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Abstract. We show exact values for the price of anarchy of weighted and un-
weighted congestion games with polynomial latency functions. The given values
also hold for weighted and unweightadtworkcongestion games.

1 Introduction

Motivation and Framework. Large scale communication networks, like e.g. the in-
ternet, often lack a central regulation for several reasons: The size of the network may
be too large, or the users may be free to act according to their private interests. Even
cooperation among the users may be impossible due to the fact that users may not
even know each other. Such an environment—where users neither obey some central
control instance nor cooperate with each other—can be modeled@se@ooperative
game[18].

One of the most widely used solution concepts for non-cooperative games is the
concept ofNash equilibrium A Nash equilibrium is a state in which no player can im-
prove his objective by unilaterally changing his strategy. A Nash equilibrium is called
pureif all players choose a pure strategy, anikedif players choose probability dis-
tributions over strategies.

Rosenthal [25] introduced a special class of non-cooperative games, now widely
known ascongestion gamesiere, the strategy set of each player is a subset of the power
set of given resources. The players share a private cost function, defined as the sum (over
their chosen resources) of functions in the number of players sharing this resource. Later
Milchtaich [20] consideredveighted congestion gamas an extension to congestion
games in which the players have weights and thus different influence on the congestion
of the resources. Weighted congestion games provide us with a general framework for
modeling any kind of non-cooperative resource sharing problem. A typical resource
sharing problem is that of routing. In a routing game the strategy sets of the players
correspond to paths in a network. Routing games where the demand of the players
cannot be split among multiple paths are also ca(ledighted) network congestion
gamesAnother model for selfish routing—the so caldérdropmodel—was already
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studied in the 1950’s (see e.g. [3, 29]) in the context of road traffic systems, where traffic
flows can be split arbitrarily. The Wardrop model can be seen as a special network
congestion game with infinitely many players each carrying a negligible demand.

In order to measure the degradation of social welfare due to the selfish behavior of
the players, Koutsoupias and Papadimitriou [16] introduced a global objective function,
usually coined asocial cost They defined therice of anarchyalso called coordination
ratio, as the worst-case ratio between the value of social cost in a Nash equilibrium and
that of some social optimum. Thus, the price of anarchy measures the extent to which
non-cooperation approximates cooperation. The price of anarchy directly depends on
the definition of social cost. Koutsoupias and Papadimitriou [16] considered a very
simple weighted network congestion game on parallel links, now known as KP-model.
For this model they defined the social cost as the expected maximum latency. For the
Wardrop model, Roughgarden and Tardos [28] considered social cost edahia-
tency which is a measure for the (weighted) total travel time. Awerbuch et al. [1] and
Christodoulou and Koutsoupias [5] considered the total latency for congestion games
with a finite number of players with non-negligible demands. In this setting, they show
asymptotic bounds on the price of anarchy for weighted (and unweighted) congestion
games with polynomial latency (cost) functions. Here, all polynomials are of maximum
degreed and have non-negative coefficients. For the case of linear latency functions
they give exact bounds on the price of anarchy.

Contribution and Comparison. In this work we proveexactbounds on the price

of anarchy for unweighted and weighted congestion games with polynomial latency
functions. We use the total latency as social cost measure. This improves on results by
Awerbuch et al. [1] and Christodoulou and Koutsoupias [5], where non-matching upper
and lower bounds are given.

We now describe our findings in more detail.

— For unweighted congestion games show that the price of anarchjo\) is ex-
actly
(k—|— 1)2d+1 _ kd+1(l€ + 2)d
(k4 1)+t — (k4 2)¢ + (k + 1)¢ — kd+1’
wherek = |¢,| and®, is a natural generalization of the golden ratio to larger
dimensions such that, is the solution tq®, + 1)¢ = ¢4**. Prior to this paper the
best known upper and lower bounds were shown to be of the &6tm°(*) [5].
However, the terna(1) still hides a gap between the upper and the lower bound.
— Forweighted congestion game® show that the price of anarchjdp) is exactly

PoA =

PoA = &4

This result closes the gap between the so far best upper and lower bounds of
0(2¢d**) ands2(a?/?) from [1].

