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A GLOBALIZED NEWTON METHOD FOR THE ACCURATE
SOLUTION OF A DIPOLE QUANTUM CONTROL PROBLEM∗

G. VON WINCKEL† , A. BORZÌ‡ , AND S. VOLKWEIN §

Abstract. A theoretical and computational framework is presented to obtain accurate controls
for fast quantum state transitions that are needed in a host of applications such as nano elec-
tronic devices and quantum computing. This method is based on a reduced Hessian Krylov-Newton
scheme applied to a norm-preserving discrete model of a dipole quantum control problem. The use
of second-order numerical methods for solving the control problem is justified proving existence of
optimal solutions and analyzing first- and second-order optimality conditions. Criteria for the dis-
cretization of the nonconvex optimization problem and for the formulation of the Hessian are given to
ensure accurate gradients and a symmetric Hessian. Robustness of the Newton approach is obtained
using a globalization strategy with a robust linesearch procedure. Results of numerical experiments
demonstrate that the Newton approach presented in this paper is able to provide fast and accurate
controls for high-energy state transitions.
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1. Introduction. The control of quantum electronic states in physical systems
has a host of applications such as quantum computers [5], control of photochemical
processes [37], and semiconductor lasers [18, 31]. Quantum computers, in particu-
lar, have been the subject of much research interest since they hold the promise of
performing complex calculations in polynomial time. In a quantum computer the
classical logic states 0 and 1 are replaced by states of a quantum system. One such
possibility is a two-level system where the occupancy of the ground state could be
analogous to the logical 0 and the first excited state represents logic state 1.

In most of the envisioned applications, it is important to define fast control mech-
anisms that cannot be constructed based on perturbation theory strategies or on a-
priori parameterized control fields. This fact motivates the increasing interest in the
optimal control theory framework [24] within which many recent successful results for
quantum control problems [7, 8, 9, 23, 26, 27, 28, 34, 35] have been obtained. A pio-
neering work in this field was done by Peirce, Dahleh, and Rabitz [33] who investigated
the optimal dipole control of a diatomic molecule represented by a Morse potential.
The focus in this and in other early papers (see [11, 13]) was to validate the ability
of the optimal control framework to provide suitable quantum control mechanisms.
However, computational difficulties due to the structure of the optimality system with
bilinear control and the nonconvexity of the optimization problem led to research fo-
cused more on finite-dimensional Schrödinger equations; see, e.g., [7, 9, 28, 35]. In
this case, the computational schemes of choice have been the monotonic iterative
scheme [28, 35] and accelerated versions of the gradient scheme [7, 8]. These first-
order schemes perform well for finite-level quantum systems and provide acceptable
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2 NEWTON SCHEME FOR DIPOLE QUANTUM CONTROL

results [27, 41] when applied to infinite-dimensional systems. However, they cannot
provide second-order convergence typical of the Newton method and their convergence
behavior may not be robust with respect to changes of values of discretization and
optimization parameters.

It is the purpose of this work to develop an accurate, efficient, and robust Newton
scheme for infinite-dimensional quantum systems in the most representative case of
a dipole control structure. We remark that, although the application of the Newton
scheme to solve constrained optimization problems is well known, its use for solving
quantum control problems has been less successful. The reason for this fact is manifold
and will be illustrated in this paper. In particular, we discuss the accurate construction
of the gradient and the setting of the Hessian of the reduced optimization problem.
The former requires: 1) an appropriate discretization scheme that is norm-preserving
and second-order accurate also in the case of time-varying potential; 2) a discretize-
before-optimize approach to avoid any inconsistency between the optimality condition
and its discrete approximation; 3) a gradient which is defined in the same functional
space where the control function is sought. This last point is automatically fulfilled in a
full Newton scheme. Point 2) results are necessary as in our experience bilinear control
problems have very flat minima and therefore are prone to gradient inconsistency when
using a optimize-before-discretize approach.

The other important aspect for a successful development of the Newton scheme
for solving our problem is the construction (in the sense of application) of the Hessian.
For this purpose, we notice that a formal derivation of this operator, which does not
take into consideration the fact that quantum control problems are defined in complex
Hilbert spaces, results in nonsymmetric Hessians and thus in nonconverging schemes;
see a related discussion in [4]. For this purpose, we introduce a real-valued matrix
representation of complex variables and obtain the Hessian within this formalism.
Together with this fact, we provide a new theoretical analysis of first- and second-
order optimality conditions giving criteria such that the Hessian becomes positive
definite in a neighborhood of the optimal solution. Because the theoretical analysis
is quite involved, for ease of reading we present this analysis in the Appendix while
we recall the main results where needed.

The Newton scheme which results taking into consideration all issues mentioned
above still may lack of robustness because of nonconvexity of the optimization prob-
lem. This fact appears less clearly with large values of the regularization parameter
and when considering large time intervals for the control. However, in application
we need controls that are fast and accurate, i.e. with less regularization. For this
purpose, we augment the Newton scheme with a robust linesearch algorithm which
exploits a priori estimates and uses continuation techniques to solve our problem with
small regularization. Results of numerical experiments demonstrate that the resulting
globalized Newton scheme is able to compute fast controls for high-energy transitions
with typical second-order convergence.

In the next section, we introduce a dipole quantum control problem and discuss
modeling issues concerning the objective and the governing equation. We employ the
optimal control framework by formulating a cost to minimize with the equality con-
straint that the particle dynamics satisfy the time-dependent Schrödinger equation
(TDSE). The cost functional is designed in such a way to avoid specification of the
phase of the target function. Further, we review some properties of the TDSE, de-
fine the optimality system to be solved, and show that the constrained optimization
problem can not have a unique minimizer.
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In Section 3, a second-order accurate discrete approximation to the Schrödinger
equation with dipole control potential is introduced which shares the unitarity for the
continuous TDSE. We use a real-valued matrix representation of complex variables
for the discretization of the governing equation and of the objective. Hence we de-
rive the discrete optimality system. From this we obtain the reduced objective and
correspondingly define the gradient and the reduced Hessian. With this setting, in
Section 4 we present all details of our Newton method that includes initialization and
globalization issues. In particular, we discuss a robust linesearch where the unitarity
of the TDSE is used to compute a maximum feasible steplength for the line search
which also provides a useful criteria indicating when a unit steplength is feasible.

In Section 5, we investigate the ability of the optimal control framework to provide
fast and accurate controls for high-energy state transitions and validate our Newton
scheme. Results of numerical experiments show that with our approach we are able
to obtain controls for very short time intervals and to steer high-energy transition
while solving the optimality system to high accuracy, that is, to very small values
of the norm of the reduced gradient. In addition, we present a comparison of the
performance of the Newton scheme with that of a steepest descent algorithm and of a
nonlinear conjugate gradient method, showing that our Newton approach outperforms
gradient based schemes.

In the Appendix, we define our functional setting and discuss existence and
uniqueness of solution to the TDSE problem. We use these results to define the re-
duced optimization problem and illustrate the optimality conditions. Then we prove
existence of optimal solutions and provide criteria such that the second-order sufficient
optimality condition holds.

A section of conclusion completes the exposition of our work.

2. Model problem and optimal control framework. We illustrate the model
of a charged quantum particle subject to a stationary confining potential and a time-
dependent electric control field [3]. A dipole approximation of the electric field is
considered and we formulate the control problem of steering transitions of the parti-
cle among stationary states. In this section, we focus on the physical properties of
the model and on the formulation of the control problem, including the main theoret-
ical statements on the optimality system, while in the Appendix we collect details of
our functional analytic setting and present our proofs of the existence of an optimal
control solution including necessary and sufficient optimality conditions.

The quantum state of a particle is described by a wavefunction ψ : Q → C that
is governed by the time-dependent Schrödinger equation (TDSE) as follows

i∂tψ(x, t) =
{
−∂2

x + V (x, t)
}
ψ(x, t), (x, t) ∈ Q = Ω× (0, T ), (2.1)

where Ω is the spatial domain and (0, T ) is the time interval, and we choose the scaling
of the Planck constant ~ = 1 and the mass m = 1/2. The potential V (x, t) consists
of a stationary part V0(x) and a time varying control part.

In the quantum mechanical framework, a dynamically stable system like an atom
or a molecule exists in the presence of a stationary confining potential, that is, a
potential with a ’well’ envelope [14]. In this case one considers the following eigen-
problem {

−∂2
x + V0(x)− λj

}
φj(x) = 0, j = 1, 2, . . . , (2.2)

whose eigenfunctions represent the stationary states and the eigenvalues λj represent
the energy of the corresponding states. The time-evolution of these states is given
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by ψj(x, t) = φj(x) exp(−iλjt). A representative stationary potential with various
applications in semiconductor nanostructures [20], define on Ω = (0, `), is the infinite
barrier well potential where V0(x) = 0 for x ∈ (0, `) and V0(0) = +∞ and V0(`) =
+∞. The infinite barrier condition is equivalent to homogeneous Dirichlet boundary
conditions for the wavefunction and thus we have λj = j2π2

`2 and φj(x) = sin(jπx/`).
Although the methodology in this work is not limited to the infinite quantum well

potential, in application it is important to consider this case to determine a control
function V (x, t) which allows transitions of a charged particle from one stationary
state to another of a quantum well over a short time interval. A physically meaningful
control mechanism is an electric control field modeling a laser pulse. Using the dipole
approximation the total potential results in the form V (x, t) = V0(x) + u(t)x, where
u : (0, T ) → R is the modulating control amplitude. Our approach generalizes to n
dimensions considering a vector-valued control u(t) · x with x ∈ Rn and u : (0, T )→
Rn.

