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A global convergence proof of cyclic Jacobi methods
with block rotations
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Zlatko Drmač∗

Abstract

This paper introduces a globally convergent block (column– and row–) cyclic
Jacobi method for diagonalization of Hermitian matrices and for computation
of the singular value decomposition of general matrices. It is shown that a block
rotation (generalization of the Jacobi’s 2× 2 rotation) must be computed and
implemented in a particular way to guarantee global convergence. This solves
a long standing open problem of convergence of block cyclic Jacobi methods.
The proof includes the convergence of the eigenspaces in the general case of
multiple eigenvalues.

1 Introduction and preliminaries

State of the art accurate methods for computing the singular value decomposition
(SVD) and symmetric (Hermitian) spectral decomposition are based on the classical
Jacobi algorithm [21]. The algorithm starts with a Hermitian H = H(1) ∈ Cn×n and
then it generates a sequence of congruences, H(k+1) = (U(k))∗H(k)U(k), where U(k) is a
plane rotation, i.e. U(k) differs from the identity only at the cleverly chosen positions

(ik, ik), (ik, jk), (jk, ik), (jk, jk), where

(
U

(k)
ik,ik

U
(k)
ik,jk

U
(k)
jk,ik

U
(k)
jk,jk

)
=

(
cos φk eiψk sin φk

−e−iψk sin φk cos φk

)
. The

angles φk, ψk are determined to annihilate the (ik, jk) and (jk, ik) positions in H(k),

(
cos φk −eiψk sin φk

e−iψk sin φk cos φk

) (
H

(k)
ikik

H
(k)
ikjk

H
(k)
jkik

H
(k)
jkjk

) (
cos φk eiψk sin φk

−e−iψk sin φk cos φk

)
=

(
H

(k+1)
ikik

0

0 H
(k+1)
jkjk

)
. (1)

∗Authors’ address: Department of Mathematics, Virginia Polytechnic Institute and State Uni-
versity, 460 McBryde, Virginia Tech, Blacksburg, VA 24061-0123. On leave from Department of
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With proper choices of the rotation parameters, and under certain pivot strategies
k 7→ (ik, jk), the matrices H(k) converge to a diagonal matrix with eigenvalues of H
along the diagonal. By implicit diagonalization of H = A∗A, the method can be used
to compute the SVD of a general matrix A, see [20].

An important advantage of the Jacobi algorithm is that it is more accurate than
any other method that first tridiagonalizes (or bidiagonalizes in the case of SVD
computation) the matrix [8], and that it can be used for highly accurate eigenvalue
and singular value computation of special classes of matrices [7], [6]. Recent im-
plementation of the Jacobi SVD algorithm [13], [14] shows that the method has a
potential to achieve efficiency comparable to the fast bidiagonalization–based meth-
ods. Nontrivial modifications of the algorithm include the use of QR iterations as a
preconditioner, and a specially tailored version of the implicit Jacobi algorithm for
structured triangular matrices.

Future improvements of the method for large scale dense full Hermitian eigenvalue
and SVD computations require (i) further study of the numerical properties and of the
convergence of Jacobi–type iterative processes in order to find better preconditioning
and better pivot strategies; (ii) development of parallel pivot strategies that map well
to modern high performance parallel machines; (iii) new design of the kernel routine
– plane rotation has to be replaced with a block transformation that diagonalizes
pivot sub–matrices of sizes larger than 2× 2.

In this report, we give a theoretical framework for (iii) and prove global conver-
gence for a class of Jacobi algorithms with block transformations. For a partition
ν = (n1, n2, . . . , nm) (m ≥ 2, ni > 0,

∑m
i=1 ni = n) we introduce a block partition

H = (H[ij])
m
i,j=1, where H[ij] is ni × nj. One step of the block–Jacobi method consists

of choosing a pivot pair (ik, jk), and generalizing (1) to the (nik + njk
) × (nik + njk

)
pivot submatrix:

(
H

(k+1)
[ikik] H
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[jkik] H
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)
=
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∗
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∗
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H

(k)
[ikik] H

(k)
[ikjk]

H
(k)
[jkik] H

(k)
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)

︸ ︷︷ ︸
H(k)

ikjk

(
U

(k)
[ikik] U

(k)
[ikjk]

U
(k)
[jkik] U

(k)
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︸ ︷︷ ︸
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, (2)

H(k+1) = U(k)∗H(k)U(k), U(k) =




I 0 0 0 0

0 U
(k)
[ikik]

0 U
(k)
[ikjk]

0

0 0 I 0 0

0 U
(k)
[jkik]

0 U
(k)
[jkjk]

0

0 0 0 0 I


 . (3)

We write the relation (2) as H(k+1)
ikjk

= (U (k)
ikjk

)∗H(k)
ikjk
U (k)

ikjk
, where H(k+1)

ikjk
is diagonal,

and the diagonalization procedure (2) is arbitrary. If the steps (2, 3) are repeated by
taking the pivot strategy k 7→ (ik, jk) to be periodic mapping with one full period of
length s = (m− 1)m/2 (also called a sweep) given as

(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), . . . , (1, m), (2,m), . . . , (m− 1,m), (4)
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then we have a block column–cyclic Jacobi method. In a similar way, one defines a
block row–cyclic Jacobi method, with pivot sequence (1, 2), (1, 3), (1, 4), . . ., (1,m),
(2, 3), (2, 4), . . ., (2,m), . . ., (m− 1,m).

In an SVD computation by one sided Jacobi algorithm, the initial matrix A ∈ Cr×n

is partitioned in block columns as A = (A[1], . . . , A[m]). In the k–th step, the matrix

H(k)
ikjk

is computed as H(k)
ikjk

= (A
(k)
[ik], A

(k)
[jk])

∗(A(k)
[ik], A

(k)
[jk]), and the transformation (3) is

executed implicitly as
A(k+1) = A(k)U(k). (5)

Block transformations (3), (5) generate different diagonalization processes with
more potential for fast convergence. Further, they are more suitable for hierarchi-
cal memory architectures because of higher flop to memory reference ratio, and are
preferable as kernel routines in both serial and parallel environments. Thus, the up-
date of the matrix H(k) (A(k)) to obtain H(k+1) (A(k+1)) can be efficiently executed by
machine optimized BLAS 3 operations [10], [9].

Here we make an important distinction between the proper block methods, as
described above, and the block–oriented methods. In the block–oriented methods,
one uses the block partition and the pivoting (4), and inside each block H(k)

ikjk
one

applies a sequence of 2 × 2 Jacobi rotations (e.g. by scanning through H(k)
ikjk

in a

row–wise or column–wise fashion) and accumulate them in the matrix U (k)
ikjk

. In this
way, several 2×2 rotations are applied as a block transformation. This is actually just
a modification of the nested loops that control the sequence of 2 × 2 rotations, with
a delayed application of individual rotations to the rest of the current iterate. The
convergence of such a method is obtained by proving its equivalence (in the sense of
equivalence relation between pivot strategies [17]) to some other convergent strategy
with 2× 2 elementary transformations (1), see [1], [19].

For proper block methods with the pivoting (4), we are not aware of any con-
vergence result in the literature. And, in fact, we show that the convergence cannot
be guaranteed unless the block transformations are implemented as described in this
report. We define a new class of unitary block–transformations and provide a novel
technique to study the convergence to diagonal matrix in a framework of the polyhe-
dral set of all diagonals of the matrices from the adjoint orbit of the given Hermitian
H. Our proof of global convergence covers the general case of multiple eigenvalues,
including the convergence of eigenvectors and eigenspaces, and it is to our best knowl-
edge the first result of this kind in the theory of Jacobi methods. The convergence of
the eigenspaces is obtained in a Grassmann manifold setting, by using perturbation
theory, in particular the sin Θ theorem.
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2 The off–norm converges to zero

Convergence analysis of a block method driven by a pivot strategy is in many aspects
similar to the classical 2 × 2 rotation based methods. To measure the distance to
diagonal matrices, we use the so called off–norm: for X ∈ Cn×n the off–norm is defined

as Ω(X) =
√∑

i 6=j |Xij|2. So, our first goal is to show that limk→∞ Ω(H(k)) = 0.

