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Abstract. We show exact values for the price of anarchy of weighted and un-
weighted congestion games with polynomial latency functions. The given values
also hold for weighted and unweightednetworkcongestion games.

1 Introduction

Motivation and Framework. Large scale communication networks, like e.g. the in-
ternet, often lack a central regulation for several reasons: The size of the network may
be too large, or the users may be free to act according to their private interests. Even
cooperation among the users may be impossible due to the fact that users may not
even know each other. Such an environment—where users neither obey some central
control instance nor cooperate with each other—can be modeled as anon-cooperative
game[18].

One of the most widely used solution concepts for non-cooperative games is the
concept ofNash equilibrium. A Nash equilibrium is a state in which no player can im-
prove his objective by unilaterally changing his strategy. A Nash equilibrium is called
pure if all players choose a pure strategy, andmixedif players choose probability dis-
tributions over strategies.

Rosenthal [25] introduced a special class of non-cooperative games, now widely
known ascongestion games. Here, the strategy set of each player is a subset of the power
set of given resources. The players share a private cost function, defined as the sum (over
their chosen resources) of functions in the number of players sharing this resource. Later
Milchtaich [20] consideredweighted congestion gamesas an extension to congestion
games in which the players have weights and thus different influence on the congestion
of the resources. Weighted congestion games provide us with a general framework for
modeling any kind of non-cooperative resource sharing problem. A typical resource
sharing problem is that of routing. In a routing game the strategy sets of the players
correspond to paths in a network. Routing games where the demand of the players
cannot be split among multiple paths are also called(weighted) network congestion
games. Another model for selfish routing—the so calledWardropmodel—was already
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studied in the 1950’s (see e.g. [3, 29]) in the context of road traffic systems, where traffic
flows can be split arbitrarily. The Wardrop model can be seen as a special network
congestion game with infinitely many players each carrying a negligible demand.

In order to measure the degradation of social welfare due to the selfish behavior of
the players, Koutsoupias and Papadimitriou [16] introduced a global objective function,
usually coined associal cost. They defined theprice of anarchy, also called coordination
ratio, as the worst-case ratio between the value of social cost in a Nash equilibrium and
that of some social optimum. Thus, the price of anarchy measures the extent to which
non-cooperation approximates cooperation. The price of anarchy directly depends on
the definition of social cost. Koutsoupias and Papadimitriou [16] considered a very
simple weighted network congestion game on parallel links, now known as KP-model.
For this model they defined the social cost as the expected maximum latency. For the
Wardrop model, Roughgarden and Tardos [28] considered social cost as thetotal la-
tency, which is a measure for the (weighted) total travel time. Awerbuch et al. [1] and
Christodoulou and Koutsoupias [5] considered the total latency for congestion games
with a finite number of players with non-negligible demands. In this setting, they show
asymptotic bounds on the price of anarchy for weighted (and unweighted) congestion
games with polynomial latency (cost) functions. Here, all polynomials are of maximum
degreed and have non-negative coefficients. For the case of linear latency functions
they give exact bounds on the price of anarchy.
Contribution and Comparison. In this work we proveexactbounds on the price
of anarchy for unweighted and weighted congestion games with polynomial latency
functions. We use the total latency as social cost measure. This improves on results by
Awerbuch et al. [1] and Christodoulou and Koutsoupias [5], where non-matching upper
and lower bounds are given.
We now describe our findings in more detail.

– For unweighted congestion gameswe show that the price of anarchy (PoA) is ex-
actly

PoA =
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

wherek = bΦdc andΦd is a natural generalization of the golden ratio to larger
dimensions such thatΦd is the solution to(Φd + 1)d = Φd+1

d . Prior to this paper the
best known upper and lower bounds were shown to be of the formdd(1−o(1)) [5].
However, the termo(1) still hides a gap between the upper and the lower bound.

– Forweighted congestion gameswe show that the price of anarchy (PoA) is exactly

PoA = Φd+1
d .

This result closes the gap between the so far best upper and lower bounds of
O(2ddd+1) andΩ(dd/2) from [1].

We show that the above values on the price of anarchy also hold for the subclasses of
unweighted and weighted network congestion games.

