ p(p − 1)
is either p = 3 or p = 4. So the first part of the theorem gives

(4.1) ‖h12(A)‖ ≤ h̃12

(
min

(
max(‖A3‖1/3, ‖A4‖1/4), max(‖A4‖1/4, ‖A5‖1/5)

))
.

If h12 is even we can apply the second part of the theorem, for which the optimal
choice of p is 3, which gives

(4.2) ‖h12(A)‖ ≤ h̃12

(
max(‖A6‖1/6, ‖A8‖1/8)

)
.
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For a normal matrix and the 2-norm these upper bounds are both identical to the
bound h12(‖A‖2), but for nonnormal matrices they can be significantly smaller. For A

in (1.9), we have ‖h12(A)‖2 ≤ h̃12(‖A‖2) ≈ h̃12(500), but ‖h12(A)‖2 ≤ h̃12(3.82) from
(4.1) and ‖h12(A)‖2 ≤ h̃12(2.39) from (4.2), demonstrating the benefit of exploiting
the structure of h12 as an even function. Figure 1.1 suggests that it will typically be
the case that (4.2) is sharper than (4.1).

5. New algorithm. We now derive a new algorithm that builds on Algorithm 3.1.
Our development focuses on increasing the sharpness of the inequality in (3.2) by using
the bounds of the previous section.

The functions h2m+1 in (3.1) are odd, which follows from the fact that Padé
approximants to the exponential function satisfy rm(−x) = (rm(x))−1 [11, Sec. 10.3]:

h2m+1(−x) = log(exrm(−x))
= log((e−xrm(x))−1)
= − log(e−xrm(x)) = −h2m+1(x).

Therefore for X ∈ Ωm we can write

h2m+1(X) = X

∞∑
k=2m

ck+1 Xk =: Xφ2m(X),

where the φ2m are even functions. Let φ̃2m(x) =
∑∞

k=2m |ck+1|xk. We can now refine
the bound in (3.2) using Theorem 4.2(b):

‖ΔA‖
‖A‖ =

‖h2m+1(2−sA)‖
‖2−sA‖ =

‖2−sAφ2m(2−sA)‖
‖2−sA‖(5.1a)

≤ ‖φ2m(2−sA)‖ ≤ φ̃2m(αp),

where

αp = 2−s max
(‖A2p‖1/(2p), ‖A2p+2‖1/(2p+2)

)
(5.1b)

and we choose p to minimize αp subject to 2m ≥ 2p(p − 1). As we have φ̃2m(θ) =
h̃2m+1(θ)/θ, clearly this analysis does not affect the calculation of the values θm in
(3.3), but it does affect the choice of scaling parameter s. Whereas before, the pair
(s, m) could be used if 2−s‖A‖ ≤ θm, now the requirement is only

(5.2) 2−s max
(‖A2p‖1/(2p), ‖A2p+2‖1/(2p+2)

) ≤ θm,

and for a given m this is potentially satisfied with a much smaller s when A is non-
normal. A significant computational saving could therefore accrue.

At this point, we have an improved way to choose the parameters m and s, but
we have not yet considered the effect of rounding errors. The analysis in [10] shows
that Algorithm 3.1 is not unduly affected by rounding errors except, possibly, in the
squaring phase. But with our more liberal choice of parameters numerical stability
needs further analysis. We will combine rigorous error bounds with some heuristics
in order to arrive at our final algorithm.

The main aim is to check that the evaluation of rm is accurate in floating point
arithmetic. Let A ← 2−sA, so that A denotes the scaled matrix, and consider the
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evaluation of pm(A) by the schemes described in the previous section. It is shown in
[10] that the computed matrix p̂m(A) satisfies

(5.3) ‖pm(A)− p̂m(A)‖1 ≤ γ̃mnpm(‖A‖1) <∼ γ̃mn‖pm(A)‖1 e‖A‖1 ,

where γ̃k = cku/(1− cku) with c a small integer constant. While this is a satisfactory
bound for the values of ‖A‖ allowed by Algorithm 3.1, it is not so for an algorithm
based on (5.2), because ‖A‖ can be arbitrarily large. Therefore we will use the sharper
error bound [11, Thm. 4.5]