As in the 2×2 case, the diagonalization requirement in (2) can be relaxed to mere
off–norm reduction by a constant factor ρ, independent of k, i.e.

Ω(H(k+1)
ikjk

) ≤ ρ Ω(H(k)
ikjk

), ρ ∈ [0, 1), (6)

where the choice ρ = 0 means exact diagonalization. At each step we have

Ω2(H(k+1)) ≤ Ω2(H(k))− (1− ρ)Ω2(H(k)
ikjk

) ≤ Ω2(H(k)). (7)

Another possibility is to use a threshold strategy: for a decreasing sequence of positive
threshold values τ1 > τ2 > · · · with limt→∞ τt = 0, the transformation in the k–th
step is executed only if Ω(H(k)

ikjk
) ≥ τ1, else it is skipped. After skipping one full cycle

((m−1)m/2) consecutive steps, the threshold is lowered to τ2 etc. From (7), it follows
that reduction below a given threshold is always obtained in a finite number of steps.
(Cf. [27].)

The following technical lemma is common for all pivot strategies:

Lemma 2.1. With any pivoting strategy and with transformations (2) that sat-
isfy (6), the sequence (Ω(H(k)))∞k=1 is monotonically decreasing with the limit ω =
limk→∞ Ω(H(k)). Further, the series of the squared off–norms of the pivot sub–matrices

is convergent,
∑∞

k=1 Ω2(H(k)
ikjk

) < ∞. Hence, the off–diagonal entries of the pivot sub–

matrices are always converging toward zero, limk→∞ Ω(H(k)
ikjk

) = 0.

Proof: The proof follows from (7) and

k∑
p=1

Ω2(H(p)
ipjp

) ≤ 1

1− ρ
(Ω2(H)− Ω2(H(k+1))). ¢

In this paper we will be mainly interested in (6) with ρ = 0, and for the sake of
brevity we will just give hints how to proceed for ρ ∈ [0, 1). The pivoting will be the
block column–cyclic (4).

2.1 Uniformly bounded cosines: UBC transformations

It is well–known that a necessary condition for the convergence of cyclic Jacobi meth-
ods is the existence of a strictly positive uniform lower bound for the cosines of the
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Jacobi angles [16]. How this translates to the block methods can be seen from the

cosine–sine decomposition (CSD) of the matrix U (k)
ikjk

in (2), e.g. in the case nik ≥ njk
:

(
U

(k)
[ikik] U

(k)
[ikjk]

U
(k)
[jkik] U

(k)
[jkjk]

)
=

(
Z

(k)
1 0

0 Z
(k)
2

) (
C(k) S(k)

−S(k)∗ C(k)

) (
W

(k)
1 0

0 W
(k)
2

)
(8)

C(k) =

(
cos Φ(k) 0

0 Inik
−njk

)
, S(k) =

(
sin Φ(k)

0

)
, (9)

where the zero block in S(k) is (nik−njk
)×njk

, cos Φ(k) = diag(cos φ
(k)
p )

njk
p=1, cos φ

(k)
p ≥ 0,

and sin Φ(k) = diag(sin φ
(k)
p )

njk
p=1. From the factored representation (8) we see that njk

non–overlapping rotations

(
cos φ

(k)
p sin φ

(k)
p

− sin φ
(k)
p cos φ

(k)
p

)
simultaneously combine the columns from

the ik–th and the jk–th block. Using an analogy with the 2× 2 rotations we can infer
that a lower bound for all cos φ

(k)
p will be a necessary condition for the convergence.

The following lemma is the key result that practically allows us to analyze the
convergence of Ω(H(k)) towards zero in complete analogy to the classical proof due to
Forsythe and Henrici [16] for the Jacobi method with 2× 2 rotations.

Lemma 2.2. Let U be an arbitrary m ×m unitary matrix. Then for any partition
m = b + `, b, ` ∈ {1, . . . , m− 1} there exists a permutation matrix Π such that in the
block–matrix

Û ≡ UΠ =

(
Û[11] Û[12]

Û[21] Û[22]

)
, Û[11] ∈ Cb×b, (10)

both diagonal blocks are non–singular with

1 ≥ σmin(Û[11]) = σmin(Û[22]) ≥ f(b, `) > 0, (11)

where f(b, `) depends solely on b and `.

Proof: Let U be partitioned as

U =

(
U[11] U[12]

U[21] U[22]

)
, U[11] ∈ Cb×b, (12)

and consider the Businger–Golub column pivoted QR factorization [2] of the first
block–row U[1:] =

(
U[11] U[12]

)
,

U[1:]Π = QR, Q b× b unitary, R b×m upper trapezoidal.

We claim that Π satisfies (10,11).
If Û = UΠ is partitioned as in (10), and if we partition R as R =

(
T K

)
with b × b

upper triangular T, then Û[11] = QT, and the problem reduces to finding a lower
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bound for the minimal singular value of T. As a result of column pivoting, the matrix
T has special diagonal dominance structure:

|Tii|2 ≥
k∑

j=i

|Tjk|2, i ≤ k ≤ b, (13)

|Tbb| = max
j=b:m

|Rbj|. (14)

On the other hand, since Û[1:] ≡
(
Û[11] Û[12]

)
= QR and since Û[1:]Û

∗
[1:] = RR∗ = Ib, it

must hold that

|Tbb| ≥ 1√
` + 1

. (15)

If we set D = diag(Tii)
b
i=1, T̆ = D−1T, then

σmin(T) = min
x6=0

‖Tx‖2

‖x‖2

= min
y 6=0

‖Dy‖2

‖T̆−1y‖2

≥ σmin(D)

‖T̆−1‖2

≥ 1√
` + 1

1

‖T̆−1‖2

.

It remains to estimate the norm of T̆−1 = T−1D. Using [22], we know that, for
i = 2, . . . , b,

|T−1ei| ≤ 1

|Tii|
(
2i−2, 2i−3, . . . 4, 2, 1, 1, 0, . . . 0

)T
,

where ei is the i–th column of the identity, and the absolute value and the inequality
between vectors are understood element–wise. For i = 1 we trivially have T−1e1 =

1
T11

e1, and T̆−1e1 = e1. For i = 2, . . . , b we use

T̆−1ei = T−1Dei = TiiT
−1ei

to conclude |T̆−1ei| ≤
(
2i−2, 2i−3, . . . 4, 2, 1, 1, 0, . . . 0

)T
, and thus

‖T̆−1‖2 ≤ ‖T̆−1‖F ≤ g(b), where g(b) =

√√√√b +
b∑

i=2

i−2∑
j=0

4j.

Finally, σmin(Û[11]) = σmin(T) ≥ 1

g(b)
√

` + 1
≡ f(b, `), as claimed. ¢

Corollary 2.1. Let a block partition of H be given by ν = (n1, n2, . . . , nm). Then in
any pivot strategy, one can choose block–orthogonal transformations (2) so that

inf
k≥1

σmin(U
(k)
[ikik]) ≥ βν = min

i<j
f(ni, nj) > 0,

where f(·, ·) is from Lemma 2.2. If an implementation of the Jacobi methods allows
changing the partition, then the lower bound βν can be replaced by the minimum over
all (finitely many) partitions of n.
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Definition 2.1. A class of unitary transformations with given 2 × 2 block partition
is called a UBC (Uniformly Bounded Cosines) transformation, if the singular values
of the diagonal blocks can be bounded from below by a function of the dimension.

Remark 2.1. It is possible that more sophisticated (and more expensive in practical
computation) pivoting would give better lower bound for σmin(Û[11]), but for our
purposes of proving the convergence the uniform bound from Lemma 2.2 will suffice.