For our upper bounds we use a similar analysis as in [5]. The core of our analysis is
to determine parametersc1 andc2 such that

y · f(x + 1) ≤ c1 · x · f(x) + c2 · y · f(y) (1)

2



for all polynomial latency functions of maximum degreed and for all realsx, y ≥ 0. For
the case of unweighted demands it suffices to show (1) for all integersx, y. In order to
prove their upper bound Christodoulou and Koutsoupias [5] looked at (1) withc1 = 1

2

and gave an asymptotic estimate forc2. In our analysis we optimize both parameters
c1, c2. This optimization process requires new ideas and is non-trivial.

Table 1 shows a numerical comparison of our bounds with the previous results of
Awerbuch et al. [1] and Christodoulou and Koutsoupias [5].

For d ≥ 2, the table only gives the respective lower bounds that are given in the
cited works (before any estimates are applied). Values in parentheses denote cases in
which the bound for linear functions is better than the general case.

In [1, Theorem 4.3], a construction scheme for networks is described with price
of anarchy approximating1

e

∑∞
k=1

kd

k!
which yields thed-th Bell number. In [5, Theo-

rem 10], a network with price of anarchy(N−1)d+2

N
is given, withN being the largest

integer for which(N − 1)d+2 ≤ Nd holds.
The column with the upper bound from [5] is computed by using (1) withc1 = 1

2

and optimizingc2 with help of our analysis. Thus, the column shows the best possible
bounds that can be shown withc1 = 1

2
.

unweightedPoA weightedPoA
d Φd Our exact result Upper Bound [5] Lower bound [5]Our exact result Lower bound [1]

1 1.618 2.5 2.5 2.5 2.618 2.618
2 2.148 9.583 10 (2.5) 9.909 (2.618)
3 2.630 41.54 47 (2.5) 47.82 5
4 3.080 267.6 269 21.33 277.0 15
5 3.506 1,514 2,154 42.67 1,858 52
6 3.915 12,345 15,187 85.33 14,099 203
7 4.309 98,734 169,247 170.7 118,926 877
8 4.692 802,603 1,451,906 14,762 1,101,126 4,140
9 5.064 10,540,286 20,241,038 44,287 11,079,429 21,147

10 5.427 88,562,706 202,153,442 132,860 120,180,803 115,975

Table 1.Comparison of our results to [5] and [1]

Related Work. The papers most closely related to our work are those of Awerbuch et
al. [1] and Christodoulou and Koutsoupias [5, 4]. For (unweighted) congestion games
and social cost defined as average private cost (which in this case is the same as total
latency) it was shown that the price of anarchy of pure Nash equilibria is5

2
for linear

latency functions anddΘ(d) for polynomial latency functions of maximum degreed [1,
5]. The bound of5

2
for linear latency function also holds for the correlated and thus also

for the mixed price of anarchy [4]. Forweightedcongestion games the mixed price of
anarchy for total latency is3+

√
5

2
for linear latency functions anddΘ(d) for polynomial

latency functions [1].
The price of anarchy[24], also known ascoordination ratio, was first introduced

and studied by Koutsoupias and Papadimitriou [16]. As a starting point of their investi-
gation they considered a simple weighted congestion game on parallel links, now known
as KP-model. In the KP-model latency functions are linear and social cost is defined as
the maximum expected congestion on a link. In this setting, there existtight bounds on
the price of anarchy ofΘ( log m

log log m
) for identical links [7, 15] andΘ( log m

log log log m
) [7] for
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related links. The price of anarchy has also been studied for variations of the KP-model,
namely for non-linear latency functions [6, 12], for the case of restricted strategy sets [2,
10], for the case of incomplete information [14] and for different social cost measures
[11, 17]. In particular L̈ucking et al. [17] study the total latency (they call it quadratic
social cost) for routing games on parallel links with linear latency functions. For this
model they show that the price of anarchy is exactly4

3
for case of identical player

weights and9
8

for the case of identical links and arbitrary player weights.
The class ofcongestion gameswas introduced by Rosenthal [25] and extensively

studied afterwards (see e.g. [8, 20, 21]). In Rosenthal’s model the strategy of each player
is a subset of resources. Resource utility functions can be arbitrary but they only depend
on the number of players sharing the same resource. Rosenthal showed that such games
always admit a pure Nash equilibrium using a potential function. Monderer and Shap-
ley [21] characterize games that possess a potential function as potential games and
show their relation to congestion games. Milchtaich [20] considers weighted conges-
tion games with player specific payoff functions and shows that these games do not
admit a pure Nash equilibrium in general. Fotakis et al. [8, 9] consider the price of an-
archy for symmetric weighted network congestion games in layered networks [8] and
for symmetric (unweighted) network congestion games in general networks [9]. In both
cases they define social cost as expected maximum latency. For a survey on weighted
congestion games we refer to [13].