We show that the above values on the price of anarchy also hold for the subclasses of
unweighted and weighted network congestion games.

For our upper bounds we use a similar analysis as in [5]. The core of our analysis is
to determine parametetrs andcs, such that

y-fle+1)<c-z-f(x)+ca-y- fy) 1)



for all polynomial latency functions of maximum degréand for all reals:, y > 0. For
the case of unweighted demands it suffices to show (1) for all intagegrsn order to
prove their upper bound Christodoulou and Koutsoupias [5] looked at (1)cwith
and gave an asymptotic estimate fgr In our analysis we optimize both parameters
c1, c2. This optimization process requires new ideas and is non-trivial.

Table 1 shows a numerical comparison of our bounds with the previous results of
Awerbuch et al. [1] and Christodoulou and Koutsoupias [5].

Ford > 2, the table only gives the respective lower bounds that are given in the
cited works (before any estimates are applied). Values in parentheses denote cases in
which the bound for linear functions is better than the general case.

In [1, Theorem 4.3], a construction scheme for networks is described with price
of anarchy approximating >";° | ’;—‘f which yields thed-th Bell number. In [5, Theo-

rem 10], a network with price of anarcr@’*}v)ﬁ is given, with NV being the largest
integer for which(V — 1)?+2 < N holds.

The column with the upper bound from [5] is computed by using (1) with- 1
and optimizinge, with help of our analysis. Thus, the column shows the best possible
bounds that can be shown with= 1.

unweightedPoA weightedPoA

d @4 | Ourexactresult UpperBound[5] Lowerbound |]5pur exact result Lower bound [1]

1 1618 25 25 25 2.618 2.618

2 2148 9.583 10 (2.5) 9.909 (2.618)

3 2.630 41.54 47 (2.5) 47.82 5

4 3.080 267.6 269 21.33 277.0 15

5 3.506 1,514 2,154 42.67 1,858 52

6 3.915 12,345 15,187 85.33 14,099 203

7 4.309 98,734 169,247 170.7 118,926 877

8 4.692 802,603 1,451,906 14,762 1,101,126 4,140

9 5.064| 10,540,286 20,241,038 44,287 11,079,429 21,147
10 5.427| 88,562,706 202,153,442 132,860 120,180,803 115,975

Table 1. Comparison of our results to [5] and [1]

Related Work. The papers most closely related to our work are those of Awerbuch et
al. [1] and Christodoulou and Koutsoupias [5, 4]. For (unweighted) congestion games
and social cost defined as average private cost (which in this case is the same as total
latency) it was shown that the price of anarchy of pure Nash equilibdafés linear
latency functions and®® for polynomial latency functions of maximum degréél,
5]. The bound of; for linear latency function also holds for the correlated and thus also
for the mixed price of anarchy [4]. Faveightedcongestion games the mixed price of
anarchy for total latency ié‘f;—“g for linear latency functions ang®® for polynomial
latency functions [1].

The price of anarchy[24], also known agoordination ratig was first introduced
and studied by Koutsoupias and Papadimitriou [16]. As a starting point of their investi-
gation they considered a simple weighted congestion game on parallel links, now known
as KP-model. In the KP-model latency functions are linear and social cost is defined as
the maximum expected congestion on a link. In this setting, theretegistbounds on
the price of anarchy af (2™ ) for identical links [7, 15] and (;—1ee™ ) [7] for

log log m logloglogm




related links. The price of anarchy has also been studied for variations of the KP-model,
namely for non-linear latency functions [6, 12], for the case of restricted strategy sets [2,
10], for the case of incomplete information [14] and for different social cost measures
[11,17]. In particular licking et al. [17] study the total latency (they call it quadratic
social cost) for routing games on parallel links with linear latency functions. For this
model they show that the price of anarchy is exagtljor case of identical player
weights and? for the case of identical links and arbitrary player weights.