Lemma 2.3. Let the unitary matrix U be partitioned as in (12) and let

(
U[11] U[12]

U[21] U[22]

)(
X
Y

)
=

(
X̃

Ỹ

)
(16)

where X, Y are matrices of appropriate dimensions and ‖X‖F ≤ ε, ‖Ỹ‖F ≤ ε. If the
diagonal blocks U[11], U[22] are nonsingular, then

max{‖X̃‖F , ‖Y‖F} ≤ 2ε‖U−1
[11]‖2. (17)

Proof: We note that

(
X̃
Y

)
=

(
I −U[12]

0 U[22]

)−1(
U[11] 0
−U[21] I

)(
X

Ỹ

)
=

(
U[11] − U[12]U

−1
[22]U[21] U[12]U

−1
[22]

−U−1
[22]U[21] U−1

[22]

)(
X

Ỹ

)
,

where in fact U[11] − U[12]U
−1
[22]U[21] = U−∗[11]. ¢

2.2 Block column cyclic off–norm reduction

If one is familiar with the classical convergence proof for the cyclic Jacobi method
due to Forsythe and Henrici [16], then one can use the results from §2.1 and complete
the proof that the off–norm in the block cyclic case converges to zero. However, for
the sake of completeness, we include the detailed proof, following the ideas from [16].

Let us first introduce some auxiliary notation. We use S
(k)
ij to denote the off norm

of the sub–matrix H
(k)
[i:j,i:j] of H(k) composed of the blocks H

(k)
[pq], i ≤ p, q ≤ j. Since in

one cycle the pivot strategy k 7→ p(k) = (ik, jk) is bijective, it is sometimes convenient
to use its inverse K, (i, j) 7→ kij = K(i, j), to match a pivot position with its iteration
number.

Lemma 2.4. Consider the column–cyclic pivoting (4), with the block–partition ν. Let

k0 ∈ N be chosen so that for all indices k, k ≥ k0 implies Ω(H(k)
ik,jk

) < ε. (See Lemma

2.1.) If for some kij ≥ k0, S
(kij)
ij < ε and S

(ki+1,j+1)
i+1,j+1 < ε, then S

(ki,j+1)
i,j+1 < αj−iε, where

αj−i depends only on the difference j − i and the partition ν, and can be uniformly
bounded by a function of n.
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Proof: Note that in the column–cyclic strategy the indices of the transformations
under consideration satisfy kij < ki,j+1 < ki+1,j+1 = ki,j+1 +1. The task is to estimate

the changes of S
(k)
ij for transformation indices kij ≤ k ≤ ki,j+1. We first note that

ε > S
(kij)
ij ≥ S

(ki+1,j)
ij ≥ · · · ≥ S

(kj−1,j)
ij ≥ S

(k1,j+1)
ij (18)

because the transformations with indices from kij to kj−1,j can be taken as the block

Jacobi transformations of H
(kij)

[i:j,i:j], thus off–norm reducing. Further, since the trans-

formations with indices k1,j+1, . . . , ki−1,j+1 do not change H
(k1,j+1)

[i:j,i:j] , it holds that

S
(k1,j+1)
ij = S

(k2,j+1)
ij = . . . = S

(ki−1,j+1)
ij = S

(ki,j+1)
ij . (19)

Now consider the moment immediately before the transformation at the pivot position

(i, j + 1). Since Ω(H(ki,j+1)
i,j+1 ) < ε (as pivot sub–matrix, and because ki,j+1 > k0), it

also holds that ‖H(ki,j+1)

[i,j+1] ‖F < ε. After this transformation at (i, j + 1) we have, using

the assumption S
(ki+1,j+1)
i+1,j+1 < ε,

‖H(ki+1,j+1)

[j+1,i+1] ‖F < ε, ‖H(ki+1,j+1)

[j+1,i+2] ‖F < ε, . . . , ‖H(ki+1,j+1)

[j+1,j] ‖F < ε. (20)

On the other hand, the blocks H
(ki+1,j+1)

[j+1,q] , q = i + 1, . . . , j, are computed as

(
H

(ki+1,j+1)

[iq]

H
(ki+1,j+1)

[j+1,q]

)
=

(
U

(ki,j+1)

[ii] U
(ki,j+1)

[i,j+1]

U
(ki,j+1)

[j+1,i] U
(ki,j+1)

[j+1,j+1]

)(
H

(ki,j+1)

[iq]

H
(ki,j+1)

[j+1,q]

)
, q = i + 1, . . . , j. (21)

From (18) and (19) we conclude that max
q=i+1:j

‖H(ki,j+1)

[iq] ‖F < ε, and then, using (19), (20)

and Lemma 2.3, we obtain max
q=i+1:j

‖H(ki,j+1)

[j+1,q] ‖F ≤ 2ε/βν , where βν is from Corollary 2.1.

Hence, putting it all together, we obtain

(S
(ki,j+1)
i,j+1 )2 ≤ (S

(ki,j+1)
i,j )2 + Ω(H(ki,j+1)

i,j+1 )2 + 2

j∑
q=i+1

‖H(ki,j+1)

[j+1,q] ‖2
F

≤ (2 + 8(j − i)/β2
ν)ε

2 ≡ α2
j−iε

2. ¢

Theorem 2.1. For any Hermitian H ∈ Cn×n with a block partition ν = (n1, . . . , nm),
the block Jacobi method with column–cyclic ordering generates a sequence (H(k))∞k=1

with limk→∞ Ω(H(k)) = 0.

Proof: Let ε+ > 0 be arbitrary. Define ε = ε+/
∏m−2

p=1 αp, where the αp’s are as in

Lemma 2.4. Using Lemma 2.1 we can determine an index k0 such that Ω(H(k)
ikjk

) <
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ε, for all k ≥ k0. This means that after the index k0 the off norm of each pivot
sub–matrix is ε small. For instance, in the case of a 6 × 6 partition, and without
loss of generality assuming k0 = 1, we have Ω(H(1)

12 ) = S
(1)
12 < ε, Ω(H(3)

23 ) = S
(3)
23 < ε,

Ω(H(6)
34 ) = S

(6)
34 < ε, Ω(H(10)

45 ) = S
(10)
45 < ε, Ω(H(15)

56 ) = S
(15)
56 < ε. These inequalities

can be taken in pairs as input to Lemma 2.4 (see Figure 1) to conclude that S
(2)
13 < α1ε,

S
(5)
24 < α1ε, S

(9)
35 < α1ε, S

(14)
46 < α1ε. The newly obtained inequalities can be fed

back into Lemma 2.4 to obtain S
(4)
14 < α2α1ε, S

(8)
25 < α2α1ε, S

(13)
36 < α2α1ε. After

another two applications of Lemma 2.4 in this manner we arrive at Ω(H(11)) ≡ S
(11)
16 <

α4α3α2α1ε < ε+. Clearly, the same reasoning applies inductively to any number of
blocks and the proof is completed. ¢

S
(1)
12 < ε

S
(3)
23 < ε

S
(6)
34 < ε

S
(10)
45 < ε

S
(15)
56 < ε

S
(2)
13 < α1ε

S
(5)
24 < α1ε

S
(9)
35 < α1ε

S
(14)
46 < α1ε

S
(4)
14 < α2α1ε

S
(8)
25 < α2α1ε

S
(13)
36 < α2α1ε

S
(7)
15 < α3α2α1ε

S
(12)
26 < α3α2α1ε

S
(11)
16 < α4α3α2α1ε

@@R
¡¡µ
@@R
¡¡µ
@@R
¡¡µ
@@R
¡¡µ

@@R
¡¡µ
@@R
¡¡µ

¡¡µ
@@R

@@R
¡¡µ
@@R
¡¡µ

@@R
¡¡µ

¾

Figure 1: Illustration of the proof for a 6 × 6 block partition and column–cyclic
ordering.