Inspired by the arisen interest in the price of anarchy Roughgarden and Tardos [28]
re-investigated the Wardrop model and used thetotal latencyas a social cost measure.
In this context the price of anarchy was shown to be4

3
for linear latency functions [28]

andΘ( d
log d

) [26] for polynomial latency functions of maximum degreed. An overview
on results for this model can be found in the recent book of Roughgarden [27].
Roadmap. The rest of this paper is organized as follows. In Section 2 we give an
exact definition of weighted congestion games. We present exact bounds on the price
of anarchy for unweighted congestion games in Section 3 and for weighted congestion
games in Section 4. Due to lack of space we omit some of the proofs.

2 Notations

General. For all integersk ≥ 0, we denote[k] = {1, . . . , k}, [k]0 = {0, . . . , k}. For
all integersd > 0, let Φd ∈ R+ denote the number for which(Φd + 1)d = Φd+1

d .
Clearly,Φ1 coincides with thegolden ratio. Thus,Φd is a natural generalization of the
golden ratio to larger dimensions.
Weighted Congestion Games. A weighted congestion gameΓ is a tuple
Γ =

(
n, E, (wi)i∈[n], (Si)i∈[n], (fe)e∈E

)
. Here,n is the number ofplayers(or users)

andE is the finite set ofresources. For every playeri ∈ [n], wi ∈ R+ is theweight
andSi ⊆ 2E is thestrategy setof player i. DenoteS = S1 × . . . × Sn andS−i =
S1 × . . . × Si−1 × Si+1 . . . × Sn. For every resourcee ∈ E, the latency function
fe : R+ → R+ describes thelatencyon resourcee. We consider onlypolynomial la-
tency functionswith maximum degreed and non-negative coefficients, that is for all
e ∈ E the latency function is of the formfe(x) =

∑d
j=0 ae,j · xj with ae,j ≥ 0 for all

j ∈ [d]0.
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In a (unweighted)congestion game, the weights of all players are equal. Thus, the
private cost of a player only depends on thenumberof players choosing the same re-
sources.
Strategies and Strategy Profiles.A pure strategyfor playeri ∈ [n] is some specific
si ∈ Si whereas amixed strategyPi = (p(i, si))si∈Si

is a probability distribution over
Si, wherep(i, si) denotes the probability that playeri chooses the pure strategysi.

A pure strategy profileis ann-tuple s = (s1, . . . , sn) ∈ S whereas amixed strat-
egy profileP = (P1, . . . , Pn) is represented by ann-tuple of mixed strategies. For a
mixed strategy profileP denote byp(s) =

∏
i∈[n] p(i, si) the probability that the play-

ers choose the pure strategy profiles = (s1, . . . , sn). Following standard game theory
notation, we denoteP−i = (P1, . . . , Pi−1, Pi+1, . . . , Pn) as the (mixed) strategy pro-
file of all players except playeri and(P−i, Qi) as the strategy profile that results from
P if player i deviates to strategyQi.
Private Cost. Fix any pure strategy profiles, and denote byle(s) =

∑
i∈[n],si3e wi the

load on resourcee ∈ E. Theprivate costof playeri ∈ [n] in a pure strategy profiles
is defined byPCi(s) =

∑
e∈si

fe (le(s)) . For a mixed strategy profileP, theprivate cost
of playeri ∈ [n] is

PCi(P) =
∑
s∈S

p(s) · PCi(s) .

Social Cost. Associated with a weighted congestion gameΓ and a mixed strategy
profile P is thesocial costSC(P) as a measure of social welfare. In particular we use
the expected total latency, that is,

SC(P) =
∑
s∈S

p(s)
∑
e∈E

le(s) · fe(le(s))

=
∑
s∈S

p(s)
∑
i∈[n]

∑
e∈si

wi · fe(le(s))

=
∑
i∈[n]

wi · PCi(P).

