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Abstract

We present an efficient polynomial time approximation scheme (EPTAS) for scheduling on
uniform processors, i.e. finding a minimum length schedule for a set of n independent jobs on
m processors with different speeds (a fundamental NP-hard scheduling problem). The previous
best polynomial time approximation scheme (PTAS) by Hochbaum and Shmoys has a running
time of (n/ǫ)O(1/ǫ2). Our algorithm, based on a new mixed integer linear programming (MILP)
formulation with a constant number of integral variables and an interesting rounding method,
finds a schedule whose length is within a relative error ǫ of the optimum, and has running time
2O(1/ǫ2 log(1/ǫ)3) + poly(n).

1 Introduction

We consider the following fundamental problem in scheduling theory. Suppose that we are given a set
J of n independent jobs Jj with processing time pj and a set P of m non-identical processors Pi that
run at different speeds si. If job Jj is executed on processor Pi, the machine needs pj/si time units
to complete the job. The problem is to find an assignment a : J → P for the jobs to the processors
that minimizes the total execution time, maxi=1,...,m

∑

Jj :a(Jj)=Pi
pj/si. This is the minimum time

needed to complete the execution of all jobs on the processors. The problem is denoted Q||Cmax and
it is also called the minimum makespan problem on uniform parallel processors. We may assume
that the number m of processors is bounded by the number of jobs (otherwise select only the fastest
n machines in O(m) time). Furthermore, for simplicity we suppose that s1 ≥ s2 ≥ . . . ≥ sm

(otherwise we have to sort the speed values).
Results. The problem for uniform (and also identical) processors has been demonstrated to be

NP-hard [17, 20] and the existence of a polynomial time algorithm for it would imply P = NP .
Hochbaum and Shmoys [23, 24] presented a family of polynomial time approximation algorithms
{Aǫ|ǫ > 0} for scheduling on identical and uniform processors, where each algorithm Aǫ generates a

∗An extended abstract of this paper appeared at the Proceedings of the International Colloquium on Automata,
Languages and Programming, ICALP 2009, LNCS 5555, 562-573.
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schedule of length (1 + ǫ)OPT (I) for each instance I and has running time polynomial in the input
size |I|. Such a family of algorithms is called a polynomial time approximation scheme (PTAS). It
is allowed that the running time of each algorithm Aǫ is exponential in 1/ǫ. In fact, the running
time of the PTAS for uniform processors by Hochbaum and Shmoys [24] is (n/ǫ)O(1/ǫ2). If ǫ is small,
then the running time of the algorithm can be very large.

Two restricted classes of approximation schemes were defined that avoid this problem. An effi-
cient polynomial time approximation scheme (EPTAS) is a PTAS with running time f(1/ǫ)poly(|I|)
(for some function f), while a fully polynomial time approximation scheme (FPTAS) runs in time
poly(1/ǫ, |I|) (polynomial in 1/ǫ and the size |I| of the instance). Since the scheduling problem on
uniform (and also identical) processors is NP-hard in the strong sense (as it contains bin packing and
3-partition as special cases) [17], we cannot hope for an FPTAS. For identical processors, Hochbaum
and Shmoys (see [22]) and Alon at el. [1] gave an EPTAS with running time f(1/ǫ) + O(n), where
f is doubly exponential in 1/ǫ. The existence of an EPTAS for uniform processors is mentioned as
an open problem by Epstein and Sgall [10]. Our main result is the following:

Theorem 1.1 There is an EPTAS (a family of algorithms {Aǫ|ǫ > 0}) which, given an instance I
of Q||Cmax with n jobs and m processors with different speeds and a positive number ǫ > 0, produces
a schedule for the jobs of length Aǫ(I) ≤ (1 + ǫ)OPT (I). The running time of Aǫ is

2O(1/ǫ2 log(1/ǫ)3) + poly(n).

Interestingly, the running time of the EPTAS is only single exponential in 1/ǫ. For an introduc-
tion to the efficiency of polynomial time approximation schemes we refer to Cesati and Trevisan [2],
for an overview of parameterized complexity to Downey and Fellows [7] and Flum and Grohe [13],
and for a recent survey of parameterized complexity and approximation algorithms see Marx [31].
For a survey about complexity, algorithms and approximability of machine scheduling problems we
refer to a review by Chen, Potts and Woeginger [4].

Most of the work on this fundamental scheduling problem has been done already more than 20
years ago. Horowitz and Sahni [25] proposed an approximation scheme for scheduling on a fixed
number m of uniform processors (with running time (n/ǫ)O(m)). Gonzales, Ibara, and Sahni [18] in
1977 analyzed LPT (largest processing time) list schedules on uniform processors and proved that
LPT produces a schedule of length between 1.5 and 2 times the optimum. Friesen and Langston
[15] analyzed a variation of the MULTIFIT algorithm derived from bin packing and proved that its
worst-case performance bound is within 1.4 of the optimum. This has been later improved to 1.38
by Chen [3].

Hochbaum and Shmoys [23] introduced the dual approximation approach for identical and uni-
form processors and used the relationship between these scheduling problems and the bin packing
problem. This relationship between scheduling on identical processors and bin packing problem
had been exploited already by Coffman, Garey and Johnson [6]. For other work on scheduling on
identical processors we refer to [14, 16, 19]. Using the dual approximation approach, Hochbaum and
Shmoys [23] proposed a PTAS for scheduling on identical processors with running time (n/ǫ)O(1/ǫ2).
The main idea in their approach is to guess the length of the schedule by using binary search and
to consider the corresponding bin packing instance (with scaled identical bin size equal to 1). Then
they distinguish between large items with size > ǫ and small items with size ≤ ǫ. For the large
items they use a dynamic programming approach to calculate the minimum number of bins needed
to pack them all. Afterwards, they pack the remaining small items in a greedy way in enlarged bins
of size 1 + ǫ (i.e. they pack into any bin that currently contains items of total size at most 1; and
if no such bin exists, then they open a new bin).

2



The time complexity has been improved to (n/ǫ)O(1/ǫ log(1/ǫ)) by Leung [30]. Hochbaum and
Shmoys (see [22]) and Alon at al. [1] achieved an improvement to linear time by using an integer
linear program for the cutting stock formulation of bin packing for the large items and a result on
integer linear programming with a fixed number of variables by Lenstra [28]. This gives an EPTAS
for identical processors with running time f(1/ǫ) + O(n) where f is doubly exponential in 1/ǫ.

For uniform processors, the decision problem for the scheduling problem with makespan at most
T can be viewed as a bin packing problem with different bin sizes. Using an ǫ-relaxed version of this
bin packing problem, Hochbaum and Shmoys [24] were also able to obtain a PTAS for scheduling
on uniform processors with running time (n/ǫ)O(1/ǫ2). The main underlying idea in their algorithm
is a nice rounding technique and a non-trivial dynamic programming approach over the different
bins ordered by their sizes.

Methods. We use the dual approximation method by Hochbaum and Shmoys [24] to transform
the scheduling problem into a bin packing problem with different bin sizes. Next, we structure the
input by rounding bin sizes and processing times to values of the form (1 + δ)i and δ(1 + δ)i with
i ∈ Z, respectively. After sorting the bins according to their sizes, c1 ≥ . . . ≥ cm, we build three
groups of bins: B1 with the largest K bins (where K is constant). Let G be the smallest index such
that capacity cK+G+1 ≤ γcK where γ < 1 depends on ǫ (such an index G exists for cm ≤ γcK). In
this case B2 is with the set of the next G largest bins (where the maximum size cmax(B2) = cK+1

divided by the minimum size cmin(B2) = cK+G is bounded by a constant 1/γ and B3 is the set with
the remaining smaller bins (of size smaller than γcK). This generates a gap of constant size between
the capacities of bins in B1 and B3. If the rate cm/cK (where cm is the smallest bin size) is larger
the constant γ, then we obtain a simpler instance with only two groups B1 and B2 of bins.

For B1 we compute all packings for the very large items (those which only fit there). If there is a
feasible packing, then we set up a mixed integer linear program (MILP), or an integer linear program
(ILP) in the simpler case, to place the other items into the bins. The placement of a large item into
the second group B2 is done via integral configuration variables (similar to the ILP formulation for
bin packing by Fernandez de la Vega and Lueker [11]). We use fractional configuration variables for
the placement of large items into B3. Furthermore, we use additional fractional variables to place
small items into B1, B2, and B3. The MILP (and the ILP in the simpler case) has only a constant
number of integral variables and, therefore, can be solved via the algorithm by Lenstra or Kannan
[28, 27].

In order to avoid that the running time is doubly exponential in 1/ǫ, we use a recent result by
Eisenbrand and Shmonin [9] about integer cones. To apply their result we consider a system of
equalities for the integral configuration variables and round the corresponding coefficients. Then
each feasible solution of the modified MILP and ILP contains at most O(1/δ log(1/δ)2) integral vari-
ables with values larger than zero. By choosing the strictly positive integral variables in the MILP
and ILP, we are able to reduce the number of integral configuration variables from 2O(1/δ log(1/δ)) to
O(1/δ log(1/δ)2). The number of choices is bounded by 2O(1/δ2 log(1/δ)3). Next, we consider a rounded
version of the modified smaller MILP and ILP formulations in order to solve the corresponding LP
feasibility problem more efficiently. Although we still have a huge number of variables, one can solve
the LP feasibility problem for the MILP via the separation problem of the dual linear program and
then using techniques from Grötschel, Lovasz and Schrijver [21].

Afterwards, we round the fractional variables in the MILP solution to integral values. In the first
phase of the rounding we reduce the number of strictly positive fractional configuration variables
for each block Bℓ (that contains bins with similar capacities) from 2O(1/δ log(1/δ)) to O(1/δ log(1/δ))
using ideas from [26]. Afterwards we round down each such fractional variable to the next smaller
integral value. In the second phase we transform a system of (in-)equalities for the other variables
corresponding to the packing of the small items into a scheduling problem on unrelated machines.
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The fractional solution of the scheduling problem can be rounded into another solution with only
few fractional values using ideas from [32]. The corresponding remaining fractional variables in
the system of (in-)equalities are rounded down again to the next integral values. The effect of the
rounding is that most of the items can be placed directly into the bins. Only a few of them cannot
be placed this way, and here is where the K largest bins and the gap between B1 and B3 come into
play. We prove that these items can be moved to the K largest bins by increasing their size only
slightly.

Organization of the paper. In Section 2 we give definitions, notations and show how to
structure the input and how to define the three bin groups. In Section 3, we consider the simpler
case with only two bin groups and the property that the bins in the second group have a constant
number of different capacities. In this simpler case we describe an ILP formulation (see Section
3.1); we show how to solve this ILP and give the first ideas to place items into the bins (see Section
3.2). In Section 4 we consider the more general case with three groups of bins. In Section 4.1 we
set up our MILP relaxation and in Section 4.2 we show how to solve it. Then in Section 4.3 we
describe the rounding technique and in Section 4.4 we show how to pack the jobs via the rounded
MILP solution. Here we bound also the total size of items that cannot be placed directly into bins.

2 Modifying the input

First, we compute a 2-approximate solution using the algorithm by Gonzales et al. [18]. It generates
a schedule of length B(I) ≤ 2OPT (I). Then take the interval [B(I)/2, B(I)] and use binary
search to test values for the optimum or approximate schedule. In the following we choose a value
δ < ǫ such that 1/δ is integral (we specify the value later). Notice that OPT (I) ∈ [B(I)/2, B(I)]
and that the length (δ/2)B(I) ≤ δOPT (I). That implies that the interval [B(I)/2, B(I)] can be
divided into 1/δ subintervals of length δB(I)/2 and that there is at least one subinterval [B(I)/2 +
i(δ/2)B(I), B(I)/2 + (i + 1)(δ/2)B(I)] with i ∈ {0, . . . , 1/δ − 1} that contains the optimum length
OPT (I). To find one of these intervals, we use a standard dual approximation method that for
each value T either computes an approximate schedule of length T (1 + αδ) (where α is a constant)
or shows that there is no schedule of length T .

The scheduling problem can be transformed into a bin packing problem with variable bin sizes as
described by Hochbaum and Shmoys [24]. For a given value T for the makespan we can generate m
bins with capacities ci = T · si. Using the ordering of the speed values we have c1 ≥ c2 ≥ . . . ≥ cm.
The goal is now to find a packing for the jobs into these m bins. Let us round the processing time pj

of each job to the next pale p̄j of the form δ(1+δ)kj with kj ∈ Z, so pj ≤ p̄j = δ(1+δ)kj ≤ (1+δ)pj.
If we have a subset A of jobs with

∑

j∈A pj ≤ ci, then the total increased processing time
∑

j∈A p̄j

is bounded by ci(1 + δ). Furthermore, we can round the enlarged capacities ci(1 + δ) to the next
power c′i of (1+δ). That implies ci(1+δ) ≤ c′i = (1+δ)ℓi ≤ ci(1+δ)2 with ℓi ∈ Z. By normalization
we may suppose that the minimum capacity c′min = mini=1,...,m c′i = 1.