Next, we discuss some important properties of the solution to the TDSE and
report a few results from perturbation theory. We write <e(z) and =m(z) for the
real and imaginary part of a complex z ∈ C. Moreover, z∗ stands for the complex
conjugate of z and |z|C =

√
z∗z for its absolute value. For our discussion, we define

H = L2(Ω; C), the Hilbert space endowed with the inner product

(ϕ,ψ)H =
∫
Ω

ϕ(x)∗ψ(x) dx for ϕ, ψ ∈ H,

and the induced norm ‖ϕ‖H for ϕ ∈ H. The Hilbert space V = H1
0 (Ω; C) is given by

V =
{
ϕ ∈ H

∣∣∣ ‖ϕ‖V =
( ∫

Ω

|ϕ′(x)|2C dx
)1/2

<∞, ϕ = 0 on ∂Ω
}
,

supplied with the inner product (ϕ,ψ)V = (ϕ′, ψ′)H for ϕ,ψ ∈ V and the induced
norm ‖ϕ‖V. We also need the Hilbert space

W = L2(0, T ;H1
0 (Ω; C) ∩H2(Ω; C)) ∩H1(0, T ;L2(Ω; C)))

For more details on the above Lebesgue and Sobolev spaces and more weaker spaces
see the Appendix and, e.g., [1, 17].

Now, consider the TDSE with an initial state of the quantum system given by
ψ0(x) ∈ V at t = 0. One recognizes that the Schrödinger evolution operator is time-
reversible (non-dissipative) and therefore ψ cannot have better regularity than ψ0 [10].
We also see that with a time-varying potential there is no energy conservation. In fact
we want to change the energy of the system. However, we have mass conservation as
stated by the following

Proposition 2.1. Let V (x, t) = V0(x) + u(t)x and ‖ψ0(·)‖H = 1, then we have
‖ψ(·, t)‖H = 1 for all t ∈ [0, T ].

Proof. The time rate of change of the total probability is

∂t‖ψ‖2H = (ψ,ψt)H + (ψt, ψ)H = 2<e(ψ,ψt)H = 2<e(ψ, iψxx − iu(t)xψ)H (2.3)

where

(ψ, iψxx − iu(t)xψ)H =
∫
Ω

ψ∗
(
iψxx − iu(t)xψ

)
dx = −i‖ψx‖2H − iu(t)

∫
Ω

ψ∗xψ dx.
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Since x is a self-adjoint operator (in the sense that A : H→ H defined by (Aψ)(x) =
xψ(x) is a self-adjoint operator) with respect to the inner product, it means that
we are taking the real part of a purely imaginary quantity in (2.3). It follows that
∂t‖ψ‖2H = 0 for all time and so ‖ψ(·, t)‖2H = ‖ψ0‖2H.

We now show that a spatially symmetric potential results in symmetric or anti-
symmetric eigenfunctions. Consider Ω = (0, `) and let `m = `/2.

Proposition 2.2. If the stationary Schrödinger equation has a symmetric po-
tential, V0(`m+x) = V0(`m−x), then the eigenfunctions must have even or odd parity
with respect to `m.

Proof. Let P be the parity operator defined Pf(`m + x) = f(`m − x) and H0 =
−∂2

x + V0 be the stationary Hamiltonian with H0φj = λjφj . We have

PH0φj(`m + x) = λjφj(`m − x) = H0Pφj(`m + x) ⇒ [P,H0] = 0. (2.4)

Since the operators commute, φj must be an eigenfunction of the parity operator
Pφj = µjφj . Given that P2φj = φj , the parity eigenvalue must be µj = ±1.
Therefore, all eigenfunctions must be either symmetric φj(`m + x) = φj(`m − x)
or antisymmetric φj(`m + x) = −φj(`m − x).

An important result of perturbation theory is that in a long time horizon a time-
harmonic control u(t) is able to induce transition between two eigenstates if its fre-
quency equals the difference of energy of the two states [14]. Therefore, it is relatively
easy to control state transitions for long time intervals as we show in the example
below. However, the problem becomes very difficult if short time intervals are con-
sidered. Here short means that T ≈ 2π/ω and in this case the perturbation theory is
inapplicable and the control u(t) deviates greatly from an harmonic function. In this
case we use an optimal control approach.

To formulate the optimal control problem, we have to decide in which functional
space the control is sought. From the previous discussion, it appears that the control
space U = H1

0 (0, T ; R) is the most appropriate for dipole controls as it means that
the laser pulse cannot change instanteously and it accommodates sinusoidal functions
for long time controls. In the optimal control framework, this choice means that the
objective of the optimization has a regularization term of the form ‖u‖2U, where this
norm is induced by the following inner product

(u, v)U =

T∫
0

(u(t)v(t) + α u̇(t)v̇(t)) dt for u, v ∈ U,

with 0 < α� 1. Notice that with this norm the control is continuous since H1
0 (0, T )

is compactly embedded in C0([0, T ]) in one dimension. Use of smaller values of α
allows for controls with larger rates of change. We have that the control is zero at the
beginning and at the end of the time interval which is the maximum time-window for
the laser pulse.

Our control problem requires to finding a control u ∈ U such that a quantum
system initially in the state ψ0 evolves with (2.1) to a state ψ(·, T ) that is as close as
possible to a desired target configuration ψ̃. This aim is formulated by requiring to
minimize the objective given by the following cost functional

min
ψ∈W, u∈U

J(ψ, u) :=
1
2

(
1− ‖Pψ(·, T )‖2H

)
+
γ

2
‖u‖2U, (2.5)
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under the constraint given by the TDSE, including the initial condition, denoted as
follows

e(ψ, u) := {∂t − iH(u)} ψ = 0, (2.6)

where H(u) = −∂2
x + V0(x) + u(t)x and we introduce the projector Pψ = (ψ̃, ψ)H ψ̃.

The goal of the first term of the cost functional is to track the given terminal state
ψ̃ up to a global phase eiϕ T which cannot be specified. In the Appendix, we prove
existence of a unique solution to e(ψ, u) = 0 for a given u ∈ U and discuss the
differentiability properties of the operator e and of the objective J(ψ, u) as required
for the optimal control formulation.

Before we discuss the solution of this constrained optimization problem, we con-
sider the case of a control of sinusoidal type designed to drive our quantum model
from the first eigenstate φ1(x) = sin(πx/2) to the second one φ2(x) = sin(2πx/2)
where we choose ` = 2. We take a control of the form

u(t) = u0

[
sin(ωt)− sin(ωT )

t

T

]
, ω = λ2 − λ1, (2.7)

with λ2 − λ1 = 3π2/4 and the linear term is such that u(0) = 0 and u(T ) = 0. With
this control in (2.6) and ψ0 = φ1, we solve the forward problem and obtain ψ(·, T )
which is used in (2.5) together with ψ̃ = φ2 to determine J(ψ, u). Results with this
setting are reported in the two pictures of Figure 2.1. The left picture shows that
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Fig. 2.1. Left: Values of the objective with nearly time-harmonic control with fixed frequency
ω = 3π2/4 and varying amplitude u0 for three different time horizons T . Right: Values of the
objective for fixed amplitude u0 = 1 and T = 8 for variable frequency.

choosing ω = 3π2/4, smaller amplitudes are required in correspondence to larger time
horizons in order to attain the minimum of the objective. However, with T = 1
we have ωT ≈ 2π and the objective does not change considerably as we increase the
amplitude. On the other hand, in the right picture we see that, choosing T sufficiently
large and a fixed amplitude, a clear minimum is obtained for ω = 3π2/4.

We show that a control suitable for fast state transition can be obtained by in
the optimal control formulation given by (2.5) and (2.6). To characterize the solution
to this problem, we introduce the following Lagrangian

L(ψ, u, p) = J(ψ, u) + <e
T∫

0

∫
Ω

p∗(x, t)e(ψ, u)(x, t) dxdt, (2.8)
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where p is the Lagrange multiplier. We prove in the Appendix that any minima of
(2.5) and (2.6) corresponds to an extremal point of the Lagrangian; see also [24, 25].
Therefore, by taking the Frechét derivatives of L(ψ, u, p) with respect to the opti-
mization variables gives the following first-order optimality system that characterizes
the optimal solution, we have{

i∂t + ∂2
x − V0(x)− u(t)x

}
ψ(x, t) = 0,{

i∂t + ∂2
x − V0(x)− u(t)x

}
p(x, t) = 0, (2.9)

−γ u+ γα ü+ <e
∫
Ω

p∗(x, t)xψ(x, t) dx = 0

This system consists of the state equation, the adjoint equation, and the optimality
condition, respectively, with homogeneous Dirichlet boundary conditions, and initial
and terminal conditions given by

ψ(x, 0) = ψ0(x),
p(x, T ) = i (ψ̃(·), ψ(·, T ))H ψ̃(x), (2.10)

u(0) = 0, u(T ) = 0.

