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THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES

FOR A SIMPLE CHAIN-BRANCHING CHEMISTRY MODEL WITH

FINITE ACTIVATION ENERGY∗

GARY J. SHARPE†

Abstract. A linear stability of freely propagating, adiabatic premixed flames is investigated in
the context of a thermal-diffusive or constant density model, together with a simple two-step chain-
branching model of the chemistry. This study considers the case of realistic, finite activation energy
of the chain-branching step, and emphasis is on comparing with previous high activation energy
asymptotic results. It is found that for realistic activation energies, a pulsating instability is absent
in regimes predicted to be unstable by the asymptotic analysis. For the cellular instability, however,
the finite activation energy results are in qualitative agreement with the asymptotic results, in that
the flame is unstable only below a critical Lewis number of the fuel and becomes more unstable
as the Lewis number is decreased. However, it is shown that very high activation energies would
be required for the asymptotic analysis to be quantitatively predictive. The flame is less unstable
for finite activation energies than predicted by the asymptotic analysis, in that a lower fuel Lewis
number is required for instability. It is also shown that the flame structure and stability can have
nonmonotonic dependencies on the activation energy.
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1. Introduction. A premixed flame is a subsonic combustion wave which prop-
agates via diffusion of chemical species and conduction of heat between the hot burnt
chemical products and the cold unburnt fuel. While, in theory, unconfined premixed
flames can propagate steadily as planar waves, this may not be realized in practice
due to cellular and pulsating instabilities induced by thermal-diffusive and/or hydro-
dynamic effects [1]. A linear stability analysis of the underlying planar wave is a
first step towards understanding the origins of such instabilities and predicting the
conditions under which they occur.

The majority of flame stability developments have employed a standard one-step
chemistry combustion model, with a single, exothermic reaction step F→P, where F
denotes fuel and P products, together with an Arrhenius form of the reaction rate.
In this context, Sivashinsky [2] used a constant density model (CDM) and employed
a high activation energy asymptotic (HAEA) limit in order to investigate the linear
stability of one-step chemistry flames. The CDM ignores hydrodynamic effects but has
extensively been demonstrated to correctly capture thermal-diffusive effects on flame
dynamics [3]. Sivashinsky [2] showed that below a critical Lewis number, Le (the
ratio of temperature conductivity to molecular diffusivity), the flame is unstable to a
cellular instability. This cellular mode corresponds to a positive real linear eigenvalue
in the stability problem. This critical value of Le is less than one, but tends to
unity from below as the activation energy of the reaction is increased. Sivashinsky
further showed that, above a second critical Lewis number, the flame is unstable to a
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LINEAR STABILITY OF FLAMES 867

pulsating instability corresponding to a complex conjugate pair of linear eigenvalues.
The critical value of Le for pulsating instability is greater than one but again tends
to unity as the activation energy is increased.

Jackson and Kapila [4] then considered the variable density model, which includes
hydrodynamic effects due to thermal expansion as well as the thermal-diffusive effects,
again using the one-step model in the HAEA limit. They showed that the results
followed the trends predicted by the CDM study in [2]. The only qualitative difference
is that there is no critical Lewis number for instability of the cellular mode. Instead
the flame remains unstable to a long-wavelength hydrodynamic (Landau–Darrieus)
instability above the critical Lewis number for purely thermal-diffusive instability.
However, they found that the pulsating mode stability boundary was hardly affected
by hydrodynamic effects.

One-step linear stability studies which do not invoke the HAEA limit, but instead
employ finite (realistic) activation energies, have also been performed, both for the
constant density [5] and variable density models [6, 7]. The purpose of such finite
activation energy studies is twofold. First, one wishes to determine whether the
high activation energy asymptotic solutions are even qualitatively predictive of the
results for realistic activation energy. This is not necessarily the case for combustion
problems [8, 9]. Second, these studies may provide quantitative test problems for
numerical schemes designed to simulate the nonlinear regime. These simulations tend
to employ moderate activation energies in order to resolve the reaction zone of the
flame, in which case the HAEA results may not be quantitatively predictive of thermal-
diffusive driven instabilities [5, 7]. Lasseigne, Jackson, and Jameson [5] and Sharpe
and Falle [10] have demonstrated the use of the exact finite activation energy linear
stability predictions for quantitative validation of numerical schemes and, moreover,
used them to resolve discrepancies between results obtained by different numerical
methods.

Although the one-step model has been very successful in describing and pre-
dicting many aspects of flame dynamics [1, 3], it fails to capture some qualitative
features of hydrocarbon and hydrogen flame structures [1, 11]. In these fuels there
any many intermediate steps in the conversion of fuel into products. These include
chain-branching reactions, which produce a net increase in intermediate species such
as radicals. The chain-branching reactions tend to have high activation energy, and
hence are active in the high-temperature regions of the flame, where they convert the
fuel into intermediate species [11]. The intermediate molecules produced may then
diffuse forwards and backwards over the entire flame structure, so that the thermal
conduction zone is also chemically active [1, 11]. Completion reactions, which remove
the intermediates and convert them into products, tend to be temperature insensi-
tive but highly exothermic, so that heat release occurs throughout the flame [1], in
contrast to occurring only in a narrow region at the downstream end of the flame
structure in the one-step model. Indeed, the exothermic completion reactions con-
tinue even after the fuel has been completely converted into intermediates, so that
the fuel is exhausted interior to the flame [11], whereas in the one-step model struc-
ture the complete fuel exhaustion and final adiabatic flame temperature are reached
simultaneously.