(5.4) max(‖pm − p̂m‖1, ‖qm − q̂m‖1) ≤ γ̃mn‖pm(|A|)‖1 = γ̃mn‖pm(|A|)T e‖∞,

where e = [1, 1, . . . , 1]T and we have used the properties of pm and qm mentioned at
the start of section 3 together with the relations

(5.5) ‖B‖1 = ‖|B|‖1 = ‖ |B|T e‖∞.

The bound (5.4) can be computed in just O(n2) operations.
The a priori bound (5.4) applies to several different evaluation schemes and does

not exploit the particular properties of our scheme. In particular, it contains |A|m,
which is clearly pessimistic since our schemes for pm and qm do not explicitly evaluate
the mth power of A. However, it turns out that the bound is surprisingly sharp when
used within our algorithm in practice. We have found that if the inequality

(5.6) ‖p̂m(|A|)T e‖∞/ min(‖p̂m‖1, ‖q̂m‖1) ≤ ceθm

is satisfied for a suitable integer constant c then this is a reliable indicator that p̂m and
q̂m have been computed to close to full precision (in other words, we can replace γ̃mn

by γ̃1 in (5.4)). We have tried the alternative of computing a running error bound
(an a posteriori bound that is the smallest possible) [9, Sec. 3.3], but found that it
brings no benefits.

Suppose that (5.6) is not satisfied, which suggests that the evaluation of pm or qm

may have been insufficiently accurate. Since the weaker bound (5.3) is satisfactory for
Algorithm 3.1, this means that s < smax, where smax is the scaling parameter selected
by Algorithm 3.1. We could simply revert to smax and execute Algorithm 3.1, but
instead we will use a strategy that in certain cases increases s based on the available
information. One approach is to increase s so that (5.6) is satisfied. However, we
have found a more heuristic approach to perform better in practice. Let A denote
the original, unscaled matrix. Returning to the bound (5.1a), using |h2m+1(A)| ≤
h̃2m+1(|A|) we have

‖ΔA‖1
‖A‖1 =

‖h2m+1(2−sA)‖1
‖2−sA‖1 ≤ ‖h̃2m+1(2−s|A|)‖1

‖2−sA‖1
≤ |c2m+1| ‖ |2

−sA|2m+1 ‖1
‖2−sA‖1 +

∞∑
k=2m+2

|ck| ‖ |2
−sA|k ‖1
‖2−sA‖1(5.7)

≤ φ̃2m(‖2−sA‖1).
We select the smallest integer �m ≥ 0 so that |c2m+1|‖|2−s−�mA|2m+1‖1/‖2−s−�mA‖1 ≤
u, that is,

(5.8) �m = max
(⌈

log2

(
|c2m+1| ‖|2

−sA|2m+1‖1
u‖2−sA‖1

)
/(2m)

⌉
, 0

)
.
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If �m > 0 then we increase s to s + �m. The value s + �m cannot exceed smax as long
as s ≤ smax. To see why, write smax = s + t and note that by the definition of smax

we have φ̃2m(‖2−smaxA‖1) ≤ u, which yields from (5.7) that

|c2m+1| ‖ |2
−s−tA|2m+1 ‖1
‖2−s−tA‖1 ≤ u.

As �m is chosen to be the smallest nonnegative integer such that this relation holds,
we have t ≥ �m, that is, s + �m ≤ smax. Note that we can evaluate ‖|2−sA|2m+1 ‖1
in O(n2) operations by repeated matrix–vector products, as ‖|2−sA|2m+1e‖∞. Also,
while ‖|2−sA|2m+1 ‖1 can be large, we have |c2m+1| � 1, so �m should not typically
be large. Experiments show that this heuristic choice of �m has the ability usually to
increase s just when needed. If (5.6) is satisfied we proceed with this s; otherwise we
revert to Algorithm 3.1, reusing as many of the computed quantities as possible.