The class oftongestion gamewas introduced by Rosenthal [25] and extensively
studied afterwards (see e.g. [8, 20, 21]). In Rosenthal’s model the strategy of each player
is a subset of resources. Resource utility functions can be arbitrary but they only depend
on the number of players sharing the same resource. Rosenthal showed that such games
always admit a pure Nash equilibrium using a potential function. Monderer and Shap-
ley [21] characterize games that possess a potential function as potential games and
show their relation to congestion games. Milchtaich [20] considers weighted conges-
tion games with player specific payoff functions and shows that these games do not
admit a pure Nash equilibrium in general. Fotakis et al. [8, 9] consider the price of an-
archy for symmetric weighted network congestion games in layered networks [8] and
for symmetric (unweighted) network congestion games in general networks [9]. In both
cases they define social cost as expected maximum latency. For a survey on weighted
congestion games we refer to [13].

Inspired by the arisen interest in the price of anarchy Roughgarden and Tardos [28]
re-investigated the Wardrop model and usedttitel latencyas a social cost measure.

In this context the price of anarchy was shown toitfer linear latency functions [28]
and@(%) [26] for polynomial latency functions of maximum degréeAn overview

on results for this model can be found in the recent book of Roughgarden [27].
Roadmap. The rest of this paper is organized as follows. In Section 2 we give an
exact definition of weighted congestion games. We present exact bounds on the price
of anarchy for unweighted congestion games in Section 3 and for weighted congestion
games in Section 4. Due to lack of space we omit some of the proofs.

2 Notations

General. For all integers: > 0, we denotdk] = {1,...,k}, [k]o = {0,...,k}. For
all integersd > 0, let &; € R* denote the number for whicfp, + 1)¢ = dﬁj“.
Clearly,®, coincides with theyolden ratio Thus,®, is a natural generalization of the
golden ratio to larger dimensions.

Weighted Congestion Games. A weighted congestion gamé’ is a tuple
I' = (n,E, (wi)iem, (Si)iem), (fe)eer) . Here,n is the number oplayers(or userg
and E is the finite set ofesourcesFor every playei € [n], w; € R* is theweight
andS; C 2F is thestrategy sebf playeri. DenoteS = S; x ... x S, andS_; =
S1 X oo x Si—1 X Siy1... x S,. For every resource € E, thelatency function
fo : RT — RT describes théatencyon resource.. We consider onlypolynomial la-
tency functionsvith maximum degreel and non-negative coefficients, that is for all
e € E the latency function is of the forni(z) = Z?:o ae,j - ¢ with a.; > 0 for all

J € [d]o.



In a (unweightedfongestion gamehe weights of all players are equal. Thus, the
private cost of a player only depends on thenberof players choosing the same re-
sources.

Strategies and Strategy Profiles.A pure strategyfor playeri € [n] is some specific
s; € S; whereas anixed strategyP; = (p(4, s:))s,es; iS @ probability distribution over
S, wherep(i, s;) denotes the probability that playechooses the pure strategy

A pure strategy profilés ann-tuples = (s1,...,s,) € S whereas anixed strat-
egy profileP = (Py,...,P,) is represented by an-tuple of mixed strategies. For a
mixed strategy profil@® denote byp(s) = Hie[n] p(i, s;) the probability that the play-
ers choose the pure strategy profile- (sy, ..., s,). Following standard game theory
notation, we denot®_; = (Py,...,P,_1,Pi41,..., P,) as the (mixed) strategy pro-
file of all players except playgrand(P_;, Q;) as the strategy profile that results from
P if playeri deviates to strateg®;.