Lemma 2.1 If there is a feasible packing of n jobs with processing times pj into m bins with
capacities c1 ≥ . . . ≥ cm, then there is also a packing of n jobs with rounded processing times
p̄j = δ(1 + δ)kj ≤ (1 + δ)pj into m bins with rounded bin capacities c′i = (1 + δ)ℓi ≤ ci(1 + δ)2.

Notice that the exponent kj in p̄j = δ(1+δ)kj can be negative. For kj < 0 the processing time of
a job is smaller than δ and small compared to the capacities of all bins. These jobs will be handled as
tiny jobs in a special way (see end of this Section). In the next step we divide the bins into different
bin groups. The first bin group B1 consists of the K largest bins, where K = O(1/δ log(1/δ)). If
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cmax(B)/cmin(B) is bounded by a constant C, then by using the following Lemma there is only a
constant number O(log C/δ) of different capacities in bin group B.

Lemma 2.2 If cmax(B)/cmin(B) ≤ C for some constant C and the set of capacities in B is c(B) =
{(1 + δ)x, (1 + δ)x+1, . . . , (1 + δ)y} with x, y ∈ Z

+ and x < y, then |c(B)| ≤ 2 log(C)/δ + 1 for any
δ ∈ (0, 1/2].

Proof: Using the assumption on B, cmax(B)/cmin(B) = (1 + δ)y−x ≤ C. Therefore, the number of
elements (1 + δ)i in B is equal to

y − x + 1 ≤ log(C)/ log(1 + δ) + 1 ≤ 2 log(C)/δ + 1;

for the second inequality we use log(1 + δ) ≥ δ − δ2 ≥ δ/2 for δ ∈ (0, 1/2].
If cmin(B)/cmax(B

′) ≥ C for two bin groups B and B′ with C > 1, then there is a gap of size
C between the capacities of the bins in the two groups. Depending on another constant γ (where
γ = Θ(δ2)) we obtain either two or three bin groups:

Case 1: There is at least one bin with capacity at most γc′K . Let G be the smallest index
such that c′K+G+1 ≤ γc′K . This implies that c′K+G > γc′K . In this case we have three groups of
bins: B1 = {b1, . . . , bK}, B2 = {bK+1, . . . , bK+G}, and B3 = {bK+G+1, . . . , bm}. Notice that B2 has
a constant number of different capacities (using c′K+1/c

′
K+G ≤ c′K+1/γc′K ≤ 1/γ). In addition we

obtain a gap of at least 1/γ between the capacities in B1 and B3.
Case 2: All bins have capacity larger than γc′K . This implies that c′m > γc′K . In this case we

have only two groups of bins B1 = {b1, . . . , bK} and B2 = {bK+1, . . . , bm}. In this case B2 has a
constant number of different capacities (using c′K+1/c

′
m ≤ c′K+1/γc′K ≤ 1/γ).

Let B′
1 = {b1, . . . , bK′} be the subset of B1 with the bins that have capacity larger than δ/(K −

1)cmax(B1). By a further modification of the bin packing instances we obtain the following result.

Lemma 2.3 If there a solution for the original instance (J ,M) of our scheduling problem with
makespan T and corresponding bin sizes c1 ≥ . . . ≥ cm, then there is a feasible packing for instance
(J ,B′

1 ∪ B2 ∪ B3) or instance (J ,B′
1 ∪ B2) with rounded bin capacities c̄i = (1 + δ)ℓ̄i ≤ ci(1 + δ)3

and rounded processing times p̄j = δ(1 + δ)kj ≤ (1 + δ)pj. In addition we have one of the following
four scenarios:

1. two bin groups B′
1 and B2 with gap of 1/δ between cmin(B′

1) and cmax(B2) and constant number
of different capacities in B2.

2. two bin groups B′
1 and B2 with a constant number of different capacities in B′

1 ∪ B2.

3. three bin groups B′
1,B2,B3 with gap of 1/δ between cmin(B′

1) and cmax(B2) and gap of 1/γ
between cmin(B1) and cmax(B3). Furthermore B2 has a constant number of different capacities.

4. three bin groups B′
1,B2 and B3 with gap of 1/γ between cmin(B1) and cmax(B3) and constant

number of different capacities in B′
1 ∪ B2.

Proof: Depending on the constant γ we have obtained either an instance with three or two bin
groups. Let us consider now the largest K bins more carefully. The maximum capacity cmax(B1)
is equal to c′1. If there are bins in B1 with capacity < (δ/(K − 1))cmax(B1), then we may take
all jobs placed into these bins and put them on top of b1. The total load of these jobs is at most
((K − 1)δ/(K − 1))c′1 = δc′1. In order to store these jobs we enlarge the capacity of the first bin b1

to c̄1 = (1 + δ)c′1. All other capacities remain the same, i.e. c̄i = c′i for i > 1. Using Lemma 2.2
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we obtain a feasible packing of all n jobs into the bins with enlarged and rounded capacities. Next
we analyze the structure of the instances with two or three bin groups in more detail. We have two
interesting cases corresponding to cmax(B

′
1) = (1 + δ)c′1 and c′K+1:

Case A: c′K+1 < (δ2/((K − 1)(δ + 1)))cmax(B
′
1). In this case all remaining bins in B′

1 have
capacity larger than cmin(B′

1) ≥ (δ/((K − 1)(δ + 1)))cmax(B
′
1) and all bins in B2 have capacity

≤ c′K+1 < δcmin(B′
1). This implies that we have now a gap of 1/δ between the capacities of the bins

in B′
1 and B2.
Case B: c′K+1 > (δ2/((K − 1)(δ + 1)))cmax(B

′
1). In addition we know that c′K+G/c′K+1 ≥ γ in

case 1 and c′m/cK+1 ≥ γ in case 2. This implies that cmax(B
′
1)/cmin(B2) ≤ (K − 1)(δ + 1)/(γδ2) in

both cases. This implies that we have only a constant number of different capacities in B′
1 ∪ B2.

In scenario 2 and 4, cmax(B
′
1∪B2)/cmin(B′

1∪B2) is bounded by (K−1)(δ+1)/(γδ2) = O(K/(γδ2)).
On the other hand, in scenario 1 and 3 we have cmax(B2)/cmin(B2) ≤ 1/γ. If there are less than
K = O(1/δ log(1/δ)) bins in the instance, then we can apply the algorithm for scenario 1 where B′

1

contains K ′ ≤ K bins and B2 = ∅.
In the LP relaxation later we use only the larger bins in B′

1, but in the final rounding step we may
also use the smaller bins in B1. A packing of jobs into bin bi with capacity c̄i ≤ ci(1+δ)3 corresponds
to a schedule for the jobs on processor Pi with load at most c̄i/si ≤ ci(1 + δ)3/si = T (1 + δ)3. In
other words, a packing into bins with enlarged capacities for T ≤ (1+δ)OPT (I) gives us a schedule
of length ≤ T (1 + δ)3 ≤ OPT (1 + δ)4. For T ≤ OPT (1 + δ), our algorithm (as described in Section
3 and 4) generates a schedule of length at most T (1 + αδ), where α is a constant, or asserts that
there is no schedule of length T . For δ ≤ min(ǫ/(α + 2), 1), this implies in the first case a schedule
of length at most ≤ T (1 + αδ) ≤ OPT (1 + αδ)(1 + δ) ≤ OPT (1 + (α + 2)δ) ≤ OPT (1 + ǫ).

Notice that we have a set Jtiny of jobs with tiny processing time ≤ δc̄m. Let Stiny be the total
size of tiny jobs, i.e. Stiny =

∑

Jj∈Jtiny
p̄j. If there is a feasible schedule with makespan T , then the

total processing time
∑

j∈J p̄j is smaller or equal to the total area of the corresponding bins
∑m

i=1 c̄i.
If this inequality does not hold, then we can discard the choice with makespan T (in fact we have
to increase the makespan in this case). Therefore, we can eliminate in a first step all tiny jobs. If
there exists a packing for the other jobs into bins of size c̄i, then we can generate a feasible packing
for all jobs into enlarged bins of size c̄i(1 + δ). This can be done by a greedy algorithm that packs
the tiny jobs into the free space left (by allowing to use an additional δ-fraction of the capacities).
This works, since the processing time of each tiny job is at most δc̄m ≤ δc̄i for i = 1, . . . ,m and the
inequality above holds.

3 Solution for simpler instance (J ′,B′
1 ∪ B2)

In this section we mainly study scenario 1 (for an illustration see also Figure 1). Note that scenario
2 can be seen as a special case of scenario 1 where B1 = ∅ (see also the discussion at the end of the
section). Let us suppose that B′

1 contains K ′ ≤ K bins with capacities c̄1 ≥ c̄2 ≥ . . . ≥ c̄K′ where
c̄K′ ≥ δ/((K − 1)(δ + 1))c̄1 and that B2 contains further bins c̄K+1 ≥ · · · ≥ c̄m with c̄K+1 ≤ δc̄K′

(the other bins in B1 with smaller size can be neglected). This means that we have a gap between
B′

1 and B2 (see also Figure 1). In the first part of our algorithm we pre-assign the huge jobs with
processing time larger than δc̄K′ to the first K ′ ≤ K machines. Using the properties above, there
are at most K ′c̄1/(δc̄K′) ≤ K(K −1)(1+ δ)/δ2 many such jobs. If there are more jobs, then there is
no feasible solution with makespan T and we are done. Here we use also the fact that c̄K+1 ≤ δc̄K′

and that, therefore, the huge jobs fit only on the first K ′ machines.
Now we have to assign the huge jobs to the first K ′ machines. Since the number of machines

K ′ ≤ K = O(1/δ log(1/δ)) and the number of jobs H ≤ K(K − 1)(1 + δ)/δ2 ≤ O(1/δ4 log(1/δ)2)
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B2B′
1

≤ 1/γ

≥ 1/δ

Figure 1: Scenario 1.

are both constant (where the values depend on 1/ǫ), this can be done in constant time f(1/ǫ). A
feasible packing of huge jobs is indicated in Figure 2. In fact the number of possible assignments
can be bounded by (1/δ log(1/δ))O(1/δ4 log(1/δ)2) ≤ 2O(1/δ4 log(1/δ)3). Again, if there is no feasible
assignment, then there is no corresponding schedule with makespan T . As an alternative we compute
an approximate solution with accuracy ρ for the huge jobs. For this step we either could use the
PTAS for scheduling on uniform machines [24] or an FPTAS for scheduling on unrelated machines
[12]. The running time of the PTAS for uniform machines with a constant number of jobs (as above
calculated) is (1/δ4 log(1/δ)2)O(1/ρ2) ≤ 2O(1/ρ2 log(1/δ)) = 2O(1/δ2 log(1/δ)) (using ρ = δ). On the other
hand, this increases the first K ′ bin capacities from c̄i to c̄i(1+δ) for i = 1, . . . , K ′ and the makespan
from T (1 + δ)3 to T (1 + δ)4.

3.1 The ILP formulation

After the assignment for the huge jobs J1, . . . , JH we have a free area of S0 =
∑K′

i=1 c̄i(1+δ)−
∑H

j=1 p̄j

in B′
1 for the remaining jobs with processing time p̄j ≤ δc̄K′ . A subset of these remaining jobs will

be placed later in a greedy way on the first K ′ machines. But before, we set up an integer linear
program (ILP) for the bins in B2. Suppose that the set of different capacities in B2 is denoted by
{c̄(1), . . . , c̄(L)} = {c̄K+1, . . . , c̄m} (where c̄(1) > c̄(2) > . . . > c̄(L)). In this case c̄(1) = c̄K+1 = c′K+1

and c̄(L) = c̄m = c′m.
Let m1, . . . ,mL be the number of machines (bins) of size c̄(ℓ) = (1 + δ)rℓ for ℓ = 1, . . . , L. The

mℓ machines of the same speed form a block Bℓ of bins with the same capacity c̄(ℓ). Note that we
specify in the following the capacity of a bin group by c̄(ℓ). In addition we have n1, . . . , nP of jobs
with size δ(1 + δ)kj for j = 1, . . . , P (all of size > δ(1 + δ)rL and ≤ δc̄K′). Notice that jobs with size
within ((1 + δ)r1 , δc̄K′) cannot be packed into bins of B2. Suppose that the first P ′ ≤ P job sizes
are larger than (1 + δ)r1 = c̄K+1. These (non-huge) jobs will be placed later via the ILP into the
first K ′ bins or block B0.
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B2B′
1

≤ 1/γ

≥ 1/δ

Figure 2: Packing huge jobs.