To obtain rm(A), with A once again denoting the scaled matrix 2−sA, we solve
the multiple right-hand side linear system (3.6) with the coefficient matrix qm(A) =
−U + V , where U = um(A), V = vm(A). Since ρ(A) ≤ αp ≤ θm < νm by (1.5)
and (5.2), the matrix qm(A) is nonsingular and the series qm(A)−1 =

∑∞
k=0 ak Ak

converges absolutely. But in addition we want qm(A) to be well conditioned, so that
the system (3.6) can be solved accurately in floating point arithmetic. For any ε > 0,
there exists a consistent matrix norm ‖ · ‖A such that ‖A‖A ≤ ρ(A)+ ε ≤ αp + ε. The
corresponding condition number is

κA(qm(A)) = ‖qm(A)‖A‖qm(A)−1‖A
≤ pm(αp + ε)

∞∑
k=0

|ak|(αp + ε)k ≤ pm(θm + ε)
∞∑

k=0

|ak|(θm + ε)k,

where we have used the properties of pm and qm mentioned at the start of this
section. We choose ε = u and list these upper bounds for κA(qm(A)) in Table 3.1.
Since the norm ‖ · ‖A can be very badly scaled the practical value of these bounds for
a particular A is difficult to judge. However, we can compute an a posteriori forward
error bound for (3.6). This bound is, with X denoting rm and the residual matrix
R̂ = fl(U + V − (−U + V )X̂) for the computed U and V ,

(5.9)
‖X − X̂‖M
‖X̂‖M

≤ ‖|(−U + V )−1|(|R̂|+ γn+1(|−U + V ||X̂ |+ |U + V |))‖M
‖X̂‖M

,

where ‖X‖M = maxi,j |xij | and γk = ku/(1− ku). This bound is from [9, eq. (7.31)]
and is essentially the best possible forward error bound. Given that we already have
an LU factorization of −U + V from solving the linear system, this bound can be
cheaply estimated without computing (−U +V )−1, as described in [9, Sec. 15.1]. The
cost of forming the bound (5.9) is therefore essentially one matrix multiplication—that
needed for R.

We are now in a position to design the new algorithm. Higham’s cost analysis
and evaluation schemes stated above remain applicable. From (5.1b) it is easily seen
that α3 ≤ α2 ≤ α1. Thus, for m = 3, 5, 7, 9 the optimal values of p subject to the
constraint 2m ≥ 2p(p− 1) are p = 2, 2, 3, 3, respectively, and for m = 13 the optimal
value of p is 3 or 4 (either of α3 and α4 can be the smaller). Thus, using the 1-norm,
we need to compute the quantities

αp = max
(
d2p, d2p+2

)
, p = 2: 4, d2j := ‖A2j‖1/(2j)

1 , j = 2: 5.
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However, computing the d2j requires computing powers of A that are not needed to
evaluate rm, for which the highest explicitly computed power is, depending on A,
the eighth or lower. We will use the powers of A that are evaluated in the schemes
(3.4) and (3.5), and for other powers compute norm estimates using the block 1-norm
estimation algorithm of Higham and Tisseur [12], which for an n × n matrix carries
out a 1-norm power iteration whose iterates are n× t matrices, where t is a parameter
that we take to be 2. This algorithm typically requires the evaluation of about 4t
matrix–vector products and almost invariably produces a norm estimate (which is, in
fact, a lower bound on the norm) correct to within a factor 3.

Now we describe the details of how to choose m and s, with s minimal, so that
the bound in (5.1a) is no larger than u.

1. Compute A2 = A2 and set s = 0 and m = 3, so p = 2 is the optimal value
such that 2m ≥ 2p(p − 1), as explained above. We need η1 = max(d4, d6).
Since A4 and A6 are not needed by r3, use estimates of d4 and d6 obtained
by applying the norm estimator to A2

2 and A3
2 (a product A3

2x required by
the estimator is computed by three matrix–vector multiplications with A2,
for example). If η1 ≤ θ3 quit, otherwise continue to step 2.