Private Cost. Fix any pure strategy profiks and denote by..(s) = >, 5,5, wi the
load on resource € E. Theprivate costof playeri € [n] in a pure strategy profile
is defined byPCi(s) = 3° . fe (lc(s)) . For a mixed strategy profilB, theprivate cost
of playeri € [n] is

PC,(P) = p(s) - PCi(s) .

sesS

Social Cost. Associated with a weighted congestion gamend a mixed strategy
profile P is thesocial costSC(P) as a measure of social welfare. In particular we use
the expected total latency, that is,

SC(P) =D p(s) ) Le(s) - fe(le(s))

seS eckE

=308 30 S wi- felle(s))
se€sS i€[n] e€s;

=Y wi-PC(P).

1€[n]

The optimumassociated with a weighted congestion game is define@mly =
minp SC(P).
Nash Equilibria and Price of Anarchy. We are interested in a special class of (mixed)
strategy profiles called Nash equilibria [22, 23] that we describe here. Given a weighted
congestion game and an associated mixed strategy pRofdeplayeri € [n] is satisfied
if he can not improve his private cost by unilaterally changing his strategy. Otherwise,
playeri is unsatisfied The mixed strategy profil® is a Nash equilibriumif and only
if all playersi € [n] are satisfied, that ifC;(P) < PC,(P_;,s;) forall i € [n] and
si € 5.

Note, that if this inequality holds for all pure strategiese S; of playeri, then it
also holds for all mixed strategies ovéy. Depending on the type of strategy profile,
we differ betweerpureandmixedNash equilibria.

Theprice of anarchyalso calleccoordination ratioand denotedPoA, is the maxi-

mum value, over all instancdsand Nash equilibri®, of the ratiosg,g?.




3 Price of Anarchy for Unweighted Congestion Games

In this section, we prove the exact value for the price of anarchy of unweighted con-
gestion games with polynomial latency functions. We start with two technical lemmas
which are crucial for determining andc; in (1) and thus for proving the upper bound
Theorem 1. In Theorem 2 we give a matching lower bound which also holds for un-
weighted network congestion games (Corollary 1).

Lemma l. Let0 < ¢ < 1 andd € Nj then

d d+1
1
max {(m—i— ) —c-<§) }:maX{(JS—i—l)d—ode}.
zENg,yeN Y Yy xzENg

Lemma 2. Letd € N and

Fa={g" R-R|¢P@)=@r+1)"—z-r" recRso}

be an infinite set of linear functions. Furthermore, 1€k, t) for s,t € R>¢ ands # ¢

denote the intersection abscissagé?) and gt(d). Then it holds for any, t,u € Rxg
with s < ¢ < wthaty(s,t) > y(s,u) andy(u, s) > y(u, t).

Theorem 1. For unweighted congestion games with polynomial latency functions of
maximum degreé and non-negative coefficients, we have

(k + 1)2d+1 _ kd+1(k+2)d
(k+1)4t — (k+2)2 4 (k+ 1)4 — g+’

PoA < wherek = |@q4].

Proof. LetP = (P, ..., P,) be a (mixed) Nash equilibrium and 1€ = (Q1, ..., Q)
be a pure strategy profile with optimum social cost. Silcés a Nash equilibrium,
playeri € [n] cannot improve by switching from strate@y to strategyQ;. Thus,

P):Zp Zfe e <PC( —uQi)

seS ec€s;

=30 | S L@+ Y felle(s) +1

seS eeQ;Ns; e€Qi\s;
<Y p(s) Y felle(s) +1
seS e€Q;

Summing up over all playetise [n] yields

Z D p(s) ) Jelle(s) Z D pls) D fellels) +1

i€[n] s€S e€s; i€[n] s€S ecQ;
= 3 X @) 06 1)
ses ecE

Now, [.(Q) andl.(s) are both integer, sinc&® ands are both pure strategy profiles.
Thus, by choosings, co such that

y-fle+1)<ci-z-f(x)+ca-y- fy) 2



for all polynomialsf with maximum degred and non-negative coefficients and for all
x,y € Np, we get

SC(P) < D p(s) Y [erle(s) fe(le(s)) + cale(Q) fe(1e(Q))] = 1 - SC(P) + ¢2 - SC(Q).

seS ecE
With ¢; < 1 it follows that $5&) < 2. SinceP is an arbitrary (mixed) Nash
equilibrium we get
PoA < — 2 . @)
1—0c

In fact,c; andcy, depend on the maximum degréehowever, for the sake of readability
we omit this dependence in our notation.

