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Mortar Boundary Elements

Martin Healey ∗ Norbert Heuer †

Abstract

We establish a mortar boundary element scheme for hypersingular boundary integral equations
representing elliptic boundary value problems in three dimensions. We prove almost quasi-optimal
convergence of the scheme in broken Sobolev norms of order 1/2. Sub-domain decompositions can
be geometrically non-conforming and meshes must be quasi-uniform only on sub-domains. Numerical
results confirm the theory.

Key words: boundary element method, domain decomposition, mortar method, non-conforming Galerkin
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1 Introduction and model problem

In the finite element framework, mortar methods are used to discretize a given problem independently
on sub-domains. It is a non-overlapping domain decomposition method. Necessary continuity require-
ments on interfaces of the sub-domains are implemented via Lagrangian multipliers. The motivation is
to facilitate the construction of finite element meshes on complicated domains and to allow for paral-
lelization. Bernardi, Maday and Patera introduced this technique and gave first analyses in [3, 4]. Later,
geometrically non-conforming sub-domain decompositions and problems in IR3 have been studied by Ben
Belgacem and Maday [2, 1]. There is a large number of publications on mortar methods, all dealing with
the discretization of differential equations of different types and with related numerical linear algebra.
The first papers, just mentioned, derive a priori error estimates in the framework of non-conforming
methods involving a Strang type estimate.

In this paper we establish a mortar setting for the boundary element method (BEM) and prove almost
quasi-optimal convergence for a model problem involving the hypersingular operator of the Laplacian.
The advantages of this domain decomposition scheme (easier construction of meshes and availability of
parallel techniques) also apply to the BEM. To be precise, we apply the mortar technique directly to
the boundary element discretization, not as a coupling procedure between boundary and finite elements
as in [9]. The analysis of finite elements for the discretization of boundary integral equations of the
first kind goes back to Nédélec and Planchard [21], and Hsiao and Wendland [17]. Stephan [22] studied
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boundary elements for singular problems on open surfaces. Hypersingular boundary integral equations
are well posed in fractional Sobolev spaces of order 1/2 and conforming Galerkin discretizations require
continuous basis functions. Due to the non-existence of a trace operator in these Sobolev spaces, needed
for the analysis of interface conditions, mortar boundary elements give rise to a variational crime. Indeed,
it turns out that there is no well-defined continuous variational formulation of the mortar setting for the
BEM. Instead we will analyze the discrete mortar scheme as a non-conforming method for the original
un-decomposed integral equation. We follow the analysis presented in [1] where projection and extension
operators are used to bound the approximation error in the kernel space (of functions satisfying the
Lagrangian multiplier condition). Note that there is a shorter presentation by Braess, Dahmen and
Wiener [7] where the simpler argument [6, Remark III.4.6] is used to bound this error by a standard
approximation error (in un-restricted spaces). Nevertheless, in our case the Strang type error estimate
has a more complicated structure and it is not straightforward to follow the argument [6, Remark III.4.6].

We will make use of some preliminary results in [13, 16]. In [13] we studied the discretization of
hypersingular operators on open surfaces using functions that vanish only in a discrete weak sense on the
boundary of the surface. Such functions in general do not belong to the energy space of the operator and
require a different variational setting. This setting will be used also for the mortar boundary elements.
In [16] this setting served to establish (non-conforming) Crouzeix-Raviart boundary elements and to
prove their quasi-optimal convergence. Main tool in that paper is a discrete fractional-order Poincaré-
Friedrichs inequality. It serves to show ellipticity of the principal bilinear form of the discrete scheme.
In this paper we generalize this inequality to the geometrically non-conforming case, needed for general
mortar decompositions. Again, it is needed to prove (quasi-) ellipticity of the principal bilinear form.
Our model problem is defined on an open flat surface Γ with polygonal boundary. We prove that,
up to logarithmical terms, the mortar boundary element method converges quasi-optimally, subject to
a compatibility condition of the boundary meshes and the meshes on the interfaces for the Lagrangian
multipliers. Here we rely on the known Sobolev regularity of the exact solution leading to almost O(h1/2)-
convergence where h is the maximum mesh size. Our techniques are applicable also to polyhedral surfaces
and include meshes of shape-regular triangles and quadrilaterals.

An overview of this paper is as follows. In the rest of this section we recall definitions of fractional
order Sobolev norms and formulate the model problem. In Section 2 we define the mortar scheme
and present the main result (Theorem 2.1) establishing almost quasi-optimal convergence of the mortar
boundary element method. Technical details and proofs are given in Section 3. In Section 4 we present
some numerical results that underline the stated convergence of the mortar BEM.

First let us briefly define the needed Sobolev spaces. We consider standard Sobolev spaces where the
following norms are used: For a bounded domain S ⊂ IRn and 0 < s < 1 we define

‖u‖2Hs(S) := ‖u‖2L2(S) + |u|2Hs(S)

with semi-norm

|u|Hs(S) :=
(

∫

S

∫

S

|u(x)− u(y)|2

|x− y|2s+n
dx dy

)1/2
.

For 0 < s < 1 the space H̃s(S) is defined as the completion of C∞
0 (S) under the norm

‖u‖H̃s(S) :=
(

|u|2Hs(S) +

∫

S

u(x)2

(dist(x, ∂S))2s
dx
)1/2

.
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For s ∈ (0, 1/2), ‖ · ‖H̃s(S) and ‖ · ‖Hs(S) are equivalent norms whereas for s ∈ (1/2, 1) there holds

H̃s(S) = Hs
0(S), the latter space being the completion of C∞

0 (S) with norm in Hs(S). Also we note that
functions from H̃s(S) are continuously extendable by zero onto a larger domain. For details see, e.g.,
[18, 14]. For s > 0, the spaces H−s(S) and H̃−s(S) are the dual spaces of H̃s(S) and Hs(S), respectively.

Let Γ be a plane open surface with polygonal boundary. In the following we will identify Γ with a
domain in IR2, thus referring to sub-domains of Γ rather than sub-surfaces. The boundary of Γ is denoted
by ∂Γ.

Our model problem is: For a given f ∈ L2(Γ) find u ∈ H̃1/2(Γ) such that

Wu(x) := −
1

4π

∂

∂nx

∫

Γ
u(y)

∂

∂ny

1

|x− y|
dSy = f(x), x ∈ Γ. (1.1)

Here, n is a normal unit vector on Γ, e.g. n = (0, 0, 1)T . We note that W maps H̃1/2(Γ) continuously
onto H−1/2(Γ) (see [23]). We have the following weak formulation of (1.1). Find u ∈ H̃1/2(Γ) such that

〈Wu, v〉Γ = 〈f, v〉Γ ∀v ∈ H̃1/2(Γ). (1.2)

Here, 〈·, ·〉Γ denotes the duality pairing betweenH−1/2(Γ) and H̃1/2(Γ). Throughout, this generic notation
will be used for other dualities as well, the domain mentioned by the index.

A standard boundary element method (BEM) for the approximate solution of (1.2) is to select a
piecewise polynomial subspace X̃h ⊂ H̃1/2(Γ) and to define an approximant ũh ∈ X̃h by

〈Wũh, v〉Γ = 〈f, v〉Γ ∀v ∈ X̃h.

Such a scheme is known to converge quasi-optimally in the energy norm, cf. Remark 2.1 below. In the
numerical section we will compare such a conforming approximation with a mortar approximation, for
the case where the meshes are globally conforming.

2 Mortar method and main result

In this section we introduce the mortar boundary element method for the approximate solution of the
model problem (1.2). First we discuss the decomposition of Γ into sub-domains. Then we introduce the
discrete approximation spaces. The main result of this paper is given at the end of this section.