2. Compute A4 = A2
2 and set m = 5, for which p = 2 is again the optimal value

such that 2m ≥ 2p(p− 1). Now we have d4 and can reuse the estimate of d6,
setting η2 = max(d4, d6). If η2 ≤ θ5 quit, otherwise continue to step 3.

3. Compute A6 = A4A2. For m ∈ {7, 9}, p = 3 is the optimal value such that
2m ≥ 2p(p− 1). We compute η3 = max(d6, d8), in which we estimate d8 by
applying the norm estimator to A2

4. If η3 ≤ θ7 set m = 7, else if η3 ≤ θ9 set
m = 9, else continue to step 4.

4. Set m = 13, for which either p = 3 or p = 4 is the optimal value such
that 2m ≥ 2p(p − 1). The highest power of A that we compute to evaluate
r13 by (3.5) is A6, so we use the norm estimator to estimate d10 and set
η4 = max(d8, d10). Choose the smallest s ≥ 0 such that 2−sη5 ≤ θ13, where
η5 = min(η3, η4).

We introduce two more algorithmic refinements. First, we use θ13 = 4.25 in place
of the value θ13 = 5.37 used in Algorithm 3.1 (see Table 3.1). The reason is that
this produces a slightly better conditioned denominator polynomial q13 and our ex-
periments show that in the context of our more liberal choice of s this is beneficial to
the accuracy of the computed exponential. This refinement can lead to s exceeding
smax, but only by 1, and in this case �m = 0 as can be seen from (5.7). The second
refinement is that for each putative m we compute the correction (5.8) before evalu-
ating pm and qm and checking the inequality (5.6) and, if the correction is nonzero,
we proceed to the next larger choice of m. This is simply another means for trying to
avoid an inaccurate evaluation (or, put another way, wasted computation).

Algorithm 5.1 (new scaling and squaring algorithm for the matrix exponential).
This algorithm evaluates the matrix exponential X = eA of A ∈ Cn×n by the scaling
and squaring method. It is intended for IEEE double precision arithmetic. It uses the
parameters θm given in Table 3.1 and the following functions:

• normest, which when invoked as normest(A1, A2, . . . , Ak) produces an es-
timate of ‖A1A2 . . . Ak‖1 and when invoked as normest(A, m) produces an
estimate of ‖Am‖1;
• ell(A, m), which returns the integer max(�(log2(α/u)/(2m)
), 0),

where α = |c2m+1|normest(|A|, 2m + 1)/‖A‖1.
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1 A2 = A2

2 d6 = normest(A2, 3)1/6, η1 = max
(
normest(A2, 2)1/4, d6

)
3 if η1 ≤ θ3 and ell(A, 3) = 0
4 Evaluate p3(A) and q3(A) using (3.4).
5 if ‖p3(|A|)T e‖∞/ min(‖p3‖1, ‖q3‖1) ≤ 10eθ3

6 Evaluate r3 using (3.6), quit.
7 end
8 end
9 A4 = A2

2, d4 = ‖A4‖1/4
1

10 η2 = max
(
d4, d6

)
11 if η2 ≤ θ5 and ell(A, 5) = 0
12 Evaluate p5(A) and q5(A) using (3.4).
13 if ‖p5(|A|)T e‖∞/ min(‖p5‖1, ‖q5‖1) ≤ 10eθ5

14 Evaluate r5 using (3.6), quit.
15 end
16 end
17 A6 = A2A4, d6 = ‖A6‖1/6

1

18 d8 = normest(A4, 2)1/8, η3 = max(d6, d8)
19 for m = [7, 9]
20 if η3 ≤ θm and ell(A, m) = 0
21 Evaluate pm(A) and qm(A) using (3.4).
22 if ‖pm(|A|)T e‖∞/ min(‖pm‖1, ‖qm‖1) ≤ 10eθm

23 Evaluate rm using (3.6), quit.
24 end
25 end
26 end
27 η4 = max

(
d8, normest(A4, A6)1/10

)
28 η5 = min(η3, η4)
29 s = max

(�log2(η5/θ13)
, 0
)