The optimumassociated with a weighted congestion game is defined byOPT =

minP SC(P).
Nash Equilibria and Price of Anarchy. We are interested in a special class of (mixed)
strategy profiles called Nash equilibria [22, 23] that we describe here. Given a weighted
congestion game and an associated mixed strategy profileP, a playeri ∈ [n] is satisfied
if he can not improve his private cost by unilaterally changing his strategy. Otherwise,
playeri is unsatisfied. The mixed strategy profileP is aNash equilibriumif and only
if all playersi ∈ [n] are satisfied, that is,PCi(P) ≤ PCi(P−i, si) for all i ∈ [n] and
si ∈ Si.

Note, that if this inequality holds for all pure strategiessi ∈ Si of playeri, then it
also holds for all mixed strategies overSi. Depending on the type of strategy profile,
we differ betweenpureandmixedNash equilibria.

Theprice of anarchy, also calledcoordination ratioand denotedPoA, is the maxi-
mum value, over all instancesΓ and Nash equilibriaP, of the ratioSC(P)

OPT .
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3 Price of Anarchy for Unweighted Congestion Games

In this section, we prove the exact value for the price of anarchy of unweighted con-
gestion games with polynomial latency functions. We start with two technical lemmas
which are crucial for determiningc1 andc2 in (1) and thus for proving the upper bound
Theorem 1. In Theorem 2 we give a matching lower bound which also holds for un-
weighted network congestion games (Corollary 1).

Lemma 1. Let0 ≤ c < 1 andd ∈ N0 then

max
x∈N0,y∈N

{(
x + 1

y

)d

− c ·
(

x

y

)d+1
}

= max
x∈N0

{
(x + 1)d − c · xd+1

}
.

Lemma 2. Letd ∈ N and

Fd = {g(d)
r : R → R | g(d)

r (x) = (r + 1)d − x · rd+1, r ∈ R≥0}

be an infinite set of linear functions. Furthermore, letγ(s, t) for s, t ∈ R≥0 ands 6= t

denote the intersection abscissa ofg
(d)
s and g

(d)
t . Then it holds for anys, t, u ∈ R≥0

with s < t < u thatγ(s, t) > γ(s, u) andγ(u, s) > γ(u, t).

Theorem 1. For unweighted congestion games with polynomial latency functions of
maximum degreed and non-negative coefficients, we have

PoA ≤ (k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
, wherek = bΦdc.

Proof. Let P = (P1, ..., Pn) be a (mixed) Nash equilibrium and letQ = (Q1, ..., Qn)
be a pure strategy profile with optimum social cost. SinceP is a Nash equilibrium,
playeri ∈ [n] cannot improve by switching from strategyPi to strategyQi. Thus,

PCi(P) =
∑
s∈S

p(s)
∑
e∈si

fe(le(s)) ≤ PCi(P−i, Qi)

=
∑
s∈S

p(s)

 ∑
e∈Qi∩si

fe(le(s)) +
∑

e∈Qi\si

fe(le(s) + 1)


≤
∑
s∈S

p(s)
∑

e∈Qi

fe(le(s) + 1).

Summing up over all playersi ∈ [n] yields

SC(P) =
∑
i∈[n]

∑
s∈S

p(s)
∑
e∈si

fe(le(s)) ≤
∑
i∈[n]

∑
s∈S

p(s)
∑

e∈Qi

fe(le(s) + 1)

=
∑
s∈S

p(s)
∑
e∈E

le(Q) · fe(le(s) + 1).

Now, le(Q) and le(s) are both integer, sinceQ ands are both pure strategy profiles.
Thus, by choosingc1, c2 such that

y · f(x + 1) ≤ c1 · x · f(x) + c2 · y · f(y) (2)
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for all polynomialsf with maximum degreed and non-negative coefficients and for all
x, y ∈ N0, we get

SC(P) ≤
∑
s∈S

p(s)
∑
e∈E

[c1le(s)fe(le(s)) + c2le(Q)fe(le(Q))] = c1 · SC(P) + c2 · SC(Q).