Remark 2.2. The preceding convergence proof applies mutatis mutandis to the block
row–cyclic pivoting. It covers the one–sided Jacobi SVD method, and we plan to
adapt it for a block Kogbetliantz–type SVD computation [27] by using [16] and the
new UBC transformations. Further, notice that equivalence of pivot strategies is
a result of pure combinatorial relations on set of all pivot pairs, together with the
associativity of the matrix multiplication. It does not depend on the block sizes in
the 2× 2 block partitioned transformations. Hence, the convergence result holds true
for any other equivalent pivoting, in particular including parallel strategies [25],[26].

3 Convergence to diagonal form

Now that we have that (Ω(H(k)))∞k=1 converges to zero, it remains to prove that the
matrices H(k) converge to a fixed diagonal matrix as k → ∞. This is a nontrivial
task, especially in the case of multiple eigenvalues. And, finally, we have to analyze
the convergence of the infinite product U(1)U(2) · · ·U(k), k →∞.

In this section, the assumed block column cyclic strategy can be replaced with an
arbitrary block pivoting that guarantees limk→∞ Ω(H(k)) = 0.
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3.1 Preliminaries

An immediate consequence of Theorem 2.1 is the following

Corollary 3.1. In the optimal matching distance, the diagonal entries of the se-
quence (H(k))∞k=1 converge to the eigenvalues of H. More precisely, if λ1, . . . , λn are
the eigenvalues of H in an arbitrary order, then

lim
k→∞

min
p∈Sn

max
i=1:n

|H(k)
p(i)p(i) − λi| = 0.

For the convergence to a fixed diagonal matrix, we must prove that the diagonal
entries of H(k) cannot change their affiliation to the eigenvalues. A technical difficulty
is that at step k and pivot position (ik, jk), nik + njk

diagonal elements of H(k) are
affected in a way that cannot be expressed by simple formulas as in the classical
2× 2 case, and that UBC pivoting may introduce permutations that could preclude
convergence to fixed diagonal matrix. However, there is a simple and elegant setting
to treat the convergence of the diagonal entries of the matrices H(k).

Proposition 3.1. Let h(k) = (H
(k)
11 , H

(k)
22 , . . . , H

(k)
nn )T , k = 1, 2, . . ., and let the vector

~λ = (λ1, λ2, . . . , λn)T contain the eigenvalues of H in some order. Then for any

implementation of the Jacobi algorithm, h(k) = (Q◦Q)~λ, where Q is unitary, ◦ denotes
the Hadamard matrix product, and Q denotes entry–wise complex conjugation. Hence,
all diagonals h(k) can be considered as points in the convex polyhedral set P(H) whose

extreme points are all permutations of the vector ~λ.

Proof: Let O(H) = {Q∗HQ, Q ∈ U(n)} be the adjoint orbit of H. For any M ∈ O(H)
it holds that M = QΛQ∗ with some unitary Q and Λ = diag(λi)

n
i=1, and we directly

compute that m = (M11, M22, . . . , Mnn)T can be expressed as m = (Q ◦ Q)~λ. Since
all iterates H(k) belong to O(H), the proof is completed by calling the Schur–Horn
theorem, or by the Birkhoff representation theorem for doubly–stochastic matrices.

¢
It follows from Proposition 3.1 that the convergence toward diagonal form can be
analyzed by observing how h(k) changes in a vicinity of an extreme point of P(H).

Another key issue will be the structure of the transformation matrices as H(k), k →∞,
become almost diagonal. We will use the following entry–wise form of the sin Θ
theorem [4]:

Theorem 3.1. Let A be Hermitian matrix with spectral decomposition A = VDαV∗,
Dα = diag(αi)

n
i=1, and let Ã = A + δA be a Hermitian perturbation of A, with spectral

decomposition Ã = ṼDα̃Ṽ∗, Dα̃ = diag(α̃j)
n
j=1. Let α̃j, j ∈ Jj ⊆ {1, . . . , n} be some

eigenvalues of Ã. Let Ij be the indices of the corresponding eigenvalues αi of A (in
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the sense that all αi, i ∈ Ic
j = {1, . . . , n} \ Ij are well separated from all α̃j, j ∈ Jj).

If Θ = V∗Ṽ, then √ ∑

(i,j)∈Ic
j×Jj

|Θij|2 ≤ ‖δA‖F

min
(i,j)∈Ic

j×Jj

|α̃j − αi| .

Corollary 3.2. Let A be almost diagonal matrix with spectral decomposition A =
VDαV∗. Let αj, j ∈ Jj ⊆ {1, . . . , n} be some eigenvalues of A. Let Ij be the indices
of the corresponding diagonal elements Aii of A, in the sense that all αi, i ∈ Ic

j =
{1, . . . , n} \ Ij are well separated from all αj, j ∈ Jj. Then

√ ∑

(i,j)∈Ic
j×Jj

|Vij|2 ≤ Ω(A)

min
(i,j)∈Ic

j×Jj

|αj − Aii| .

Proof: Take A as perturbation of its diagonal part, and apply Theorem 3.1. ¢

3.2 Simple eigenvalues

As expected, the case of simple eigenvalues is easier to handle. Let λ1, λ2, . . . , λn be
the n simple eigenvalues of H and let γ = mini6=j |λi − λj|.
Lemma 3.1. The block–transformation (2) can be implemented so that, for every

index k greater or equal than a sufficiently large k0 ∈ N, the unitary matrix U (k)
ikjk

is a
small perturbation of the identity.

Proof: Let k0 be such that ε ≡ Ω(H(k0)) < γ/3. Then the n diagonal entries of all H(k),
k ≥ k0, are always inside the n mutually disjoint circles of radii γ/3 around the eigen-
values of H, and each circle contains exactly one diagonal entry. As a consequence,
all pivot sub–matrices H(k)

ikjk
, k ≥ k0, have only simple eigenvalues. Now, consider

the diagonalization of the pivot sub–matrix H(k)
ikjk

, H(k+1)
ikjk

= (U (k)
ikjk

)∗H(k)
ikjk
U (k)

ikjk
. If we

think of H(k)
ikjk

as being a perturbation of its own diagonal part, then by Corollary 3.2

each column of U (k)
ikjk

contains exactly one element O(ε2) close to one (all remaining
entries in that column are O(ε) small). Since no two such big elements can be in the

same row, the matrix U (k)
ikjk

is actually an O(ε) perturbation of a permutation matrix.

If U (k)
ikjk

is post–processed by a Businger–Golub permutation as in Lemma 2.2, then
in the block partition

U (k)
ikjk

=

(
U

(k)
[ikik] U

(k)
[ikjk]

U
(k)
[jkik] U

(k)
[jkjk]

)
, U

(k)
[ikik] ∈ Cnik

×nik , U
(k)
[jkjk] ∈ Cnjk

×njk

all O(1) entries are in the diagonal blocks U
(k)
[ikik] and U

(k)
[jkjk]. By two separate per-

mutations P1 ∈ Snik
, P2 ∈ Snjk

of the first nik and the last njk
columns of U (k)

ikjk
,
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respectively, we can place those O(1) entries to the diagonal of U (k)
ikjk

(P1⊕P2). By an

additional postmultiplication with a unitary diagonal matrix Υ(k), we can make all
those big diagonal entries real and positive. This makes Û (k)

ikjk
≡ U (k)

ikjk
(P1 ⊕ P2)Υ

(k) a
perturbation of the identity. More precisely, for each column index j

√∑

i6=j

|(Û (k)
ikjk

)ij|2 ≤
Ω(H(k)

ikjk
)

γ/3
,

∣∣∣(Û (k)
ikjk

)jj − 1
∣∣∣ ≤ Ω(H(k)

ikjk
)2

γ2/9
. (22)

By adding all off–diagonal entries in a divide–and–conquer fashion, we obtain

Ω(Û (k)
ikjk

) ≤
√

2 log2(nik + njk
)
Ω(H(k)

ikjk
)

γ/3
. (23)

Finally, note that the permutations P1 and P2 do not change the UBC property of
the transformation (see Lemma 2.2 and Corollary 2.1). ¢

Theorem 3.2. Let H be an n×n Hermitian matrix with simple eigenvalues λ1, λ2, . . .,
λn. If the block column–cyclic or block row–cyclic Jacobi algorithm is implemented
using UBC transformations as in Lemma 3.1, then with some permutation p ∈ Sn

lim
k→∞

H(k) = Λ = diag(λp(1), . . . , λp(n)),

where the reduction of the off–norm is quadratic per full sweep. The accumulated
product of the block Jacobi transformations converges toward the corresponding eigen-
vector matrix,

lim
k→∞

(U(1)U(2) · · ·U(k)) = U, where U∗U = I, HU = UΛ.