In the Appendix, we prove that there exists at least one solution to (2.9)-(2.10). We
also prove that if γ is sufficiently large and the projection ‖Pψ(T )‖2H is sufficiently
small, then the second-order sufficient optimality condition holds and our optimization
problem is locally strictly convex.

Notice that the control is a function of time only, and the state and adjoint
variables can be seen as implicit functions of the control. Therefore the dimensionality
of the optimization problem can be reduced significantly introducing a reduced cost
functional J̃(u) = J(ψ(u), u). In the Appendix we show that the corresponding
gradient is given by(

∇J̃(u)
)
(t) = γ u(t)− γα ü(t)−<e

∫
Ω

p∗(x, t)xψ(x, t) dx. (2.11)

Therefore we have that ∇J̃(u) ∈ H−1(0, T ; R) which is problematic with a gradient-
based approach because the gradient is not in the same space of the solution and thus
neither it provides an update to the control along the descent direction. It has been
shown [41], that this problem can be solved by using the Riesz representation of the
gradient in the H1

0 (0, T ) space as a means of Sobolev smoothing. Although we will
ultimately be working with a discrete optimality system, the idea of formulating the
gradient in a weighted `2 space follows analogously.

A main difficulty in the analysis and solution of our quantum control problem is
that it may admit multiple solutions (as most bilinear control problems). We prove
that this is the case in the following.

Proposition 2.3. Let the initial and target states be eigenfunctions and the sta-
tionary potential be symmetric, then the reduced cost functional does not have a unique
minimizer. In particular, if u∗(t) is a minimizer, then so is −u∗(t) and consequently
∇J̃(u) is nonconvex independently of regularization.

Proof. Let ψ(x, t) be a solution to the TDSE with symmetric stationary potential[
i∂t + ∂2

x − V0(x)− u(t)x
]
ψ(x, t) = 0
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and [
i∂t + ∂2

x − V0(−x)− (−u(t)) (−x)
]
ψ(x, t) = 0.

This implies that if a control u(t) yields a solution ψ(x, t), then −u(t) yields a solution
which is spatially reversed ψ(−x, t). The projection of the final state onto the target
has the value (ψ̃(·), ψ(·, T ))H. Since ψ̃(x) is an eigenfunction, it has either even or
odd parity. The final value of the wavefunction ψ(x, T ) is given by the control u(t)
and Pψ(x, T ) is given by −u(t). The parity operator is self-adjoint on L2 (P = P∗),
by virtue of commuting with the self-adjoint Hamiltonian. This gives the relationship∣∣∣∣∣

∫
Ω

Pψ∗(x, T )ψ̃(x)dx

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
Ω

ψ∗(x, T )Pψ̃(x)dx

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
Ω

ψ∗(x, T )[±ψ̃(x)]dx

∣∣∣∣∣
2

The cost functional depends only on the magnitude of this projection, therefore
J̃(u) = J̃(−u). The consequence of the above nonuniqueness property is that the
cost functional cannot be globally convex, independently of how large the regulariza-
tion parameter may be.

3. Formulation of the discrete optimal control problem. In a PDE-based
optimization problem, there are two possible discretization procedures. One is the
optimize-before-discretize approach in which we discretize the optimality system (2.9)
choosing appropriate discretization schemes for the forward equation, for the adjoint
equation, and for the optimality equation. The drawback with this approach is the
possible inconsistency between the discretized objective and the reduced gradient
given by the discrete optimality condition; see [12]. This means discrepancy between
the directional derivative (∇J̃(u), φ)H and its approximation J̃(u+εφ)−J̃(u−εφ)

2ε , which,
however, can be controlled at the cost of increasing accuracy of discretization by using
finer meshes. The other drawback of the optimize-before-discretize approach is that
the Hessian may not be symmetric.

In our experience, gradient inconsistency is usually not negligible in the case of
hyperbolic- and Schrödinger-type equations with bilinear controls. For this reason, we
pursue the approach of discretize-before-optimize where the consistency between the
reduced objective and its gradient is guaranteed. The first step is to discretize the state
equation and the Lagrangian and then take derivatives to obtain first- and second-
order optimality conditions. The difficulty of this approach is that the approximation
scheme resulting for the adjoint equation may be numerically disadvantageous.

In any case, the discretization of the Schrödinger equation must be norm-preserving
to ensure a discrete ∂t‖ψ(·, t)‖2H = 0. This is essential, otherwise it happens that we
may compute a control which attains a minimum of the functional by violating the
underlying physical constraint. Moreover, we want a scheme that is second-order
accurate also with time-varying potentials.

We know that the classical Crank-Nicolson scheme is norm-preserving and un-
conditionally stable when solving the Schrödinger equation with stationary potential
[33]. However, in quantum control problems, the Hamiltonian between different time
steps is different, H(tk) 6= H(tk−1), and in this case the Crank-Nicolson scheme is
not norm-preserving. For this reason, we define a modified Crank-Nicolson (MCN)
method by first integrating numerically the semigroup operator and then using a Padé
approximant.
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Consider the semigroup operator ψ(δt) = exp (Θ(δt))ψ(0), where Θ(t) is given
by the Magnus expansion [22]. This is an infinite series representation for a time-
dependent Hamiltonian. In the case of a dipole control with H(t) = −∂2

x + V0(x) +
u(t)x, the Magnus expansion terminates after three terms.

Θ(t) = −i
t∫

0

H(τ)dτ +
1
2

t∫
0

 τ∫
0

H(σ)dσ,H(τ)

 dτ + · · · (3.1)

We choose to approximate Θ(t) by the first term in the expansion. The analysis of a
similar second-order truncation with a midpoint rule is carried out by Hochbruck and
Lubich in [21]; see also [39]. In our approach, we approximate the integral in the first
term of (3.1) with the trapezoidal rule. The choice of the trapezoidal rule over the
midpoint rule results in control and state variables that are defined on the same time
step. Since the Magnus formula and the integral are approximated to second order,
the overall scheme is second-order accurate also in the case when the potential is
time-dependent. In addition, we can prove that our scheme is unconditionally stable.

Now, let Nt be the number of time steps of size δt = T
Nt

and Nx be the number of
intervals of the Ω discretization. The TDSE discretized by our MCN scheme results
in the following

ψk − ψk−1 = − iδt
4

[H(tk) +H(tk−1)][ψk + ψk−1]. (3.2)

Spatial discretization of the Hamiltonian H(tk) is carried out using linear finite el-
ements on a uniform grid which results in a matrix Hk. We have that Hk = H>

k ,
which is important for preserving unitarity of the time-stepping method. Let Ak =
δt
4 [Hk +Hk−1]. This gives the desirable property that Ak = A>

k , which is consistent
with the infinite-dimensional Hamiltonian operator being Hermitian.

We notice an important fact: While we have no difficulty with the complex-valued
variable representation in gradient-based optimization approaches [41], the real-valued
matrix representation of complex variables is necessary for constructing the Hessian;
see [40]. Suppose z1, z2 ∈ C with z` = x` + i y` for ` = 1, 2. These can be represented
as vectors in R2 with Z` =

(
x`, y`

)>. Notice that, considering Z1 and Z2 as
vectors in R2, it is not possible to use vector multiplication between them which
results equivalent to multiplication between the corresponding complex variables. For
this purpose, a matrix representation of one of the two vectors is employed as follows.

Z1Z2 =
(
x1 −y1
y1 x1

) (
x2

y2

)
=

(
x1x2 − y1y2
x1y2 + x2y1

)
(3.3)

In this representation, complex conjugacy is performed via the transpose operation.
This representation is also valid for matrices and vectors and in such cases leads to
block systems. The spatially-discrete form of Equation (3.2) contains a term −iAk,
for which therefore a real-valued representation is needed. Including the left-hand
side terms, we obtain a block matrix Bk as follows

Bk =
(

I Ak

−Ak I

)
. (3.4)

This gives the following representation of the equality constraint

ek(y,u) = Bkyk −B>
k yk−1, yk =

(
<e[ψk]
=m[ψk]

)
, (3.5)
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where y is a compact notation for the set of state vectors at each time step y1, . . . ,yNt

and similarly for u.
Given a total number Nx of grid points, the wavefunction at each time step will

be a vector in CNx−2, therefore the state vector at each step will be in R2Nx−4. We
introduce the matrix operator S which corresponds, in matrix representation form,
to multiplication by i. We have that

S =
(

0 −I
I 0

)
, (ψ̃, ψ)H corresponds to

(
ỹ>

ỹ>S

)
y (3.6)

In this representation, we can rewrite the original cost functional in the form

J(y,u) =
1
2

[
1− y>Nt

(
ỹ −Sỹ

) (
ỹ>

ỹ>S

)
yNt

]
+
γ

2
u>Ku (3.7)

The matrix K is symmetric and positive definite and is a linear finite-element dis-
cretization of the Helmholtz operator I − α∂2

x. This means that the weighted inner
product u>Kv is a second-order approximation to (u, v)U.