2.1 Sub-domain decomposition

We consider a decomposition of Γ into non-intersecting sub-domains Γi, i = 1, . . . , N , giving rise to a
coarse mesh

T := {Γ1, . . . ,ΓN}.

For ease of presentation we assume that each Γi is either a triangle or quadrilateral. More general
decompositions into polygonal sub-domains can be dealt with by further decomposing into triangles and
quadrilaterals and by considering conforming interface conditions on additional interfaces. The mesh T
can be non-conforming but must satisfy the assumption (A1) below. The diameter of a sub-domain Γi
is denoted by Hi, and H := maxi=1,...,N Hi. The interface between two neighboring sub-domains Γi, Γj
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(i 6= j, Γ̄i∩ Γ̄j contains more than a point) is denoted by γij . For our analysis below we need the following
assumption.

(A1) Each interface γij consists of an entire edge of Γi or Γj.

The (relatively) open edges of a sub-domain Γi are γ
j
i , j = 1, . . . ,m. Here, m is a generic number

(m = 3 if Γi is a triangle and m = 4 otherwise). Using the symbol ∂Γ for the boundary of Γ, and similarly
∂Γi for the boundary of Γi, the skeleton of the sub-domain decomposition is

γ := ∪Ni=1∂Γi \ ∂Γ.

According to assumption (A1) the skeleton is covered by a set of non-intersecting edges γij . We number
the edges like γ1, . . . , γL, giving a decomposition of the skeleton like γ̄ = ∪Ll=1γ̄l. In the following we will
denote this decomposition of the skeleton by

τ := {γ1, . . . , γL}.

We will refer to these edges as interface edges. Each interface edge γl is the interface between two sub-
domains Γi, Γj and is an entire edge of one or both of them. Given an integer l (1 ≤ l ≤ L) we denote
by llag (respectively, lmor) the number of a sub-domain which has γl as an edge (respectively, the number
of the other sub-domain),

γl = γllag,lmor .

As mentioned before, the selection of the index pair (llag, lmor) for l ∈ {1, . . . , L} is not unique but will
be fixed for a specific sub-domain decomposition of Γ. Below, we will introduce a Lagrangian multiplier
on the interfaces and on γl we will use a mesh related to the mesh on Γllag . The side of γl stemming from
Γlmor is usually called mortar side in the finite element literature and this explains our notation. The side
defining the Lagrangian multiplier is often called non-mortar side.

Corresponding to the decomposition of Γ we will need the product Sobolev space

Hs(T ) :=
∏

K∈T

Hs(K) =
N
∏

i=1

Hs(Γi)

with usual product norm.

2.2 Meshes and discrete spaces

On each of the sub-domains Γi (i ∈ {1, . . . , N}) we consider a (sequence of) regular, quasi-uniform meshes
Ti consisting of shape regular triangles or quadrilaterals, Γ̄i = ∪T∈TiT̄ . The maximum diameter of the
elements of Ti is denoted by hi and we use the symbols

h := min
i=1,...,N

hi, h := max
i=1,...,N

hi.

Throughout the paper we assume without loss of generality that h < 1. This makes the writing of
logarithmic terms in h easier.

In the case of Γ being a square, Figure 2.1 shows a conforming sub-domain decomposition (a) and a
non-conforming sub-domain decomposition (b), both with globally non-conforming meshes.
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Figure 2.1: Sub-domain decompositions with non-conforming meshes.

Now we introduce discrete spaces on sub-domains consisting of piecewise (bi)linear functions,

Xh,i := {v ∈ C0(Γi); v|T is a polynomial of degree one ∀T ∈ Ti, v|∂Γ∩∂Γi
= 0}, i = 1, . . . , N.

The global discrete space on Γ is

Xh :=
N
∏

i=1

Xh,i.

Note that functions v ∈ Xh do satisfy the homogeneous boundary condition along ∂Γ but are in general
discontinuous across interfaces. Therefore, Xh is not a subspace of the energy space H̃1/2(Γ). Functions
from different sub-domains will be coupled via a discrete Lagrangian multiplier on the skeleton. To this
end we introduce a mesh on the skeleton γ as follows.

On each interface edge γl there is a trace mesh Tllag |γl inherited from the mesh Tllag on the sub-domain
Γllag . (We recall that by definition, γl is an entire edge of the sub-domain with number llag.) This trace
mesh is quasi-uniform with mesh width hllag . Now we introduce a new (coarser) quasi-uniform mesh Gl
on γl in such a way that the following assumption is satisfied.

(A2) For any l ∈ {1, . . . , L} there holds: the mesh Gl is a strict coarsening of the trace mesh Tllag |γl . In
particular, any interior node of Tllag |γl together with its two neighboring elements (intervals) is covered
by one element of Gl.

The mesh width (length of longest element) of Gl is denoted by kl, and k := maxl=1,...,L kl. On each
interface edge we define a space of piecewise constant functions,

Mk,l := {v ∈ L2(γl); v|J is constant ∀J ∈ Gl}, l = 1, . . . , L.

The space for the discrete Lagrangian multiplier then is

Mk :=
L
∏

l=1

Mk,l.
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Notations. The symbols “.” and “&” will be used in the usual sense. In short, ah(v) . bh(v) when
there exists a constant C > 0 independent of the discretization parameter h and the involved function
v such that ah(v) ≤ Cbh(v) for any v of the given set. The double inequality ah(v) . bh(v) . ah(v)
is simplified to ah(v) ≃ bh(v). The generic constant C above is usually also independent of appearing
fractional Sobolev indexes ǫ > 0, but this will be mentioned. We note that these notations usually do
not mean independence of involved constants on the decomposition T of Γ. In this paper we consider a
generic decomposition T which is fixed and estimates will in general depend on T .

Throughout the paper we also will use the notation vj for the restriction of a function v to the
sub-domain Γj .

2.3 Setting of the mortar boundary element method and main result

For the setup of the mortar boundary element method we need some operators. We introduce the surface
differential operators

curl ϕ :=
(

∂x2ϕ,−∂x1ϕ, 0
)

, curlϕ := ∂x1ϕ2 − ∂x2ϕ1 for ϕ = (ϕ1, ϕ2, ϕ3).

The definitions of the surface curl operators are appropriate just for flat surfaces (as in our case) but
can be extended to open and closed Lipschitz surfaces, cf. [8, 13]. We define corresponding piecewise
differential operators curlH v and curlH φ by

curlH v :=

N
∑

i=1

(curlΓi vi)
0 , curlH φ :=

N
∑

i=1

(curlΓi φi)
0 .

The notations curlΓi and curlΓi refer to the restrictions of curl and curl, respectively, onto Γi, and (·)0

indicates extension by zero to Γ. We made use of the notation introduced before, vi = v|Γi , φi = φ|Γi .
Furthermore, we need the single layer potential operator V defined by

Vϕ(x) :=
1

4π

∫

Γ

ϕ(y)

|x− y|
dSy, ϕ ∈ (H̃−1/2(Γ))3, x ∈ Γ.

For the formulation of the mortar boundary element method we define, for sufficiently smooth functions
v, w, µ, the bilinear forms a(·, ·) and b(·, ·) by

a(v,w) := 〈V curlH v, curlH w〉T :=
N
∑

i=1

〈V curlH v, curlΓi w〉Γi ,

b(v, µ) := 〈[v], µ〉τ :=

L
∑

l=1

〈[v], µ〉γl .

Here, as mentioned before, for a domain S ⊂ Γ or an arc S, 〈·, ·〉S denotes the L2(S)-inner product and
its extension by duality, and [v] is the jump of v across γ, more precisely

[v]|γl = vllag |γl − vlmor |γl , l = 1, . . . , L.