Proof: For start, let k0 be such that Ω(H(k0)) < γ/3. Later on, we may require larger

values of k0 to achieve smaller Ω(H(k0)). If we set h(k) = diag(H
(k)
ii )n

i=1, then by Corol-

lary 3.1 there exists a permutation p such that the vector ~λp = (λp(1), λp(2), . . . , λp(n))
satisfies

‖~λp − h(k)‖2 ≤ Ω(H(k)) <
γ

3
. (24)

Since for any other permutation q 6= p it necessarily holds ‖~λq − ~λp‖∞ ≥ γ, we have

that ‖~λq − h(k)‖∞ > 2γ/3. Hence, h(k) is affiliated with the extreme point ~λp ∈ P(H)
and it remains to prove the same affiliation for h(k+1), if k is sufficiently large.

For all k ≥ k0 and k0 sufficiently large, each U(k) can be written as U(k) = I + E(k),
where by Lemma 3.1 (relation (23)) Ω(E(k)) ≤ √

2 log2 nΩ(H(k)
ikjk

)/(γ/3). Then

h(k) = (U(k) ◦ U
(k)

)h(k+1), U(k) ◦ U
(k)

= I + 2diag(<(E
(k)
jj ))n

j=1 + E(k) ◦ E
(k)
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where <(·) denotes the real part of a complex number. Since U(k) is unitary, we have

for all j, 2<(E
(k)
jj ) + |E(k)

jj |2 = −
∑

i6=j

|E(k)
ij |2

which proves that ‖U(k)◦U(k)−I‖2 is quadratically small: ‖U(k)◦U(k)−I‖2 ≤ 2Ω2(E(k)).
Using (23), we conclude

‖h(k+1) − h(k)‖2 ≤ ‖U(k) ◦ U
(k) − I‖2‖H‖F ≤ 36 log2 n

Ω2(H(k))

γ2
‖H‖F <

γ

3

provided that
Ω(H(k))

‖H‖F

<
1√

108 log2 n

(
γ

‖H‖F

) 3
2

. (25)

The condition (25) will be satisfied for all k greater or equal than a sufficiently large
k0. Hence, for all k ≥ k0 we have

‖~λp − h(k)‖2 ≤ Ω(H(k)) =⇒ ‖~λp − h(k+1)‖2 ≤ Ω(H(k+1)). (26)

Thus, limk→∞ H(k) = diag(λp(1), . . . , λp(n)).
The quadratic reduction of Ω(H(k)) can be demonstrated using the Wilkinson’s

proof [29]. The change of the off–diagonal blocks in a block row–cyclic pivoting
follows almost verbatim that of [29] – the sines and the cosines of the Jacobi angles
just need to be replaced with the corresponding elements of the CS decomposition
(8). The diagonal blocks at the end of one full cycle are actually diagonal. Hence,
with the sweep length s = m(m− 1)/2, for every k ≡ k12 ≥ k0

Ω(H(k+s)) ≤ ζ(n, γ)Ω2(H(k)), ζ(n, γ) =

√
2 maxi,j log2(ni + nj)

γ/3
≤

√
2 log2 n

γ/3
, (27)

i.e. the off–norm is reduced at quadratic rate per sweep. Note that on entry to the
quadratic bound (27) k can correspond to any pivot position, k = k12 is chosen for
simplicity and easier comparison with [29].

Recall that for sufficiently large k, by Lemma 3.1, U(k) = I+E(k), where ‖E(k)‖F ≤
ζ(n, γ)Ω(H(k)

ikjk
). Using a technique by Causey and Henrici [3], we prove that

∞∑

k=1

‖E(k)‖F < ∞, (28)

which is a sufficient condition for the convergence of U(1)U(2) · · ·U(k) as k → ∞. For
the convergence of the series (28), note that for k0 →∞

∞∑

k=k0

‖E(k)‖F ≤
∞∑

k=k0

ζ(n, γ)Ω(H(k)) ≤
k0+s−1∑

k=k0

∞∑

`=0

ζ(n, γ)Ω(H(k+`s))

≤
k0+s−1∑

k=k0

∞∑

`=0

(
ζ(n, γ)Ω(H(k))

)2`

≤ s
ζ(n, γ)Ω(H(k0))

1− ζ(n, γ)Ω(H(k0))
→ 0.
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Thus, U = lim
k→∞

U(1)U(2) · · ·U(k) exists and its columns are the eigenvectors of H, since

Λ = lim
k→∞

H(k+1) = lim
k→∞

(
U(1)U(2) · · ·U(k)

)∗
HU(1)U(2) · · ·U(k) = U∗HU. The limit prod-

uct U is necessarily unitary. ¢

3.3 Multiple eigenvalues

We now turn to the general case of multiple eigenvalues. Let λ•1 > λ•2 > · · · > λ•s
be all different eigenvalues of H with multiplicities µ1, µ2, . . . , µs, respectively, and
with the spectral gap γ = mini6=j |λ•i − λ•j |. For a sufficiently large k, precisely µj

diagonal entries of H(k) will be affiliated to each eigenvalue λ•j , and each diagonal entry
is affiliated to exactly one eigenvalue. For this kind of distribution of the diagonal
entries of H(k) it suffices to have Ω(H(k)) < γ/3. All n eigenvalues (counted with
multiplicities, and denoted by λ1, λ2, . . . , λn) can be arranged in some order in a

vector ~λp, so that ‖~λp − h(k)‖2 ≤ Ω(H(k)) < γ/3. The task is to establish (26).

Theorem 3.3. Let H be an n× n Hermitian matrix with eigenvalues λ1, λ2, . . . , λn,
counted with multiplicities. The transformations (2,3) can be implemented to guar-
antee the convergence of the block column–cyclic Jacobi algorithm: with some p ∈ Sn

lim
k→∞

H(k) = Λ =

(
λp(1)

...
λp(n)

)
.

Proof: Since limk→∞ Ω(H(k)) = 0, we can assume that k is taken large enough to have
Ω(H(k)) sufficiently small relative to the gaps in the spectrum. Then we consider
the changes of the affected diagonal elements, and we show that certain, in a sense
consistent, implementation of the block–transformation (2) ensures that the matrices
H(k) converge to a fixed diagonal matrix as k →∞.

It suffices to consider a k–th step and to show that for sufficiently large k the diag-
onal elements do not change affiliation in the transformation H(k+1) = U(k)∗H(k)U(k).1

Before going to the most general case, let us note that two possible situations are
quite simple:

• If all nik + njk
diagonal entries of the pivot sub–matrix H(k)

ikjk
are affiliated to

different eigenvalues of H, then, for sufficiently large k, H(k)
ikjk

has only simple and well
separated eigenvalues and we can repeat the arguments from §3.2 to conclude that
there will be no change of affiliation of the affected diagonal entries in the k–th step.
In fact, this completes the proof if H has only simple eigenvalues.