This discrepancy between the one-step model and real flame structures motivates
the need for a chemistry model which better mimics the effects of chain-branching
outlined above, in particular to determine whether and how the presence of interme-
diate species affects flame dynamics. However, for purposes of mathematical theory
and modeling of flames, any improved model should still be sufficiently simple and
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868 GARY J. SHARPE

generic that transparent, fundamental insights can be obtained and some analytical
or asymptotic progress is still possible. In this spirit, Dold and coworkers [11, 12, 13]
have suggested a two-step chemistry model, consisting of a single chain-branching
step, F+Y→2Y, and a single completion reaction step, Y+M→P+M. Here Y repre-
sents a lumped or “pooled” amalgam of intermediate species, and M is any species
required to trigger the completion reactions but unchanged in the process. In the
simplest version of this model, the branching reaction is assumed to have a high acti-
vation temperature but is thermally neutral, while the completion reaction is assumed
to be temperature insensitive but releases all the heat. See [11] for a very detailed
discussion which puts the two-step model and its assumptions into the context of
hydrogen and hydrocarbon oxidation, including how the model parameters can be fit-
ted to hydrogen and hydrocarbon flame structures predicted from detailed chemistry
calculations.

Fundamental to the two-step model described above is the concept of a chain-
branching crossover temperature, Tc, which, in regards to flame structure, is the
temperature at which the rate of chain-branching balances the rate of removal of in-
termediates by diffusion [11]. Around this temperature a chain-branching explosion
occurs in which the remaining fuel is converted rapidly into intermediates. For large
activation energies of the branching step, the reaction is then active only in a narrow
region occurring at temperatures close to Tc. As well as being able to mimic the main
features of real flames, which the one-step model cannot, the two-step model has
mathematical advantages over the one-step model. First, the simple chain-branching
model does not suffer from the well-known “cold-boundary difficulty” for finite acti-
vation energies inherent in the one-step model [14]. Second, in the HAEA limit, the
jump conditions across the reaction sheet are linear in the variables [11], as compared
to the more complex jump conditions of the one-step model, which are nonlinear in
the temperature at which the reaction sheet occurs [3]. Further, in this asymptotic
limit, while the one-step model also requires a near-equidiffusional flame (NEF) ap-
proximation (Lewis number asymptotically close to unity), the two-step analysis is
valid for arbitrary values of the Lewis number [11].

Dold [11] studied the linear stability of premixed flames modeled with the two-
step chemistry scheme, in the context of the constant density thermal-diffusive model
and employing a HAEA limit of the chain-branching reaction. He found that, as for
the one-step model, the flame is predicted to be unstable to a cellular instability below
a critical Lewis number of the fuel (which is less than unity) and may be unstable
to the pulsating instability above another critical fuel Lewis number (greater than
unity). However, unlike for the one-step model, the critical values are to leading
order independent of the activation energy. Instead, the main stability parameter
is the crossover temperature, Tc, which has no analogy in the one-step model. The
pulsating instability disappears entirely below a threshold value of Tc, again with
no analogue in the one-step model. For adiabatic flames, the wave becomes more
unstable (the critical Lewis numbers for the cellular and pulsating instability both
tend to unity) as Tc tends to the adiabatic temperature in the fully burnt state, Tad.
However, in the limit Tc → Tad, where intermediates play a minor role in the flame
structure, the two-step model stability can actually be described to leading order
by the one-step model [11]. Interestingly, however, the effective activation energy of
the required one-step model description is not linked to the activation energy of the
chain-branching reaction, but is inversely proportional to Tad − Tc.

Sharpe [15] then extended the two-step HAEA results by considering the variable
density model, hence taking into account hydrodynamics effects. As for the one-step
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model, he found that the only qualitative difference from the CDM results is that
the flame remains unstable to a long-wavelength hydrodynamic instability, even for
Lewis numbers of the fuel above the critical value for purely thermal-diffusive induced
instability. Gubernov and coworkers [16, 17, 18] then examined the linear stability
of the two-step model for finite activation energies (i.e., without invoking the HAEA
approximation) in the context of the CDM. They considered only one-dimensional
perturbations corresponding to a purely longitudinal pulsating instability.

Hence the logical next step in the development of the two-step theory is to con-
sider the multidimensional linear thermal-diffusive CDM stability for finite activation
energies. This is the motivation for this paper, which should hence be viewed as the
two-step analogue of the one-step CDM study in [5]. The purpose of the paper is
twofold: first, to determine how well the HAEA analysis of [11] predicts the results of
realistic, finite activation energy studies and to determine whether the HAEA results
are even qualitatively correct for this problem; second, to provide a quantitative test
of numerical methods for simulating the full nonlinear solutions of the two-step CDM,
such as studies currently underway (L. Kagan, J. Dold, private communications). The
paper is arranged as follows: the two-step CDM is described in section 2; the steady,
planar flame solutions are considered in section 3; the linear stability analysis is per-
formed in section 4, and the results given in section 5; and section 6 contains the
conclusions.

2. The model. The governing equations are those of the CDM incorporating
the two-step chain-branching kinetics mechanism. In two dimensions, with the flow
in the x-direction, the nondimensional form of these equations is

∂T

∂t
+

∂T

∂x
=

∂2T

∂x2
+

∂2T

∂y2
+ QWC ,(2.1a)

∂F

∂t
+

∂F

∂x
=

1

LeF

(

∂2F

∂x2
+

∂2F

∂y2

)

− WB,(2.1b)

∂Y

∂t
+

∂Y

∂x
=

1

LeY

(

∂2Y

∂x2
+

∂2Y

∂y2

)

+ WB − WC ,(2.1c)

where T is the temperature, F and Y are mass fractions of fuel and intermediates,
respectively, LeF and LeY are the Lewis numbers (ratio of temperature conductivity
to molecular diffusivity) of the fuel and intermediates, Q is the dimensionless heat
of reaction, and WB and WC are the chain-branching and completion reaction rates.
These equations have solutions for which the flame is one-dimensional and steady (see
section 3). Equations (2.1) are written in the rest-frame of the steady flame and have
been nondimensionalized as follows:

ρ =
ρ̄

ρ̄f
, u =

ū

V̄f
, T =

T̄

T̄f
,(2.2a)

x =
ρ̄f V̄f c̄p

κ̄
x̄, y =

ρ̄f V̄f c̄p

κ̄
ȳ, t =

ρ̄f V̄ 2

f c̄p

κ̄
t̄,(2.2b)

where a bar ( ¯ ) denotes dimensional quantities and an “f” subscript denotes quan-
tities in the fresh, unburnt gas upstream of the flame. Here V̄f is the speed of the
steady, planar flame in the laboratory frame or the flow speed in the steady flame’s
rest-frame; c̄p is the specific heat at constant pressure; κ̄ is the coefficient of thermal
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870 GARY J. SHARPE

conductivity; and the characteristic length-scale is the heat conduction scale (usually
called the “flame length”). Note from (2.2) that the nondimensional flow speed and
density are unity, as is the dimensionless temperature in the fresh gas ahead of the
flame.

The dimensionless chain-branching and completion reactions of the two-step mod-
el can be written in the form

WB = ΛFY exp

(

θ

[

1

Tb
−

1

T

])

,(2.3a)

WC = ΛY.(2.3b)

As usual [11, 15], we assume that the completion rate is state independent (zero
activation energy), and we also assume that the chain-branching step is thermally
neutral, so that all the heat, Q, is released in the completion step. Here Λ is the
dimensionless completion rate constant and θ is the dimensionless activation energy
of the chain-branching step. The chain-branching rate multiplier has been written in
terms of a homogeneous crossover temperature, Tb. This is the temperature at which
the chain-branching and completion rate multipliers are equal. For high activation
energy, this marks the temperature in a homogeneous (constant volume) mixture
at which a chain-branching explosion occurs, during which the fuel is very rapidly
consumed. However, Dold [11] shows that an “inhomogeneous” crossover temperature,
Tc, is more appropriate for flames. This is the temperature at which the chain-
branching rate is equal to the rate of removal of radicals by diffusion, and hence
where the chain-branching explosion occurs in a flame when the activation energy is
sufficiently high. The relation between Tb and Tc [11] is given by

(2.4) Tb =

(

1

Tc
+

2

θ
ln(θ/Tc)

)−1

.

Hence note that Tb and Tc are equal in the HAEA limit, θ → ∞, to leading order.
The Zel’dovich number (an alternative, widely used dimensionless activation energy),
β, based on Tc, is defined as

β =
θ(Tc − 1)

T 2
c

.

Note that Dold [11] used alternative scalings for the nondimensionalization. However,
his nondimensional quantities (denoted by a “D” subscript) are simply related to
those used here by

TD =
T

Tc
, FD = F, YD =

LeF

LeY
Y, xD =

√

LeY Λx, tD = LeY Λt,(2.5a)

QD =
Q

Tc − 1
.(2.5b)

Note that in the HAEA limit, the CDM flame structure and stability depend on Q and
Tc only through the combination QD [11]. Gubernov and coworkers [16, 17, 18, 19]
use another choice of scalings. The relationships between their dimensionless space
and time scales (denoted by a “G” subscript) and those used here are

xG =

√

QΛ exp(θ/Tb)

θ
x, tG =

Q exp(θ/Tb)

θ
t.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEAR STABILITY OF FLAMES 871

They also define dimensionless parameters βG and rG, which in terms of our scalings
are

(2.6) βG =
θ

Q
, rG = exp

(

−θ

Tb

)

.

Their nondimensional temperature is then uG = T/θ. However, note that a somewhat
different model from the one used here is considered in [16, 17, 18, 19], in that they
neglect the initial temperature such that uG = T/θ = 0 in the fresh state. Hence the
Arrhenius term exp(−1/uG) is also initially zero rather than small but positive. Thus
there is not a direct correspondence between their model and the one considered here
and in [11].

Realistic Zel’dovich numbers for normal gaseous flames are β between about
4 and 6 for hydrogen and hydrocarbon oxidation [11], corresponding to a value of
θ ≈ 30 for an initial temperature of 300 K. The representative range of heats of reac-
tion for these fuels is 4 < Q < 9 [20]. Here we set Q = 5 unless otherwise specified.
Appropriate values of Lewis numbers are between 0.3 and 1.8, with the lower bound
corresponding to lean hydrogen [11] and the upper bound to propane [21]. However,
since the flame stability is found to be not very sensitive to the Lewis number of the in-
termediates [11, 15], in this paper LeY is set to unity throughout, and we concentrate
on the effect of varying LeF .

3. Steady, planar flames. For finite activation energies, the underlying steady
one-dimensional flame solution needs to be determined numerically. Planar flame
solutions of the two-step CDM have been numerically investigated previously in [16,
17, 18, 19], albeit for a different form of the model in which the upstream temperature
is neglected. However, these studies mainly examined the effect of changing the
activation energy through changes in the quantity βG but with rG held constant, which
has the effect of varying θ and Tc simultaneously in such a way that the results are
limited to a low activation energy regime. Here, however, we are interested in the effect
of varying activation energy for fixed crossover temperature, including investigating
the convergence to the HAEA results and comparing and contrasting the HAEA
solutions with those for realistic values of θ. Furthermore, we also need to develop
the asymptotic forms of the steady solution as x → ±∞ for the purposes of the linear
stability method employed in section 4.