Of course, for sufficiently smooth functions v, w, µ there holds

a(v,w) = 〈V curlH v, curlH w〉Γ, b(v, µ) = 〈[v], µ〉γ .
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Note that we will use the introduced notations 〈·, ·〉T and 〈·, ·〉τ for duality pairings of product spaces
corresponding to the given decompositions (T and τ). We also define, for a sufficiently smooth function
v, the linear form

F (v) :=

N
∑

i=1

〈fi, vi〉Γi = 〈f, v〉T

where f ∈ L2(Γ) is the function given in (1.1). The mortar boundary element method for the approximate
solution of (1.2) then reads: Find uh ∈ Xh and λk ∈Mk such that

a(uh, v) + b(v, λk) = F (v) ∀v ∈ Xh,
b(uh, ψ) = 0 ∀ψ ∈Mk.

(2.1)

This scheme is equivalent to: Find uh ∈ Vh such that

a(uh, v) = F (v) ∀v ∈ Vh

where
Vh = {v ∈ Xh; b(v, ψ) = 0 ∀ψ ∈Mk}. (2.2)

The main result of this paper is as follows.

Theorem 2.1. There exists a unique solution (uh, λk) of (2.1). Assume that the solution u of (1.2)
satisfies u ∈ H̃1/2+r(Γ) (r ∈ (0, 1/2]). Then there holds

‖u− uh‖H1/2(T ) . (| log h|2hr + | log h|3/2kr)‖u‖H̃1/2+r(Γ).

For proportional mesh sizes h and k this means that

‖u− uh‖H1/2(T ) . | log h|2hr‖u‖H̃1/2+r(Γ).

The appearing constants in the estimates above are independent of h and k provided that the assumptions
on the meshes, in particular (A1) and (A2), are satisfied.

A proof of this theorem is given at the end of Section 3.

Remark 2.1. As in [13] we note that, in our case of an open surface Γ, the solution u of (1.1) has strong
corner and corner-edge singularities which cannot be exactly described by standard Sobolev regularity. It
is well known that u ∈ H̃s(Γ) for any s < 1 (see, e.g., [24]) so that the error estimate by Theorem 2.1
holds for any r < 1/2. In general u 6∈ H1

0 (Γ) but a more specific error analysis for the conforming BEM
yields for quasi-uniform meshes the optimal error estimate

‖u− uh‖H̃1/2(Γ) . h1/2,

see [5]. The logarithmical perturbations in h of our error estimate are due to the non-conformity of the
mortar method. They stem from the non-existence of a trace operator within H1/2(Γ) and from non-local
properties of the fractional order Sobolev norms (the difference between H̃1/2 and H1/2-spaces).
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3 Technical details and proof of the main result

We start by citing some technical results (Lemmas 3.1-3.4) which are needed to deal with the fractional
order Sobolev norms. Afterwards we study a discrete Poincaré-Friedrichs inequality (Proposition 3.1)
which will be applied to prove ellipticity of the bilinear form a(·, ·) on Vh. Afterwards an integration-by-
parts formula for the hypersingular operator is recalled from [13] and adapted to our situation of many
sub-domains. Then, Lemma 3.5 states the well-posedness of integration by parts. Lemmas 3.6-3.13 study
requirements for the Babuška-Brezzi theory and provide details for a Strang-type error estimate which is
given by Theorem 3.1. Later, Lemmas 3.14 and 3.15 are needed to analyze the bound of the Strang-type
estimate and lead to Theorem 3.2 which gives a general a priori error estimate for the mortar BEM. The
section is finished by giving a proof of the main result (Theorem 2.1).

Lemma 3.1. [15, Lemma 5] Let R ⊂ IR2 be a Lipschitz domain. There exists C > 0 such that

‖v‖H̃s(R) ≤
C

1/2− |s|
‖v‖Hs(R) ∀s ∈ (−1/2, 1/2), ∀v ∈ Hs(R).

Lemma 3.2. Let R ⊂ IR2 be a Lipschitz domain, and let v be a piecewise linear function defined on a
quasi-uniform mesh on R with mesh size h < 1. There exists a constant C > 0 which is independent of
h (but may depend on R) such that there holds

‖v‖H̃−1/2(R) ≤ C| log h| ‖v‖H−1/2(R).

Proof. By [15, Lemma 6] there holds for a piecewise polynomial function of degree p the estimate

‖v‖H̃−1/2(R) ≤ C log(
p+ 1

h
)‖v‖H−1/2(R), p ≥ 0, h < 1.

Fixing p gives the claimed bound. The proof of [15, Lemma 6] gives full details for rectangular meshes.
For triangular meshes the proof applies as well by making use of Schmidt’s inequality for triangles, cf. [11,
Lemma 5.1]. Nevertheless, we are considering only polynomials of low degrees where Schmidt’s inequality
is not needed.

Lemma 3.3. [13, Lemma 4.3] Let R ⊂ IR2 be a bounded Lipschitz domain. There exists C > 0 such that,
for any ǫ ∈ (0, 1/2), there holds

‖v‖L2(∂R) ≤
C

ǫ1/2
‖v‖H1/2+ǫ(R) ∀v ∈ H1/2+ǫ(R).

Here ∂R is the boundary of R.

Lemma 3.4. For S being one of the sub-domains Γi ∈ T or Γ there holds

|v|H1/2(S) . ‖ curlS v‖
H

−1/2
t (S)

∀v ∈ H1/2(S). (3.1)

The restriction of curlS onto H̃1/2(S) is continuous,

curlS : H̃1/2(S) → H̃
−1/2
t (S). (3.2)

Moreover, there holds the continuity

curlS : H1/2+s(S) → H
−1/2+s
t (S) ∀s ∈ [0, 1/2]. (3.3)

8



Proof. The bounds (3.1) and (3.2) are proved by Lemmas 4.1 and 2.2 in [13], respectively. By Lemma 2.1

in [13], curlS : H1/2(S) → H
−1/2
t (S) is continuous, and curlS : H1(S) → L2

t (S) = H0
t (S) is continuous

as well. Estimate (3.3) then follows by interpolation.

The following result is a generalized version of a discrete Poincaré-Friedrichs inequality in fractional
order Sobolev spaces, cf. Theorem 8 in [16].

Proposition 3.1. There exists a constant C > 0, independent of the decomposition T as long as sub-
domains are shape-regular, such that for all ǫ ∈ (0, 1/2] there holds

‖v‖2L2(Γ) ≤ C

(

ǫ−1|v|2
H1/2+ǫ(T )

+

L
∑

l=1

|γl|
−1−2ǫ(

∫

γl

[v] ds)2

)

∀v ∈ H1/2+ǫ(T ), v|∂Γ = 0.

Here, |γl| denotes the length of γl.

Proof. For the case of conforming decompositions T̃ of Γ into triangles, [16, Theorem 8] proves that there
holds

‖v‖2L2(Γ) ≤ C

(

ǫ−1|v|2
H1/2+ǫ(T̃ )

+

L
∑

l=1

|γl|
−1−2ǫ(

∫

γl

[v] ds)2 + |

∫

Γ
v dx|2

)

∀v ∈ H1/2+ǫ(T̃ ). (3.4)

It is easy to see that the mean zero term can be avoided by assuming the homogeneous boundary
condition for v. To obtain the result for our non-conforming decomposition T including quadrilaterals
we introduce further edges to reduce quadrilateral sub-domains to triangles and to transform T into a
conforming decomposition T̃ . By definition of the Sobolev-Slobodeckij semi-norm there holds

|v|H1/2+ǫ(T̃ ) ≤ |v|H1/2+ǫ(T ).

We note that for new edges γ′ there holds [v]|γ′ = 0 by the trace theorem and the regularity v ∈ H1/2+ǫ(T )
for any T ∈ T . The result then follows from (3.4).