We consider the Lagrangian

L(y,u,p) = J(y,u) +
Nt∑
k=1

p>k ek(y,u) (3.8)

Differentiating this Lagrangian with respect to its arguments and setting the deriva-
tives to zero gives the discrete first-order optimality system

Bkyk = B>
k yk−1, (3.9)

B>
k pk = Bk+1pk+1, (3.10)

γKu = f . (3.11)

The control vector u = (u1, . . . , uNt−1) has Nt − 1 elements as the control is set
to zero at the initial and final times. The elements of the vector f = (f1, . . . , fNt−1)
are given as

fj = p>j V(yj + yj−1) + p>j+1V(yj+1 + yj), V =
δt

4

(
0 −X
X 0

)
, (3.12)

where V is the discrete approximation of iδt
4 x and X = diag(x1, . . . , xNx−1). The

initial and terminal conditions are as follows

y0 =
(
<e[ψ0]
=m[ψ0]

)
(3.13)

B>
Nt

pNt =
(

ỹ −Sỹ
) (

ỹ>yNt

ỹ>SyNt

)
(3.14)

Notice that our modified Crank-Nicolson scheme results in a unitary time-stepping,
while the resulting scheme for the adjoint equation is non-unitary. This situation is
reversed in using the standard Crank-Nicolson scheme for the forward problem. We
emphasize that because the cost functional depends on the state variable, it is essential
to preserve the norm of the state variable.
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Now, consider the reduced cost functional J̃(u) = J(y(u),u). The gradient of
this objective function is

∇J̃(u) = γKu− f (3.15)

Since the control itself has only Nt − 1 degrees of freedom and the state variable
has (Nt − 1)(Nx − 2) degrees of freedom, the matrix of the optimality system is very
large with [(2Nx − 3)(Nt − 1)]2 elements, albeit sparse. In contrast, the reduced
Hessian will be a full matrix with (Nt − 1)2 entries. Because of the structure of the
optimal control problem, applying the Hessian to a vector is not significantly more
expensive than computing the gradient, so the reduced Hessian approach is suitable
for use with a Krylov solver. The application of the Hessian is presented in 2. The
reduced Hessian is formulated following [6].

The equality constraint can be written as a block bidiagonal system where e(y,u)
is a matrix and y is a column-stacked vector. We have

∇2J̃(u) = Luu + e∗ue
−>
y Lyye−1

y eu − e>u e−>y Lyu − L>yue
−1
y eu. (3.16)

Linearizing the system about a control u, the change in the state variable y due to a
change δu is δy = −ey

−1euδu. We have that

[∇2J(u)]δu = Luuδu + eu
>δp + Lyu

>δy, (3.17)

where δy = −ey
−1euδu and δp = −ey

−>[Lyyδy + Lyuδu]. We can write the lin-
earized equality constraint with the following

ey =


B1

−B>
1 B2

. . . . . .
−B>

Nt−1 BNt

 , eu =


c1

c2 c2

. . . . . .
cNt−1 cNt−1

cNt


(3.18)

where ck = V(yk + yk−1). The application of ey
−1 and ey

−> follows the two-term
recursion form of the forward and adjoint equations given in (3.9) and (3.10). The
matrix Luu is given by γK and Lyu has the form

Lyu =


V>(p1 + p2) V>p2

V>p2 V>(p2 + p3) V>p3

. . . . . .
V>pNt−1 V>(pNt−1 + pNt)

V>pNt

 (3.19)

It is the Lyy block that necessitates the real variable formulation, because the
Lagrangian is not analytic in ψ. Lyy is a block matrix of Nt−1×Nt−1 blocks, each of
size Nx− 2×Nx− 2. However, since the cost depends only on final-time observation,
these blocks are all zero except for the lowest right-most block. This block contains
the projection matrix of at least rank 2, i.e. P =

(
ỹ −Sỹ

) (
ỹ −Sỹ

)>. Writing
this explicitly in real and imaginary parts, results in the matrix

P =
(
ψrψ

>
r + ψiψ

>
i 0

0 ψrψ
>
r + ψiψ

>
i

)
(3.20)
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There is no way to form this operator utilizing the dyadic product of a complex-valued
vector with itself. Indeed, the fact that a rank-2 matrix is needed instead of a rank-1
matrix indicates the lack of an equivalent complex representation.

We have completed the formulation of the discrete optimal control problem that
has been tailored to guarantee a consistent gradient and an appropriate construction
of the Hessian.

4. A globalized Newton method. In this section, we discuss our globalized
Newton approach focusing on two issues. First, we discuss the problem of starting the
Newton procedure which arises due to the fact that, in a quantum control setting, the
starting configuration and the target are usually orthogonal functions. In particular,
it is meaningful to require to reach the target state exactly, which is possible if the
weight of the regularization terms goes to zero. However, in this case it is difficult to
argue positive definiteness of the Hessian. The second issue arises from the lack of
convexity of our optimization problem and the need of a robust and efficient linesearch
procedure.

Our numerical experience shows that the initialization of the minimizing iteration
is a delicate step. Guessing an initial control to be nearly harmonic as in equation
(2.7) can be a viable strategy when ωT � 1. However, for short time intervals, a
more robust initialization is required. Clearly, an initial guess of a zero control does
not work. As the initial and target states are both eigenfunctions, they are orthogonal
and the projection onto the target will be zero in the absence of a non-zero control
function. Then the particle remains in the initial state and, Pψ = (ψ̃, ψ)H ψ̃ = 0
which makes the adjoint variable and consequently the gradient identically zero. We
have that the cost functional has a local maximum. If one were to modify the target
state to be some ψ̂ ∈ span(ψ0, ψ̃), then the projection onto the modified target will
be non-zero, which in turn gives a non-zero gradient.

An additional difficulty arises from the parity of the eigenstates. In particular,
if ψ0 and ψ̃ are either both even or both odd, then the integral term in (2.11) will
vanish due to an antisymmetric integrand. For this reason, we recommend modifying
the target state to ψ̂ ∈ span(ψ0, ψ̃, xψ̃). Once a control is computed for the transition
ψ0 → ψ̂, it may be used as a starting guess for the transition ψ0 → ψ̃. This approach
mimics an homotopy method. For very fast controls and large energy transitions, we
use a sequence of intermediate targets ψ̂1, ψ̂2, ... which approach ψ̃ in L2.

The choice of regularization parameters plays an important role in the initializa-
tion as well. It is desirable to start having a large regularization, that gives faster
convergence in computing the Newton direction with symmlq. At the same time, a
large weight of the cost will compromise the goal of attaining the target as close as
possible. Therefore we employ successive reductions of the regularization parameter.
We have found that halving γ whenever ‖∇J̃(u)‖U reaches a given tolerance provides
robust convergence to optimal controls corresponding to very small regularization.

We start the discussion of our globalized Newton scheme giving the workflow
of the main Algorithm 1, followed by the illustration of the linesearch procedure
given by Algorithm 3. To improve readability, we use the notation of the continuous
formulation. Their discrete counterpart is discussed in the previous section.

Notice that in Algorithm 3 we anticipate the possible lack of positive definiteness,
while still exploiting the symmetry of the Hessian, by using the Krylov-type symmetric
LQ method [32]. In our experience, symmlq consistently computes search directions
in less time than other Krylov methods, such as GMRES or BiCG. If the Hessian
has negative eigenvalues, symmlq may compute an ascent direction. Whether the
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Data: Given ψ0, ψ̃, γ, α, T , u = 0
Choose ψ̂;
while ||∇J̃(u)|| > tol do

Compute search direction δu with Algorithm 3;
Compute a∗ with Algorithm 4;
u← u + a∗δu;

end
ψ̂ ← ψ̃;
iter ← 0;
while iter < maxit do

while ‖∇J̃(u)‖ > tol do
Compute search direction δu with Algorithm 3 ;
Compute a∗ with Algorithm 4;
u← u + a∗δu;

end
γ ← γ/2;
iter ← iter + 1;

end
Algorithm 1: Complete minimization program

Data: Given a control u, state variable y and adjoint variable p
Solve eyδy = −euδu ;
Solve ey

>δp = −[Lyyδy + Lyuδu] ;
[∇2J̃(u)] δu = Luuδu + eu

>δp + Lyu
>δy

Algorithm 2: Applying the reduced Hessian to a test vector δu

direction is an ascent or descent can be determined from the sign of its projection
onto the gradient. In the cases where δu is an ascent direction, −δu is a descent
direction and thus it is used instead.

We have shown in Proposition 2.3 that the objective is nonconvex and therefore
a linesearch is required to globalize the Newton method. Once a search direction d
is computed by the Krylov-Newton solver, the aim is to compute a steplength a such
that it satisfies the strong Wolfe conditions (SWC) given by

J̃(u + ad) ≤ J̃(u) + c1ad>∇J̃(u), 0 < c1 � 1, (4.1)
|d>∇J̃(u + ad)| ≤ c2|d>∇J̃(u)|, c1 < c2 < 1. (4.2)

When using a linesearch with a Newton-type method, it is often recommended that
one begins with a = 1; see, e.g., [30]. This is an excellent choice when the functional
is locally quadratic. However, in our optimization problem, the desired steplength
can be orders of magnitude smaller which happens when the higher order derivatives
of J(u + ad) with respect to a are large compared to the first and second-order
derivatives.