For steady, planar flames the governing equations (2.1) can be reduced to the
system

dT0

dx
= T0 − 1 + Q(X0 + Z0 − 1),(3.1a)

dF0

dx
= LeF (F0 − X0),(3.1b)

dY0

dx
= LeY (Y0 − Z0),(3.1c)

dX0

dx
= −WB,(3.1d)

dZ0

dx
= WB − WC ,(3.1e)
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where a zero subscript denotes quantities in the steady, planar flame solution and
where the variables X0 and Z0 are defined by (3.1b,c). The initial, fresh state cor-
responds to x → −∞; i.e., the flame propagates from right to left in the laboratory
frame. Hence dq0/dx → 0 (where q0 denotes any dependent variable) and T0 = F0 = 1,
Y0 = 0 as x → −∞. Since F0 = 1 and dF0/dx = 0 in this limit, we must have X0 = 1
as x → −∞, by (3.1b). Similarly, Z0 = 0 in this limit, by (3.1c).

The burnt state corresponds to x → ∞. For finite activation energies, some
residual fuel can be left after the chain-branching reaction is complete and the inter-
mediates have been consumed [12, 18]. Hence the appropriate boundary conditions
as x → ∞ are dq0/dx → 0, F0 = F∞, T0 = T∞ = 1 + Q(1 − F∞), Y0 = 0, where
F∞ is the fuel mass fraction left over in the burnt state, to be determined. Equations
(3.1b) and (3.1c) then give X0 = F∞ and Z0 = 0, respectively, as x → ∞. For other
parameters fixed, both sets of boundary conditions can be simultaneously satisfied
only for a certain value of Λ. Note that Λ is a ratio of a Damköhler number to the
square of the flame’s Mach number [7], where the Damköhler number is a ratio of
diffusion to reaction times. Hence for a fixed Damköhler number, Λ plays the role of
the flame speed eigenvalue.

We will solve the eigenvalue problem by numerical shooting. For this purpose,
and for the linear stability analysis, the asymptotic solutions valid for large |x| are
required. As x → −∞, by considering the linearization about the fresh state, the
asymptotic solution to equations (3.1) can be shown to be

T0 ∼ 1 + βT Y
1/h1

0
−

QΛ

h1(h1 − 1)
Y0,(3.2a)

F0 ∼ 1 + βF Y
LeF /h1

0
−

LeF Λef

h1(h1 − LeF )
Y0, ef = exp

[

θ

(

1

Tb
− 1

)]

,(3.2b)

X0 ∼ 1 −
Λef

h1

Y0, Z0 ∼
Λ(ef − 1)

h1

Y0,(3.2c)

Y0 ∼ α1 exp(h1x), h1 =
1

2

(

LeY +

√

Le
2

Y + 4LeY Λ(1 − ef )

)

,(3.2d)

where βT , βF , and α1 are constants of integration, to be determined.
As x → ∞, the linearization about the burnt state gives the asymptotic solution

to be

T0 ∼ 1 + T∞ −
QΛeb

h2(h2 − 1)
Y0, eb = F∞ exp

[

θ

(

1

Tb
−

1

T∞

)]

,(3.3a)

F0 ∼ F∞ +
LeF Λeb

h2(h2 − LeF )
Y0,(3.3b)

X0 ∼ F∞ −
Λeb

h2

Y0, Z0 ∼
Λ(eb − 1)

h2

Y0,(3.3c)

Y0 ∼ α2 exp(h2x), h2 =
1

2

(

LeY −

√

Le
2

Y + 4LeY Λ(1 − eb)

)

,(3.3d)

where α2 is a constant of integration.
For sufficiently small Y0, (3.2) and (3.3) can be used as initial conditions for

numerical integrations of (3.1) from either the fresh or burnt states, respectively.
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Fig. 3.1. Spatial profiles of (a) temperature, (b) and (c) fuel and intermediate fractions, and
(d) chain-branching reaction rate in the steady solution for Q = 5, Tc = 5, LeF = 0.3, LeY = 1,
and θ = 120 (solid lines), 60 (dashed lines), and 30 (dot-dashed lines), corresponding to Zel’dovich
numbers of β = 19.2, 9.6, and 4.8, respectively. (Note θ = 60 not shown in (a) or (b) for clarity.)
Also shown is the HAEA solution (dotted lines).

Since equations (3.1) are autonomous and since temperature is monotonic and spans
a finite domain, T0 is used as the independent variable in the integrations. Note also
that the spatial origin is arbitrary. Here we choose x = 0 to correspond to the point
where T0 = Tc. The solutions from both boundaries are integrated to a midpoint
where T0 = 1 + Q/2. In the required solution, the values of F0, Y0, X0, and Z0

obtained by starting the integration from either boundary must match at this point.
This matching is achieved by Newton–Raphson iterations on the values of Λ, βT , βF ,
and F∞.

Figure 3.1 shows the steady, planar flame structure when Q = Tc = 5 for a low
Lewis number of LeF = 0.3 (relevant to cellular instability regimes) and for various
activation energies (θ = 30, 60, and 120, corresponding to Zel’dovich numbers β = 4.8,
9.7, and 19.2, respectively). For comparison, the HAEA solution is also shown. In
the HAEA limit, for temperatures much below Tc the chain-branching reaction rate
is exponentially small, and hence there is essentially no branching in the region of the
flame corresponding to temperatures below this. For temperatures much above Tc,
however, the rate is then exponentially large and must be limited by the extremely
rapid complete conversion of the fuel into intermediates. Thus to leading order, the
reaction rate (2.3a) can be replaced by a chain-branching reaction “sheet” or surface
on which the fuel is depleted and converted into intermediates, and across which
jump conditions can be applied. In particular, the profiles in F0 (and Y0) have jump
discontinuities in the gradient at T = Tc in this asymptotic limit [11].