Following [13] we now examine an integration-by-parts formula for the hypersingular operator. For a
smooth scalar function v and a smooth tangential vector field ϕ, integration by parts gives

〈curlΓi v,ϕ〉Γi = 〈v, curlΓi ϕ〉Γi − 〈v,ϕ · ti〉∂Γi
, i = 1, . . . , N.

Here, ti is the unit tangential vector on ∂Γi (oriented mathematically positive when identifying Γi with
a subset of IR2 which is compatible with the identification of Γ as a subset of IR2). Applying this formula
to ϕ = (V curlΓ u)|Γi , we obtain for smooth functions v and u

〈ti · V curlΓ u, vi〉∂Γi
= 〈curlΓi V curlΓ u, vi〉Γi − 〈V curlΓ u, curlΓi vi〉Γi .

Now we sum over i and take into account that ti = −tj on γij . Further we let γ0 := ∂Γ, use the convention
for the jump [v]|γ0 = v|γ0 , denote by t0 the unit tangential vector along ∂Γ (again mathematically positive
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oriented) and let 0lag := 0 (remember the notation llag and lmor for the numbers of the Lagrangian
multiplier side and mortar side of γl, respectively). This yields

L
∑

l=0

〈tllag · V curlΓ u, [v]〉γl =

N
∑

i=1

〈curlΓi V curlΓ u, vi〉Γi −

N
∑

i=1

〈V curlΓ u, curlΓi vi〉Γi

= 〈curlΓ V curlΓ u, v〉T − 〈V curlΓ u, curlH v〉T

for a piecewise (with respect to T ) smooth function v on Γ with vi := v|Γi , as defined before. In the last
step we used the fact that

curlH w = curlΓw ∀w ∈ H
1/2
t (Γ),

which holds by a density argument and the continuity of curlΓ : H
1/2
t (Γ) → H−1/2(Γ) as the adjoint

operator of curlΓ : H̃1/2(Γ) → H̃
−1/2
t (Γ), cf. (3.2).

Now we use the relation
Wu = curlΓ V curlΓ u (u ∈ H̃1/2(Γ)),

see [19, 20] and [13, Lemma 2.3]. Then choosing a piecewise smooth function v with v|∂Γ = 0 we obtain

〈λ, [v]〉τ =

L
∑

l=1

〈λ, [v]〉γl = 〈Wu, v〉T − 〈V curlΓ u, curlH v〉T . (3.5)

Here, λ denotes our Lagrangian multiplier on the skeleton γ defined by

λ|γl := tllag · (V curlΓ u)|γl , l = 1, . . . , L. (3.6)

Relation (3.5) does not extend to v ∈ H1/2(T ) since the trace of such a function v onto γ is not well
defined. However, there holds the following lemma.

Lemma 3.5. For u ∈ H̃1/2(Γ) with Wu = f ∈ L2(Γ), (3.5) defines λ ∈
∏L
l=1H

−s(γl) for any s ∈ (0, 1/2].

Remark 3.1. The above lemma can be extended to values of s larger than 1/2. Though small values of
s represent the interesting cases, the limit s = 0 being excluded. Also, the condition on f can be relaxed
but excluding the case f ∈ H−1/2(Γ) which is the standard regularity using the mapping properties of the
hypersingular operator.

Proof of Lemma 3.5. We must show that λ defined by (3.5) is a bounded linear functional on
∏L
l=1 H̃

s(γl), the dual space of
∏L
l=1H

−s(γl).

Let v ∈
∏L
l=1 H̃

s(γl) be given. We continuously extend v to an element ṽ ∈ Hs+1/2(T ) with ṽ = 0
on ∂Γ such that [ṽ]|γl = v|γl . (Simply extend v on each interface edge γl to a function in Hs+1/2(Γllag)
vanishing on ∂Γllag \γl and extend by zero to the rest of Γ. Then sum up with respect to l.) The definition
of λ is independent of the particular extension ṽ, see [13] for details in the case of one sub-domain. Using
a duality estimate we obtain from (3.5)

L
∑

l=1

〈λ, [v]〉γl = 〈f, ṽ〉T − 〈V curlΓ u, curlH ṽ〉T

≤ ‖f‖L2(Γ)‖ṽ‖L2(Γ) +

N
∑

i=1

‖V curlΓ u‖
H̃

1/2−s
t (Γi)

‖ curlΓi ṽi‖Hs−1/2
t (Γi)

. (3.7)

10



Now, for s ∈ (0, 1/2] the norms in H̃
1/2−s
t (Γi) and H

1/2−s
t (Γi) are equivalent (cf., e.g., [18]) so that

together with the mapping property of V [10],

V : H̃
−1/2−s
t (Γ) → H

1/2−s
t (Γ),

and (3.2) we obtain

N
∑

i=1

‖V curlΓ u‖
2

H̃
1/2−s
t (Γi)

.

N
∑

i=1

‖V curlΓ u‖
2

H
1/2−s
t (Γi)

. ‖V curlΓ u‖
2

H
1/2−s
t (Γ)

. ‖u‖2
H̃1/2(Γ)

.

Here, the appearing constants are independent of u but may depend on s. Also, using (3.3) we are able
to bound (with constant independent of ṽ)

N
∑

i=1

‖ curlΓi ṽi‖
2

H
s−1/2
t (Γi)

.

N
∑

i=1

‖ṽi‖
2
Hs+1/2(Γi)

= ‖ṽ‖2
Hs+1/2(T )

.

Taking the last two estimates into account, (3.7) proves that

L
∑

l=1

〈λ, [v]〉γl .
(

‖f‖L2(Γ) + ‖u‖H̃1/2(Γ)

)

‖ṽ‖Hs+1/2(T ).

Using the continuity of the extension (with constant independent of v)

‖ṽ‖2
Hs+1/2(T )

.

L
∑

l=1

‖v‖2
H̃s(γl)

finishes the proof.

Lemma 3.6.
‖ curlH v‖

2

H̃
−1/2
t (Γ)

& | log h|−1‖v‖2
H1/2(T )

∀v ∈ Vh

Proof. By (3.1) there holds

‖ curlH v‖
2

H̃
−1/2
t (Γ)

&

N
∑

i=1

‖ curlΓi vi‖
2

H
−1/2
t (Γi)

&

N
∑

i=1

|vi|
2
H1/2(Γi)

= |v|2
H1/2(T )

∀v ∈ H1/2(T ). (3.8)

For v ∈ Vh there holds
∫

γl
[v] ds = 0 for any interface edge γl since by construction Mk contains the

piecewise constant function which has the value 1 on γl and vanishes on γ \ γl. For the definition of Vh
(the discrete kernel of b(·, ·)) see (2.2). Therefore, Proposition 3.1 proves that

‖v‖2L2(Γ) . ǫ−1|v|2
H1/2+ǫ(T )

∀v ∈ Vh.

Here, the appearing constant is independent of ǫ ∈ (0, 1/2]. Making use of the inverse property we bound

N
∑

i=1

|v|2
H1/2+ǫ(Γi)

.

N
∑

i=1

h−2ǫ
i |v|2

H1/2(Γi)
∀v ∈ Vh

11



so that, with the previous estimate,

‖v‖2L2(Γ) . ǫ−1h−2ǫ|v|2
H1/2(T )

∀v ∈ Vh. (3.9)

Selecting ǫ = | log h|−1 (for h being small enough) and combining (3.9) with (3.8) proves the statement.

Lemma 3.7. The bilinear form a(·, ·) is almost uniformly Vh-elliptic. More precisely there hold the lower
bounds

a(v, v) & | log h|−1‖v‖2
H1/2(T )

∀v ∈ Vh

and
a(v, v) & | log h|−1/2‖v‖H1/2(T )‖ curlH v‖H̃−1/2

t (Γ)
∀v ∈ Vh. (3.10)

Proof. First we note that for v ∈ Vh ⊂ L2(Γ) there holds V curlH v ∈ L2
t (Γ) so that

〈V curlH v, curlH v〉T = 〈V curlH v, curlH v〉Γ.