We use our knowledge of the model to define the initial steplength. In our case,
the tracking part of the cost functional is bounded between 0 and 1 for all controls by
virtue of the unitarity of the state equation; see Proposition 2.1. On the other hand,
the cost functional is bounded from below by the regularization term. This amounts
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Data: Given a control u, make an initial guess of search direction
δu = −Luu

−1∇J̃(u)
Use Algorithm 2 to apply the Hessian, iteratively solve ∇2J̃(u)δu = −∇J̃(u)
with symmlq;
if δu>∇J̃(u) > 0 then

δu← −δu;
end

Algorithm 3: Computing the search direction

to a quadratic polynomial and we can write

J̃(u + ad) ≥ m2a
2 +m1a+m0,

where the coefficients are m0 = γ
2u>Ku − J(u) ≤ 0, m1 = γu>Kd, and m2 =

γ
2d>Kd. Since m0 ≤ 0, the equation m2a

2 +m1a+m0 = 0 admits real roots and we
can establish an upper bound on the maximum feasible steplength as follows

amax =

√
m2

1 − 4m0m2 −m1

2m2
. (4.3)

In addition, this upper bound provides a valuable metric in the sense that if amax � 1
occurs, it means that a locally quadratic model is not valid. We have the following
new result:

Proposition 4.1. For sufficiently small c1 > 0, there exits at least one steplength
a∗ which satisfies the SWC condition in the interval (0, amax]

Proof. Because J̃(u + amax d) ≥ J̃(u) and d>∇J̃(u) < 0, by the intermediate
value theorem, there must be at least one value of a∗ ∈ (0, amax] such that J̃(u +
a∗ d) < 0 and d>∇J̃(u + a∗ d) = 0.

In order to have a robust and efficient linesearch scheme we combine two methods.
First, we apply the Algorithm 4 that, for a given a descent direction d, computes the
maximum feasible steplength. If a = 1 satisfies the SWC condition, it is accepted.
Otherwise, it is assumed that the functional is locally approximated by a cubic poly-
nomial and for this purpose we construct a cubic Hermite interpolant on [0, 1]. The
minimum am of this polynomial function is tested for the SWC condition. If this
condition is not satisfied, we apply a more robust scheme represented by the bisection
method of Algorithm 5 given below. At the end a minimizer will be bracketed by
[0, aamax].

We have implemented a modified bisection method to compute a minimum of a
C2 function. For this purpose, we write a set of criteria which ensure that a twice
continuously differentiable function f(x) must have at least one local minimizer x∗ ∈
(xl, xr). We have the following

Proposition 4.2. Suppose that f is continuously differentiable. If f ′(xl) < 0
and f ′(xr) > 0, then there must be at least one point in x̃ ∈ (xl, xr) such that x̃ is a
local minimum.

Proposition 4.3. Suppose that f is continuously differentiable. If f ′(xl) < 0
and f(xr) > f(xl) (f ′(xl) > 0, f(xr) < f(xl)), then there must be at least one point
in x̃ ∈ (xl, xr) such that x̃ is a local minimum.
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Data: Given a descent direction p and the function f(a) = J̃(u + ad) and
f ′(a) = d>∇J̃(u + ad)

Compute amax based on equation 4.3
if amax > 2 then

Evaluate f(1) and f ′(1) ;
if a = 1 satisfies SWC then

a∗ ← 1;
else

Construct cubic model on [0, 1] and compute its minimum am;
Evaluate f(am) and f ′(am)
if a = am satisfies SWC then

a∗ ← am;
else

if [0, am] brackets a minimum then
ar ← am;

else if [0, 1] brackets a minimum then
ar ← 1;

else
ar ← amax;

end
a∗ ← bisect(0, ar).

end
end

else
a∗ ← bisect(0, amax)

end
Algorithm 4: Linesearch algorithm

These two propositions give the guideline for the formulation of the following
minimization algorithm. If for any reason, Algorithm 5 returns a critical point a∗

which does not satisfy the SWC condition, then we can use the fact that for sufficiently
small value of c1 there exists a point that does satisfy the SWC and lies between 0
and any critical point which does not. We can then use a∗ as an upper bound and
apply the bisection scheme on the interval (0, a∗).

5. Numerical Results. In this section, we are concerned with the evaluation
of the optimal control formulation for dipole control of a quantum system and with
the investigation of the computational performance of the proposed Newton scheme.
We consider the cost for state transitions for different choices of the regularization
parameters and we compare the convergence behavior of the Krylov-Newton scheme
with that of gradient-type schemes. We work in the discrete H1 space; see [41]. We
focus on fast state transitions and we compare results with T ranging from very small
to moderate values. Unless otherwise stated, we take a spatial domain Ω = [0, 2] with
Nx = 100 grid points and consider the time interval (0, T ) subdivided in Nt = 100
time steps.

In Figure 5.1, we report the values of the objective at the optimum of state
transition 1→ 2 for different values of the regularization parameters. We notice that
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Data: al and ar which bracket a minimum point. L = ar − al.
f(a) = J̃(u + ad) and f ′(a) = d>∇J̃(u + ad)

while L > tol do
Compute the midpoint am = 1

2 (al + ar) and evaluate f(am) and f ′(am)
if am satisfies SWC then

a∗ ← am ;
end
if f ′(al) < 0 and either f ′(ar) > 0 or f(ar) > f(al) then

ar ← am ;
else if f ′(al) > 0 and f ′(ar) < 0 or f(ar) < f(al) then

ar ← am ;
else

al ← am ;
end
L← (ar − al)

end
Algorithm 5: Bisection minimizer

for a given γ, the objective value increases while increasing the value of α, that is,
penalizing highly varying controls. We see that our scheme can explore a large range
of values of γ such that good tracking of the target function can be guaranteed. In
Figure 5.1, we also plot the optimal controls corresponding to a given α for a range
of γ values. We notice that, as the weight of the cost reduces, the control acquires
more structure and we obtain an improved tracking.
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Fig. 5.1. Left: The cost for the state transition 1 → 2 given an optimal control u∗ for different
choices of the regularization parameters, γ and α. Right: The optimal control for the state transition
1 → 2 as a function of time with α = 10−3 for a range of fixed values of γ.

The results shown in Figure 5.1, suggest that the resulting optimal control are
not simple harmonic functions. This fact appears more clearly in the plot of Figure
5.2 where optimal controls for different state transitions are depicted.

In correspondence to the control of the transition 1 → 2, we provide in Figure
5.3 a picture of the corresponding time evolution of |ψ(x, t)|2. We can clearly see the
transition occurring for the state.

We remark that large differences are obtained between optimal controls corre-
sponding to different time horizons. In Figure 5.4, we see that as the terminal time T
increases from the very small value T = 0.75 to the moderate value T = 4, the ampli-
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Fig. 5.3. Optimal control transition of |ψ(x, t)|2 from first to second eigenstate.

tude of the control decreases of two orders of magnitude and becomes less oscillating.
This result points out the difficulty of solving for short terminal times.

Next, we investigate the computational performance of our optimal control solver.
We start with Table 5.1, where we compare the convergence behavior of the Krylov-
Newton (KN) scheme, of the steepest descent (SD) scheme, and of the nonlinear
conjugate gradient (NCG) scheme. We use the NCG method proposed by Hager and
Zhang [19] which in our case appears to be the most competitive among NCG schemes.

For these experiments, we choose the initial state ψ0(x) = sin(πx) and the target
state is ψ̃(x) = 1√

2
[sin(πx)+sin(2πx)]. We take T = 1. The regularization parameters

are γ = 10−1 and α = 10−3. Results with this setting are reported in Table 5.1 that
provides the convergence history of the iterative schemes along nine iterations. We
can see that the Krylov-Newton scheme does not descend as rapidly in the first steps
followed by accelerate convergence in the subsequent steps thus overperforming the
SD scheme and the NCG scheme.

A useful metric of computational performance of the schemes discussed here is a
comparison of CPU times to reduce the value of the norm ||∇J̃(u)||, representing the
error in solving the optimality condition. We consider the initial state as φ1(x) and
the target as ψ̃ = 1√

2
(φ1 + φ2), T = 1, and fixed regularization parameter α = 10−2.

We compare for two different values γ = 10−1 and γ = 10−4 to show the influence
of regularization on the convergence of the control problem. In Figure 5.5, we plot
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Fig. 5.4. Left: The optimal control u for the state 1-to-2 transition with T = 0.75 in solid line.
The dashed line is the optimal control, multiplied by factor of 5, for T = 1 so that it can be shown
on the same scale. Right: The optimal controls for T = 2 and T = 4 with solid and dashed lines
respectively.

Table 5.1
Convergence of the SD scheme, the NCG scheme, and the KN scheme to reach the optimal cost

J̃∗ = J̃(u∗).

Iteration J̃SD − J̃∗ J̃NCG − J̃∗ J̃KN − J̃∗

1 2.4969× 10−1 2.4969× 10−1 2.4969× 10−1

2 1.3070× 10−2 1.3070× 10−2 1.5346× 10−2

3 6.4184× 10−3 6.4184× 10−3 5.1099× 10−3

4 5.5337× 10−3 5.3438× 10−3 2.2381× 10−4

5 4.8170× 10−3 3.1011× 10−3 1.8383× 10−4

6 4.2081× 10−3 2.3384× 10−3 1.6253× 10−5

7 3.6768× 10−3 1.2475× 10−3 2.7534× 10−6

8 3.2177× 10−3 9.1869× 10−5 3.3921× 10−7

9 2.8141× 10−3 5.9258× 10−5 4.7022× 10−9

the values of ||∇J̃(uk)|| for a sequence of iterations k = 1, 2, ..., as a function of CPU
time to illustrate the relative performance of the KN method compared to the NCG
scheme. In both cases, the Matlab Krylov solver, symmlq is used with a tolerance of
10−5 and the Luu block is used as a preconditioner. The plots in Figure 5.5 show that
the NCG scheme provides comparable computational performance to the KN scheme
when choosing larger values of γ. However, as γ is taken smaller, the KN method
converges significantly faster to the optimal control solution.