In the ILP below we use C
(ℓ)
1 , . . . , C

(ℓ)
hℓ

as configurations or multisets with numbers δ(1 + δ)j ∈
[δ(1 + δ)rℓ , (1 + δ)rℓ ] (these are large processing times corresponding to Bℓ) where the total sum is

bounded by c̄(ℓ) = (1 + δ)rℓ (the capacity of the bins in block Bℓ). Let a(j, C
(ℓ)
i ) be the number of

occurrences of number δ(1+δ)j in configuration C
(ℓ)
i and let size(C

(ℓ)
i ) =

∑

j a(j, C
(ℓ)
i )δ(1+δ)j ≤ c̄(ℓ)

be the total sum of the numbers in C
(ℓ)
i . In the ILP below we use an integral variable x

(ℓ)
i to indicate

the length of the configuration C
(ℓ)
i .

Furthermore, we have additional variables to place jobs as small ones into other bins. To do
this, for j > P ′ let aj ∈ {1, . . . , L} be the smallest index such that δ(1 + δ)kj is at least δ(1 + δ)raj .
For each block Bℓ with ℓ ≥ aj, the processing time δ(1 + δ)kj is large corresponding to the block.
If there is no such index, then the processing time δ(1 + δ)kj < δ(1 + δ)L = δc̄m and we have a tiny
job. These jobs are removed in the first step of our algorithm and will be added at the end. Note
that a job of size within (δ(1 + δ)r1 , (1 + δ)r1 ] could be placed as a large job in an approximate or
optimal solution into a bin of group B1. In our algorithm we implicitly place such a job as a small
job into one of the first K ′ bins. We use variables yj,ℓ for ℓ = 0, 1, . . . , aj − 1 to indicate the number
of jobs of size δ(1 + δ)kj placed as a small one in block Bℓ. B0 represents here for simplicity the
block with the first K ′ bins. The first P ′ job sizes do not fit into the bins in group B2. Therefore,
we use for these job sizes only one variable yj,0 = nj and set the index aj = 0. We use the following
ILP:

∑

i x
(ℓ)
i ≤ mℓ for ℓ = 1, . . . , L

∑

ℓ,i a(kj, C
(ℓ)
i )x

(ℓ)
i +

∑aj−1
ℓ=0 yj,ℓ = nj for j = P ′ + 1, . . . , P

∑

i size(C
(ℓ)
i )x

(ℓ)
i +

∑

j:ℓ<aj
yj,ℓδ(1 + δ)kj ≤ mℓc̄(ℓ) for ℓ = 1, . . . , L

∑P
j=1 yj,0δ(1 + δ)kj ≤ S0
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x
(ℓ)
i integral ≥ 0 for ℓ = 1, . . . , L and i = 1, . . . , hℓ

yj,0 = nj for j = 1, . . . , P ′

yj,ℓ integral ≥ 0 for j = P ′ + 1, . . . , P and ℓ = 0, . . . , aj − 1

The first L inequalities guarantee that we use only mℓ bins for each group Bℓ. The next P −P ′

equalities are used to cover the nj jobs with processing times δ(1 + δ)kj . Here a job is either taken

as a large one via the x
(ℓ)
i variables or as a small one via the yj,ℓ variables. The next L inequalities

bound the total size of all jobs assigned to block Bℓ by the area of the mℓ bins with capacity c̄(ℓ).
The last inequality corresponds to the small jobs that are assigned via the yj,0 variables to block
B0. These small jobs must have a total area bounded by the free space S0 in the first K ′ bins. This
is described by the last inequality.

Lemma 3.1 Each feasible packing of the items into the bins of size c̄i corresponds to a feasible
solution for the ILP. On the other hand, each feasible solution for the ILP can be transformed into
a packing where the bin sizes are enlarged to (1 + 2δ)c̄i.

Proof: The first direction is quite obvious. Take out first the items that are small corresponding to
a bin. Then the other items can be grouped according to the packing and to their sizes together into
configurations for each block Bℓ. Let x̃

(ℓ)
i be the number of bins in the packing with configuration

C
(ℓ)
i in Bℓ. Then, the first L inequalities are satisfied automatically. Then, let ỹj,ℓ be the number

of small items with size δ(1 + δ)kj packed in block Bℓ. Since all items are packed into the bins, the
next P − P ′ equalities are also satisfied. In addition the total area of all items packed into block
Bℓ is exactly

∑

i size(C
(ℓ)
i )x̃

(ℓ)
i +

∑

j:ℓ<aj
ỹj,ℓδ(1 + δ)kj and, therefore, is bounded by the total area

mℓc̄(ℓ) of block Bℓ. Concerning block B0, the total area
∑

j ỹj,0δ(1 + δ)kj of the small jobs packed
into B0 must be smaller than the free space S0.

On the other hand, suppose that there is a feasible solution (x̄, ȳ) for the ILP. Then use x̄
(ℓ)
i

bins with configuration C
(ℓ)
i for each ℓ and i. Using this space we can place nj −

∑aj−1
ℓ=0 ȳj,ℓ jobs

with processing time δ(1 + δ)kj (for j = P ′ + 1, . . . , P ). In addition each block Bℓ gets ȳj,ℓ jobs
with size δ(1 + δ)kj for each j with ℓ < aj. We can pack these small jobs into the bins of block Bℓ

one after another as long as a bin capacity is at most c̄(ℓ)(1 + δ). Using the area constraints we
know that these jobs fit together with the long ones into each block Bℓ for ℓ = 1, . . . , L. In this
procedure we enlarge the capacities of the bins from c̄i to (1+ δ)c̄i. Finally, the small jobs with area
∑P

j=1 yj,0δ(1 + δ)kj are placed with the same procedure into the K ′ enlarged bins. This is possible,
since the total area (via the last inequality of the ILP) is bounded by S0. As above the capacities
of the first K ′ bins are enlarged from c̄i(1 + δ) to at most c̄i(1 + δ) + δc̄K′ ≤ (1 + 2δ)c̄i. Notice that
we have already increased the first K ′ capacities for the huge jobs.

Note that we could insert the tiny jobs together with the small jobs at the same time without
increasing the capacities a second time. The Lemma above implies that if the ILP has a feasible
integral solution then we obtain a feasible packing into bins of capacity c̄i(1 + 2δ) ≤ ci(1 + 2δ)(1 +
δ)3 ≤ ci(1 + δ)5 and a corresponding schedule of length at most T (1 + δ)5.

The set B2 has a constant number of different capacities using the property cmax(B2)/cmin(B2) ≤
1/γ (see also Figure 1). This means that (1 + δ)r1/(1 + δ)rL ≤ 1/γ. Therefore, r1 > . . . > rL ≥ 0,
r1 − rL ≤ O(log(1/γ)/δ), and L ≤ r1 − rL + 1 ≤ O(log(1/γ)/δ) ≤ O(1/δ log(1/δ)) using γ = Θ(δ2).
Furthermore, each configuration contains at most 1/δ numbers or jobs with large processing times.
This implies that the number of configurations is also bounded by a constant that depends on 1/δ.

Lemma 3.2 The number of variables in the ILP is at most 2O((1/δ) log(1/δ)) and the number of con-
straints is O((1/δ) log(1/δ)) (not counting the non-negativity constraints). In addition, the cardi-
nality of each set Pℓ (the number of large job sizes within block Bℓ) is at most O(1/δ log(1/δ)).
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Proof: Let Pℓ = {j ∈ {P ′ + 1, . . . , P}|δ(1 + δ)kj ∈ (δ(1 + δ)rℓ , (1 + δ)rℓ ]} be the indices of job sizes
that are large corresponding to block Bℓ for ℓ ≥ 1. For δ ≤ 1/2 we have |Pℓ| ≤ ⌊2/δ log(1/δ)⌋. To see
this consider all job sizes δ(1+δ)i ∈ (δ(1+δ)k, (1+δ)k]. This is exactly the set {δ(1+δ)k+1, . . . , δ(1+
δ)k+i−1} with i−1 elements, where δ(1+δ)k+i > (1+δ)k and δ(1+δ)k+i−1 ≤ (1+δ)k. Now the first
condition is equivalent to (1 + δ)i > 1/δ or i > log1+δ(1/δ) = log2(1/δ)/ log2(1 + δ). This implies
that the number of job sizes is at most ⌊log2(1/δ)/ log2(1 + δ)⌋. Since log2(1 + δ) ≥ δ − δ2 ≥ δ/2
for all δ ≥ −1/2 and δ ≤ 1/2, we get log2(1/δ)/ log2(1 + δ) ≤ log2(1/δ)/(δ/2) = 2/δ log2(1/δ).

The number of configurations in one block Bℓ is bounded by 2O(1/δ log(1/δ)). In fact we can
describe a configuration by an assignment f : {1, . . . , 1/δ} → Pℓ ∪ {0}. Here f(i) ∈ Pℓ indicates
the ith size or processing time used for i = 1, . . . , 1/δ. If a configuration contains less than 1/δ
sizes, then we can indicate this with f(i) = 0 for some i. The total number of such assignments
is bounded by (|Pℓ| + 1)1/δ = 2O(1/δ log(1/δ log(1/δ))) = 2O(1/δ log(1/δ)). In total we have L · 2O(1/δ log(1/δ))

plus (L + 1) · (P −P ′) integral variables (not counting the fixed variables yj,0 = nj for j = 1, . . . , P ′

that can be inserted directly). Since L ≤ O(1/δ log(1/δ)), the number of job sizes P − P ′ within
the interval [δ(1 + δ)rL , (1 + δ)r1 ] can be bounded also by O(1/δ log(1/δ)). To see this bound
calculate the number of elements δ(1 + δ)i ∈ [δ(1 + δ)rL , δ(1 + δ)r1 ] and the number of elements
δ(1 + δ)i ∈ (δ(1 + δ)r1 , (1 + δ)r1 ]. The cardinality of the first set is |{i|(1 + δ)i ∈ [(1 + δ)rL , (1 +
δ)r1 ]}| ≤ r1 − rL + 1 ≤ O(1/δ log(1/γ)) ≤ O(1/δ log(1/δ)) and the cardinality of the second set is
|P1| ≤ O(1/δ log(1/δ)).

Therefore, the total number of integral variables is 2O(1/δ log(1/δ)) and total number of linear (in-)

equalities is 2L + P −P ′ + 1 = O(1/δ log(1/δ)) (not counting the constraints x
(ℓ)
i ≥ 0 and yj,ℓ ≥ 0).

≤ O(K/γδ2)

B2B′
1

Figure 3: Scenario 2.

In scenario 2 (see also Figure 3) we do not have to consider a separate set B1 or the first K
bins. Clearly, here we can eliminate all variables yj,0. Notice that there is no job of size larger than
(1 + δ)r1 = c̄(1) = cmax(B

′
1 ∪ B2) (otherwise there is no feasible solution and we are done). We

suppose in the following that k1 ≤ r1. We get immediately the following ILP:
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∑

i x
(ℓ)
i ≤ mℓ for ℓ = 1, . . . , L

∑

ℓ,i a(kj, C
(ℓ)
i )x

(ℓ)
i +

∑aj−1
ℓ=1 yj,ℓ = nj for j = 1, . . . , P

∑

i size(C
(ℓ)
i )x

(ℓ)
i +

∑

j:aj>ℓ yj,ℓδ(1 + δ)kj ≤ mℓc̄(ℓ) for ℓ = 1, . . . , L

x
(ℓ)
i integral ≥ 0 for ℓ = 1, . . . , L and i = 1, . . . , hℓ

yj,ℓ integral ≥ 0 for j = 1, . . . , P and ℓ = 1, . . . , aj − 1

Here the largest capacity divided by the smallest capacity cmax(B
′
1∪B2)/cmin(B′

1∪B2) is bounded
by O((K − 1)(δ + 1)/(γδ2)) = O(K/(γδ2)) = O(1/δ5 log(1/δ)) using K = O(1/δ log(1/δ)) and
γ = Θ(δ2). This implies that (1 + δ)r1−rL ≤ O(1/δ5 log(1/δ)), r1 − rL ≤ O(1/δ log(1/δ)) and
L ≤ r1 − rL + 1 ≤ O(1/δ log(1/δ)). The number of job sizes with values in (δ(1 + δ)rL , (1 + δ)r1 ]
is also bounded by |P | ≤ O(1/δ log(1/δ)). This implies that the number of integral variables is
2O(1/δ log(1/δ)) and that the number of inequalities is O(1/δ log(1/δ)).