With c1 < 1 it follows that SC(P)
SC(Q)

≤ c2
1−c1

. SinceP is an arbitrary (mixed) Nash
equilibrium we get

PoA ≤ c2

1− c1
. (3)

In fact,c1 andc2 depend on the maximum degreed, however, for the sake of readability
we omit this dependence in our notation.

We will now show how to determine constantsc1 andc2 such that Inequality (2)
holds and such that the resulting upper bound ofc2

1−c1
is minimal. To do so, we will first

show that it suffices to consider Inequality (2) withy = 1 andf(x) = xd.
Sincef is a polynomial of maximum degreed with non-negative coefficients, it is

sufficient to determinec1 andc2 that fulfill (2) for f(x) = xr for all integers0 ≤ r ≤ d.
So letf(x) = xr for some0 ≤ r ≤ d. In this case (2) reduces to

y · (x + 1)r ≤ c1 · xr+1 + c2 · yr+1. (4)

For any given constant0 ≤ c1 < 1 let c2(r, c1) be the minimum value forc2 such that
(4) holds, that is

c2(r, c1) = max
x∈N0,y∈N

{
y(x + 1)r − c1 · xr+1

yr+1

}
= max

x∈N0,y∈N

{(
x + 1

y

)r

− c1 ·
(

x

y

)r+1
}

.

Note that (4) holds for anyc2 wheny = 0. By Lemma 1 we have

c2(r, c1) = max
x∈N0

{
(x + 1)r − c1 · xr+1} . (5)

Now, c2(r, c1) is the maximum of infinitely many linear functions inc1; one for
eachx ∈ N0. DenoteFr as the (infinite) set of linear functions definingc2(r, c1):

Fr := {g(r)
x : (0, 1) → R | g(r)

x (c1) = (x + 1)r − c1 · xr+1, x ∈ N0}

For the partial derivative of any function(x, r, c1) 7→ g
(r)
x (c1) we get

∂((x + 1)r − c1 · xr+1)

∂r
= (x + 1)r · ln(x + 1)− c1 · xr+1 · ln(x)

> ln(x + 1)
[
(x + 1)r − c1 · xr+1] ≥ 0,

for (x + 1)r − c1 · xr+1 ≥ 0, that is, for the positive range of the chosen function from
Fr. Thus, the positive range of(x + 1)d − c1 · xd+1 dominates the positive range of
(x + 1)r − c1 · xr+1 for all 0 ≤ r ≤ d. Sincec2(r, c1) > 0 for all 0 ≤ r ≤ d, it follows
thatc2(d, c1) ≥ c2(r, c1), for all 0 ≤ r ≤ d. Thus, without loss of generality, we may
assume thatf(x) = xd.

For s, t ∈ R≥0 ands 6= t defineγ(s, t) as the intersection abscissa ofg
(d)
s andg

(d)
t

(as in Lemma 2). Now consider the intersection of the two functionsg
(d)
v andg

(d)
v+1 from

Fd for somev ∈ N. We show that this intersection lies above all other functions from
Fd.
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– First consider any functiong(d)
z with z > v + 1. We haveg

(d)
z (0) > g

(d)
v+1(0) >

g
(d)
v (0). Furthermore, by Lemma 2 we getγ(v, z) < γ(v, v + 1). It follows that

g
(d)
v (γ(v, v + 1)) > g

(d)
z (γ(v, v + 1)).

– Now consider any functiong(d)
z with z < v. We haveg(d)

v+1(0) > g
(d)
v (0) > g

(d)
z (0).

Furthermore, by Lemma 2 we getγ(v, z) > γ(v, v + 1). Again, it follows that
g
(d)
v (γ(v, v + 1)) > g

(d)
z (γ(v, v + 1)).

Thus, all intersections of two consecutive linear functions fromFd lie on c2(d, c1).
By (3), any point that lies onc2(d, c1) gives an upper bound onPoA. Let k be the

largest integer such that(k + 1)d ≥ kd+1, that isk = bΦdc. Then(k + 2)d < (k + 1)d+1.
Choosec1 andc2 at the intersection of the two lines fromFd with x = k andx = k + 1,
that isc2 = (k + 1)d − c1 · kd+1 andc2 = (k + 2)d − c1 · (k + 1)d+1. Thus,

c1 =
(k + 2)d − (k + 1)d

(k + 1)d+1 − kd+1
and c2 =

(k + 1)2d+1 − (k + 2)d · kd+1

(k + 1)d+1 − kd+1
.