• If all nik + njk
diagonal entries of H(k)

ikjk
are affiliated with the same eigenvalue

of H, then we cannot extract any useful structure from U (k)
ikjk

– it does not have to be

1Note that the same analysis applies to any strategy that guarantees limk→∞ Ω(H(k)) = 0.
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close to the identity. However, the change of the diagonal can be represented as

h(k+1) = (U(k)∗ ◦ U(k)T)h(k) + e(k), (29)

where U(k)∗ ◦ U(k)T is uni–stochastic and ‖e(k)‖2 ≤ Ω(H(k)) < γ/3. Note that (29)
expresses the changes of the diagonal elements as convex combinations with small
additive perturbations. We immediately conclude that ‖~λp − h(k+1)‖2 ≤ Ω(H(k+1)),

and this conclusion remains valid for any reordering of the columns of U (k)
ikjk

.
For the general case we need more elaborated analysis, and we have to go down

to the scalar entries of the transformation matrices. To simplify the notation, the
transformation matrix U (k)

ikjk
, which is assumed to be in the UBC form, will be denoted

by Û(k), the vectors of the affected diagonal entries (of H(k)
ikjk

and H(k+1)
ikjk

) will be ĥ(k)

and ĥ(k+1). Thus, ĥ(k), ĥ(k+1) ∈ Rnik
+njk , and

ĥ(k+1) = ((Û(k))∗ ◦ (Û(k))T)ĥ(k) + ê(k). (30)

In the general case, the diagonal entries of H(k)
ikjk

can be partitioned into p clusters,
affiliated with p different eigenvalues of H. Let I1, . . . , Ip denote the sets of the

corresponding indices of the diagonal entries (also, of the elements of ĥ(k)) in the

clusters. The eigenvalues of H(k+1)
ikjk

(that is, the elements of ĥ(k+1)) must also be
grouped around the same p eigenvalues of H. Let J1, . . . ,Jp denote the corresponding
indices for the p clusters. We first conclude that |Ik| = |Jk| ≡ dk, k = 1, . . . , p. Using
Corollary 3.2 we have √√√√

∑

(i,q)∈Ic
j×Jj

∣∣∣Û(k)
iq

∣∣∣
2

≤ Ω(H(k)
ikjk

)

γ/3
. (31)

This implies

1 ≥
∑
i∈Ij

∣∣∣Û(k)
iq

∣∣∣
2

> 1− Ω(H(k)
ikjk

)2

γ2/9
, 1 ≥

∑
q∈Jj

∣∣∣Û(k)
iq

∣∣∣
2

> 1− Ω(H(k)
ikjk

)2

γ2/9
. (32)

Now we note the following consequence of UBC pivoting: For each cluster J` (rep-
resenting also the corresponding column indices in Û(k)) there are in general f` ≤ d`

corresponding diagonal elements from the block H
(k)
[ikik]. This means that in the cor-

responding sub–matrix Û(k)(I`,J`) only its f` × d` submatrix is in the first nik rows

of Û(k). Column pivoting will take only a f` × f` block out of this f` × d` matrix
inside the (1, 1) block, and the rest will be moved into the (1, 2) block. In the second
block row, the elements are moved accordingly. The UBC property does not imply
any structure that can be noticed by a visual inspection, see the second plot in Figure
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2. However, there is a hidden special block–structure that can be revealed by certain
consistent ordering of the diagonal entries involved in the transformation.

We can separately permute the first nik and the last njk
columns of Û(k), where

the permutations Π1, Π2 are determined by separately sorting the first nik and the

last njk
entries of ĥ(k+1). Set Π = Π1 ⊕ Π2. (Recall that global permutation is not

allowed because of the UBC property, and that these separate permutations do not
change the uniform bound from Lemma 2.2.) In the same way, separately sort the
two parts of ĥ(k), using permutation matrices P1, P2, and then set P = P1 ⊕ P2.

Consistent order of ĥ(k+1) is introduced as follows. Both ĥ(k) and ĥ(k+1) are quasi–
sorted by P and Π, respectively. Now note that

ȟ(k+1) − ĥ(k) = P
(
(ΠT (Û(k))∗P ) ◦ (ΠT (Û(k))TP )

)
(P T ĥ(k))− ĥ(k) + PΠT ê(k)

=
(
(Ǔ(k))∗ ◦ (Ǔ(k))T

)
ĥ(k) − ĥ(k) + PΠT ê(k), (33)

where Ǔ(k) = Û(k)ΠP T , and ȟ(k+1) is the diagonal of (Ǔ(k))∗H(k)
ikjk

Ǔ(k). We decide to use

Ǔ(k) as a consistently ordered block transformation matrix. Then, the n× n unitary
U(k) is defined by placing the blocks of Ǔ(k) to the pivot positions, see (3).

Consistent ordering is noting else but ensuring that Ij = Jj for all j = 1, . . . , p.

Let Ǔ
(k)
Ij ,Jj

denote the submatrix of Ǔ(k), obtained by taking the entries with row
indices in Ij and column indices from Jj, where the sets Ij,Jj are always taken as

ordered. Also, e.g. ĥ
(k)
Ij

denotes the sub–vector of ĥ(k), with entries indexed by Ij.

To compute ȟ(k+1) by (33), we first note that

(((Ǔ(k))∗◦(Ǔ(k))T )(ĥ(k)))Ij
= ((Ǔ

(k)
IjIj

)∗◦(Ǔ(k)
IjIj

)T )ĥ
(k)
Ij

+ ((Ǔ
(k)
Ic

jIj
)∗◦(Ǔ(k)

Ic
jIj

)T )ĥ
(k)
Ic

j

≡ (Š
(k)
IjIj

+ Ě
(k)
IjIj

)ĥ
(k)
Ij

+ F̌
(k)
IjIc

j
ĥ

(k)
Ic

j
, (34)

where Š
(k)
IjIj

is stochastic, and Ě
(k)
IjIj

→ 0, F̌
(k)
IjIc

j
→ 0, as k → ∞. (Recall that from

(32) it follows that Ǔ
(k)
Ij ,Jj

has columns of Euclidean lengths ε2 close to one.) So,

ȟ
(k+1)
Ij

= Š
(k)
IjIj

ĥ
(k)
Ij

+ Ě
(k)
IjIj

ĥ
(k)
Ij︸ ︷︷ ︸

→0

+ F̌
(k)
IjIc

j
ĥ

(k)
Ic

j︸ ︷︷ ︸
→0

+ (PΠT ê(k))Ij︸ ︷︷ ︸
→0

. (35)

Relation (35) nicely shows that there is no change of affiliation: For k large enough,
a cluster of diagonal entries converging to a multiple eigenvalue changes in one step
by convex combinations of entries in the previous one (ȟ

(k+1)
Ij

≈ Š
(k)
IjIj

ĥ
(k)
Ij

), plus per-
turbations that converge to zero. Since for k large enough this additive perturbation
is not large enough to bypass the gap of width γ/3 between the neighborhoods of
different eigenvalues, we can conclude that for all k greater than some k0 ∈ N,

‖h(k) − ~λp‖2 ≤ Ω(H(k)) =⇒ ‖h(k+1) − ~λp‖2 ≤ Ω(H(k+1)). ¢
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Remark 3.1. The change of the diagonal entries can be better seen from

‖ȟ(k+1)−ĥ(k)‖2 ≤ ‖
(
(ΠT (Û(k))∗P ) ◦ (ΠT (Û(k))TP )

)
(P T ĥ(k))−P T ĥ(k)‖2+‖ê(k)‖2 (36)

where we notice an auxiliary matrix Ŭ(k) = P T Û(k)Π, that actually reveals how Ǔ(k)

changes ĥ(k). An example of this is given in Figure 2:

block rotation

20 40 60 80 100

20

40

60

80

100

UBC form

20 40 60 80 100

20

40

60

80

100

consistently ordered

20 40 60 80 100

20

40

60

80

100

permuted to nearly uni−stochastic form

20 40 60 80 100

20

40

60

80

100

Figure 2:

Figure 2 illustrates the transformation of a 100× 100 block, with nik = 40, njk
= 60.