30 s = s + ell(2−sA, 13)
31 A← 2−sA, A2 ← 2−2sA2, A4 ← 2−4sA4, A6 ← 2−6sA6

32 Evaluate p13(A) and q13(A) using (3.5).
33 if ‖p13(|A|)T e‖∞/ min(‖p13‖1, ‖q13‖1) ≤ (10 + smax)eθ13

34 Evaluate r13 using (3.6), quit.
35 else
36 s1 = smax − s, s = smax

37 A← 2−s1A, A2 ← 2−2s1A2, A4 ← 2−4s1A4, A6 ← 2−6s1A6

38 Evaluate r13 using (3.5) and (3.6).
39 end
40 if A is triangular
41 Invoke Code Fragment 2.1.
42 else
43 X = r13(A)2

s

by repeated squaring.
44 end
Cost: (πm + s)M + D, where m is the degree of Padé approximant used and πm

(tabulated in [10, Table 2.2]) is the cost of evaluating pm and qm. If line 36 is executed
then the cost is (π13 + s + 3)M +D. If any of the tests at lines 5, 13, and 22 fail then
there is some wasted work in evaluating lower degree polynomials pm and qm that are
not used.
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Note that we have not included the bound (5.9) because it would require an extra
matrix multiplication and the algorithm performs well in practice without the use
of it. It is easy to check that if line 33 is reached then Algorithm 3.1 would choose
m = 13, so at line 36 the algorithm is reverting to Algorithm 3.1.

6. Numerical experiments. We now compare Algorithm 3.1, as implemented
in expm, and Algorithm 5.1 experimentally. We will use four sets of test matrices.
Set 1 Matrices from the literature on developing methods for eA (including (1.2)

with b = 107), mostly intended to be difficult for the scaling and squaring
method. All are of dimension 10 or less.

Set 2 10× 10 matrices from MATLAB (in particular, from the gallery function),
and from the Matrix Computation Toolbox [7].

Set 3 The upper triangular Schur factors of the matrices from Set 2.
Set 4 Test matrices provided with EigTool [19], which are mainly discretizations of

operators. The matrices are of variable dimension, which we have taken to
be as close as possible to n = 50.

The tests in [10] and [11] used Sets 1 and 2 together.
Our tests were done in MATLAB 7.6 (R2008a). We compute normwise relative

errors ‖X̂ − eA‖F /‖eA‖F of the computed X̂ by approximating eA by the result
computed at 100 digit precision using the Symbolic Math Toolbox. For Sets 1 and 3,
Algorithm 5.1 produces many errors of zero, but to facilitate the plots we replace a
zero error for this algorithm by 10−18.

For each set we present the results as four plots in a 2×2 grid; see Figures 6.1–6.4.
The (1,1) plot shows the relative errors for the two algorithms, where the matrices are
sorted by decreasing value of the condition number κexp(A) in (1.4), and κexp(A)u is
shown as a solid line. The (1,2) plot shows the log10 of the ratio of relative errors,
sorted in increasing order, and this same ordering is also used by the (2,1) and (2,2)
plots. The (2,1) plot shows the values of s chosen by each method. The (2,2) plot
shows the ratio of the costs of the algorithms, where cost is measured as described
after the statement of each algorithm and we regard M and D as equal. Note that this
measure of cost is appropriate only for n� 10, but since the choice of s and m depends
only on ‖A‖1 for Algorithm 3.1 and on ‖Ak‖1/k

1 for certain k for Algorithm 5.1, these
results are indicative of the relative costs for much larger matrices. We note that the
cost ratio cannot exceed 8/7 ≈ 1.14, and can be greater than 1 only because of the
differing values for θ13 for the two algorithms (see Table 3.1).