6. Conclusion. We discussed an optimal control approach to the construction
of an accurate dipole control mechanism which is able to induce transition between
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Fig. 5.5. Convergence results for γ = 10−1 (left) and γ = 10−4 (right) with the KN scheme
and the NCG scheme; α = 10−2.

quantum states within a short time horizon where the classical perturbation approach
is no longer valid. For this purpose we introduced appropriate discretization schemes
and a globalized Newton method with a properly designed linesearch for comput-
ing the optimal dipole control. Results of numerical experiments were reported to
show the ability of the resulting scheme to provide fast optimal controls that induce
transition with high energy differences.

Appendix A. The dipole quantum control problem.
We present all details of our functional analytic setting and present our results

on the existence of an optimal control solution including necessary and sufficient
optimality conditions. For ease of presentation, in this appendix we repeat a few
definitions concerning functional spaces. To the best of our knowledge, this is the first
systematic and complete analysis of first- and second-order necessary and sufficient
optimality conditions for the dipole quantum control problem.

Let Ω = (0, `) be an open interval with ` > 0. Recall that for q ∈ [1,∞) the
Lebesgue space Lq(Ω; C) is defined as

Lq(Ω; C) =
{
ϕ : Ω→ C

∣∣∣ϕ measurable and ‖ϕ‖Lq(Ω;C) =
( ∫

Ω

|ϕ(x)|qC dx
) 1

q

<∞
}
.

In particular, we set H = L2(Ω; C), which is a Hilbert space endowed with the inner
product

(ϕ,ψ)H =
∫

Ω

ϕ(x)∗ψ(x) dx for ϕ, ψ ∈ H

and the induced norm ‖ϕ‖H for ϕ ∈ H. The Hilbert space V = H1
0 (Ω; C) is given by

V =
{
ϕ ∈ H

∣∣∣ ‖ϕ‖V =
( ∫

Ω

|ϕ′(x)|2C dx
)1/2

<∞
}

supplied by the inner product

(ϕ,ψ)V = (ϕ′, ψ′)H for ϕ,ψ ∈ V

and the induced norm ‖ϕ‖V =
√

(ϕ,ϕ)V for ϕ ∈ V. For more details on Lebesgue
and Sobolev spaces we refer to [1, 17], for instance.
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For T > 0 let Q = Ω × (0, T ). If Y is a Banach space, we define the Bochner
space L2(0, T ;Y ) as the space of all measurable functions ϕ : [0, T ]→ Y satisfying

‖ϕ‖L2(0,T ;Y ) =
( ∫ T

0

‖ϕ(t)‖2Y dt
)1/2

,

where we write ϕ(t) for the function on Y only; see, e.g., [1, 17]. Analogously, the
spaces H1

0 (0, T ;Y ) and H1(0, T ;Y ) are defined. In particular, we write L2(0, T ),
H1

0 (0, T ) or H1(0, T ) if Y = R.
Let us introduce the Hilbert space

W (0, T ) =
{
ϕ ∈ L2(0, T ;V)

∣∣∣ dϕ
dt
∈ L2(0, T ;V′)

}
,

where V′ = H−1(Ω; C) denotes the dual space of V = H1
0 (Ω; C). The space W (0, T )

is endowed with the inner product

(ϕ,ψ)W (0,T ) =
∫ T

0

(ϕt(t), ψt(t))V′ + (ϕ(t), ψ(t))V dt for ϕ,ψ ∈W (0, T )

and the associated induced norm.

A.1. The state equation. Let u : (0, T )→ R be a given control input function.
We suppose that our potential V has the form

V (x, t) = V0(x) + u(t)x for (x, t) ∈ Q (A.1)

where V0 : Ω → R is fixed. Then, the wave function ψ : Q → C is governed by the
time-dependent Schrödinger equation:

i ψt(x, t) = −ψxx(x, t) + V (x, t)ψ(x, t) for (x, t) ∈ Q, (A.2a)
ψ(0, t) = ψ(L, t) = 0 for t ∈ (0, T ), (A.2b)
ψ(x, 0) = ψ0(x) for x ∈ Ω, (A.2c)

where i is the imaginary unit and ψ0 : Ω → C is a given initial wave function
distribution. We say that ψ is a weak solution to (A.2) if ψ ∈ W (0, T ) holds with
ψ(0) = ψ0 in H and∫ T

0

(i ψt, ϕ)V′,V dt =
∫ T

0

∫
Ω

ψxϕ
∗
x + V ψϕ∗ dxdt for all ϕ ∈ L2(0, T ;V) (A.3)

is satisfied, where (· , ·)V′,V denotes the dual pairing between V and V′.

Proposition A.1. Let ψ0 ∈ H, V0 ∈ L2(Ω) and V (x, t) = V0(x) + u(t)x for
(x, t) ∈ Q. Then, there exists a unique weak solution ψ to (A.1) satisfying ‖ψ(t)‖H =
‖ψ0‖H for all t ∈ [0, T ]. If, in addition, ψ ∈ L∞(Ω) holds, then

‖ψ‖W (0,T ) ≤ C
(
1 + ‖u‖L∞(0,T )

)
. (A.4)

Proof. For the existence of a weak solution to (A.1) we refer the reader to [42].
From (A.3) we infer that

(i ψt(t), ψ(t))V′,V =
∫

Ω

∣∣ψx(t)∣∣2C + V (· , t)
∣∣ψ(t)

∣∣2
C dx for almost all (f.a.a.) t ∈ (0, T ).
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Recall that for ψ ∈W (0, T ) we have

(i ψt(t), ψ(t))V′,V =
i

2
d

dt
‖ψ(t)‖2H f.a.a. t ∈ (0, T ).

see, e.g., [17]. By assumption, V (x, t) ∈ R f.a.a. (x, t) ∈ Q. Thus,

d

dt
‖ψ(t)‖2H = −2i

∫
Ω

∣∣ψx(t)∣∣2C + V (· , t)
∣∣ψ(t)

∣∣2
C dx f.a.a. t ∈ (0, T ). (A.5)

The left-hand side of A.5 is purely real, whereas the right-hand side of A.5 is purely
imaginary. Thus, (A.5) can only be satisfied both sides are zero. Consequently,
‖ψ(t)‖2H is constant, i.e.,

‖ψ(t)‖H = ‖ψ0‖H f.a.a. t ∈ [0, T ]. (A.6)

Moreover,

‖ψ‖2L2(0,T ;V) = −
T∫

0

∫
Ω

(
V0(x) + u(t)x

)∣∣ψ(x, t)
∣∣2
C dxdt

≤
(
‖V0‖L∞(Ω) + ‖u‖L∞(0,T )

)
‖ψ‖2L2(0,T ;H)

≤
(
‖V0‖L∞(Ω) + ‖u‖L∞(0,T )

)
‖ψ0‖2H

and (A.4) imply (A.2a).
Next we introduce the control space U = H1

0 (0, T ) supplied with the inner product

(u, v)U =

T∫
0

u(t)v(t) + αu̇(t)v̇(t) dt for u, v ∈ U

with 0 < α � 1 and the induced norm ‖u‖U =
√

(u, u)U for u ∈ U. Use of small
values of α allows for controls with larger rate of changes. Since the aim of the optimal
control problem will be to drive a particle from one eigenstate to another, it is required
that the control is zero at the beginning and the end of the time interval.

Let us define the Hilbert spaces

Z = W (0, T )× U and Y = L2(0, T ;V)×H

endowed with their natural product topology. We identify the dual Y′ of Y with
L2(0, T ;V′)×H.

To formulate the Schrödinger equation as an abstract operator equation we define
the nonlinear operator e = (e1, e2) : Z→ Y′ by

(e(z), ϕ)Y′,Y =

T∫
0

(
(i ψt, p)V′,V −

∫
Ω

ψxp
∗
x − V ψp∗ dx

)
dt+ (ψ(0)− ψ0, p0)H

for z = (ψ, u) ∈ Z and ϕ = (p, p0) ∈ Y. Recall that the potential V given by (A.1)
depends on the control u. For given u ∈ U the function ψ is a weak solution to (A.2)
if and only if e(ψ, u) = 0 in Y′.
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Lemma A.2. The operator e : Z → Y′ is twice Fréchet-differentiable and its
Fréchet derivatives at z̄ = (ψ̄, ū) ∈ Z are given by

(e′(z̄)z, ϕ)Y′,Y =

T∫
0

(
(i ψt, p)V′,V −

∫
Ω

ψxp
∗
x −

(
u(t)xψ̄ + (V0 + ū(t)x)ψ

)
p∗ dx

)
dt

+ (ψ(0), p0)H,

(e′′(z̄)(z, z̃), ϕ)Y′,Y =

T∫
0

∫
Ω

(
u(t)xψ̃ + ũ(t)xψ

)
p∗ dxdt

for any directions z = (ψ, u), z̃ = (ψ̃, ũ) ∈ Z and for ϕ = (p, p0) ∈ Y. In particular,
the second Fréchet derivative is Lipschitz-continuous on Z.