The first plot shows the transformation Û(k) before the UBC permutation. The effect
of the UBC permutation is shown in the second plot. The third plot shows the
consistently ordered matrix Ǔ(k) = Û(k)ΠP T . The last plot shows the auxiliary matrix
P T Û(k)Π that clarifies the transformation of ĥ(k). In this example, Ω(H(k)

ikjk
) < 6 ·10−7,

‖ȟ(k+1) − ĥ(k)‖2 < 2 · 10−13, and the multiplicities of the eigenvalues (the dk’s, k =
1, . . . , 5) were 46, 31, 11, 7, 5.
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Remark 3.2. Clearly, sorting the diagonals of H(k0) when Ω(H(k0)) < γ/3 (say) will
ensure that for all k ≥ k0 the diagonal entries that converge to the same multiple
eigenvalue will occupy successive positions on the diagonal. This is an important issue
for generating quadratic or even cubic convergent modifications of the block cyclic
strategy. Many details such as adapting the block partition ν = (n1, . . . , nm) to the
distribution of the eigenvalues are left out, and will be presented in our future work.

3.3.1 Convergence of eigenspaces

It remains to settle the convergence of the eigenvectors in the case of multiple eigen-
values. Of course, for a multiple eigenvalue λi, the eigenspace Ker(H−λiI) is the right
target. So, what can be said in that case about the convergence of the infinite product
U(1)U(2) · · ·U(k) · · · of the block transformations? To our knowledge, this issue is left
unanswered even in the case of the classical 2× 2 Jacobi rotations.

Theorem 3.4. Let H be an n×n Hermitian with a spectral decomposition H = UΛU∗

where the diagonal matrix Λ contains the eigenvalues of H in an arbitrary order and
the columns of the unitary matrix U are the corresponding eigenvectors. Consider the
sequence H(k+1) = U(k)∗H(k)U(k) computed by a convergent diagonalization process, e.g.
as in Theorem 3.3. Let for k = 1, 2, . . . U(1:k) = U(1)U(2) · · ·U(k), so that after k steps
the computed matrix is H(k+1) = (U(1:k))∗HU(1:k). Let λ•1, . . . , λ

•
s be all different and in

general multiple eigenvalues of H. Then there exists a partition {1, . . . , n} =
⋃s

i=1Di

such that for all i = 1, . . . , s, |Di| = µi, and

lim
k→∞

‖ sin Θ(U
(1:k)
:,Di

, Ker(H− λ•i I))‖F = 0. (37)

Proof : We can choose such a k0 ∈ N that for all k ≥ k0 Ω(H(k)) is as small as we
like, and no change of affiliation of diagonal entries takes place in the transformation
of H(k). Hence, there is a well–defined partition {1, . . . , n} =

⋃s
i=1Di, independent

of k, such that for all k ≥ k0 the diagonal entries of H
(k)
DiDi

belong to the interval

[λ•i − Ω(H(k)), λ•i + Ω(H(k))].
Let H(k+1) = V(k+1)Λ(V(k+1))∗ be a spectral decomposition of H(k+1), and let Ei

denote the column indices in U and in V(k+1) that correspond to the eigenvalue λ•i
(HU:,Ei

= λ•i U:,Ei
, H(k+1)V

(k+1)
:,Ei

= λ•i V
(k+1)
:,Ei

, |Ei| = µi = the multiplicity of λ•i ). We

note that for all i, both U:,Ei
and V

(k+1)
:,Ei

are determined up to a postmultiplication by
arbitrary µi×µi unitary matrix. However, all quantities involved in our estimates are
invariant under orthogonal changes of bases in eigenspaces, so we can simplify notation
and simply ignore that vagueness in expression.2 So, we can write U(1:k)∗U = V(k+1)

2See for instance the second equality in relation (38), and Remark 3.3.
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and, by Corollary 3.2,

‖ sin Θ(U
(1:k)
:,Di

, Ker(H− λ•i I))‖F = ‖(U(1:k)
:,Dc

i
)∗U:,Ei

‖F = ‖V(k+1)
Dc

i ,Ei
‖F ≤ Ω(H(k+1))

γ/3
. (38)

Thus, affiliation of diagonal entries of the iterates H(k) to the eigenvalues is followed
by the affiliation of the columns of the accumulated unitary transformations (more
precisely their spans) to the corresponding eigenspaces of H. ¢
Remark 3.3. Let the eigenvalues of H be ordered as λ•1 > · · · > λ•s, and Λ = ⊕s

i=1λ
•
i Iµi

.
Then E1 = {1, . . . , µ1}, Ei = {j : 1 +

∑i−1
p=1 µp ≤ j ≤ ∑i

p=1 µp}, 2 ≤ i ≤ s. Let
G(µi, n) denote the set of µi–dimensional subspaces of Cn (Rn for real symmetric H),
a complex (real in the symmetric case) Grassmann manifold (with the corresponding
analytical structure). A point X in G(µi, n) ≡ U(n)/(U(µi)×U(n−µi)) is represented
as equivalence class [X] = {XQ : Q ∈ U(µi)}, where the columns of X span X, and
X∗X = Iµi

. See [15] for more detailed theory. In particular, [U:,Ei
] ∈ G(µi, n). If the

diagonals of H(k0) are sorted as in Remark 3.2, then Di = Ei, and the convergence to
individual eigenspaces (U

(1:k)
:,Ei

→ U:,Ei
) can be separately studied in the framework of

G(µi, n), and (37) states the convergence in the projection F–norm3 (chordal) distance
d(X,Y) = ‖ sin Θ(X,Y)‖F . Further, the eigenvector matrix U induces an orthogonal
decomposition of Cn as Cn = ⊕s

i=1Range(U:,Ei
). If we consider the set of all such

decompositions, represented as quotient space F(µ1, . . . , µs) = U(n)/(U(µ1) × · · · ×
U(µs)), then the eigenvector matrix U can be considered as a point in F(µ1, . . . , µs),
and the convergence U(1:k) → U can be formulated in F(µ1, . . . , µs) – a generalized
flag manifold setting.

Remark 3.4. In practical computation, the iterations are stopped at some finite index
k = k, and Ω(H(k))/‖H‖F ≤ ε. After inspecting the sorted diagonal entries of H(k),
we can identify clusters and isolated entries and make the corresponding partition of
the columns of U(k−1). However, there is no way to tell whether an ε tight cluster of
diagonal entries approximates one multiple eigenvalue or a cluster of simple and/or
multiple pathologically close eigenvalues whose (geometric) multiplicities sum up to
the number of diagonals in the cluster.4 It is clear that (38) can be applied to spectral
subspaces as well: instead of a single Ei we can take a union of Ei’s corresponding to
pathologically close eigenvalues and then obtain a useful estimate for the correspond-
ing spectral subspace. In the case of positive definite H, the stopping criterion is

stronger, maxi 6=j |(H(k))ij|/
√

(H(k))ii(H(k))jj ≤ ε, so one can use relative perturbation

theory and make better estimates, but the problem is in principle the same.

3Cf. [15].
4Unfortunately, we cannot ”let ε go to zero”.
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4 Accuracy issues in finite precision computation

Our previous analysis was focused to theoretical aspects of the global convergence
of cyclic block Jacobi methods. That is necessarily the first step on a long and
rough way to an efficient and numerically reliable mathematical software. Many
important implementation issues remain for a future research, such as computing the
transformation Û(k) accurately, which is very important for the overall performance,
in particular in the case of the one–sided transformations (5). Note that in a k–th
step of the one–sided Jacobi SVD algorithm we actually use Û(k) (notation from §3.3)
to compute the SVD of the pivot sub–matrix ( A

(k)
[ik]

,A
(k)
[jk] ) as

(
A

(k+1)
[ik] , A

(k+1)
[jk]

)
=

(
A

(k)
[ik], A

(k)
[jk]

)
Û(k), (39)

where the columns of ( A
(k+1)
[ik]

,A
(k+1)
[jk] ) are mutually orthogonal. However, if Û(k) is

computed only approximately as Ũ(k) = Û(k)+δÛ(k), then the numerical orthogonality
of the transformed columns depends on the structure of δÛ(k). To illustrate, consider
the transformation (39) in infinite precision, but with Ũ(k) instead of Û(k):

(
A

(k)
[ik], A

(k)
[jk]

)
Ũ(k) =

(
A

(k+1)
[ik] , A

(k+1)
[jk]

)
+

(
A

(k)
[ik], A

(k)
[jk]

)
δÛ(k). (40)

If we set A(k) = B(k)D(k), where B(k) has columns of unit Euclidean length and D(k) is
diagonal, then (40) reads

(
A

(k)
[ik], A

(k)
[jk]

)
Ũ(k) =

((
B

(k+1)
[ik] , B

(k+1)
[jk]

)
+

(
B

(k)
[ik], B

(k)
[jk]

)
δF(k)

) (
D

(k+1)
[ikik]

0

0 D
(k+1)
[jkjk]

)
,

δF(k) =

(
D

(k)
[ikik]

0

0 D
(k)
[jkjk]

)
δÛ(k)

(
(D

(k+1)
[ikik]

)−1 0

0 (D
(k+1)
[jkjk]

)−1

)
.