The spatial temperature profiles in Figure 3.1(a) are quite similar to each other
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Fig. 3.2. Flame speed relative to HAEA value as a function of inverse activation energy for
Q = 5, LeY = 1 and (a) LeF = 0.3 and Tc = 5 (solid line), 5.5 (dashed line), and 5.7 (dotted line);
(b) LeF = 1.8 and Tc = 5 (solid line), 5.5 (dashed line), and 5.8 (dot-dashed line). Also shown
in (b) is the case LeF = 2.6 and Tc = 5.8 (dotted line).

and to the HAEA prediction. The fuel fractions in Figure 3.1 profiles are also very
close, apart from when F0 becomes small. For finite activation energies, the branching-
reaction rate is appreciable over a range of temperatures around Tc; i.e., there is a
chain-branching reaction zone region of finite width (Figure 3.1(d)). The lower θ,
the wider the reaction zone and the smaller the maximum rate attained, due to
the decreased sensitivity of the rate on temperature. Thus, instead of a gradient
discontinuity, as in the HAEA limit, the gradient in F0 changes smoothly within the
reaction zone as it approaches its final value. The lower θ, the slower F∞ is approached
(Figure 3.1(b)), due to the widening reaction zone. However, the main difference
between the flame structures for varying activation energy is in the intermediate
profiles. Figure 3.1(c) shows that in this case, the peak value of Y0 decreases with θ.
This is again due to the slower branching reaction rate and hence increased role of
competition with removal of intermediates by diffusion and completion reaction.

The flame speed relative to the HAEA value is a useful measure of the dependence
of the solution on activation energy. This is given by

S =

√

Λ∞

Λ
,

where Λ∞ is the value of the flame eigenvalue in the HAEA limit, determined in
[11, 15]. Figure 3.2(a) shows S as a function of the inverse activation energy, θ−1, for
Q = Tc = 5 and LeF = 0.3 (corresponding to the profiles shown in Figure 3.1), which
reveals that the flame speed dependence on the activation energy is not monotonic:
as θ−1 is increased from zero, the flame speed initially increases above the asymptotic
value and reaches a maximum value (of S = 1.15 at θ = 110 in this case) before
decreasing for lower activation energies. Such nonmonotonic behaviors with activation
energy appear to be a feature of the two-step model, including the dependence of
flame-ball solutions [12] and the stability of the planar solution discussed in section 5.
Note that, as θ is decreased further, more fuel begins to escape the chain-branching
reaction zone, due to the slower reaction rate and hence the inability of the reaction to
produce a significant build-up of intermediates before they are removed by diffusion
and completion. Hence the peak amount of intermediates becomes very small at low
values of θ, with significant amounts of residual fuel left over. In fact, for LeF ≤ 1, an
activation energy extinction limit occurs, below which there is no steady solution [18].
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Indeed, the flame speed drops to zero at a sufficiently small activation energy, which
occurs when eb reaches unity, where eb is defined in (3.3a) [18]. However, for the
parameter ranges studied here, this is an effect which occurs only at unrealistically
low θ, and hence we do not investigate it further.

Also shown in Figure 3.2(a) are the dependencies of S on θ for values of the
crossover temperature Tc = 5.5 and Tc = 5.7, still with Q = 5 and LeF = 0.3.
This shows that as Tc → 1 + Q, the flame speed becomes increasingly sensitive to
the activation energy, in that the flame speed initially increases more rapidly with
θ−1; i.e., increasingly large activation energies are required for the HAEA value to be
quantitatively predictive as Tc is increased. This is due to the fact that, in the HAEA
solution, the length scale of the intermediate diffusion zone, in which completion
reactions and heat release occur, rapidly becomes shorter as Tc → 1 + Q [11, 15].
While in the asymptotic limit the chain-branching zone remains infinitesimally thin
compared to this heat release zone, for the finite activation energy solutions θ must
be sufficiently high for the width of the finite chain-branching zone to be rendered
thin compared to the heat release length scales. Thus, since the heat release zone
narrows rapidly as Tc → 1+Q, higher values of θ are required for the chain-branching
zone width to be negligible in comparison and hence for the HAEA solution to be
quantitatively correct. Note from Figure 3.2(a) that for higher crossover temperatures
the peak value of S as a function of θ is higher, and the flame speed also drops more
rapidly subsequent to the peak value.

Figure 3.2(b) shows S as a function of the inverse activation energy for a high fuel
Lewis number, LeF = 1.8 (relevant to the pulsating instability), and various crossover
temperatures (Tc = 5, 5.5, and 5.8). While in the HAEA solution the flame speed
is independent of LeF [11], Figures 3.2(a) and (b) show there is a strong dependence
on the fuel Lewis number for finite activation energies. Indeed, for a given Tc, the
flame speed is even more sensitive to θ−1 for higher fuel Lewis numbers, in that S
increases faster and departs further from the asymptotic value than for the lower
values. Hence extremely high activation energies are required for the HAEA analysis
to be quantitatively predictive for the LeF = 1.8 case. This is due to the fuel diffusion
zone scale rapidly becoming narrower as LeF is increased. Hence a larger activation
energy will be required to render the chain-branching reaction zone thin compared to
this diffusion length and thus for the HAEA reaction sheet assumption to be valid.
The peak flame speed also occurs at smaller activation energy for LeF = 1.8 than for
LeF = 0.3. Note that for LeF > 1 and for sufficiently low activation energy the flame
speed actually approaches a turning point at a nonzero value of S [18]. For activation
energies below this extinction turning point, there is no solution, but there is then
a second very low-speed solution branch for a range of activation energies above the
extinction value [18]. However, again for the parameter sets considered here, these
effects are found to occur only at unrealistically small activation energies and hence
are not considered herein.