We will now show how to determine constanrtsandc, such that Inequality (2)
holds and such that the resulting upper boungef is minimal. To do so, we will first
show that it suffices to consider Inequality (2) with= 1 and f(z) = z¢.

Sincef is a polynomial of maximum degreewith non-negative coefficients, it is
sufficient to determine; andc, that fulfill (2) for f(z) = 2" for all integers) < r < d.

Soletf(x) = 2" for some0 < r < d. In this case (2) reduces to

y(z+1) <er-a™ eyt (4)

For any given constarit < ¢; < 1 letca(r, ¢1) be the minimum value fots such that
(4) holds, that is

(rye1) = max yle+ )" —cr 2™ max z1y z -
e\ a "~ z€Ng,yeN yrt+1 " eNg,yeN Y o Yy .

Note that (4) holds for any, wheny = 0. By Lemma 1 we have

ca(ryer) = max {( +1)" —e1- 2"} ®)
Now, ca(r, ¢1) is the maximum of infinitely many linear functions in; one for
eachz € Ny. DenoteF,. as the (infinite) set of linear functions defining(r, ¢;):
Fr = {gg(f) :(0,1) > R | gg(f)(cl) =(z+1)" —a 2"z e No}
For the partial derivative of any functiqa:, r, ¢1) — gﬁf) (c1) we get

M(x+1)" —cr -2

5 =(z+1) -In(z+1)—c - 2" - In(z)

>n(z+1)[(z+1)" —a ~xr+1] >0,

for (x +1)" — ¢ - 2"t > 0, that is, for the positive range of the chosen function from
F,. Thus, the positive range ¢k + 1)¢ — ¢; - 2¢+! dominates the positive range of
(x+1)" —cy -2 forall 0 < r < d. Sincecy(r,c;) > 0forall 0 < r < d, it follows
thatca(d, c1) > ca(r,c1), forall 0 < r < d. Thus, without loss of generality, we may
assume thaf (z) = z%.

Fors,t € R ands # t definevy(s, t) as the intersection abscissagé?) andgﬁd)
(asin Lemma 2). Now consider the intersection of the two functgé?‘?sandgi‘?l from
F, for somev € N. We show that this intersection lies above all other functions from
Fa-



— First consider any functiop!” with = > v + 1. We haveg!” (0) > ¢{%,(0) >
¢t (0). Furthermore, by Lemma 2 we gefv,z) < ~y(v,v + 1). It follows that
95" (v(v,0 + 1) > gt (v(v,0 + 1))

— Now consider any functiop” with z < v. We haveg(?, (0) > ¢{¥(0) > ¢! (0).
Furthermore, by Lemma 2 we getv,z) > ~(v,v + 1). Again, it follows that

95" (v(v,0 + 1)) > ¢ (v (v, v + 1)).

Thus, all intersections of two consecutive linear functions ftgyrie on ca(d, ¢1).

By (3), any point that lies on.(d, c1) gives an upper bound dPoA. Let k be the
largest integer such thé& + 1)¢ > k9+!, thatisk = |®4]. Then(k + 2)¢ < (k + 1)%+L,
Chooser; andc, at the intersection of the two lines frofy with z = k andx = k + 1,
thatisco = (k+ 1) — ¢ - k“T andcz = (k +2)? — ¢1 - (k+ 1)?. Thus,

(k+2)Y — (k+1)4 (k + 1)+ — (k+2)d.kd+1_

e e B R (e e gy v

Cc1 =
Note that by the choice df we haved < ¢; < 1.