Unless δÛ(k) is properly graded, the best bound for δF(k) is

‖δF(k)‖2 ≤ ‖δÛ(k)‖2κ2(( A
(k)
[ik]

,A
(k)
[jk] )) ≤ ‖δÛ(k)‖2κ2(A

(k)) = ‖δÛ(k)‖2κ2(A),

where κ2(·) is the spectral condition number. (To understand proper grading, define
F(k) by replacing δÛ(k) with Û(k) in the definition of δF(k). It is easily seen that
‖F(k)‖2 ≤ 1/σmin(( B

(k)
[ik]

,B
(k)
[jk] )) ≤ κ2(B

(k)) → 1 (k → ∞).) Thus, if Ũ(k) is not good
enough, the numerical orthogonality of the columns of A(k) (used as stopping criterion
in a floating–point computation with roundoff ε) might stagnate at the level of εκ2(A),
where the problematic pivot pairs are those containing the smallest and the largest
singular values. In such cases a cleanup sweep of ordinary 2 × 2 rotations might
help. A particularly important issue for reliable mathematical software is how to
implement the transformation in case of underflows due to high condition number of
A. Our starting point for this will be [11].



December 10, 2007 21

Other issues include choosing the parameter ρ (or monotonically decreasing se-
quence of thresholds) in (6) to achieve optimal reduction of the off–norm, introduction
of sorting of the diagonal entries and adapting the block partition to match the eigen-
value distribution in order to achieve higher order of convergence, block quasi–cycling,
fast implementation of block transformations as proposed by Hari [18], or finding a
convergent parallel strategy and tuning it for a particular parallel architecture.

It is desirable that the high accuracy of the Jacobi–type methods remains pre-
served under all modifications aimed at high run time performance. And, in fact, if
the method is used in a particular way, the only condition for preserving high relative
accuracy is that a numerically orthogonal (unitary) transformation Q̃ (Q̃∗Q̃ ≈ I) is
applied to a vector x in floating–point arithmetic with round–off ε as

computed(Q̃x) = Q̂(x + δx), Q̂∗Q̂ = I, ‖Q̂− Q̃‖2 ≤ K1ε, ‖δx‖2 ≤ K2ε‖x‖2, (41)

where K1, K2 are moderate factors that depend on the dimension and implementation
details.

Theorem 4.1. Consider the following block–versions of two algorithms for computing
the SVD and the spectral decomposition of Hermitian positive definite matrices:

A1 (See [13], [14].) SVD of an r × n matrix A, rank(A) = n:5

1. AP = Q

(
R
0

)
(QR factorization with optional column pivoting, such as the

Businger–Golub pivoting [2] implemented as in [12]);

2. R∗W = V̆Σ (one sided Jacobi SVD algorithm with one–sided application
of the block transformations (5), accumulated in W), under an arbitrary
convergent serial or parallel pivot strategy)

3. Output: A = U

(
Σ
0

)
V∗, where U = Q

(
W 0
0 I

)
, V = PV̆.

A2 (See [28].) Spectral decomposition of a Hermitian positive definite H ∈ Cn×n:

1. PT HP = LL∗ (Cholesky factorization with optional pivoting)

2. LW = ŬΣ one sided Jacobi SVD algorithm with one–sided application of
the block transformations 5, under an arbitrary serial or parallel convergent
pivot strategy, and without computation of the matrix W)

3. Output: H = UΛU∗, where Λ = Σ2, U = PŬ.

5For the sake of simplicity, we give only a simple version of the algorithm. Similar conclusion
holds for the general case of the new preconditioned Jacobi SVD algorithm in [13],[14].
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In an IEEE floating point arithmetic with round–off unit ε, and with an imple-
mentation of orthogonal transformations satisfying (41), the backward errors δA and
δH = (δH)∗ in the algorithms A1 and A2 are, respectively, bounded by

‖δA(:, i)‖2 ≤ f(r, n; ε)ε‖A(:, i)‖2, i = 1, . . . , n; (42)

|δHij| ≤ g(n; ε)ε
√

HiiHjj, 1 ≤ i, j ≤ n. (43)

Proof : To simplify the notation, assume that the matrices are already permuted, so
that P = I. The computed upper triangular factor R̃ satisfies A + ∆A = Q̂

(
R̃
0

)
,

where for all i, ‖∆A:,i‖2 ≤ q(r, n)ε‖A:,i‖2, and Q̂ is unitary and close to the actually
computed numerically unitary matrix Q̃. The factor q(r, n) is a moderate polynomial
in r, n and it depends on the details of the algorithm. In the second step, after s

sweeps of the block cyclic Jacobi method, the computed approximation ṼΣ̃ of V̆Σ
satisfies ṼΣ̃ = (R̃ + δR̃)∗Ŵ, where Ṽ is numerically unitary, ‖δR̃:,i‖2 ≤ h(n)ε‖R̃:i‖2

for i = 1, . . . , n, and Ŵ is unitary and close to the actually computed numerically
unitary W̃. The latter follows from repeated applications of (41), where for a block
partition h = (n1, . . . , nm), h(n) = sO(m)K2. Due to the preconditioning effect of
the first step [13], [14], the sweep counter s is small. Since

A + ∆A + Q̂

(
Ŵ 0
0 I

)(
δR̃
0

)

︸ ︷︷ ︸
δA

= Q̂

(
Ŵ 0
0 I

)(
Σ̃
0

)
Ṽ∗ ≈ Q̃

(
W̃ 0
0 I

)(
Σ̃
0

)
Ṽ∗,

the claim follows with f(r, n; ε) = (q(r, n) + h(n)(1 + q(r, n)ε)).
For the Hermitian case, note that the computed Cholesky factor L̃ ≈ L satisfies

L̃L̃∗ = H+∆H with |(∆H)ij| ≤ c(n)ε
√

HiiHjj for all i, j. The factor c(n) is O(n), and

if the factorization fails to compute L̃, the input matrix H is not numerically definite,
see [5], [8]. In the second step, the computed ŨΣ̃ satisfies ŨΣ̃ = (L̃ + δL̃)Ŵ, where Ũ
is numerically unitary, Ŵ is unitary and ‖δL̃i,:‖2 ≤ h(n)ε‖L̃i,:‖2 for all i. Let Λ̃ = Σ̃2,
∆LH = δL̃L̃∗ + L̃δL̃∗ + δL̃δL̃∗, and δH = ∆H + ∆LH. Then

ŨΛ̃Ũ∗ = H + δH, max
i,j

|δHij|√
HiiHjj

≤ (c(n) + (2h(n) + h2(n)ε)(1 + c(n)ε))ε.

¢
Since we have structured form of the backward errors (scaling invariance), state of
the art perturbation theory [23], [24] applies, thus guaranteeing accuracy superior to
any other method that first tridiagonalizes H or bidiagonalizes A ([8]). This means
that we have contrived a well defined framework for future development of a class of
block Jacobi methods, and without trading accuracy for speed. It remains to follow
through along these lines.
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Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen. Crelle’s
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