Figure 3.3 shows the steady structure for LeF = 1.8 and Tc = 5.8, values chosen
as both a sufficiently high fuel Lewis number and a crossover temperature sufficiently
close to the adiabatic flame temperature are required for the pulsating instability to
manifest according to the asymptotic theory [11, 15]. Figure 3.3 shows that in this
case not only does the flame speed depart significantly (by over a factor of three for
realistic activation energies) from the HAEA value, but the flame structure is also
quite different from the asymptotic prediction. First, Figure 3.3(a) shows that the
temperature in the finite activation energy cases approaches T∞ much more slowly
than in the HAEA limit. The HAEA solution in this high Tc case resembles a one-
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Fig. 3.3. Spatial profiles of (a) temperature, (b) and (c) fuel and intermediate fractions, and
(d) chain-branching reaction rate in the steady solutions for Q = 5, Tc = 5.8, LeF = 1.8, LeY = 1,
and θ = 120 (solid lines), 60 (dashed lines), and 30 (dot-dashed lines), corresponding to Zel’dovich
numbers of β = 19.2, 9.6, and 4.8, respectively. Also shown is the HAEA solution (dotted lines).

step HAEA structure [11], in which there is a gradient discontinuity in T0 at the
point where the temperature reaches 1 + Q, while for the two-step model with finite
activation energy the temperature approaches the final value quite smoothly. Second,
the estimate of the inhomogeneous crossover temperature Tc given by (2.4) no longer
predicts well the temperature at which the chain-branching rate is maximum (Figure
3.3(d)). However, the main difference between the finite activation energy and the
HAEA solutions in this case is in the intermediate profiles shown in Figure 3.3(c). In
the HAEA limit, Y0 has a very low peak value, and hence intermediates are present in
small amounts only in a narrow region around x = 0. In the finite θ solutions, however,
the chain-branching reaction zone is wider than the intermediate diffusion zone length
of the HAEA prediction. The reaction sheet assumption of the asymptotic theory is
thus not valid for the finite activation energies. The chain-branching reaction zone
lengths in Figure 3.3(d) are also comparable to the fuel diffusion zone scales in Figure
3.3(b). The result is a significant build-up of intermediates which are diffused over a
significant region of the flame, and hence intermediates have a much more important
role in the structure for finite activation energies. Note also that the peak value of Y0

has a nonmonotonic dependence on the activation energy.

4. Linear stability. We now assume a small normal modes perturbation to the
steady flame such that

q(x, y, t) = q0(x) + ǫq1(x)eσteiky , ǫ ≪ 1,
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where q represents any of T , F , and Y ; σ is the (complex) growth rate; and k is the
wavenumber of the disturbance in the y-direction. If there are any values of σ having
positive real part for any k, then the perturbation will grow in time, and the steady
flame structure is unstable. The reaction rates are expanded in ǫ as

WB = WB0 + ǫeσteikyWB0

(

θ

T 2
0

T1 +
1

F0

F1 +
1

Y0

Y1

)

+ · · · ,

WC = ΛY0 + ǫeσteikyΛY1 + · · · ,

where

WB0 = ΛF0Y0 exp

(

θ

[

1

Tb
−

1

T0

])

.

We also define the following variables:

τ1 =
dT1

dx
, X1 = F1 −

1

LeF

dF1

dx
, Z1 = Y1 −

1

LeY

dY1

dx
.

The linearized versions of equations (2.1) can then be written in the form

(4.1)
du

dx
= Au,

where u = (T1, F1, Y1, τ1, X1, Z1)
T and

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 LeF 0
0 0 LeY

σ + k2 0 −QΛ
−WB0θ/T 2

0
−WB0/F0 − σ − k2/LeF −WB0/Y0

WB0θ/T 2
0 WB0/F0 WB0/Y0 − σ − k2/LeY − Λ

1 0 0
0 −LeF 0
0 0 −LeY

1 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In order to solve the eigenvalue problem by shooting, we need to first determine the
asymptotic forms of the solutions to (4.1) valid as x → ±∞.

4.1. Asymptotic solution as x → −∞. Consider first the asymptotic solu-
tions of (4.1) as the fresh state is approached, x → −∞, where T0 → 1, F0 → 1, and
Y0 → 0. Hence, using the expansions (3.2) and changing to Y0 as the independent
variable, we can expand (4.1) as

(4.2) h1Y0

du

dY0

=
(

A0 + Y0A1 + Y
1/h1

0
A2 + Y

LeF /h1

0
A3 + · · ·

)

u,

where the Ai now depend only on the parameters and σ and k, and A0 is the value of
the matrix A evaluated at Y0 = 0, T0 = F0 = 1. Equation (4.2) has six independent
solutions of the form

u = ũi = Y λi

0
a0i + · · · as Y0 → 0, i = 1, . . . , 6,
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where h1λi and a0i are the eigenvalues and eigenvectors of A0. The eigenvalues of
A0 are

1 ±
√

1 + 4(σ + k2)

2
,

LeF ±
√

Le
2

F + 4(σLeF + k2)

2
,

LeY ±
√

Le
2

Y + 4(σLeY + k2 + ΛLeY (1 − ef ))

2
.

For Re(σ) > 0, the eigenvalues with a negative sign are unbounded as Y0 → 0 and must
be discarded. We are hence left with three linearly independent, bounded asymptotic
solutions, denoted by i = 1, 2, 3, say, as x → −∞.