It follows that

(k + 1)2d+1 _ kd+1(k+2)d
(k+ 1)+t — (k4 2)% + (k + 1)? — ka+1”

This completes the proof of the theorem. O

PoA <

Theorem 2. For unweighted congestion games with polynomial latency functions of
maximum degreé and non-negative coefficients, we have

(k + 1)2d+1 _ kd+1(k+2)d
(k4 1)+ — (k4 2)% + (k + 1)4 — ka+1’

Proof. Given the maximum degre€ € N for the polynomial latency functions, we
construct a congestion game for> k + 2 players andE| = 2n facilities.

We divide the sef into two subset¥; = {g1,...,g.} aNd Es := {h1,...,hp}.
Each playei has two pure strategieB; := {gi+1, - - -, gi+k, hit1, - - -, hitr+1} aANdQ; :=
{gz,hl} Whereg]‘ =gj-n andh]' = h]‘_n fOI’j >n. . e.S; = {Q“PZ}

Each of the facilities in; share the latency function— ax? for ana € R+ (yet
to be determined) whereas the facilitiesfin have latency: — 2.

Obviously, the optimal allocatio® is for every playeri to chooseQ;. Now we
determine a value fos such that the allocatioRP := (P, ..., P,) becomes a Nash
Equilibrium, i.e., each playeris satisfied withP, that isPC;(P) < PC;(P_;, Q;) for all
i € [n], or equivalentlyk -a -k + (k+1)- (k+ 1) <a- (k+1)*+ (k +2)*. Resolving
to the coefficient: gives

PoA >

wherek = [P4].

(k+ D" — (k+2)°
a> e > 0. (6)

Becausek + 1)? # k%™, due to eitherk + 1 or k being odd and the other being
even,a is well defined and positive. Now since for any playehe private costs are
PCi(Q) = a+ 1andPC;(P) = a - k™" + (k + 1)**, it follows that

SC(P)  2icm PCG(P) a4t 4 (k4 1)4H!

SCQ) ~ T PGQ) a+1 . @




Provided thatk + 1)¢ > k9*!, it is not hard to see that (7) is monotonically decreasing
in a. Thus, we assume equality in (6), which then gives

pop > SC(P) _ (k +1)24F — g2 (k4 2)¢
U= 5CQ) T R+ )T = (k+2)d + (k+ 1) — kaFL
This completes the proof of the theorem. O

Corollary 1. The lower bound in Theorem 2 ®0A also holds for unweighted network
congestion games.

4 Price of Anarchy for Weighted Congestion Games

In this section, we prove the exact value for the price of anarchy of weighted congestion
games with polynomial latency functions. The proof of the upper bound in Theorem 3
has a similar structure as the one for the unweighted case (cf. Theorem 1). In Theorem 4
we give a matching lower bound which also holds for weighted network congestion
games (Corollary 2). Corollary 3 shows the impact of player weights to the price of
anarchy.

Theorem 3. For weighted congestion games with polynomial latency functions of max-
imum degreel and non-negative coefficients we h@ea < o4,

Theorem 4. For weighted congestion games with polynomial latency functions of max-
imum degreel and non-negative coefficients, we haea > ¢4+

Proof. Given the maximum degre¢ € N for the polynomial latency functions, set
k > max{(|,},),2}. Note, that(,,7, ) = max,eq, (§). We construct a congestion
game forn = (d + 1) - k players andE| = n facilities.

We divide the sef into d + 1 partitions: Fori € [d]o, let E; :== {gi1,..., ik}
with eachyg; ; sharing the latency function — a; - z¢. The values of the coefficients
a; will be determined later. For simplicity of notation, sgt; := g¢; j— for j > k in
the following.