Using the ellipticity of V : H̃
−1/2
t (Γ) → H

1/2
t (Γ) and Lemma 3.6 we then obtain for v ∈ Vh

a(v, v) = 〈V curlH v, curlH v〉Γ & ‖ curlH v‖
2

H̃
−1/2
t (Γ)

& | log h|−1‖v‖2H1/2(T ),

which is the first assertion. The estimate (3.10) is obtained by bounding ‖ curlH v‖
H̃

−1/2
t (Γ)

only once

with the help of Lemma 3.6.

Lemma 3.8. The bilinear form a(·, ·) is almost uniformly continuous on Xh. More precisely there holds

a(v,w) . | log h|2 ‖v‖H1/2(T )‖w‖H1/2(T ) ∀v,w ∈ Xh.

Proof. As in the proof of Lemma 3.7 we note that for v, w ∈ Xh ⊂ L2(Γ) there holds

〈V curlH v, curlH w〉T = 〈V curlH v, curlH w〉Γ.

Then, using the continuity of V : H̃
−1/2
t (Γ) → H

1/2
t (Γ) and the estimate for fractional order Sobolev

norms ‖ · ‖
H̃

−1/2
t (Γ)

. ‖ · ‖
H̃

−1/2
t (T )

, we obtain for v,w ∈ Xh

a(v,w) = 〈V curlH v, curlH w〉Γ . ‖ curlH v‖
H̃

−1/2
t (Γ)

‖ curlH w‖
H̃

−1/2
t (Γ)

. ‖ curlH v‖
H̃

−1/2
t (T )

‖ curlH w‖
H̃

−1/2
t (T )

. (3.11)

Now making use of Lemma 3.2 and (3.3) we bound

‖ curlΓi vi‖
2

H̃
−1/2
t (Γi)

. | log hi|
2‖ curlΓi vi‖

2

H
−1/2
t (Γi)

. | log hi|
2‖vi‖

2
H1/2(Γi)

,

giving
‖ curlH v‖

H̃
−1/2
t (T )

. | log h| ‖v‖H1/2(T ) ∀v ∈ Xh.

Combination with (3.11) proves the statement.
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For the eventual error estimate we need the boundedness of the bilinear form a(·, ·). However,
Lemma 3.8 is not applicable to non-discrete functions. Instead we will use the next lemma.

Lemma 3.9. Assume that u ∈ H̃1/2+r(Γ) (r > 0). Then there holds

a(u− v,w) . s−1‖u− v‖H1/2+s(T )‖ curlH w‖H̃−1/2
t (T )

∀v,w ∈ Xh, ∀s ∈ (0,min{r, 1/2}].

In particular, the appearing constant is independent of s.

Proof. First we note that (3.11) holds also for continuous functions, so that

a(u− v,w) . ‖curlH(u− v)‖
H̃

−1/2
t (T )

‖ curlH w‖
H̃

−1/2
t (T )

∀v,w ∈ Xh.

Using the continuous injection H̃
−1/2+s
t (Γi) → H̃

−1/2
t (Γi) and Lemma 3.1 we bound for i ∈ {1, . . . , N}

‖ curlΓi(ui − vi)‖
H̃

−1/2
t (Γi)

≤ ‖ curlΓi(ui − vi)‖
H̃

−1/2+s
t (Γi)

. s−1‖ curlΓi(ui − vi)‖
H

−1/2+s
t (Γi)

.

The continuity of curlΓi : H1/2+s(Γi) → H
−1/2+s
t (Γi) for any i ∈ {1, . . . , N} by (3.3) finishes the

proof.

In order to analyze the error bound of the Strang-type estimate by Theorem 3.1 below, we need to
extend functions from interface edges to sub-domains. This is also required to prove an inf-sup condition
for the bilinear form b(·, ·).

To this end let us define extension operators that extend piecewise linear functions from interface
edges to piecewise (bi)linear functions on the corresponding Lagrangian sub-domain,

El : Xh,llag |γ̄l → Xh,llag , l = 1, . . . , L. (3.12)

Here, for v ∈ Xh,llag |γ̄l the extension Elv is defined as the function of Xh,llag that coincides with v in the
nodes on γ̄l stemming from the mesh Tllag and is zero in the remaining nodes of Tllag .

Lemma 3.10.

‖Elv‖Hs(Γllag
) . h

1/2−s
llag

‖v‖L2(γl) ∀v ∈ Xh,llag |γ̄l , ∀s ∈ [0, 1], l = 1, . . . , L.

In particular, the appearing constant is independent of s.

Proof. Using the equivalence of norms in finite dimensional spaces and scaling properties of the L2-norm
one obtains, by taking into account the construction of El,

‖Elv‖
2
L2(Γllag

) . hllag‖v‖
2
L2(γl)

∀v ∈ Xh,llag |γ̄l .

Analogously we find

‖Elv‖
2
H1(Γllag

) = ‖Elv‖
2
L2(Γllag

) + |Elv|
2
H1(Γllag

)

. hllag‖v‖
2
L2(γl)

+ h−1
llag

‖v‖2L2(γl)
. h−1

llag
‖v‖2H1(γl)

∀v ∈ Xh,llag |γ̄l .

The result then follows by interpolation.
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Lemma 3.11. The bilinear form b(·, ·) satisfies the discrete inf-sup condition

∃β > 0 : sup
v∈Xh\{0}

b(v, µ)

‖v‖H1/2(T )

≥ β ‖µ‖L2(γ) ∀µ ∈Mk.

Here, the constant β is independent of h and k subject to the assumptions made on the meshes.

Proof. Let µ ∈Mk be given. On each interface edge γl, µ is a piecewise constant function on Gl, a mesh
that is coarser than the trace mesh Tllag |γ̄l stemming from the Lagrangian side Γllag , cf. assumption (A2).
On γl we construct a piecewise linear function wl ∈ Xh,llag |γl in the following way. For each element
J ∈ Gl, wl vanishes at the endpoints of J , coincides with µ at one interior node of J and is linearly
interpolated elsewhere on γl. See Figure 3.1 for an example where µ is represented by the dashed line
and wl by the solid line. The bullets indicate the nodes of the mesh for the Lagrangian multiplier and
the dashes indicate additional nodes of the trace mesh (from the Lagrangian multiplier side).

We then extend wl to w̃l in Xh by first extending to Elwl ∈ Xh,llag , cf. (3.12), and then further by

zero onto Γ. Eventually we define v :=
∑L

l=1 w̃l.
Note that w̃l vanishes on all interface edges except γl. The trace of w̃l onto γl from Γllag equals wl

whereas the trace coming from the other side Γlmor vanishes. This yields

[v] = [w̃l] = wl on γl, l = 1, . . . , L. (3.13)

By the construction of wl there holds, uniformly for µ ∈Mk,

‖µ‖2L2(γl)
≃ 〈wl, µ〉γl ≃ ‖wl‖

2
L2(γl)

, l = 1, . . . , L. (3.14)

Also, taking into account that each sub-domain Γi has a limited number of (interface) edges, determined
by the relation l ∈ {1, . . . , L} : llag = i, Lemma 3.10 yields

‖v‖2
H1/2(T )

=

N
∑

i=1

∥

∥

∥

∑

l∈{1,...,L}: llag=i

Elwl

∥

∥

∥

2

H1/2(Γi)

.

N
∑

i=1

∑

l∈{1,...,L}: llag=i

‖Elwl‖
2
H1/2(Γi)

=

L
∑

l=1

‖Elwl‖
2
H1/2(Γllag)

.