4.2. Asymptotic solution as x → ∞. Consider next the asymptotic solution
of (4.1) as the burnt state is approached, i.e., as x → ∞, where T0 → T∞, F0 → F∞,
and Y0 → 0. Using the expansions (3.3), and once again changing to Y0 as the
independent variable, we can expand (4.1) as

(4.3) h2Y0

du

dY0

= (A∗
0 + Y0A

∗
1 + · · · )u,

where again the A∗
i depend only on the parameters and σ and k, and A∗

0
is the matrix

A evaluated at Y0 = 0, T0 = T∞, F0 = F∞. Equation (4.3) has six independent
solutions of the form

u = ûi = Y
λ∗

i

0
a∗

0i + · · · as Y0 → 0, i = 1, . . . , 6,

where h2λ
∗
i and a∗

0i are the eigenvalues and eigenvectors of A∗
0
. The eigenvalues of

A∗
0

are

1 ±
√

1 + 4(σ + k2)

2
,

LeF ±
√

Le
2

F + 4(σLeF + k2)

2
,

LeY ±
√

Le
2

Y + 4(σLeY + k2 + ΛLeY (1 − eb))

2
.

For Re(σ) > 0, the eigenvalues with a positive sign are unbounded as Y0 → 0 and must
be discarded. We are again left with three linearly independent bounded solutions,
denoted by i = 1, 2, 3, say, valid as x → ∞.

4.3. Numerical solution of linearized equations. In summary, (4.1) is to
be solved subject to the asymptotic forms of the solution as x → ±∞ determined
in sections 4.1 and 4.2. This entails a discrete eigenvalue problem for the linear
growth rate σ when k and all other parameters are fixed. The procedure to determine
the eigenvalue is as follows. First, each of the three linearly independent, bounded
solutions valid as x → −∞, i.e., the ũi, is used in turn as initial conditions with a
sufficiently small Y0 for the integration of (4.1). Again, T0 is used as the independent
variable for the purpose of the numerical integrations, and each solution is integrated
up to the point where T0 = 1 + Q/2. The result is hence the numerical values of the

three linearly independent solutions evaluated at T0 = 1 + Q/2, denoted by ũ
f
i , say,

and hence a general solution there is of the form

(4.4) u(1 + Q/2) = α1ũ
f
1

+ α2ũ
f
2

+ α3ũ
f
3
,
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where the αi are complex constants of integration, to be determined.
Similarly, the three asymptotic solutions valid as x → ∞ are used as initial

conditions with a small value of Y0 in order to integrate (4.1) from the burnt state
back to T0 = 1+Q/2. This results in the numerical evaluation of the three independent
solutions at T0 = 1 + Q/2 (denoted by ûb

i ). The general solution there is hence

(4.5) u(1 + Q/2) = α4û
b
1

+ α5û
b
2

+ α6û
b
3
,

where again the αi, i = 4, 5, 6, are constants of integration.
Equations (4.4) and (4.5) are thus both solutions for u at the point where T0 =

1+Q/2, and hence they must match. This is possible only for eigenvalues of σ. Since
we are interested in nontrivial solutions, for which not all the αi are zero, we can
divide through by one of them (α6, say) so that the matching condition is

a1ũ
f
1

+ a2ũ
f
2

+ a3ũ
f
3

= a4û
b
1 + a5û

b
2 + ûb

3,

where ai = αi/α6. Let ai = bi+ici, where bi and ci are real, and consider the quantity

m(σ) = |(b1 + ic1)ũ
f
1

+ (b2 + ic2)ũ
f
2

+ (b3 + ic3)ũ
f
3

− (b4 + ic4)û
b
1
− (b5 + ic5)û

b
2
− ûb

3
|2,(4.6)

where |q|2 = q · q̄. Then if σ is an eigenvalue, the bi and ci can be chosen such that
m = 0. For a general value of σ we can minimize m by partially differentiating (4.6)
with respect to each of the bi and ci and setting the results to zero, which corresponds
to a minimum in m for each constant. This gives a 10×10 system of linear equations,
Cv = r, where v = (b1, c1, . . . , b5, c5)

T and C and r are a matrix and vector with
numerically determined entries. Solving this system gives the bi and ci such that m
is a minimum for given σ and parameters. The eigenvalues can then be determined
by Newton–Raphson iteration on the condition m(σ) = 0.

5. Results.

5.1. Pulsating mode. Thorough carpet searches as well as Newton–Raphson
searches in the complex σ plane were performed for m(σ) = 0 with fuel Lewis numbers
greater than unity. No pulsating mode eigenvalue was found for reasonable, realistic
ranges of activation energy and other parameters, including fuel Lewis numbers at
the high end of the range for gases, LeF ≈ 2.

Recall that in the HAEA limit, the flame is found to be unstable to the pulsating
mode only when the quantity QD − 1 is sufficiently small, where QD is defined by
(2.5b), i.e., when Tc is sufficiently close to 1+Q. Above a critical value of QD (which
is about 1.3 for LeY = 1 [11]), there is no pulsating instability regardless of the size of
LeF . For values of QD less than this critical value, LeF must then still be sufficiently
large for the flame to be unstable to the pulsating mode. As QD → 1 (Tc → 1 + Q)
the values of LeF required for instability also tend to unity. However, only for QD −1
less than about 0.1 do flames with LeF < 2 start to become unstable in the HAEA
limit. Small values of QD − 1 result in intermediates having only a minor role in the
HAEA flame structure, with only a small peak value of Y0 (see the asymptotic result
in Figure 3.3(c), for example, for which QD − 1 = 0.04). The HAEA analysis thus
indicates that the pulsating instability is absent unless the presence of intermediates
is small in the flame.

Returning now to finite activation energies, we have already seen in section 3 that,
for realistic values, the flame structure is quantitatively different from the HAEA pre-
dictions for LeF > 1, especially when Tc is close to 1 + Q, corresponding to small
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Fig. 5.1. Neutral stability boundaries in the LeF -k plane when Q = 5, Tc = 5, LeY = 1 for
activation energies θ = 120 (β = 19.2, Tb = 3.95) (solid line), θ = 60 (β = 9.6, Tb = 3.54) (dashed
line), and θ = 30 (β = 4.8, Tb = 3.13) (dot-dashed line). Also shown is the boundary from the
HAEA analysis (dotted line).