Proof. Let z̄ = (ψ̄, ū) ∈ Z be arbitrary. Then, by the Sobolev embedding theorem
[1, 17] we have ū ∈ C([0, T ]) so that the claim follows by using standard arguments.

To ensure existence of Lagrange multiplier we will make use of the next result.

Proposition A.3. The linear operator eψ(z̄) : Z → Y′ is bijective for every
x̄ ∈ Z, where eψ denotes the partial Fréchet derivative of e with respect to ψ.

Proof. Let z̄ = (ψ̄, ū) ∈ Z be chosen arbitrary. The operator eψ(z̄) is bijective,
if the equation eψ(z̄)ψ = (F, φ0) possesses a unique solution ψ ∈ Z for any F ∈
L2(0, T ;V′) and φ0 ∈ H. Thus, ψ solves

(i ψt(t), ϕ)V′,V + a(t;ψ,ϕ) = (F (t), ϕ)V′,V for all ϕ ∈ V, (A.7a)

ψ(· , 0) = φ0 in Ω, (A.7b)

where the time-dependent bilinear form a(t; · , ·) : V× V→ C is defined as

a(t;φ, ϕ) =
∫
Ω

φ′(x)ϕ′(x)∗ +
(
V0(x) + ū(t)x

)
φ(x)ϕ(x)∗ dx for φ, ϕ ∈ V and t ∈ [0, T ].

Since ū ∈ H1(0, T ) holds and H1(0, T ) is continuously embedded in C([0, T ]), there
exists a constant c1 > 0 such that

|ū(t)| ≤ c1 ‖u‖U for all t ∈ [0, T ]. (A.8)

Moreover, V is embedded into L4(Ω; C). Thus, there exists a constant c2 > 0 satisfying
‖ϕ‖L4(Ω;C) ≤ c2 ‖ϕ‖V for all ϕ ∈ V. Hence,∣∣a(t;φ, ϕ)

∣∣ ≤ ‖φ‖V‖ϕ‖V +
(
‖V0‖L2(Ω) + c1 ‖u‖U

)
‖φ‖L4(Ω;C)‖ϕ‖L4(Ω;C)

≤
(
1 + c2

(
‖V0‖L2(Ω) + c1 ‖u‖U

))
‖φ‖V‖ϕ‖V for φ, ϕ ∈ V.

so that the bilinear form a is bounded. Using Agmon’s inequality [38]

‖ϕ‖L∞(Ω;C) ≤ c3 ‖ϕ‖
1/2
H ‖ϕ‖

1/2
V for ϕ ∈ V

and Young’s inequality [2]

ab ≤ 1
εp
ap

p
+ εq

bq

q
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with a = c3(‖V0‖L2(Ω) + c1 ‖u‖U)‖ϕ‖H, b = ‖ϕ‖V, ε = 1, p = 4/3, q = 4 we find

a(t;ϕ,ϕ) ≥ ‖ϕ‖2V −
(
‖V0‖L2(Ω) + c1 ‖u‖U

)
‖ϕ‖H‖ϕ‖L∞(Ω;C)

≥ ‖ϕ‖2V − c3
(
‖V0‖L2(Ω) + c1 ‖u‖U

)
‖ϕ‖3/2H ‖ϕ‖

1/2
V ≥ c4 ‖ϕ‖2V − c5 ‖ϕ‖

2
H,

where c4 = 3/4 and c4 = 3(c3(‖V0‖L2(Ω) +c1 ‖u‖U))4/3/4. Now the claim follows from
a complex variant of classical results for linear evolution problems; see, e.g., [15].

Remark A.4. It follows from Proposition A.3 that the operator e′(z̄) is surjective
for every z̄ = (ψ̄, ū) ∈ Z. This implies that every point z̄ is a regular point. ♦

Let z̄ = (ψ̄, ū) ∈ be arbitrary. By ker e′(z̄) ⊂ Z we denote the null space of the
operator e′(z̄). Suppose that z = (ψ, u) ∈ ker e′(z̄) is given. Then, ψ satisfies

i ψt(x, t) = −ψxx(x, t) +
(
V0(x) + ū(t)x

)
ψ(x, t)

+ u(t)xψ̄(x, t) f.a.a. (x, t) ∈ Q, (A.9a)
ψ(0, t) = ψ(L, t) = 0 f.a.a. t ∈ (0, T ), (A.9b)
ψ(x, 0) = 0 f.a.a. x ∈ Ω. (A.9c)

Multiplying (A.9a) by ψ(x, t)∗ and integrating over Ω imply that

1
2
d

dt
‖ψ(t)‖2H + i ‖ψ(t)‖2V

= i

∫
Ω

(
V0(x) + ū(t)x

)
|ψ(x, t)|2 + u(t)xψ̄(x, t)ψ(x, t)∗ dx.

(A.10)

The real part of (A.10) reads

1
2
d

dt
‖ψ(t)‖2H = −u(t)

∫
Ω

x=m
(
ψ̄(x, t)ψ(x, t)∗

)
dx. (A.11)

where we have used that V0(x) as well as u(t) are real-valued. We infer from (A.9)
and Young’s inequality [2] that

1
2
d

dt
‖ψ(t)‖2H ≤ |u(t)|‖ψ̄(t)‖H‖ψ(t)‖H ≤

1
2

(
|u(t)|2‖ψ̄(t)‖2H + ‖ψ(t)‖2H

)
.

Using Gronwall’s inequality we find that

‖ψ(t)‖2H ≤ e
t/2

(
‖ψ(0)‖2H +

1
2

t∫
0

|u(s)|2‖ψ̄(s)‖2H ds

)
(A.12)

Combining (A.8), (A.9c), and (A.12) we obtain

‖ψ(t)‖2H ≤ c2 ‖u‖
2
U f.a.a. t ∈ [0, T ]. (A.13)

with the constant c2 = c1e
T/2‖ψ̄‖2L2(0,T ;H)/2.

Now we consider the imaginary part of (A.10). Using (A.13) Hölder’s and Young’s
inequality we find

‖ψ(t)‖2V =
∫
Ω

(
V0(x) + ū(t)x

)
|ψ(x, t)|2 + u(t)x<e

(
ψ̄(x, t)ψ(x, t)∗

)
dx

≤
(
‖V0‖L∞(Ω) + |ū(t)|

)
‖ψ(t)‖2H +

1
2

(
|u(t)|2 + ‖ψ̄(t)‖2H‖ψ(t)‖2H

)
≤ c2

(
‖V0‖L∞(Ω) + |ū(t)|

)
‖u‖2U +

1
2

(
|u(t)|2 + c2‖ψ̄(t)‖2H‖u‖

2
U

)
.

(A.14)
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Estimate (A.14) implies

‖ψ‖2L2(0,T ;V ≤
(
c2

(
T‖V0‖L∞(Ω) + ‖ū‖L1(0,T )

)
+

1
2

+
c2
2
‖ψ̄‖2L2(0,T ;H

)
‖u‖2U. (A.15)

Setting

c3 =

√
max

(
c2T, c2

(
T‖V0‖L∞(Ω) + ‖ū‖L1(0,T )

)
+

1
2

+
c2
2
‖ψ̄‖2L2(0,T ;H

)
we conclude from (A.13) and (A.15) that

‖ψ‖L2(0,T ;H) + ‖ψ‖L2(0,T ;V) ≤ c3 ‖u‖U. (A.16)

Proposition A.5. Suppose that z̄ ∈ Z and that V0 ∈ L∞(Ω). Then,

‖ψ‖W (0,T ) ≤ Cker ‖u‖U for all z = (ψ, u) ∈ ker e′(z̄)

for a constant Cker > 0.
Proof. We have already derived an estimate in the L∞(0, T ;H) and the L2(0, T ;V)-

norms; see (A.16). Recall that

‖ψt‖L2(0,T ;V′) = sup
‖ϕ‖L2(0,T ;V)=1

T∫
0

(ψt(t), ϕ(t))V′,V dt.

Now, the proof follows directly from (A.9a) and (A.16).

A.2. The minimization problem. Given an initial wave function ψ0, we wish
to find a control u ∈ U such that ψ(T ) ∈ H is in some sense close to a given desired
target wave function ψ̃ ∈ H. This is to say that the aim of the optimal control
problem is to minimize the cost functional J : Z→ R given by

J(z) =
1
2

(
1− ‖Pψ(T )‖2H

)
+
γ

2
‖u‖2U, z = (ψ, u) ∈ Z, (A.17)

where the linear and bounded projection operator P : H→ H is defined as

Pφ = (ψ̃, φ)H ψ̃ for φ ∈ H

and γ > 0 is a regularization parameter.

Lemma A.6. The cost functional J is twice Fréchet-differentiable. Its Fréchet
derivatives at z̄ = (ψ̄, ū) ∈ Z are

J ′(z̄)z = −(Pψ̄(T ), Pψ(T ))H + γ (ū, u)U,

J ′′(z̄)(z, z̃) = −(Pψ̃(T ), Pψ(T ))H + γ (ũ, u)U

for any directions z = (ψ, u), z̃ = (ψ̃, ũ) ∈ Z and for ϕ = (p, p0) ∈ Y. In particular,
the second Fréchet derivative is Lipschitz-continuous on Z.