L
∑

l=1

‖wl‖
2
L2(γl)

(3.15)

Now, using (3.13), (3.14) and (3.15), we finish the proof by bounding

b(v, µ) =
L
∑

l=1

〈[v], µ〉γl =
L
∑

l=1

〈wl, µ〉γl ≃ ‖µ‖L2(γ)

(

L
∑

l=1

‖wl‖
2
L2(γl)

)1/2
& ‖µ‖L2(γ)‖v‖H1/2(T ).

Lemma 3.12.
‖[v]‖2L2(γ) . | log h| ‖v‖2

H1/2(T )
∀v ∈ Xh
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Figure 3.1: Construction of wl in the proof of Lemma 3.11.

Proof. By the triangle inequality and Lemma 3.3 there holds uniformly for ǫ ∈ (0, 1/2)

‖[v]‖2L2(γ) .

L
∑

l=1

(

‖vllag‖
2
L2(γl)

+ ‖vlmor‖
2
L2(γl)

)

. ǫ−1
L
∑

l=1

(

‖vllag‖
2
H1/2+ǫ(Γllag

)
+ ‖vlmor‖

2
H1/2+ǫ(Γlmor )

)

. ǫ−1‖v‖2
H1/2+ǫ(T )

∀v ∈ Xh.

The inverse property, applied separately to vi = v|Γi , yields

‖v‖2
H1/2+ǫ(T )

. h−2ǫ‖v‖2
H1/2(T )

∀v ∈ Xh

and selecting ǫ = | log h|−1 (for h being small enough) finishes the proof.

Lemma 3.13. The bilinear form b(·, ·) is almost uniformly discretely continuous, in the sense that

b(v, µ) . | log h|1/2 ‖v‖H1/2(T )‖µ‖L2(γ) ∀v ∈ Xh,∀µ ∈Mk. (3.16)

Moreover, for given ψ ∈ L2(γ), there holds

b(v, ψ) . | log h| inf
µ∈Mk

‖ψ − µ‖L2(γ)‖ curlH v‖
H̃

−1/2
t (Γ)

∀v ∈ Vh. (3.17)

Proof. There holds

b(v, µ) =
L
∑

l=1

〈[v], µ〉γl ≤ ‖[v]‖L2(γ)‖µ‖L2(γ) ∀v ∈ Xh,∀µ ∈Mk.

Estimate (3.16) follows with the help of Lemma 3.12. To prove (3.17) we start as before and note that
by definition of Vh there holds b(v, µ) = 0 ∀µ ∈ Mk, ∀v ∈ Vh. Therefore, for any µ ∈ Mk and v ∈ Vh we
find that

b(v, ψ) ≤ ‖[v]‖L2(γ)‖ψ − µ‖L2(γ). (3.18)

The proof of (3.17) is finished by noting that combination of Lemmas 3.12 and 3.6 yields

‖[v]‖L2(γ) . | log h|1/2‖v‖H1/2(T ) . | log h| ‖ curlH v‖
H̃

−1/2
t (Γ)

∀v ∈ Vh.
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We are now ready to prove the following Strang-type error estimate.

Theorem 3.1. System (2.1) is uniquely solvable. Let u and uh be the solutions of (1.2) and (2.1),
respectively. Assuming that u ∈ H̃1/2+r(Γ) (r ∈ (0, 1/2]) there holds

‖u− uh‖H1/2(T ) . | log h|1/2

(

s−1 inf
v∈Vh

‖u− v‖H1/2+s(T ) + sup
w∈Vh\{0}

a(u− uh, w)

‖ curlH w‖
H̃

−1/2
t (Γ)

)

.

uniformly for s ∈ (0,min{1/2, r}].

Proof. The existence and uniqueness of (uh, λk) ∈ Xh × Mk follows from the Babuška-Brezzi theory.
Indeed, the bilinear form a(·, ·) is continuous on Xh by Lemma 3.8 and Vh-elliptic by Lemma 3.7, and
the bilinear form b(·, ·) is continuous on Xh ×Mk by (3.16) and satisfies a discrete inf-sup condition by
Lemma 3.11. The continuity and ellipticity bounds depend on h but that does not influence the unique
solvability of the discrete scheme.

The error estimate is obtained by the usual steps. Combining the triangle inequality, the non-standard
ellipticity and continuity properties of a(·, ·), cf. (3.10) and Lemma 3.9, we obtain for any v ∈ Vh

‖u− uh‖H1/2(T ) ≤ ‖u− v‖H1/2(T ) + ‖v − uh‖H1/2(T )

. ‖u− v‖H1/2(T ) + | log h|1/2 sup
w∈Vh\{0}

a(v − uh, w)

‖ curlH w‖
H̃

−1/2
t (Γ)

≤ ‖u− v‖H1/2(T ) + | log h|1/2

(

sup
w∈Vh\{0}

a(v − u,w)

‖ curlH w‖
H̃

−1/2
t (Γ)

+ sup
w∈Vh\{0}

a(u− uh, w)

‖ curlH w‖
H̃

−1/2
t (Γ)

)

. ‖u− v‖H1/2(T ) + s−1| log h|1/2‖u− v‖H1/2+s(T ) + | log h|1/2 sup
w∈Vh\{0}

a(u− uh, w)

‖ curlH w‖
H̃

−1/2
t (Γ)

.

This proves the stated error bound.

In order to analyze the upper bound provided by Theorem 3.1 we need, apart from the extension
operators El defined before, projection operators πl acting on L

2(γl) and mapping onto special continuous,
piecewise linear functions on γl, l = 1, . . . , L. We recall that on each γl we have two meshes: the trace
mesh Tllag |γl stemming from the mesh on the sub-domain Γllag of the Lagrangian side, and the mesh Gl
for the Lagrangian multiplier. For each element J ∈ Gl we consider a hat function φl,J that vanishes at
the endpoints of J and has the tip at a node of Tllag |γl that is interior to J . This choice is not unique if
J contains more than two elements of the trace mesh. In that case we select an arbitrary but fixed node
for the definition of φl,J . Using this notation we define

πl : L
2(γl) → span{φl,J ; J ∈ Gl} ⊂ Xh,llag |γ̄l , l = 1, . . . , L, (3.19)

such that the integral mean zero conditions

〈v − πlv, 1〉J = 0 ∀J ∈ Gl, l = 1, . . . , L,

hold. This operator satisfies the following properties.
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Lemma 3.14. For any v ∈ L2(γl), πlv vanishes at the endpoints of γl, l = 1, . . . , L, and there holds

〈v − πlv, µ〉γl = 0 ∀v ∈ L2(γl), ∀µ ∈Mk,l, l = 1, . . . , L, (3.20)

‖πlv‖L2(γl) . ‖v‖L2(γl) ∀v ∈ L2(γl), l = 1, . . . , L. (3.21)

Proof. For l ∈ {1, . . . , L} let v ∈ L2(γl) be given. By definition of πl, πlv vanishes at the endpoints of γl,
and the orthogonality (3.20) follows by noting that any µ ∈Mk,l is constant on any J ∈ Gl.

To show (3.21) let J ∈ Gl be given. With φl,J being the hat function defined previously (with height
1) there holds

πlv =
2

|J |
(

∫

J
v ds) φl,J on J

so that

‖πlv‖
2
L2(J) =

4

3|J |
(

∫

J
v ds)2 ≤

4

3
‖v‖2L2(J).

Summing over J ∈ Gl finishes the proof.

We are now ready to analyze the first term of the upper bound provided by Theorem 3.1.

Lemma 3.15. For r ∈ (0, 1/2] let u ∈ H1/2+r(Γ). There holds

inf
v∈Vh

‖u− v‖2
H1/2+s(T )

. ‖u− w‖2
H1/2+s(T )

+
L
∑

l=1

h−2s
llag

(

‖u− wllag‖
2
L2(γl)

+ ‖u− wlmor‖
2
L2(γl)

)

∀w ∈ Xh

uniformly for s ∈ (0,min{1/2, r}].