The main points to note are as follows.
1. Algorithm 5.1 did not revert to Algorithm 3.1 (on line 36) for any of the test

matrices. Moreover, the tests at lines 5, 13, and 22 never failed to be satisfied. The
correction (5.8) was nonzero at line 30 on 6, 10, 0, and 2 occasions on the four test
sets, respectively. If we remove line 30 then there are 6 reversions in Test 1, 1 in Test
2, and none in Tests 3 and 4. The value of ell at lines 3, 11, and 20 was nonzero
once for Test 1, 5 times for Test 2, and not at all for Tests 3 and 4.

2. For Set 1, Algorithm 5.1 has a cost up to about 5 times smaller than Algo-
rithm 3.1 while achieving error barely any larger and sometimes orders of magnitude
smaller. This is due to Algorithm 5.1 frequently choosing a smaller s.

3. For Set 2 there is no significant difference in the accuracy of the two algo-
rithms. But in 22% of the cases Algorithm 5.1 is less expensive than Algorithm 3.1,
by up to 17%, while in just two cases it is more expensive, by 12%.

4. For Set 3, Algorithm 5.1 is more accurate than Algorithm 3.1 in almost every
case, often by orders of magnitude. This is mainly due to exploiting triangularity in
the squaring phase.
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Fig. 6.1. Results for test matrix Set 1.
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Fig. 6.2. Results for test matrix Set 2.
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Fig. 6.3. Results for test matrix Set 3.
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Fig. 6.5. Quantities associated with the computed r̂m ≈ rm(2−sA) for Algorithm 5.1: rel-
ative error in r̂m (“◦”), a posteriori forward error bound (5.9) (“×”), and nκ1(qm)u (“∗”)—an
approximate a priori bound for the error.

5. For Set 4, Algorithm 5.1 is superior to Algorithm 3.1 in speed and accuracy
for four of the matrices and performs equivalently to it for the rest.

6. Figure 6.5 provides information about the linear systems (3.6) that are solved
to obtain rm(2−sA). It shows the relative error ‖rm − r̂m‖1/‖rm‖1 along with the a
posteriori bound (5.9) and the approximate a priori bound nκ1(qm)u for this error.
The results show that (a) the relative error is reasonably small in every case, (b)
the system is sometimes solved to much better accuracy than the condition number
κ1(qm) would suggest (see Set 1), and (c) the a posteriori bound is a surprisingly good
predictor of the actual error.

These experiments and our additional investigations lead us to conclude that no
benefit is gained from using the test (5.6) to gauge whether the evaluation of pm and
qm has been sufficiently accurate. Therefore we recommend the following simplifica-
tion of Algorithm 5.1, which we emphasize performs identically to Algorithm 5.1 on
the tests reported here.

Algorithm 6.1 (new scaling and squaring algorithm for the matrix exponential).
This algorithm is identical to Algorithm 5.1 except that lines 5, 7, 13, 15, 22, 24, 33,
and 35–39 are removed.

7. Conclusions. The propensity of the scaling and squaring method for over-
scaling has been known for over a decade. The new algorithm developed here,
Algorithm 6.1, remedies this weakness in two different ways. First, it exploits
triangularity, when present, to ensure that the diagonal and first off-diagonal are
computed accurately during the squaring phase, benefitting all elements of the com-
puted exponential. Second, it employs more refined truncation error bounds, based
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on the quantities ‖Ak‖1/k, which can be much smaller than the bounds based on ‖A‖
that were used previously. These refined bounds enable the algorithm to produce a
result that often has one or both of the advantages of being more accurate and having
a lower computational cost than the original algorithm from [10] (Algorithm 3.1).

A general conclusion of this work is that although matrix norms are sometimes
described as a blunt instrument, they can extract much more information than might
be thought about the behavior of a matrix power series, through the use of (estimates
of) the norms of a small number of matrix powers.

We are currently adapting the ideas developed here to the algorithm derived in
[1] for computing the Fréchet derivative of the matrix exponential and to algorithms
for computing other transcendental matrix functions.

A remaining open question is to understand, and ideally improve, the numerical
stability of the squaring phase of the scaling and squaring method. Our treatment of
the triangular case is a first step in this direction.
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