Proof. The claim follows by standard arguments so that the proof is omitted here.
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The set of admissible solutions of the optimal control problem that will be intro-
duced now is given by

F(P) =
{
z ∈ Z

∣∣ e(z) = 0 in Y′
}
.

Then, the optimal control problems reads

minJ(z) subject to (s.t.) z ∈ F(P). (P)

Theorem A.7. There exists at least one optimal solution z◦ = (ψ◦, u◦) to (P).
Proof. By Proposition A.1 the set F(P) is nonempty. Let {zn}n∈N, zn = (ψn, un),

be a minimizing sequence in F(P). Then, ‖un‖U is bounded. Recall that U is (com-
pactly) embedded into L∞(Ω); see [1, p. 144]. By (A.4) the sequence {ψn}n∈N is
bounded in W (0, T ). Thus, there exist a subsequence {znk}k∈N, znk = (ψnk , unk),
and an element z◦ = (ψ◦, u◦) ∈ Z such that

ψnk ⇀ ψ◦ as k →∞ in W (0, T ), (A.18a)
unk ⇀ u◦ as k →∞ in U. (A.18b)

Since U is compactly embedded into C([0, T ]) we conclude from (A.18b) that

unk → u◦ as k →∞ in C([0, T ]). (A.19)

Combining znk ∈ F(P) for all k, (A.18a) and (A.19) we have

0 = lim
k→∞

(e(znk), ϕ)Y′,Y = (e(x◦), ϕ)Y′,Y for all ϕ ∈ Y.

Since the cost functional is weakly lower semicontinuous [36, p. 377] the claim follows
directly.

A.3. The reduced problem. Let u ∈ U be given. Then, by Proposition A.1
there exists a unique weak solution to (A.1). Thus, the solution operator S : U →
W (0, T ) is well-defined. Boundedness of S follows from (A.4). We introduce the
so-called reduced cost functional

J̃(u) = J(S(u), u) for u ∈ U

and the reduced problem

min J̃(u) s.t. u ∈ U (P̃)

which is, in contrast to (P), an unconstrained optimal control problem. If u◦ ∈ U is
a solution to (P̃), then z◦ = (S(u◦), u◦) solves (P).

From Lemmas A.2 and A.6 it follows that J̃ is twice continuously Fréchet-differentiable.
In particular, we have at ū ∈ U and

(J̃ ′(ū), u)U = (Jψ(S(ū), ū),S ′(ū)u)W (0,T ) + (Ju(S(ū), ū), u)U (A.20)

for a direction u ∈ U. We derive from e(S(ū), ū) = 0 that

0 = eψ(S(ū), ū)S ′(ū)u+ eu(S(ū), ū)u
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for a direction u ∈ U. By Proposition A.3 the operator eψ(S(ū), ū) is invertible. Thus,
setting z̄ = (S(ū), ū) ∈ Z and ψ = S ′(ū)u ∈W (0, T ) we derive

ψ = −eψ(z̄)−1eu(z̄)u. (A.21)

Inserting (A.21) into (A.20) we obtain

(J̃ ′(ū), u)U = −(Jψ(z̄), eψ(z̄)−1eu(z̄)u)W (0,T ) + (Ju(z̄), u)U

= (Ju(z̄), u)U − (eψ(z̄)−?Jψ(z̄), eu(z̄)u)Y′

= (Ju(z̄)− eu(z̄)?eψ(z̄)−?Jψ(z̄), u)U

(A.22)

for a direction u ∈ U, where eψ(z̄)−? : W (0, T ) → Y′ and eu(z̄)? : Y′ → U denote
the adjoint operators of eψ(z̄)−1 : Y′ → W (0, T ) and eu(z̄) : U → Y′, respectively,
satisfying

(eψ(z̄)−?ϕ,G)Y′ = (ϕ, eψ(z̄)−1G)W (0,T ) for all (ϕ,G) ∈W (0, T )× Y′,

(eu(z̄)?F, v)Y′ = (F, eu(z̄)v)Y′ for all (F, v) ∈ Y′ × U.

It follows from (A.22) that the gradient of the reduced cost functional is given by

J̃ ′(ū) = Ju(z̄)− eu(z̄)?eψ(z̄)−?Jψ(z̄) in U.

A.4. Optimality conditions. Let u◦ ∈ U be a solution to (P̃). We write ψ◦ =
S(u◦) and x◦ = (ψ◦, u◦). To investigate first-order necessary optimality conditions
for (P̃) or (P) we introduce the Lagrange functional L : Z× Y→ R by

L(z, λ) = J(z) + <e (e(z), λ)Y′,Y for z = (ψ, u) ∈ Z and λ = (p, p0) ∈ Y.

It follows from Proposition A.3, Remark A.4 that there exists a unique Lagrange
multiplier λ◦ = (p◦, p◦0) satisfying together with the optimal solution z◦ the system

Lψ(z◦, λ◦)z = 0 for all z ∈ Z, (A.23a)
Lu(z◦, λ◦)u = 0 for all u ∈ U, (A.23b)

e(z◦) = 0 in Y′; (A.23c)

see, e.g., [25, 29]. We derive from (A.23a) that p◦ is a weak solution to

i p◦t (x, t) = −p◦xx(z, t) +
(
V0(x) + u◦(t)x

)
p◦(x, t) f.a.a. (x, t) ∈ Q, (A.24a)

p◦(0, t) = p◦(L, t) = 0 f.a.a. t ∈ (0, T ), (A.24b)

p◦(x, T ) = i
(
Pψ◦(T )

)
(x) f.a.a. x ∈ Ω, (A.24c)

in particular, p◦ lies in W (0, T ) and p◦0 = p◦(T ) ∈ H. Using (A.23b) we obtain that
u◦ ∈ U is a weak solution to

−αγü◦(t) + γu◦(t) = −<e
( ∫

Ω

xψ◦(x, t)p◦(x, t)∗ dx
)

f.a.a. t ∈ (0, T ), (A.25a)

u◦(0) = u◦(T ) = 0. (A.25b)

Finally, (A.23c) implies that ψ◦ satisfies the state equation (A.2) with control input
u = u◦.
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Remark A.8. Analogously to the proof of Proposition A.1 we obtain that
‖p◦(t)‖H = ‖p◦(T )‖H f.a.a. t ∈ [0, T ]. Thus, using (A.24c) we have ‖p◦‖L2(0,T ;H) =√
T ‖Pψ◦(T )‖H. ♦

Notice that the gradient of the reduced cost functional is given by

J̃ ′(u◦) = Lu(z◦, λ◦) in U.

To investigate second-order sufficient optimality conditions we derive from Lem-
mas A.2 and A.6 that the second Fréchet derivative of the Lagrangian at an optimal
solution z◦ = (ψ◦, u◦) ∈ F(P) and at its associated dual variable λ◦ = (p◦, p◦0) ∈ Y

satisfies

Lzz(z◦, λ◦)(z, z) = <e
T∫

0

∫
Ω

2u(t)xψ(x, t)p◦(x, t)∗ dxdt− ‖Pψ(T )‖2H + ‖u‖2U (A.26)

for any direction z = (ψ, u) ∈ Z.

Theorem A.9. Suppose that z◦ = (ψ◦, u◦) ∈ F(P) is an optimal solution to (P)
and that λ◦ = (p◦, p◦0) ∈ Y is the associated dual variable. If γ is sufficiently large, if
‖p◦‖L2(0,T ;H) is sufficiently small and if

‖Pψ(T )‖2H ≤
γ

4
‖u‖2U for all z ∈ ker e′(z◦), (A.27)

then the second-order sufficient optimality condition holds, i.e., there exists a constant
κ > 0 such that

Lzz(z◦, λ◦)(z, z) ≥ κ ‖z‖2Z for all z ∈ ker e′(z◦). (A.28)

Proof. We derive from (A.8), (A.16), Proposition A.5, and (A.26) that

Lzz(z◦, λ◦)(z, z) ≥ −‖u‖C([0,T ])‖ψ‖L2(0,T ;H)‖p
◦‖L2(0,T ;H) − ‖Pψ(T )‖2H + γ ‖u‖2U

≥ −c1‖u‖U‖ψ‖L2(0,T ;H)‖p
◦‖L2(0,T ;H) − ‖Pψ(T )‖2H

+
γ

4
‖u‖2U +

γ

2Cker
‖ψ‖2W (0,T )

≥
(
γ

2
− c1

2
− c1c3

2
‖p◦‖L2(0,T ;H)

)
‖u‖2U +

γ

2Cker
‖ψ‖2W (0,T ).

If

κ = min
(

γ

2Cker
,
γ

2
− c1

2
− c1c3

2
‖p◦‖L2(0,T ;H)

)
> 0 (A.29)

holds, then we obtain (A.28).

Remark A.10. Utilizing Remark A.8 we have the following sufficient condition
for Theorem A.9: If

‖Pψ◦(T )‖H <
γ

2c1c3
√
T

nd γ > 2c1

hold, condition (A.29) is satisfied. ♦
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