Proof. Let w ∈ Xh be given. We adapt w such that the new function satisfies the jump conditions
defining Vh, cf. (2.2). We set

v := w +

L
∑

l=1

rl ∈ Xh

with

rl :=

{

Elπl(wllag |γl − wlmor |γl) on Γ̄llag ,

0 elsewhere.

Here, El and πl are the extension and projection operators specified in (3.12) and (3.19), respectively.
Note that, since πl(wllag |γl −wlmor |γl) vanishes at the endpoints of γl, the extension Elπl(wllag |γl −wlmor |γl)
vanishes on ∂Γllag \ γl. Therefore, using (3.20) one obtains

〈[v], µ〉γl = 〈vllag − vlmor , µ〉γl = 〈wllag + rl − wlmor , µ〉γl
= 〈wllag − wlmor + πl(wllag |γl − wlmor |γl), µ〉γl = 0 ∀µ ∈Mk,l, l = 1, . . . , L.

That is, v ∈ Vh. We start bounding the error by

‖u− v‖2
H1/2+s(T )

=

N
∑

i=1

∥

∥

∥
ui − wi −

∑

l∈{1,...,L}: llag=i

rl
∥

∥

∥

2

H1/2+s(Γi)

.

N
∑

i=1

‖ui − wi‖
2
H1/2+s(Γi)

+
L
∑

l=1

‖rl‖2
H1/2+s(Γllag

)
. (3.22)
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Applying Lemma 3.10, (3.21) and the triangle inequality we find that there holds

‖rl‖H1/2+s(Γllag
) . h−sllag‖πl(wllag |γl − wlmor |γl)‖L2(γl) . h−sllag‖wllag − wlmor‖L2(γl)

. h−sllag

(

‖u− wllag‖L2(γl) + ‖u− wlmor‖L2(γl)

)

. (3.23)

Combining (3.22) and (3.23) one obtains the assertion.

The next result provides an a priori error estimate for the mortar BEM.

Theorem 3.2. Let u and uh be the solutions of (1.2) and (2.1), respectively. Assuming that u ∈
H̃1/2+r(Γ) (r ∈ (0, 1/2]) there holds λ ∈

∏L
l=1H

r(γl) and we have the a priori error estimate

‖u− uh‖
2
H1/2(T )

. s−2| log h|

(

‖u− v‖2
H1/2+s(T )

+ h−2s
L
∑

l=1

(

‖u− vllag‖
2
L2(γl)

+ ‖u− vlmor‖
2
L2(γl)

)

)

+ | log h|3 ‖λ− µ‖2L2(γ) ∀v ∈ Xh, ∀µ ∈Mk

uniformly for s ∈ (0, r]. Here, λ is the Lagrangian multiplier defined by (3.5), (3.6).

Proof. Since u ∈ H̃1/2+r(Γ) there holds

λ|γl = tllag · (V curlΓ u)|γl ∈ Hr(γl), l = 1, . . . , L.

To this end note that curlΓ : H̃1/2+r(Γ) → H̃
r−1/2
t (Γ) (combine (3.2) with the continuity curlΓ :

H1
0 (Γ) → L2

t (Γ)) and V : H̃
r−1/2
t (Γ) → H

1/2+r
t (Γ). The trace theorem concludes the claimed regularity

of λ. In particular there holds λ ∈ L2(γ).
By definition of Vh, and making us of Lemma 3.5, we find

a(u− uh, w) = a(u,w) − F (w) = −b(w, λ) ∀w ∈ Vh.

Application of (3.17) yields

a(u− uh, w) . | log h| inf
µ∈Mk

‖λ− µ‖L2(γ)‖ curlH w‖
H̃

−1/2
t (Γ)

∀w ∈ Vh.

Therefore, combining Theorem 3.1 with Lemma 3.15 we obtain

‖u− uh‖
2
H1/2(T )

. | log h|

{

s−2

(

‖u− v‖2
H1/2+s(T )

+

L
∑

l=1

h−2s
llag

(

‖u− vllag‖
2
L2(γl)

+ ‖u− vlmor‖
2
L2(γl)

)

)

+ | log h|2 ‖λ− µ‖2L2(γ)

}

∀v ∈ Xh, ∀µ ∈Mk.

This proves the statement.

Proof of Theorem 2.1. By Theorem 3.1, system (2.1) is uniquely solvable. We employ the general a
priori estimate by Theorem 3.2 to show the given error bound. By standard approximation theory there
exist v ∈ Xh and µ ∈Mk such that

‖u− v‖2
H1/2+s(T )

. h2(r−s)‖u‖2
H̃1/2+r(Γ)

and ‖λ− µ‖2L2(γ) . k2r
L
∑

l=1

‖λ‖2Hr(γl)
,
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and as in the proof of Theorem 3.2 one concludes that
∑L

l=1 ‖λ‖
2
Hr(γl)

. ‖u‖2
H̃1/2+r(Γ)

. By Lemma 3.3

one bounds
‖u− vllag‖L2(γl) . s−1/2‖u− v‖H1/2+s(Γllag

) . s−1/2hr−s‖u‖H̃1/2+r(Γ),

and accordingly the mortar part ‖u − vlmor‖L2(γl). Using these bounds in Theorem 3.2 and selecting
s = | log h|−1 one obtains the assertion.

4 Numerical results

We consider the model problem (1.2) with Γ = (0, 1) × (0, 1) and f = 1. In this case there holds
u ∈ H̃1/2+r(Γ) for any r < 1/2 so that by Theorem 2.1 we expect a convergence of the mortar method
close to h1/2, the convergence of the conforming BEM, cf. Remark 2.1. This assumes that the mesh sizes
h (of the sub-domain meshes) and k (of the meshes for the Lagrangian multiplier on the skeleton) are
proportional, which will be the case in all our experiments. In fact, the elements of the mesh for the
Lagrangian multiplier will always consist of two or three elements of the trace mesh.

Since the exact solution u to (1.1) is unknown we approximate an upper bound for the semi-norm
|u− uh|H1/2(T ). Here, we follow the strategy from [13]. Let us recall the procedure and discussion.

By the ellipticity of V and (3.8) there holds

a(u− uh, u− uh) & |u− uh|
2
H1/2(T )

. (4.1)

On the other hand, using that u solves (1.1) and uh ∈ Vh solves (2.1), one finds

a(u− uh, u− uh) = a(u, u)− 2a(u, uh) + a(uh, uh) = 〈Wu,u〉Γ − 2a(u, uh) + F (uh).

By (3.5) there holds
a(u, uh) = F (uh)− 〈[uh], λ〉γ

such that, with the previous relation,

a(u− uh, u− uh) = 〈Wu,u〉Γ − F (uh) + 2 〈[uh], λ〉γ ≤ 〈Wu,u〉Γ − F (uh) + 2 ‖[uh]‖L2(γ)‖λ‖L2(γ). (4.2)

Like in the proof of Theorem 3.2 one sees that ‖λ‖L2(γ) is bounded. Therefore, by (4.1) we find that

|u− uh|
2
H1/2(T )

. |〈Wu,u〉Γ − F (uh)|+ ‖[uh]‖L2(γ).

The terms F (uh) and ‖[uh]‖L2(γ) are directly accessible and 〈Wu,u〉Γ can be approximated by an ex-
trapolated value that we denote by ‖u‖2ex (cf. [12]). Therefore, instead of the relative error

‖u− uh‖H1/2(T )/‖u‖H1/2(Γ),

we present results for the expression

(

| ‖u‖2ex − F (uh)|+ ‖[uh]‖L2(γ)

)1/2
/‖u‖ex (4.3)

which is, up to a constant factor, an upper bound for |u− uh|H1/2(T )/‖u‖ex.
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In the figures below we show different error curves, indicated by numbers (n) (n = 1, . . . , 4) as follows.