Note that by the choice ofk we have0 < c1 < 1.
It follows that

PoA ≤ (k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
.

This completes the proof of the theorem. ut

Theorem 2. For unweighted congestion games with polynomial latency functions of
maximum degreed and non-negative coefficients, we have

PoA ≥ (k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
, wherek = bΦdc.

Proof. Given the maximum degreed ∈ N for the polynomial latency functions, we
construct a congestion game forn ≥ k + 2 players and|E| = 2n facilities.

We divide the setE into two subsetsE1 := {g1, . . . , gn} andE2 := {h1, . . . , hn}.
Each playeri has two pure strategies,Pi := {gi+1, . . . , gi+k, hi+1, . . . , hi+k+1} andQi :=

{gi, hi} wheregj := gj−n andhj := hj−n for j > n. I. e.Si = {Qi, Pi}.
Each of the facilities inE1 share the latency functionx 7→ axd for ana ∈ R>0 (yet

to be determined) whereas the facilities inE2 have latencyx 7→ xd.
Obviously, the optimal allocationQ is for every playeri to chooseQi. Now we

determine a value fora such that the allocationP := (P1, . . . , Pn) becomes a Nash
Equilibrium, i.e., each playeri is satisfied withP, that isPCi(P) ≤ PCi(P−i, Qi) for all
i ∈ [n], or equivalentlyk · a · kd + (k + 1) · (k + 1)d ≤ a · (k + 1)d + (k + 2)d. Resolving
to the coefficienta gives

a ≥ (k + 1)d+1 − (k + 2)d

(k + 1)d − kd+1
> 0. (6)

Because(k + 1)d 6= kd+1, due to eitherk + 1 or k being odd and the other being
even,a is well defined and positive. Now since for any playeri the private costs are
PCi(Q) = a + 1 andPCi(P) = a · kd+1 + (k + 1)d+1, it follows that

SC(P)

SC(Q)
=

∑
i∈[n] PCi(P)∑
i∈[n] PCi(Q)

=
a · kd+1 + (k + 1)d+1

a + 1
. (7)
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Provided that(k + 1)d ≥ kd+1, it is not hard to see that (7) is monotonically decreasing
in a. Thus, we assume equality in (6), which then gives

PoA ≥ SC(P)

SC(Q)
=

(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
.

This completes the proof of the theorem. ut

Corollary 1. The lower bound in Theorem 2 onPoA also holds for unweighted network
congestion games.

4 Price of Anarchy for Weighted Congestion Games

In this section, we prove the exact value for the price of anarchy of weighted congestion
games with polynomial latency functions. The proof of the upper bound in Theorem 3
has a similar structure as the one for the unweighted case (cf. Theorem 1). In Theorem 4
we give a matching lower bound which also holds for weighted network congestion
games (Corollary 2). Corollary 3 shows the impact of player weights to the price of
anarchy.

Theorem 3. For weighted congestion games with polynomial latency functions of max-
imum degreed and non-negative coefficients we havePoA ≤ Φd+1

d .

Theorem 4. For weighted congestion games with polynomial latency functions of max-
imum degreed and non-negative coefficients, we havePoA ≥ Φd+1

d .

Proof. Given the maximum degreed ∈ N for the polynomial latency functions, set
k ≥ max{

(
d

bd/2c

)
, 2}. Note, that

(
d

bd/2c

)
= maxj∈[d]0

(
d
j

)
. We construct a congestion

game forn = (d + 1) · k players and|E| = n facilities.
We divide the setE into d + 1 partitions: Fori ∈ [d]0, let Ei := {gi,1, . . . , gi,k},

with eachgi,j sharing the latency functionx 7→ ai · xd. The values of the coefficients
ai will be determined later. For simplicity of notation, setgi,j := gi,j−k for j > k in
the following.

Similarly, we partition the set of players[n]: Fori ∈ [d]0, letNi := {ui,1, . . . , ui,k}.
The weight of each player in setNi is Φi

d, sowui,j = Φi
d for all i ∈ [d]0, j ∈ [k].