3.2 How to solve the ILP?

The natural way to solve the ILP with a constant number of variables is to use the classical algorithm
by Lenstra [28]. This approach was also mentioned by Hochbaum and Shmoys [22] and Alon et al
[1] for scheduling on identical machines. This would give running time dO(d2)s = 2O(d2 log(d))s where
the dimension d = 2O(1/δ log(1/δ)) and s is the length of the input. Therefore, the running time can

be bounded by 22O(1/δ2(log(1/δ))2)
s — doubly exponential in 1/δ. A better way is to use the algorithm

by Kannan [27] with running time dO(d)s and to use a nice result by Eisenbrand and Shmonin [9]
about integer cones

int − cone(X) = {λ1x1 + . . . + λtxt|t ≥ 0; x1, . . . , xt ∈ X; λ1, . . . , λt ∈ Z≥0},

where X ⊂ IRm is a finite set and m corresponds to the number of constraints.

Theorem 3.1 [9] Let X ⊂ Z
m be a finite set of integer vectors and let b ∈ int − cone(X). Then

there exists a subset X̃ ⊂ X such that b ∈ int − cone(X̃) and |X̃| ≤ 2m log(4mM) where M =
maxx∈X‖x‖∞.

In our context t corresponds to the number of variables, λi to the variables and xi to the vectors
with the coefficients of the variables. In the following we show how to apply this result for our (x

(ℓ)
i )

variables. To do this we need integer coefficients with small size. The first L+P−P ′ constraints have
already this form and the values a(kj, C

(ℓ)
i ) are bounded by 1/δ. We round now the values size(C

(ℓ)
i )

up to the next multiple of δ2(1 + δ)rℓ = δ2c̄(ℓ). The rounded value size′(C
(ℓ)
i ) ≤ size(C

(ℓ)
i )(1 + δ)

using δc̄(ℓ) ≤ size(C
(ℓ)
i ). Therefore, a feasible solution of our original ILP satisfies

∑

i

size′(C
(ℓ)
i )x

(ℓ)
i +

∑

j:aj>ℓ

yj,ℓδ(1 + δ)kj ≤ mℓc̄(ℓ)(1 + δ).

Furthermore, let us divide the L constraints above by δ2c̄(ℓ) (ℓ = 1, . . . , L). Then, the coefficients

of x
(ℓ)
i are now size′(C

(ℓ)
i )/(δ2c̄(ℓ)) = ai,ℓδ

2c̄(ℓ)/δ2c̄(ℓ) = ai,ℓ ∈ {1/δ, . . . , 1/δ2 + 1/δ}. Using our
assumption that 1/δ is integral, the coefficients are also integral and bounded by 2/δ2.
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Notice that increasing the capacity of all bins and dividing all coefficients as above implies also
a feasible solution for the modified ILP. Now let us consider a feasible solution for the modified ILP.
Considering only the x

(ℓ)
i variables we obtain the following system of equalities:

∑

i x
(ℓ)
i = m̄ℓ for ℓ = 1, . . . , L

∑

ℓ,i a(kj, C
(ℓ)
i )x

(ℓ)
i = n̄j for j = P ′ + 1, . . . , P

∑

i
size′(C

(ℓ)
i )

δ2c̄(ℓ)
x

(ℓ)
i = Area(ℓ, large) for ℓ = 1, . . . , L,

where the values m̄ℓ, n̄j and Area(ℓ, large) are given by the feasible solution. Then, the re-
sult by Eisenbrand and Shmonin [9] implies that there is an integral solution of this system
with at most 2m log(4mM) ≤ 2(2L + P − P ′) log(4(2L + P − P ′)2/δ2) ≤ O(1/δ(log(1/δ))2)
many integral variables with values larger than zero (using m = 2L + P − P ′, and L, P − P ′ ≤
O(1/δ log(1/δ)) and maxx∈X‖x‖ ≤ 2/δ2). Therefore, a feasible solution for the modified ILP con-

tains only O(1/δ(log(1/δ))2) many integral nonzero variables x
(ℓ)
i > 0. By enumeration we can

choose a subset of size O(1/δ(log(1/δ)2), set the other x
(ℓ)
i variables equal to 0 and solve the smaller

ILP instance with the polynomial number of variables. The number of remaining variables in the
small ILP is bounded by (L + 1)(P − P ′) + O(1/δ(log(1/δ))2) = O(1/δ2(log(1/δ))2). This implies
the following result.

Lemma 3.3 If there is a feasible solution for the original ILP, then there is at least one small
ILP instance with a feasible solution. The number of variables in each small ILP instance is
O(1/δ2 log(1/δ)2).

The number of choices or small ILP instances is bounded by

(

2O(1/δ log(1/δ))

O(1/δ(log(1/δ))2)

)

≤ 2O(1/δ2(log(1/δ))3).

The small ILP has still non-integral coefficients and the running time to solve an ILP depends also
on the size s of the input. Therefore, we will modify the small ILP a second time. We round up the
coefficients size′(C

(ℓ)
i ) and δ(1+δ)kj to the next multiple of δ2(1+δ)rL . Let size(C

(ℓ)
i ) = ai,ℓδ

2(1+δ)rL

be the rounded value for the configuration C
(ℓ)
i and bjδ

2(1 + δ)rL be the rounded value for the

processing time δ(1 + δ)kj . Since δ(1 + δ)kj and size′(C
(ℓ)
i ) are both larger than δ(1 + δ)rL , we can

replace the inequalities

∑

i

size′(C
(ℓ)
i )x

(ℓ)
i +

∑

j

yj,ℓδ(1 + δ)kj ≤ mℓc̄(ℓ)(1 + δ)

by
∑

i

ai,ℓδ
2(1 + δ)rLx

(ℓ)
i +

∑

j

bjδ
2(1 + δ)rLyj,ℓ ≤ mℓc̄(ℓ)(1 + δ)2.

Dividing the inequalities by δ2(1 + δ)rL , the coefficients

ai,ℓ ≤
(1 + δ)rℓ+2

δ2(1 + δ)rL
+ 1 ≤

1

γ

(1 + δ)2

δ2
+ 1 ≤ O(

1

δ4
)

and

bj ≤
δ(1 + δ)r1

δ2(1 + δ)rL
+ 1 ≤

1

γ

1

δ
+ 1 ≤ O(

1

δ3
).
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Above we have used that (1+ δ)r1/(1+ δ)rL = cmax(B2)/cmin(B2) ≤ 1/γ. The same modification
can be used for the area constraint

∑P
j=1 yj,0δ(1 + δ)kj ≤ S0 with new right hand side Snew

0 (here

we round the coefficients also to a multiple b̄j of δ2(1 + δ)rL , and set C =
∑P ′

j=1 yj,0δ(1 + δ)kj).

The new constraint is
∑P

j=P ′+1 yj,0b̄jδ
2(1 + δ)rL + C ≤ Snew

0 . In this case, we have to increase also
the free space S0 to S0(1 + δ). By increasing the capacities of the first K ′ bins, the new free space

Snew
0 =

∑K′

i=1 c̄i(1+δ)2−
∑H

j=1 p̄j ≥ S0(1+δ). Then, the old inequality
∑P

j=P ′+1 yj,0δ(1+δ)kj +C ≤ S0

implies the constraint with the rounded coefficients and right hand side Snew
0 . Here we use that

δ(1 + δ)kj ≥ δc̄(L) = δ(1 + δ)rL (otherwise the job would be tiny) and that the rounding error
for each job δ2(1 + δ)rL is at most a δ-fraction of its processing time. In addition the coefficients
b̄jδ

2(1+δ)rL divided by δ2(1+δ)rL can be bounded by O(1/γ ·1/δ2) = O(1/δ4). Furthermore notice
that we can round down the right hand sides to the next integer values. Therefore we obtain the
following statement.

Lemma 3.4 If there is a feasible solution of the original ILP (with bin capacities c̄(ℓ)), then there
is also a feasible solution of at least one modified small ILP instance with the following constraints:

∑

i x
(ℓ)
i ≤ mℓ for ℓ = 1, . . . , L

∑

ℓ,i a(kj, C
(ℓ)
i )x

(ℓ)
i +

∑aj−1
ℓ=0 yj,ℓ = nj for j = P ′ + 1, . . . , P

∑

i āi,ℓx
(ℓ)
i +

∑

j:ℓ<aj
b̄jyj,ℓ ≤ ⌊mℓc̄(ℓ)(1+δ)2

δ2c̄(L)
⌋ for ℓ = 1, . . . , L

∑P
j=P ′+1 b̄jyj,0 ≤ ⌊

(Snew
0 −C)

δ2c̄(L)
⌋

The ILP instance has only O(1/δ2 log(1/δ)2) integral variables (x
(ℓ)
i , yj,ℓ) with coefficients bounded

by O(1/δ4).

Notice that we have increased the capacities of the bins in group Bℓ from c̄(ℓ) to now c̄(ℓ)(1+δ)2

(for ℓ ≥ 1) and the bins bi in group B0 from c̄i to c̄i(1 + δ)2 for i = 1, . . . , K ′.
Let us consider the right hand sides of the inequalities more carefully. Notice that the values can

be reduced to O(1/δ4[
∑

i x
(ℓ)
i +

∑

j yj,ℓ]) ≤ O(1/δ4[mℓ +
∑

j nj]) ≤ O(n/δ4) and O(1/δ4
∑

j yj,0) ≤

O(n/δ4), respectively. Therefore, the length s of the ILP instance can be bounded by poly(1/δ) log(n)
and the dimension d = O(1/δ2 log(1/δ)2). Using the algorithm by Kannan [27] the running time to
solve one ILP instance is at most dO(d)s ≤ 2O(1/δ2(log(1/δ))3) log(n). Over all choices of integral vari-
ables, the overall running time for scenario 1 and 2 is bounded by 2O(1/δ2(log(1/δ))3) log(n) + O(n) ≤
2O(1/δ2(log(1/δ))3) + poly(n).

The algorithm for scenario 1 works as follows:

given: bin set B′
1 = {b1, . . . , bK′} and B2 = {bK+1, . . . , bm}.

(0) if
∑n

j=1 p̄j >
∑m

i=1 c̄i then assert that there is no solution for the makespan and stop.

(1) remove the tiny jobs with size ≤ δc̄m and try to pack the huge jobs with size > δc̄K′ into the
first K ′ enlarged bins.

(2) if there is a feasible packing for the huge jobs into the enlarged K ′ bins then

(2.1) for each choice with O(1/δ log(1/δ)2) integral x
(ℓ)
i - variables

(2.1.1) set up the modified small ILP with bounded coefficients,

(2.1.2) apply the algorithm by Kannan to the ILP instance and store a solution (if there
is any),
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B2B′
1

≤ 1/γ

≥ 1/δ

Figure 4: Packing jobs using x
(ℓ)
i variables.

(2.2) if there is at least one feasible solution (x̄, ȳ) then

(2.2.1) pack the large and small jobs according to the solution (x̄, ȳ) into the enlarged
bins,

(2.2.2) place the tiny jobs into the free space of the enlarged bins,

(2.2.3) assert that there is a solution with the approximate makespan (and output the
corresponding packing).

otherwise assert that there is no solution for the makespan.

otherwise assert that there is no solution for the makespan.

If there is a schedule of length T , then there is at least one modified ILP instance with a feasible
solution (x̄, ȳ). The capacities in this modified ILP are c̄′(ℓ) = c̄(ℓ)(1 + δ)2 for each block Bℓ and
c̄′i = c̄i(1+δ)2 for i = 1, . . . , K ′ (in B′

1). In the first phase of our algorithm we pack the huge jobs into

bins of size c̄i(1+ δ). Then, according to the feasible ILP solution we pack first the jobs via the x̄
(ℓ)
i

values into the bins of block Bℓ (see Figure 4). Then using the ȳj,ℓ values we place jobs as small ones
into the corresponding bins that are enlarged here from c̄′(ℓ) to c̄′(ℓ)(1+δ). Finally we pack the tiny
jobs in the free space left (but here we do not enlarge the bins a second time). This is possible using
the area argument. In total, this gives us a feasible packing with bin capacities c̄i(1+δ)3 ≤ ci(1+δ)6

and a corresponding schedule of length at most T (1+δ)6 ≤ OPT (1+δ)7 ≤ OPT (1+ǫ) for δ ≤ ǫ/16
and ǫ ≤ 1.