Similarly, we partition the set of playefs|: Fori € [d]o, letN; := {u;1,...,uik}-
The weight of each player in séf; is ¢, sow,,, , = &, foralli € [d]o, j € [k].

Now, for every setV;, each playetr; ; € IN; has exactly two strategies:

{gd,j+l7 . ’gd,j+(‘;)7gi_17j} fori=1tod

Qu, ; *=1gi;} and P, =
7 { ]} 7 {gd,]’+1} fori =0

Now letQ := (Q1,...,Q,) andP := (P,..., P,) be strategy profiles. The facilities
in each sef; then have the following loads f&) andP:

load on every facilitye € E;

i 1.(Q) le(P)
d o Yl ()Ph=(@a+1)" =5
Otod—1 & oLt




For P to become a Nash Equilibrium, we need to fulfill the following Nash inequalities
for each setV; of players:

i Nash inequality to fulfill

= (f) “aq - (@Zﬂ)d +ai—1 - (B4)°

S Qg - (¢;+1 + qsfi)d = PC“'[’,,]' (P—Ui‘ijui,j)

0 PCUO,j (P) = aqd - (¢g+1)d <ao- (dsd + 1)d = PCUO,j (P*uo,] ) Quo,j)

ltod

Replacing <" by “="yields a homogeneous system of linear equations, i.e., the system
B4 - a = 0whereBy is the following(d + 1) x (d 4 1) matrix:

_¢32+d+1 + ¢§2+d 4532 0 --- )
(f)eg et
0
By = (f)¢32+d 0 - 0 =@l gid o ... 0 (8)

. . 0 .o .

0

: ; : o4

@ZQM 0 0 0 ,quﬂ

anda := (aq...ag)t. Obviously, a solution to this system fulfills the initial Nash in-
equalities. Note that

(@5 + @) = (@) (@a+ 1) =
Claim. The(d + 1) x (d + 1) matrix B4 from (8) has ranid.

Proof. We use the well-known fact from linear algebra that if a marixesults from
another matrixD by adding a multiple of one row (or column) to another row (or
column, respectively) therank(C') = rank(D).

Now consider the matrix’,; that results from adding roywmultiplied by the factor
@;1 to rowj — 1, sequentially done fof = d + 1,d, ..., 2. Obviously,Cj, is a lower
triangular matrix with nonzero elements only in the first column and on the principal
diagonal.

For the top left element af’; we get

d d
d?+d+1 d\ 424 d? d+1 d j
— oy +Z <j>¢d =y (_¢d+ +Z <j>¢fi> =0.
j=0 §=0
(Pq+1)4

Since all elements on the principal diagonal&f—with the just shown exception
of the first one—are nonzero, it is easy to see thafand thus als®,;) has ranki. O

10



By the above claim it follows that the column vectorsigf are linearly dependent
and thus there are—with degree of freedom 1—infinitely many linear combinations of
them yielding 0. In other word€3,; - « = 0 has a one-dimensional solution space.

We now show (by induction ove) that all coefficients:;, i € [d]o must have the
same sign and thus we can always find a valid solution. From the last equality; for
we have that; anday must have the same sign. Now foe 1,...,d — 1, it follows
thata; must have the same sign @s ; anda,, for (¢2+1)4, (&3)?, and (&4 + &5)?
are all positive.

Choosinga # 0 with all components being positive, all coefficients of the latency
functions are positive. We get,

SC(P)  k-Yija(@y )™

PoA > = =@
TSCQ) ke nla@yit

O

Corollary 2. The lower bound in Theorem 4 &A also holds for weighted network
congestion games.

Corollary 3. The exact price of anarchy feanweighted congestion games

(k + 1)2d+1 _ kd+1(k+2)d

PoA =
T e+ DT — (k+2)7 + (k + 1)d — kot

wherek = [&,4], is bounded by®,] 4! < PoA < 4+,
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