(1)
(

| ‖u‖2ex − F (uh)|+ ‖[uh]‖L2(γ)

)1/2
“mortar BEM”

(2)
(

| ‖u‖2ex − F (uh)|
)1/2

“error1”

(3) ‖[uh]‖
1/2
L2(γ)

“error2”

(4) a(u− ũh, u− ũh)
1/2 “conforming BEM”

Here, ũh denotes a conforming boundary element solution. Additionally, all curves are normalized by
‖u‖ex.

Therefore, to resume, an error curve (1) represents the upper bound (4.3) for the (normalized) error
|u−uh|H1/2(T ) of the mortar BEM. Curves (2) and (3) are the two components of (1). Here, (3) controls
the non-conformity of the mortar approximant uh. Curve (4) represents the error of the conforming
BEM. In this case it is equivalent to the error in energy norm ‖u− ũh‖H̃1/2(Γ).

All results are plotted on double logarithmic scales versus 1/h. For our numerical experiments we
always use rectangular meshes and in this section, hi refers to the length of the longest edge on Γi, and
h := maxi hi as before.

Conforming sub-domain decomposition.
Experiment 1 (conforming mesh, results in Figure 4.1). First let us consider a conforming decom-

position of Γ into four sub-domains as indicated in Figure 2.1(a). Moreover, let us first test the case
where the separate meshes on the sub-domains form globally conforming meshes (we take uniform meshes
consisting of squares). The corresponding results are shown in Figure 4.1. Along with the curves (1), (2),
(4) we plot the values of h1/2. The numerical results indicate a convergence of the order O(h1/2), for the
conforming as well as the mortar BEM. According to the discussion above this is the best one can expect.
The curves (1) and (2), referring to our upper bound (4.3) and the first term in (4.3), respectively, are
almost identical. This means that the second term in (4.3), which in the next plots will be labeled by (3),
is negligible in comparison. Indeed, in this symmetric case the jumps [uh] disappear and the numerical
results vanish at the order of single precision. Therefore, in this plot, we do not show the curve (3).

We do not observe a logarithmical perturbation of the convergence in this range of number of un-
knowns. This may be caused by the fact that we are not including the L2-parts in the error since our
results are, up to constant factors, upper bounds only for the semi-norm |u−uh|H1/2(T ). Also, we do not
know whether our bounds including the logarithmic terms are sharp.

Experiment 2 (non-conforming mesh, results in Figure 4.2). Now let us test globally non-conforming
meshes. Again we use uniform meshes consisting of squares on each sub-domain. We mesh as in Fig-
ure 2.1(a) starting with 2, 3, 4, and 5 “slides” on Γ1, Γ2, Γ3, and Γ4, respectively and increase the
number of slides in each sub-domain by one in each step of our sequence of meshes. The corresponding
results are shown in Figure 4.2. Again, a convergence of the expected order O(h1/2) is confirmed. Curve
(3) indicates very fast convergence of the jumps ‖[uh]‖L2(γ) → 0. In the experiments below, however,
we observe a slower convergence. In this particular sequence of meshes, where we increase the slides
on the sub-domains by the same amount, the trace meshes from different sides on a particular interface
edge approach each other in a certain sense. We conjecture that this specific situation (“approaching”
conforming meshes) causes the fast convergence of the jumps.

Experiment 3 (non-conforming mesh, results in Figure 4.3). For the next experiment we start with
a mesh of four squares on each sub-domain (the sub-domains are again as in Figure 2.1(a)), and increase
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mortar BEM (1)

error1 (2)
conforming BEM (4)

Figure 4.1: Conforming sub-domain decomposition with conforming meshes.

the numbers of slides on different sub-domains by different steps (increase by 2, 3, 4, 5 slides on Γ1, Γ2,
Γ3, Γ4, respectively). In this case both error parts, curves (2) and (3), behave like O(h1/2), confirming
our a priori error estimate and thus the good performance of the mortar BEM. Let us note, however,

that the part ‖[uh]‖
1/2
γ of the error expression (4.3) is an overestimation. Indeed, our substitution (4.3)

for |u − uh|H1/2(T )/‖u‖ex is not precise. On the one hand we replaced the term 2 ‖λ‖L2(γ) in (4.2) by 1
(and the generic constant in (4.1) by 1). On the other hand the term 〈[uh], λ〉γ is of higher order than
‖[uh]‖L2(γ). According to (3.18) and by standard approximation theory there holds for any r < 1/2

|〈[uh], λ〉γ | . ‖[uh]‖L2(γ) inf
ψ∈Mk

‖λ− ψ‖L2(γ) . kr(

L
∑

l=1

|λ|2Hr(γl)
)1/2‖[uh]‖L2(γ).

This shows that 〈[uh], λ〉γ is of higher order than ‖[uh]‖L2(γ). Note that, by the proof of Theorem 3.2 and

since u ∈ H1/2+r(Γ), one has the regularity λ ∈
∏L
l=1H

r(γl) ∀r < 1/2. Therefore, by (4.2) the term

(

| ‖u‖2ex − F (uh)|
)1/2

/‖u‖ex (curve (2), “error1”)

is asymptotically equal to
a(u− uh, u− uh)

1/2/‖u‖ex

and this dominates the error.
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Figure 4.2: Conforming sub-domain decomposition with non-conforming meshes, same refinement steps
on sub-domains.

Non-conforming sub-domain decomposition.
Experiment 4 (non-conforming mesh, results in Figure 4.5). Finally, we consider the fully non-

conforming mortar method, i.e. with non-conforming sub-domain decomposition and non-conforming
meshes. We decompose Γ into three sub-domains as in Figure 4.4 and use the initial mesh given there on
the left. Then slides on sub-domains are increased in each direction by 3, 2, 1 on Γ1, Γ2, Γ3, respectively,
in each step. The second mesh is on the right in Figure 4.4. Note that in each second step the cross-point
(0, 0) between the sub-domains is a hanging node and our theory includes this case. The numerical results
are shown in Figure 4.5 and again confirm the expected convergence of the mortar BEM.

In this case, the meshes for the Lagrangian multiplier are coarsenings of the trace meshes from Γ2 on
γ12 and γ23, and of the trace mesh from Γ1 on γ13. We always join two elements of the respective trace
mesh to form an element of the Lagrangian multiplier mesh, except for an odd number of elements of
the trace mesh when one set of three elements is joined. The corresponding numbers of unknowns for
the steps are listed in Table 1.
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Figure 4.3: Conforming sub-domain decomposition with non-conforming meshes, different refinement
steps on sub-domains.

Γ1

Γ2

Γ3

Γ1

Γ2

Γ3

Figure 4.4: Conforming sub-domain decomposition with non-conforming meshes.
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Figure 4.5: Non-conforming sub-domain decomposition with non-conforming meshes, different refinement
steps on sub-domains.

h = h3 h1 h2 dim(Xh) dim(Mk)

0.5000 0.1250 0.1667 27 4
0.3333 0.0625 0.0833 80 7
0.2500 0.0417 0.0556 161 11
0.2000 0.0313 0.0417 270 14
0.1667 0.0250 0.0333 407 18
0.1429 0.0208 0.0278 572 21
0.1250 0.0179 0.0238 765 25
0.1111 0.0156 0.0208 986 28
0.1000 0.0139 0.0185 1235 32
0.0909 0.0125 0.0167 1512 35
0.0833 0.0114 0.0152 1817 39
0.0769 0.0104 0.0139 2150 42

Table 1: Dimensions and mesh sizes for experiment 4.
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