In scenario 2, we do not consider the separate set B1. Here cmax(B
′
1 ∪ B2)/cmin(B′

1 ∪ B2) is
at most (1 + δ)r1−rL ≤ O(1/δ5 log(1/δ)). On the other hand L, P ≤ O(1/δ log(1/δ)). The same
arguments as above can be applied, only the coefficients in the second modified ILP are bounded
by 1/δ2(1 + δ)r1+2−rL ≤ O(1/δ7 log(1/δ)).
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B2B′
1

≤ 1/γ

≥ 1/δ

Figure 5: Packing of small and tiny jobs.

4 General case with different gaps

In this section we consider now scenarios 3 and 4 (with three bin groups). First, we study scenario 3.
For the huge jobs with processing times > δc̄K′ we use the same approach as in the previous section.
If there is no assignment for the H huge jobs into the first K ′ enlarged bins of group B′

1, then there is
no schedule of length T and we are done. Otherwise we will find a feasible approximate assignment
with free space S0 =

∑K′

i=1 c̄i(1 + δ)−
∑H

j=1 p̄j and use now a mixed integer linear program (MILP)
as described below.

4.1 The MILP relaxation

The set B2 contains now mℓ bins of size c̄(ℓ) = (1 + δ)rℓ for ℓ = 1, . . . , L and B3 mℓ bins of size
c̄(ℓ) = (1 + δ)rℓ for ℓ = L + 1, . . . , L + N . Note that c̄(1) = c̄K+1, c̄(L) = c̄K+G, c̄(L + 1) = c̄K+G+1

and c̄(L + N) = c̄m. Using our assumptions we have a constant number of different capacities in
B2, cmax(B2)/cmin(B2) ≤ 1/γ and a gap of 1/γ between cmin(B1) and cmax(B3) (see also Figure
6 for an illustration). Furthermore we have nj jobs of size δ(1 + δ)kj for j = 1, . . . , P (all with
processing time larger than δc̄(L + N) = δ(1 + δ)rL+N and smaller than or equal to δc̄K′). Suppose
(as in the other scenarios) that we have eliminated the tiny jobs Jtiny with processing times at most
δ(1 + δ)rL+N and that the area constraint for all jobs is satisfied (otherwise we have to increase the
makespan T and the corresponding bin sizes).

Similar to the ILP in the previous section we use as a configuration C
(ℓ)
i a multiset with numbers

δ(1 + δ)j ∈ (δ(1 + δ)rℓ , (1 + δ)rℓ ] (these are the large processing times). Note that C
(ℓ)
i contains at

most 1/δ numbers. Let a(j, C
(ℓ)
i ) be the number of occurrences of number δ(1+ δ)j in configuration

C
(ℓ)
i and let size(C

(ℓ)
i ) =

∑

j a(j, C
(ℓ)
i )δ(1+δ)j ≤ c̄(ℓ) be the total sum of the numbers in C

(ℓ)
i . In the

MILP below we use an integral or fractional variable x
(ℓ)
i to indicate the length of the configuration

15



B′
1 B2 B3

≥ 1/δ
≥ 1/γ

Figure 6: Scenario 3.

C
(ℓ)
i .

For each job size δ(1 + δ)kj ≤ (1 + δ)r1 , let aj be the smallest index in {1, . . . , L + N} such
that δ(1 + δ)kj ≥ δ(1 + δ)raj . If there is no such index, then we have a tiny processing time
δ(1 + δ)kj < δ(1 + δ)rL+N = δc̄m. These jobs are removed in the first step of our algorithm and
will be added at the end. In addition for j = 1, . . . , P and ℓ = 0, . . . , aj − 1 we use variables yj,ℓ

to indicate the number of jobs of size δ(1 + δ)kj to be placed as a small job in group Bℓ with bin
sizes c̄(ℓ) = (1 + δ)rℓ . Again, B0 is the block with the largest K ′ bins. Suppose that the first P ′

(non-huge) job sizes (1 + δ)kj are within ((1 + δ)r1 , δcK′ ]. These job sizes do not fit into the bins in
group B2 ∪ B3. Therefore we use for these job sizes (as in the ILP) only one variable yj,0 = nj and
set aj = 0. Furthermore, notice that each processing time for j ≥ P ′ + 1 is small corresponding to
B0. We use now the following MILP:

∑

i x
(ℓ)
i ≤ mℓ for ℓ = 1, . . . , L + N

∑

ℓ,i a(kj, C
(ℓ)
i )x

(ℓ)
i +

∑aj−1
ℓ=0 yj,ℓ = nj for j = P ′ + 1, . . . , P

∑

i size(C
(ℓ)
i )x

(ℓ)
i +

∑

j:ℓ<aj
yj,ℓδ(1 + δ)kj ≤ mℓc̄(ℓ) for ℓ = 1, . . . , L + N

∑P
j=1 yj,0δ(1 + δ)kj ≤ S0

x
(ℓ)
i integral ≥ 0 for ℓ = 1, . . . , L and i = 1, . . . , hℓ

x
(ℓ)
i ≥ 0 for ℓ = L + 1, . . . , L + N and i = 1, . . . , hℓ

yj,ℓ ≥ 0 for j = P ′ + 1, . . . , P and ℓ = 0, . . . , aj − 1
yj,0 = nj for j = 1, . . . , P ′

Interestingly, the variables yj,ℓ (with exception of the fixed variables yj,0 = nj for j ≤ P ′) are
in general fractional variables. In fact we could use the same assumption also in the other two
scenarios 1 and 2 and would obtain also an MILP formulation. But then the algorithms for these
scenarios are more complicated, since we have to round the corresponding values afterwards. For
the MILP relaxation, we can prove the following result.
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Lemma 4.1 Each feasible packing for the jobs into the bins corresponds to a feasible solution of
the MILP.

Proof: First, we take out all jobs that are small corresponding to a bin. Place the huge jobs
corresponding to the packing into the first block B0. Then, the other jobs can be grouped together
as configurations for each block Bℓ. Let x̃

(ℓ)
i be the number of bins with corresponding configuration

C
(ℓ)
i in block Bℓ. Then, the first L+N inequalities are satisfied directly. Then, let ỹj,ℓ be the number

of jobs that are packed as small jobs with size δ(1 + δ)kj in block Bℓ. Since all jobs are packed,
the next P − P ′ inequalities are also satisfied. In addition, the total area of all jobs in block Bℓ is
exactly

∑

i size(C
(ℓ)
i )x̃

(ℓ)
i +

∑

j ỹj,ℓδ(1 + δ)kj , and this clearly is bounded by the total area mℓc̄(ℓ) of
block Bℓ. Therefore, the next L+N inequalities are also satisfied. The last inequality is true, since
the area

∑

j ỹj,0δ(1 + δ)kj of the small jobs in B0 must be smaller than the free space S0.
Lemma 4.1 implies that the MILP is a relaxation of the packing problem for jobs into bins with

different sizes. Notice that the feasible solution generated above has only integral values. On the
other hand, we show later how to round an MILP solution to obtain a feasible packing with enlarged
capacities.

Lemma 4.2 The number of variables in the MILP is n2 + n2O(1/δ log(1/δ)), the number of integral
variables is at most 2O(1/δ log(1/δ)), and the number of constraints (not counting the non-negativity
constraints) is at most O(n).

Proof: The number of configurations per block Bℓ is again bounded by 2O(1/δ log(1/δ)). The number
L is bounded by O(1/δ log(1/γ)) = O(1/δ log(1/δ)) using that cmax(B2)/cmin(B2) is at most 1/γ
and γ = Θ(δ2). Thus, the number of integral variables is at most 2O(1/δ log(1/δ)). Since the number m
of machines is bounded by the number n of jobs, the number of blocks including B0 is L + N + 1 ≤
n and number of job sizes P ≤ n. This implies that the total number of variables is at most
n2 + n 2O(1/δ log(1/δ)) and that the number of constraints is at most O(n).

B3B2B′
1

≤ O(K/γδ2)

≥ 1/γ

Figure 7: Scenario 4.

In scenario 4, the set B′
1∪B2 (and also B1∪B2) has a constant range of capacities, i.e. cmax(B

′
1∪

B2)/cmin(B′
1 ∪B2) ≤ (K −1)(δ +1)/(γδ2). Furthermore, there is a gap of 1/γ between cmin(B1) and
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cmax(B3). Therefore we can use a similar approach as in scenario 3 with blocks B1, . . . , BL within
B1 ∪ B2. Here we obtain an MILP with integral configuration variables for B1 ∪ B2 and fractional
configuration variables for B3. The number of integral variables here is again 2O(1/δ log(1/δ)), and the
value L ≤ O(1/δ log((K − 1)/(γδ2))) = O(1/δ log(1/δ)). As above the number of constraints is at
most O(n) and the number of all variables is at most n2 + n2O(1/δ log(1/δ)).

4.2 How to solve the MILP?

For the MILP we use the same argument via the integer cone for the (x
(ℓ)
i ) variables. In addition

we round the sizes or processing times of large items or jobs to solve later the corresponding LP in
the underlying algorithm of Lenstra and Kannan more efficiently. Each large size δ(1 + δ)kj ∈ C

(ℓ)
i

is rounded up to the next multiple of δ2(1 + δ)rℓ for ℓ = 1, . . . , L. Let roundℓ[δ(1 + δ)kj ] be
the rounded number in block Bℓ. This generates also modified configurations with total size at
most c̄(ℓ)(1 + δ) = (1 + δ)rℓ+1, since at most 1/δ items in each configuration are rounded up.
Notice that rounding up different numbers δ(1 + δ)i ∈ (δ(1 + δ)rℓ , (1 + δ)rℓ ] up to roundℓ[δ(1 + δ)i]
generates different rounded numbers. Suppose by contradiction that two rounded numbers are
equal roundℓ[δ(1 + δ)i+1] = roundℓ[δ(1 + δ)i]. Then the distance between the original numbers
δ(1 + δ)i+1 − δ(1 + δ)i = δ2(1 + δ)i is at most δ2(1 + δ)rℓ , and this is possible only if i ≤ rℓ. But this
is a contradiction, since i should be larger than rℓ.

Let C̄
(ℓ)
1 , . . . , C̄

(ℓ)

h̄ℓ
be the sequence of all configuration or partitions of c̄(ℓ)(1+δ) into the rounded

numbers {roundℓ[δ(1 + δ)kj ]|δ(1 + δ)kj ∈ (δ(1 + δ)rℓ , (1 + δ)rℓ ]}. Then, the equality for each job size
j ∈ {P ′ + 1, . . . , P} has now the form

∑

ℓ,i:round[δ(1+δ)kj ]∈C̄
(ℓ)
i

a(kj, C̄
(ℓ)
i )x

(ℓ)
i +

aj−1
∑

ℓ=0

yj,ℓ = nj,

where a(kj, C̄
(ℓ)
i ) is the number of occurrences of the rounded value round[δ(1 + δ)kj ] in C̄

(ℓ)
i . In

addition we have as new constraints

∑

i

size(C̄
(ℓ)
i )x

(ℓ)
i +

∑

j

yj,ℓδ(1 + δ)kj ≤ mℓc̄(ℓ)(1 + δ)

for ℓ = 1, . . . , L and
P

∑

j=1

yj,0δ(1 + δ)kj ≤ S0.

Clearly, if there is a feasible solution for the original MILP, then there is also a feasible solution
for the MILP with modified coefficients. Now, the values size(C̄

(ℓ)
i ) are multiples of δ2(1 + δ)rℓ and

bounded by (1 + δ)rℓ+1. By dividing the corresponding constraints by δ2(1 + δ)rℓ , the coefficients

of x
(ℓ)
i are again integral and bounded by 2/δ2. Therefore, using the same argument as for the ILP

(with a system of equalities for the (x
(ℓ)
i ) variables) each feasible integral solution of MILP has at

most O(1/δ(log(1/δ))2) integral variables with values larger than zero. Let P (B2) be indices of the
large job sizes corresponding to a block Bℓ ∈ B2 (i.e. P (B2) = {j|δ(1+δ)kj ∈ (δ(1+δ)rL , (1+δ)r1 ]}).
The cardinality of P (B2) can be bounded by O(1/δ log(1/δ)) (see also Lemma 3.2).