Now, for every setNi, each playerui,j ∈ Ni has exactly two strategies:

Qui,j := {gi,j} and Pui,j :=

{
{gd,j+1, . . . , gd,j+(d

i)
, gi−1,j} for i = 1 to d

{gd,j+1} for i = 0

Now letQ := (Q1, . . . , Qn) andP := (P1, . . . , Pn) be strategy profiles. The facilities
in each setEi then have the following loads forQ andP:

load on every facilitye ∈ Ei

i le(Q) le(P)

d Φd
d

∑d
l=0

(
d
l

)
Φl

d = (Φd + 1)d = Φd+1
d

0 to d− 1 Φi
d Φi+1

d

9



ForP to become a Nash Equilibrium, we need to fulfill the following Nash inequalities
for each setNi of players:

i Nash inequality to fulfill

1 tod
PCui,j (P) =

(
d
i

)
· ad · (Φd+1

d )d + ai−1 · (Φi
d)d

≤ ai · (Φi+1
d + Φi

d)d = PCui,j (P−ui,j , Qui,j )

0 PCu0,j (P) = ad · (Φd+1
d )d ≤ a0 · (Φd + 1)d = PCu0,j (P−u0,j , Qu0,j )

Replacing “≤” by “=” yields a homogeneous system of linear equations, i.e., the system
Bd · a = 0 whereBd is the following(d + 1)× (d + 1) matrix:

Bd =



−Φd2+d+1
d + Φd2+d

d Φd2

d 0 · · · · · · 0(
d

d−1

)
Φd2+d

d −Φd2+1
d

. . .
...

... 0
. . .

...
...

. . .
. . .

...(
d
i

)
Φd2+d

d 0 · · · 0 −Φid+d+1
d Φid

d 0 · · · 0
...

... 0
. . .

. . .
...

...
. . . 0

...
...

...
. . . Φd

d

Φd2+d
d 0 · · · 0 · · · 0 −Φd+1

d



(8)

anda := (ad . . . a0)t. Obviously, a solution to this system fulfills the initial Nash in-
equalities. Note that

(Φi+1
d + Φi

d)d = (Φi
d)d · (Φd + 1)d = Φid+d+1

d .

Claim. The(d + 1)× (d + 1) matrixBd from (8) has rankd.

Proof. We use the well-known fact from linear algebra that if a matrixC results from
another matrixD by adding a multiple of one row (or column) to another row (or
column, respectively) thenrank(C) = rank(D).

Now consider the matrixCd that results from adding rowj multiplied by the factor
Φ−1

d to row j − 1, sequentially done forj = d + 1, d, . . . , 2. Obviously,Cd is a lower
triangular matrix with nonzero elements only in the first column and on the principal
diagonal.

For the top left element ofCd we get

− Φd2+d+1
d +

d∑
j=0

(
d

j

)
Φd2+j

d = Φd2

d ·

(
−Φd+1

d +

d∑
j=0

(
d

j

)
Φj

d︸ ︷︷ ︸
(Φd+1)d

)
= 0.

Since all elements on the principal diagonal ofCd—with the just shown exception
of the first one—are nonzero, it is easy to see thatCd (and thus alsoBd) has rankd. ut
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By the above claim it follows that the column vectors ofBd are linearly dependent
and thus there are—with degree of freedom 1—infinitely many linear combinations of
them yielding 0. In other words,Bd · a = 0 has a one-dimensional solution space.

We now show (by induction overi) that all coefficientsai, i ∈ [d]0 must have the
same sign and thus we can always find a valid solution. From the last equality, fori = 0,
we have thatad anda0 must have the same sign. Now fori = 1, . . . , d − 1, it follows
thatai must have the same sign asai−1 andad, for (Φd+1

d )d, (Φi
d)d, and(Φi+1

d + Φi
d)d

are all positive.
Choosinga 6= 0 with all components being positive, all coefficients of the latency

functions are positive. We get,

PoA ≥ SC(P)

SC(Q)
=

k ·
∑d

i=0 ai(Φ
i+1
d )d+1

k ·
∑d

i=0 ai(Φi
d)d+1

= Φd+1
d .

ut

Corollary 2. The lower bound in Theorem 4 onPoA also holds for weighted network
congestion games.

Corollary 3. The exact price of anarchy forunweighted congestion games

PoA =
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

wherek = bΦdc, is bounded bybΦdcd+1 ≤ PoA ≤ Φd+1
d .
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