To prove the bound for the number of integral variables consider for the x
(ℓ)
i variables of the
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blocks Bℓ ∈ B2 the following system of equalities:

∑

i x
(ℓ)
i = m̄ℓ for ℓ = 1, . . . , L

∑

ℓ,i a(kj, C̄
(ℓ)
i )x

(ℓ)
i = n̄j for j ∈ P (B2)

∑

i
size(C̄

(ℓ)
i )

δ2c̄(ℓ)
x

(ℓ)
i = Area(ℓ, large) for ℓ = 1, . . . , L,

where the values m̄ℓ, n̄j and Area(ℓ, large) are given by the feasible solution. Then, the result
by Eisenbrand and Shmonin [9] implies that there is an integral solution of this system with at
most 2m log(4mM) = 2(2L + |P (B2)|) log(4(2L + |P (B2)|)2/δ

2) ≤ O(1/δ(log(1/δ))2) integral vari-
ables with values larger than zero (using m = 2L + |P (B2)|, and L, |P (B2)| ≤ O(1/δ log(1/δ))
and maxx∈X‖x‖ ≤ 2/δ2). Therefore, a feasible solution of the modified MILP contains only

O(1/δ(log(1/δ))2) integral nonzero variables x
(ℓ)
i > 0 with ℓ ∈ {1, . . . , L}.

For each choice with O(1/δ(log(1 + δ))2) such variables, we obtain a restricted MILP instance
with only few integral variables. The number of choices or small instances is again bounded by

(

2O(1/δ log(1/δ))

O(1/δ(log(1/δ))2)

)

≤ 2O(1/δ2 log(1/δ)3).

Lemma 4.3 If there is a feasible solution for the original MILP, then there is a feasible solution
for at least one of the restricted MILP instances with modified coefficients. The number of in-
stances is 2O(1/δ2 log(1/δ)3) and the number of integral variables in each MILP instance is at most
O(1/δ log(1/δ)2).

In order to solve such MILP instances, we round the coefficients a second time (similar to

what we did to the ILP). We round here the coefficient size(C̄
(ℓ)
i ) for ℓ = 1, . . . , L, size(C

(ℓ)
i ) for

ℓ = L+1, . . . , L+N and the values δ(1+δ)kj for bin group Bℓ to next multiple of δ/(2n)(1+δ)rℓ , i.e.

to ai,ℓδ/(2n)(1 + δ)rℓ and to bj,ℓδ/(2n)(1 + δ)rℓ . Since
∑

i x
(ℓ)
i ≤ mℓ ≤ n and

∑

j yj,ℓ ≤
∑

j nj ≤ n, a

feasible solution of
∑

i size(C̄
(ℓ)
i )x

(ℓ)
i +

∑

j δ(1+δ)kjyj,ℓ ≤ mℓc̄(ℓ)(1+δ) implies a solution of the form
∑

i āi,ℓδ/(2n)(1 + δ)rℓx
(ℓ)
i +

∑

j b̄j,ℓδ/(2n)(1 + δ)rℓyj,ℓ ≤ mℓc̄(ℓ)(1 + 2δ) for ℓ = 1, . . . , L. A similar
implication can be proved for the inequalities corresponding to the groups Bℓ for ℓ = L+1, . . . , L+N .
Here we have to increase the bin capacities to c̄(ℓ)(1 + 2δ) for ℓ = 1, . . . , L + N .

For the area constraint with S0 we round the coefficients of yj,0 (for j ≥ P ′ + 1) to the next
multiples of δ/(2n)(1 + δ)r1 . Then, a feasible solution of

P
∑

j=P ′+1

δ(1 + δ)kjyj,0 ≤ S̄0

with S̄0 = (S0 −
∑P ′

j=1 njδ(1 + δ)kj) implies

(δ/(2n))(1 + δ)r1
∑P

j=P ′+1 b̄j,0yj,0 ≤ S̄0 + (n)δ/(2n)(1 + δ)r1 ≤ S̄0 + (δ/2)c̄(1).

By increasing the capacities of the first K ′ bins to c̄i(1 + δ)2, the free space S0 =
∑K′

i=1 c̄i(1 + δ) −
∑H

j=1 p̄j can be enlarged to Snew
0 =

∑K′

i=1 c̄i(1 + δ)2 −
∑H

j=1 p̄j = S0 +
∑K′

i=1 c̄i(δ + δ2) ≥ S0 + δc̄K′ ≥

S0 + δc̄(1). Here we have to increase the capacities to c̄′i = c̄i(1 + 3δ) ≥ c̄i(1 + δ)2 for i = 1, . . . , K ′.

This implies that S̄new
0 = (Snew

0 −
∑P ′

j=1 njδ(1 + δ)kj) ≥ S̄0 + δc̄(1).
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Finally, after dividing the constraints above by δ/(2n)(1+δ)rℓ and δ/(2n)(1+δ)r1 , the coefficients
āi,ℓ and b̄j,ℓ are all integral and bounded by O(n/δ) for j ≥ P ′ + 1. To see this we use that the
rounded values

āi,ℓδ/(2n)(1 + δ)rℓ ≤ c̄(ℓ)(1 + 2δ) = (1 + δ)rℓ(1 + 2δ) for ℓ = 1, . . . , L + N
b̄j,ℓδ/(2n)(1 + δ)rℓ ≤ δc̄(ℓ) = δ(1 + δ)rℓ for ℓ = 1, . . . , L + N
b̄j,0δ/(2n)(1 + δ)r1 ≤ c̄(1) = (1 + δ)r1 for ℓ = 0.

Here we use also the fact that the yj,0 variables are replaced by their fixed values nj for j =
1, . . . , P ′ and that their coefficients are not rounded. Furthermore notice that we can round down
the right hand sides of the inequalities to the next integer value. For each choice of O(1/δ(log(1/δ))2)
integral variables we have now to solve a small modified MILP instance.

Lemma 4.4 If a restricted MILP instance has a feasible solution, then the modified MILP with the
following constraints has also a feasible solution.

∑

i x
(ℓ)
i ≤ mℓ for ℓ = 1, . . . , L + N

∑

ℓ,i a(kj, C̄
(ℓ)
i )x

(ℓ)
i +

∑aj−1
ℓ=0 yj,ℓ = nj for j = P ′ + 1, . . . , P

∑

i āi,ℓx
(ℓ)
i +

∑

j:ℓ<aj
b̄j,ℓyj,ℓ ≤ ⌊mℓ(1+2δ)(2n)

δ
⌋ for ℓ = 1, . . . , L + N

∑P
j=P ′+1 b̄j,0yj,0 ≤ ⌊

S̄new
0 (2n)

δc̄(1)
⌋.

The new MILP has d = O(1/δ log(1/δ)2) integral variables, at most n2 + n 2O(1/δ log(1/δ)) fractional

variables, O(n) constraints (not counting the constraints x
(ℓ)
i ≥ 0 and yj,ℓ ≥ 0), and coefficients

bounded by O(n/δ).

Let us consider the right hand sides more carefully. Notice that the values mℓ(1 + 2δ)(2n)/δ ≤
O(n2/δ) and

∑

j b̄j,0yj,0 ≤ (2n/δ)
∑

j yj,0 ≤ 2n2/δ. Therefore, the length s of the MILP instance can

be bounded roughly by (n2 + n2O(1/δ log(1/δ)))n log(n/δ) = poly(n, 1/δ) + n2 log(n)2O(1/δ log(1/δ)). Us-

ing further arguments about the x
(ℓ)
i variables, the length s can be bounded also by poly(n, 1/δ) +

n log(n)2O(1/δ log(1/δ)). Kannan’s algorithm [27] has running time dO(d)poly(s), where the polyno-
mial depends on the running time to solve the underlying linear program. In our case, d =
O(1/δ log(1/δ)2) and poly(s) can be bounded by 2O(1/δ log(1/δ))poly(n). This implies that the to-
tal running time for one MILP instance is at most 2O(1/δ log(1/δ)3)poly(n).

Lenstra’s and Kannan’s algorithms [28, 27] use as a subroutine an algorithm to solve a linear
program with an objective function that depends only on the integral variables and a subroutine to
decide whether a given vector y ∈ IRd belongs to the transformed set τK, where τ is a linear non-
singular transformation of IRd, K = {(x1, . . . , xd)| there exist xd+1, . . . , xN ∈ IR such that Ax ≤ b}
and N is the total number of variables. This decision problem above can be solved using a linear
feasibility program with the N −d fractional variables (see also [28]). In the following we show that
the linear program above can be solved in time polynomial in n and 1/δ. The feasibility test can
be solved in a similar way.

Lemma 4.5 The linear program with the constraints above, variables x
(ℓ)
i , yj,ℓ ≥ 0 and an objective

function that depends only on the d = O(1/δ log(1/δ)2) integral variables of the corresponding MILP
can be solved in time polynomial in n and 1/δ.

Proof: Suppose that the yj,0 are replaced by their values nj for j ≤ P ′. Next we insert additional
positive slack variables to obtain O(n) equality constraints and consider the dual linear program.
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Since all variables are positive and the primal linear program has only equality constraints, we obtain
dual constraints of the form ΠT Aj ≤ cj with non-restricted variables Π ≷ 0, where c = (c1, . . . , cN)
is the objective function of the primal problem and Aj is the j.th column vector of the matrix. To
solve the dual and also primal linear program, let us consider the strong separation problem for the
corresponding dual polyhedron P : given a vector p ∈ IRn, decide whether p ∈ P , and if not, find a
hyperplane that separates p from P , i.e. a vector α ∈ IRn such that αT p > max{αT x|x ∈ P}. In
our case we have O(n) variables and n2 + n 2O(1/δ log(1/δ)) linear constraints. First we test all dual
inequalities corresponding to the primal integral variables, the primal variables yℓ,j and the primal
slack variables. The time to check one constraint is bounded by O(n). Since the number of these
constraints is bounded by O(n2 +1/δ(log(1/δ))2), this can be done in time polynomial in n and 1/δ.

The only critical dual constraints correspond to the x
(ℓ)
i variables, since here we have 2O(1/δ log(1/δ))

variables per block Bℓ. For each configuration C̄
(ℓ)
i , we have a constraint of the form

Πℓ +
∑

j a(kj, C̄
(ℓ)
i )Π(L+N)+j−P ′ +

size(C
(ℓ)
i )

δ/(2n)(1+δ)rℓ
Π(L+N)+(P−P ′)+ℓ ≤ 0

where size(C
(ℓ)
i ) is the rounded size of size(C

(ℓ)
i ) to the next multiple of δ/(2n)(1 + δ)rℓ . Notice

that the right hand sides of the constraints have the same value 0, since the objective function of
the primal linear program does not depend on the corresponding variables. The separation problem
for Bℓ and vector p is now (note that the ℓ.th coefficient pℓ is constant over all constraints):

maxi=1,...,h̄ℓ

∑

j a(kj, C̄
(ℓ)
i )p(L+N)+j−P ′ +

size(C
(ℓ)
i )

δ/(2n)(1+δ)rℓ
p(L+N)+(P−P ′)+ℓ ≤ −pℓ.

This is a special type of a knapsack problem with a constant number of different sizes

Sℓ = {round[δ(1 + δ)kj ]|δ(1 + δ)kj ∈ (δ(1 + δ)rℓ , (1 + δ)rℓ ]}.

Using the analysis above, |Sℓ| = O(1/δ log(1/δ)). In our knapsack problem we have a set I of
items with these sizes sj, a capacity C = (1 + δ)rℓ(1 + 2δ) and arbitrary profits qj. We can choose
xj items of size sj, but only (1 + 2δ)/δ many of them, since round[δ(1 + δ)kj ] ≥ δ(1 + δ)rℓ . The
knapsack problem has the following form:

max
∑

j∈I xjqj + f(
∑

j∈I xjsj)q

s.t.
∑

j∈I xjsj ≤ C

xj integral ≥ 0,

where f(s) is the smallest multiple of δ/(2n)(1 + δ)rℓ such that f(s)δ/(2n)(1 + δ)rℓ is larger than s,
and where qj and q corresponds to p(L+N)+j−P ′ and p(L+N)+(P−P ′)+ℓ, respectively. Since the sizes are
all multiples of δ2(1+δ)rℓ, this knapsack problem can be solved optimally by dynamic programming:
storing for each number i = 1, . . . , |Sℓ| and each size a ∈ {1, . . . , (1 + 2δ)/δ2} a maximum profitable
subset (if there is any) with only the first i sizes and total size aδ2(1 + δ)rℓ . Notice that each item
size can be chosen at most 1/δ(1 + 2δ) = O(1/δ) times (i.e. xj ∈ {0, . . . , (1 + 2δ)/δ}).

After |Sℓ| iterations, we have computed a sequence of subsets D1, . . . , Dg with maximum profit
profit(Dj), where the total size size(Dj) is a multiple of δ2(1 + δ)rℓ for j = 1, . . . , g and where
g ≤ (1 + 2δ)/δ2. Then, the best solution of our knapsack problem is one of the sets where the value
profit(Di) + f(size(Di))q is maximized. The running time of the algorithm can be bounded by
O(|Sℓ|1/δ

3) = O(1/δ4 log(1/δ)).
If the profit of this subset is smaller than or equal to −pℓ, then the corresponding vector is

feasible for all Bℓ constraints. If the profit is larger than −pℓ, then the computed set Di with
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maximum profit corresponds directly to the separating inequality or hyperplane. Therefore, we can
solve the separation problem for Bℓ in time polynomial in 1/δ.

Since the polyhedron P corresponding to the dual constraints has facet-complexity (that is the
encoding of each inequality in the linear system) bounded by O(n + 1/δ log(n/δ)) and the strong
separation problem is solvable in oracle-polynomial time, the strong optimization problem for P
(the dual linear program) can be solved in time polynomial in n and 1/δ (see [21] Theorem 6.4.9).
Since the number of inequalities that are outputs of the separation oracle is bounded also by a
polynomial in n and 1/δ, there is a polynomial time algorithm in n and 1/δ that finds a basic
optimal solution of the primal problem, or asserts that the primal problem is unbounded or has no
solution (see [21] Lemma 6.5.15). In our case, the primal problem is always bounded. Therefore,
we either obtain an optimal solution of the primal problem or know that the primal problem has
no solution.

Using Kannan’s algorithm for each MILP instance with d = O(1/δ(log(1/δ))2) integral variables,
we can compute in time 2O(1/δ(log(1/δ))3) poly(n) a feasible solution of the MILP instance or assert
that there is no solution. Among all choices we obtain in 2O(1/δ2(log(1/δ))3) poly(n) time a feasible
solution of one of the MILP instances, if there is a schedule with makespan T for the original
problem. If there is such a schedule, we obtain a feasible solution (x̄, ȳ) of the original MILP where
the capacities of the bins in group Bℓ are enlarged to c̄′(ℓ) = c̄(ℓ)(1+2δ) for ℓ = 1, . . . , L+N . Notice
that the first K ′ largest bins are enlarged to c̄′i = c̄i(1 + 3δ) (for i = 1, . . . , K ′). By considering two
cases with poly(n) ≤ 2O(1/δ2(log(1/δ))3) and 2O(1/δ2(log(1/δ))3) ≤ poly(n), the running time also can be
bounded by 2O(1/δ2(log(1/δ))3) + poly(n). This nice argument was used also by Downey et al. [8] for
FPT algorithms.

4.3 Rounding the MILP solution

In this section we show how to round the MILP solution (x̄, ȳ) and to pack the jobs into the enlarged

bins. First, we round the (x
(ℓ)
i ) variables for each block Bℓ where ℓ = 1, . . . , L + N . For bins in Bℓ

that belong to the second group B2, the values of the variables x̄
(ℓ)
i are all integral. Let us study

now a block Bℓ that belongs to B3. Notice that again only a subset Pℓ = {j ∈ P |δ(1 + δ)kj ∈
(δ(1 + δ)rℓ , (1 + δ)rℓ ]} of job sizes that are large corresponding to Bℓ have to be considered and
that |Pℓ| can be bounded as before by ⌊2/δ log(1/δ)⌋. We denote with m̄ℓ the fractional number of

bins assigned to Bℓ, i.e. m̄ℓ =
∑

i x̄
(ℓ)
i . In addition, let n

(ℓ)
j be the fractional number of jobs of size

δ(1 + δ)kj assigned to block Bℓ, i.e.
∑

i a(kj, C̄
(ℓ)
i ) x̄

(ℓ)
i = n

(ℓ)
j . The total scaled area covered by the

configurations is Area(large, ℓ) =
∑

i āi,ℓ x̄
(ℓ)
i . The generated solution (x̄

(ℓ)
i ) of our MILP instance

satisfies the following constraints:

∑

i x
(ℓ)
i = m̄ℓ

∑

i a(kj, C̄
(ℓ)
i ) x

(ℓ)
i = n

(ℓ)
j for j ∈ Pℓ

∑

i āi,ℓ x
(ℓ)
i = Area(large, ℓ)

x
(ℓ)
i ≥ 0 for i = 1, . . . , hℓ.

This is a system with |Pℓ|+ 2 ≤ O(1/δ log(1/δ)) linear equalities where all variables x
(ℓ)
i should

be positive. The number q of variables x̄
(ℓ)
i > 0 is at most 2O(1/δ log(1/δ)) for each block Bℓ, but

can be rounded down to |Pℓ| + 2 without violating the linear constraints. To do this, consider a
system with all |Pℓ|+ 2 linear constraints, but with a subset X of only |Pℓ|+ 3 configurations with
corresponding strictly positive values:
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∑

C̄
(ℓ)
i ∈X

z
(ℓ)
i = 0

∑

C̄
(ℓ)
i ∈X

a(kj, C̄
(ℓ)
i ) z

(ℓ)
i = 0 for j ∈ Pℓ

∑

i āi,ℓ z
(ℓ)
i = 0

Since we have more variables than constraints, there is a non-trivial vector ẑ 6= 0 such that the
system Bẑ = 0, where B is the matrix describing the linear system above. We can eliminate at least
one positive variable x̄

(ℓ)
i corresponding to one of the |Pℓ|+3 variables, i.e. by using x̄ = x̄+ z̃δ where

z̃ is the vector of dimension q that corresponds to ẑ with additional zeros and δ is appropriately
chosen. Each round of eliminating one component can be done in O(M(|Pℓ| + 3)) time, where
M(n) is the time to solve a set of n simultaneous linear equalities with n variables. Notice that the
coefficients in the system above are all integral and bounded by O(n/δ). The number of rounds is

at most q ≤ 2O(1/δ log(1/δ)). After this rounding step, we can replace the rounded configuration C̄
(ℓ)
i

by their original ones C
(ℓ)
i . Finally we obtain a system of |Pℓ| + 2 linear equalities with a set Xℓ of

|Pℓ| + 2 configurations corresponding to the variables x̃
(ℓ)
i > 0:

∑

C
(ℓ)
i ∈Xℓ

x̃
(ℓ)
i = m̄ℓ

∑

C
(ℓ)
i ∈Xℓ

a(kj, C
(ℓ)
i ) x̃

(ℓ)
i = n

(ℓ)
j for j ∈ Pℓ

∑

C
(ℓ)
i ∈Xℓ

āi,ℓ x̃
(ℓ)
i = Area(large, ℓ).

For each configuration C
(ℓ)
i ∈ Xℓ we round down the fractional value x̃

(ℓ)
i to the next integral

value ⌊x̃
(ℓ)
i ⌋ ≥ x̃

(ℓ)
i −1. Then we use for the bin group Bℓ exactly ⌊x̃

(ℓ)
i ⌋ configurations of the type C

(ℓ)
i

and place jobs of size δ(1+δ)kj for j ∈ Pℓ according to the multiset into the corresponding bins. For

each configuration C
(ℓ)
i ∈ Xℓ with non-integral x̃

(ℓ)
i we need one additional bin to cover all n

(ℓ)
j jobs

of size δ(1+δ)kj for j ∈ Pℓ. For block Bℓ let Jℓ be a collection with
∑

C
(ℓ)
i ∈Xℓ:x̃

(ℓ)
i non−integral

a(kj, C
(ℓ)
i )

jobs of size δ(1 + δ)kj for j ∈ Pℓ. This set of jobs will be executed later on the K fastest machines.
Using the rounding we have immediately:

∑

C
(ℓ)
i ∈Xℓ

⌊x̃
(ℓ)
i ⌋ ≤ m̄ℓ,

∑

C
(ℓ)
i ∈Xℓ

a(kj, C
(ℓ)
i ) ⌈x̃

(ℓ)
i ⌉ ≥ ⌈n

(ℓ)
j ⌉ for j ∈ Pℓ,

∑

C
(ℓ)
i ∈Xℓ

āi,ℓ ⌊x̃
(ℓ)
i ⌋ ≤ Area(large, ℓ).

The nice properties of the rounded solution are that we use less than or equal to m̄ℓ bins and have
a total area bounded by the fractional solution. Notice that the solution maybe covers more jobs
than the fractional solution, i.e. it covers an integral number of at least ⌈n

(ℓ)
j ⌉ ≥ n

(ℓ)
j jobs of size

δ(1 + δ)kj . Thus, we have proved the following result.

Lemma 4.6 We can round in time polynomial in n and 1/δ a feasible solution (x̄, ȳ) of the MILP
into another solution (x̃, ȳ) such that the following constraints are satisfied:

∑

i⌊x̃
(ℓ)
i ⌋ ≤ mℓ for ℓ = 1, . . . , L + N

∑

ℓ,i a(kj, C
(ℓ)
i ) ⌈x̃

(ℓ)
i ⌉ +

∑aj−1
ℓ=0 ȳj,ℓ ≥ nj for j = P ′ + 1, . . . , P

∑

i āi,ℓ ⌊x̃
(ℓ)
i ⌋ +

∑

j:ℓ<aj
b̄j,ℓ ȳj,ℓ ≤ ⌊mℓ(1+2δ)(2n)

δ
⌋ for ℓ = 1, . . . , L + N

∑P
j=P ′+1 b̄j,0ȳj,0 ≤ ⌊

S̄
(new)
0 (2n)

δ c̄(1)
⌋,

where x̃
(ℓ)
i ≥ 0 and ȳj,ℓ ≥ 0. Furthermore, the number of strictly positive values x̃

(ℓ)
i > 0 is at most

O(1/δ log(1/δ)) for each block Bℓ in B3.
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Notice that the number of strictly positive values x̃
(ℓ)
i = x̄

(ℓ)
i for all blocks in B2 is at most

O(1/δ log(1/δ)2) (due to the choice in the MILP instance and since we have not rounded these
values).

The next step is to round the (ȳj,ℓ) values of the MILP over all bin groups Bℓ and job sizes
j ∈ {P ′ + 1, . . . , P}. Since the values ȳj,ℓ = nj are integral for each j ≤ P ′, we have to round
only the other variables ȳj,ℓ with j > P ′. Let Nj be the fractional total number of jobs assigned

as a small job of size δ(1 + δ)kj to the blocks (i.e. Nj =
∑aj−1

ℓ=0 ȳj,ℓ for j = P ′ + 1, . . . , P ). In
addition let Area(small, ℓ) be the corresponding total scaled area of small jobs in bin group Bℓ

(i.e. Area(small, ℓ) =
∑

j:ℓ<aj
b̄j,ℓ ȳj,ℓ for ℓ = 1, . . . , L + N). For group B0 (these are the first K or

K ′ bins) we denote with Area(small, 0) the total scaled area of the assigned jobs
∑P

j=P ′+1 b̄j,0 ȳj,0.
Then our values (ȳj,ℓ) satisfy the following system of (in-)equalities:

∑aj−1
ℓ=0 yj,ℓ = Nj for j = P ′ + 1, . . . , P ,

∑

j:ℓ<aj
b̄j,ℓ yj,ℓ = Area(small, ℓ) for ℓ = 1, . . . , L + N ,

∑P
j=P ′+1 b̄j,0 yj,0 = Area(small, 0)

yj,ℓ ≥ 0 for j = P ′ + 1, . . . , P and ℓ = 0, . . . , L + N .

If Area(small, ℓ) = 0, then we can simply remove the corresponding inequality and the variables.
Since the index aj > 0 for all j = P ′ + 1, . . . , P and aj = 0 for all j = 1, . . . , P ′, the equality for
block B0 can be written as

∑

j:0<aj
b̄j,0yj,0 = Area(small, 0). Notice that we can reduce our ȳj,ℓ

values such that they satisfy also the following system:

∑aj−1
ℓ=0 yj,ℓ = ⌊Nj⌋ for j = P ′ + 1, . . . , P ,

∑

j:ℓ<aj
b̄j,ℓ yj,ℓ ≤ Area(small, ℓ) for ℓ = 0, . . . , L + N ,

yj,ℓ ≥ 0 for j = P ′ + 1, . . . , P and ℓ = 0, . . . , L + N .

Since we have rounded up for each block Bℓ and size p ∈ Pℓ the x
(ℓ)
i values of the configurations

and obtained
∑

ℓ⌈n
(ℓ)
j ⌉ jobs of size δ(1+ δ)kj (for each j ≥ P ′ +1), it is sufficient to cover only ⌊Nj⌋

jobs of the same size in this step. Therefore, our rounded solution will cover all nj jobs. Now set
y′

j,ℓ = yj,ℓ/⌊Nj⌋ and obtain the following linear system:

∑aj−1
ℓ=0 y′

j,ℓ = 1 for j = P ′ + 1, . . . , P ,
∑

j:ℓ<aj

⌊Nj⌋ b̄j,ℓ

Area(small,ℓ)
y′

j,ℓ ≤ 1 for ℓ = 0, . . . , L + N ,

y′
j,ℓ ≥ 0 for j = P ′ + 1, . . . , P and ℓ = 0, . . . , L + N .

This system of (in-)equalities can be interpreted as a scheduling problem on (L+N+1) unrelated
machines with makespan 1, and the solution can be rounded into another solution (ŷj,ℓ) such that
all constraints are still satisfied and that each machine ℓ gets at most one fractional job with
ŷj,ℓ ∈ (0, 1) [29, 32]. Here we round each fractional scaled value Area(small, ℓ) to the next integer
Area′(small, ℓ) < Area(small, ℓ) + 1. After this rounding, the coefficients in the inequalities above
are all rational numbers with nominator and denominator bounded by a polynomial in n and 1/δ.
Then the rounding step in the scheduling algorithm [29, 32] can be done in time polynomial in n
and 1/δ.

If a value ŷj,ℓ ∈ {0, 1} is in the solution, then the corresponding value ỹj,ℓ = ⌊Nj⌋ŷj,ℓ is either 0
or ⌊Nj⌋. Now there are two cases depending on whether there is a fractional variable ŷj,ℓ assigned to
block Bℓ or not. In the first case let ŷjℓ,ℓ ∈ (0, 1) for a job size with b̄j,ℓ ≥ 1. Here the corresponding
value ỹjℓ,ℓ ∈ (0, ⌊Nj⌋). We round now these values (at most one for each machine or block Bℓ)
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to the next integral value ⌊ỹjℓ,ℓ⌋ and place ⌊ỹjℓ,ℓ⌋ many jobs of size δ(1 + δ)kjℓ into bin group Bℓ.
This implies that

∑

j⌊ỹj,ℓ⌋b̄j,ℓ ≤ Area(small, ℓ). In the second case we have only integral variables

assigned to group Bℓ and the sum
∑

j ŷj,ℓ⌊Nj⌋b̄j,ℓ could be equal to Area′(small, ℓ). If this happens

for any machine or block Bℓ, we take out one job of size δ(1 + δ)kjℓ where ỹjℓ,ℓ = ⌊Njℓ
⌋ ≥ 1 and

b̄jℓ,ℓ ≥ 1. Since the rounded scaled area Area′(small, ℓ) ≥ 1, there always exists such a job. After
that we reduce the corresponding value ỹjℓ,ℓ to ⌊Njℓ

⌋ − 1/2. Let JB be a collection with one job of
size δ(1 + δ)kj for each fractional variable ỹj,ℓ. These jobs are executed later as additional jobs on
one of the machines in group Bℓ. Furthermore, the following constraints are satisfied:

∑

j⌊ỹj,ℓ⌋ b̄j,ℓ ≤ Area(small, ℓ) for ℓ = 0, . . . , L + N ,
∑aj−1

ℓ=0 ⌈ỹj,ℓ⌉ ≥ ⌊Nj⌋ for j = P ′ + 1, . . . , P .

After both rounding phases and replacing the rounded job sizes by their original ones we obtain:

Lemma 4.7 We can round a feasible solution (x̄, ȳ) of the MILP into another solution (x̃, ỹ) such
that the following holds:

∑

i⌊x̃
(ℓ)
i ⌋ ≤ mℓ for ℓ = 1, . . . , L + N

∑

ℓ,i a(kj, C
(ℓ)
i )⌈x̃

(ℓ)
i ⌉ +

∑aj−1
ℓ=0 ⌈ỹj,ℓ⌉ ≥ nj for j = P ′ + 1, . . . , P

∑

i size(C
(ℓ)
i )⌊x̃

(ℓ)
i ⌋ +

∑

j:ℓ<aj
⌊ỹj,ℓ⌋ δ(1 + δ)kj ≤ mℓc̄(ℓ)(1 + 2δ) for ℓ = 1, . . . , L + N

∑P
j=P ′+1⌊ỹj,0⌋ δ(1 + δ)kj ≤ S̄

(new)
0 ,

where x̃
(ℓ)
i ≥ 0 and ỹj,ℓ ≥ 0. Furthermore, |{i|x

(ℓ)
i > 0}| ≤ O(1/δ log(1/δ)) for each block Bℓ in B3.

Furthermore, for each block Bℓ with ℓ ∈ {0, . . . , L + N} there is at most one fractional variable ỹj,ℓ.

4.4 Packing the jobs via the rounded MILP solution

As in the special case before (see Section 3), we place in a first phase the jobs as large ones according

to the configurations and ⌊x̃
(ℓ)
i ⌋ values and in a second phase the jobs as small ones according to the

⌊ỹj,ℓ⌋ values in slightly enlarged bins. In the third phase we place the tiny jobs in Jtiny in the free
space of the bins. This can be done due to the rounding phases and the area constraints. In the
placement phases of the small and tiny jobs we have to enlarge the capacities c̄′(ℓ) = c̄(ℓ)(1 + 2δ)
of the bins to c̄′(ℓ)(1 + δ) for each bin in Bℓ. In addition, we have to enlarge the capacities of the
first K ′ bins to c̄′i(1+ δ). After this step we place the set JB on the machines: for each non-integral
value ỹj,ℓ we place a job of size δ(1+δ)kj on one machine in group Bℓ. Since for each group Bℓ there
is at most one job size j ∈ {P ′, . . . , P} with ỹj,ℓ non-integral and this size is small corresponding
to the group Bℓ, this increases the size of one bin in Bℓ from c̄′(ℓ)(1 + δ) to c̄′(ℓ)(1 + 2δ). Since we
could have also one job size for group B0, the size of one of the largest K bins is also increased to
c̄′i(1 + 2δ).

Finally, we bound the total execution time of the non-placed jobs in ∪ℓJℓ. For each block
Bℓ in B3 with ℓ = L + 1, . . . , L + N we obtain |Pℓ| + 2 = ⌊2/δ log(1/δ)⌋ + 2 additional bins of
size c̄′(ℓ) = c̄(ℓ)(1 + 2δ) ≤ (1 + δ)rℓ+2. These bins or the corresponding jobs are placed later
on the first K machines. In this step we use also the machines K ′ + 1, . . . , K. Let us specify
K := ⌊2/δ log(1/δ)⌋ + 2. Now take one bin per group and estimate the total size of these bins
among all groups ℓ = L + 1, . . . , L + N . Using the order rL+1 > rL+2 > . . . > rL+N , the inequality
r(L+1)+ℓ ≤ r(L+1) − ℓ, and the geometric series, we obtain

∑L+N
ℓ=L+1 c̄(ℓ) =

∑L+N
ℓ=L+1(1 + δ)rℓ ≤

∑N−1
ℓ=0 (1 + δ)rL+1−ℓ = (1 + δ)rL+1

∑N−1
ℓ=0

1
(1+δ)ℓ

≤ (1 + δ)rL+1
∑∞

ℓ=0
1

(1+δ)ℓ = (1 + δ)rL+1/(1 − 1/(δ + 1)) = (1 + δ)rL+1+1/δ.
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Therefore, the sum of the enlarged bin sizes
∑L+N

ℓ=L+1 c̄(ℓ)(1 + δ)2 ≤ (1 + δ)r(L+1)+3/δ. Now we
have (1 + δ)rL+1+3/δ ≤ δc′K , if and only if (1 + δ)rL+1 ≤ δ2/(1 + δ)3c′K . Note that (1 + δ)rL+1 =
c̄(L + 1) = c̄K+G+1 = c′K+G+1 = cmax(B3), c′K = cmin(B1) and cmax(B3) ≤ γcmin(B1) using the gap
construction in Section 2. The property above is satisfied for γ ≤ δ2/(1+ δ)3. Therefore, we specify
γ := δ2/(1 + δ)3. In this case the sum of the capacities above is bounded by δ times the minimum
capacity among bins in B1. In other words, we can take one bin per group Bℓ among all groups in B3

and the corresponding jobs and place them on one of the K machines. Since the total size of these
jobs is at most δc′K , this enlarges the size of the ith bin from c̄′i(1+2δ) to c̄′i(1+2δ)+δc′K ≤ c̄′i(1+3δ)
for i = 1, . . . , K. Using c̄′(ℓ) = c̄(ℓ)(1+2δ) for ℓ = 1, . . . , L+N and c̄′i = c̄i(1+3δ) for i = 1, . . . , K,
we obtain the following result:

Lemma 4.8 If there is a feasible solution of an MILP instance with bin capacities c̄(ℓ) for blocks
Bℓ ∈ B2∪B3 and capacities c̄i for the first K largest bins, then the entire job set J can be packed into
bins with enlarged capacities c̄(ℓ)(1+2δ)2 for blocks Bℓ ∈ B2 ∪B3 and enlarged capacities c̄i(1+3δ)2

for the first K bins.

The main algorithm for scenario 3 works as follows:

given: bin set B′
1 = {b1, . . . , bK′}, B1 \ B′

1 = {bK′+1, . . . , bK}, B2 = {bK+1, . . . , bK+G} and B3 =
{bK+G+1, . . . , bm}.

(0) if
∑n

j=1 p̄j >
∑m

i=1 c̄i then assert that there is no solution for the makespan and stop.

(1) remove the tiny jobs with size ≤ δc̄m and try to pack the huge jobs with size > δc̄K′ into the
first K ′ enlarged bins in B′

1.

(2) if there is a feasible packing for the huge jobs into the enlarged K ′ bins then

(2.1) for each choice with O(1/δ log(1/δ)2) integral x
(ℓ)
i - variables in B2

(2.1.1) set up the modified small MILP with bounded coefficients,

(2.1.2) apply the algorithm by Kannan to the MILP instance with the separation oracle
and store a solution (if there is any),

(2.2) if there is at least one feasible solution (x̄, ȳ) then

(2.2.1) round the fractional (x̄
(ℓ)
i ) values as described in Section 4.3 to (x̃

(ℓ)
i ) with less

components, round down these values to the next integral values and store Jℓ for
ℓ = L + 1, . . . , L + N ,

(2.2.2) round the (ȳj,ℓ) values as described in Section 4.3 to (ỹj,ℓ) and store JB,

(2.2.3) pack the jobs via the rounded ⌊x̃
(ℓ)
i ⌋ values for ℓ = L + 1, . . . , L + N and the

original integral x̄
(ℓ)
i values for ℓ = 1, . . . , L as large items,

(2.2.4) pack the jobs via the rounded ⌊yj,ℓ⌋ values for ℓ = 0, . . . , L + N and the tiny
jobs as small items into the enlarged bins,

(2.2.5) pack the sets JB and ∪ℓJℓ as described in Section 4.4, and assert that there is
a solution with the approximate makespan (and output the corresponding packing).

otherwise assert that there is no solution for the makespan.

otherwise assert that there is no solution for the makespan.
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If there is a schedule with makespan at most T (and with corresponding bin sizes ci), then the
Lemma above implies a packing into bins of size at most ci(1 + δ)3(1 + 3δ)2 and a corresponding
schedule of length T (1 + δ)3(1 + 3δ)2 ≤ OPT (1 + δ)4(1 + 3δ)2 ≤ OPT (1 + 16δ) ≤ OPT (1 + ǫ) for
δ ≤ ǫ/16 and ǫ ≤ 1. We simply set δ = 1

⌈16/ǫ⌉
and obtain δ ≤ ǫ/16, δ ≥ ǫ/(16 + ǫ) ≥ ǫ/(16 + 1) and

that 1/δ = ⌈16/ǫ⌉ is integral.
The algorithm for scenario 4 works in a similar way (again we can use an MILP relaxation, but

do not need the huge jobs). For this case there are only two groups of bins B′
1 ∪ B2 and B3. The

first group has a constant number of different capacities such that we get again a small constant
number of integral variables. For the rounding step we use again the property that there is a gap
of 1/γ between cmin(B1) and cmax(B3).

Acknowledgments. The author thanks Fritz Eisenbrand and Roberto Solis-Oba for many helpful
discussions.
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