QD −1. In particular, the peak values of Y0 are much higher than the HAEA solution
predicts (Figure 3.3(c)). Furthermore, for a fixed activation energy, Figure 3.2(b)
shows that as QD − 1 is decreased, the steady flame speed (and hence structure)
departs further from the asymptotic prediction. The solution is also found to depart
further from the HAEA prediction as LeF is increased, for fixed θ and Tc. This is
illustrated in Figure 3.2(b), which also shows S as a function of θ for LeF = 2.6
when Tc = 5.8 and Q = 5 (QD = 1.04). The more significant role of intermedi-
ates in the flame structures with finite θ for high LeF and low QD − 1 results in the
stabilization of the flame. Hence even though the HAEA analysis may predict insta-
bility, the pulsating mode is absent for realistic activation energy. This absence of the
pulsating instability has also been confirmed by recent direct numerical simulations
of the two-step CDM equations with realistic activation energy (L. Kagan, private
communication).

It should be noted that, for LeF > 1, the flame does become unstable to a one-
dimensional pulsating instability for sufficiently small activation energies which are
very close to the extinction turning point value [18]. For such low values, the peak
in the intermediates again becomes very small. However, this corresponds to a struc-
ture fundamentally different from the HAEA one. In the low θ extinction region, Y0

remains small due to the weak temperature dependence of the chain-branching reac-
tion and hence a rate which remains too small to significantly compete with removal
of intermediates by diffusion and completion. This also results in large amounts of
residual fuel escaping the branching reaction zone. Since the extinction behavior only
occurs at unrealistically low activation energies for the parameter ranges considered
here (and hence might be viewed as a low θ pathology of the two-step model for our
cases, rather than being a realistic feature), we do not investigate this further.

5.2. Cellular instability. In the finite activation energy calculations, as pre-
dicted by the HAEA analysis, it is found that the cellular mode, for which σ is real, is
always unstable, provided that LeF is sufficiently low. The parametric dependencies
on activation energy of the cellular instability boundaries, including comparisons with
the HAEA predictions, are investigated below.

5.2.1. Tc fixed. Figure 5.1 shows the neutral stability boundaries (wavenumbers
for which σ = 0) as a function of fuel Lewis numbers, for various activation energies
in the case when the inhomogeneous crossover temperature is fixed at Tc = 5. The
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Fig. 5.2. Growth rate versus wavenumber for Q = 5, Tc = 5, LeY = 1, and (a) LeF = 0.3 and
(b) LeF = 0.7 for activation energies θ = 120 (β = 19.2, Tb = 3.95) (solid lines), θ = 60 (β = 9.6,
Tb = 3.54) (dashed lines), and θ = 30 (β = 4.8, Tb = 3.13) (dot-dashed lines). Also shown is the
result from the HAEA analysis (dotted lines).

flame is unstable (σ > 0) to wavenumbers in the region below the neutral stability
boundaries and stable above them. Also shown for comparison is the HAEA predic-
tion. Note first that the HAEA analysis does predict the correct qualitative trends
of the finite θ results in that in every case the flame becomes unstable at a critical
value of LeF and then becomes more unstable (the range of unstable wavenumbers
widens) as LeF is further decreased. On the other hand, it is clear from Figure 5.1
that an unphysically large activation energy would be required for the HAEA solution
to be quantitatively predictive of the stability boundaries. The flame is actually less
unstable for finite activation energies than in the HAEA limit, in the sense that a
lower fuel Lewis number is required for instability than the HAEA analysis predicts.
However, note that the critical Lewis number has a nonmonotonic dependence on θ.
The HAEA analysis predicts the critical value of LeF to be 0.807, while the critical
value is 0.747 for θ = 120, slightly lower at 0.736 for θ = 60, but higher again at 0.748
for θ = 30.

Figure 5.1 also shows that the neutral stability boundaries for different activation
energies can cross. Figure 5.2 shows the dispersion relations (growth rate, σ, against
wavenumber of disturbance, k) for the different activation energies when LeF = 0.3
and when LeF = 0.7. Note that, in general, a higher value of the neutrally stable
wavenumber at a fixed LeF also corresponds to a more unstable flame in the sense
that the maximum growth rate is larger (as is the wavenumber at which the maximum
growth rate occurs). Thus, due to the crossing of the neutral stability curves, the most
unstable value of the activation energy depends on the fuel Lewis number. In Figure
5.2(a), corresponding to LeF = 0.3, θ = 30 is the most unstable of the four values of
activation energy shown, while θ = 120 is the least unstable. However, Figure 5.2(b)
shows that when LeF is increased to 0.7, the highest growth rate is attained in the
HAEA limit, while θ = 60 is the least unstable case.

5.2.2. Tb fixed. Figure 5.3 shows the effect of varying the activation energy
when the homogeneous crossover temperature, Tb, is kept fixed. Here Tb = 3.54 is
used, corresponding to Tc = 5 when θ = 60. Figure 5.3 reveals that, for fixed Tb,
decreasing the activation energy has quite a strong destabilizing effect, in that the
critical value of LeF for instability increases, as does the range of unstable wavenum-
bers at a fixed LeF . This is due to the dependence of Tc on θ and Tb, as given by
(2.4). For the range of activation energies considered here, Tc increases as the acti-
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Fig. 5.3. Neutral stability boundaries in the LeF -k plane when Q = 5, Tb = 3.54, LeY = 1 for
activation energies θ = 110 (β = 19.2, Tc = 4.45) (solid line), θ = 60 (β = 9.6, Tc = 5) (dashed
line), and θ = 40 (β = 6.0, Tc = 5.46) (dot-dashed line). Also shown is the boundary from the
HAEA analysis (dotted line).
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Fig. 5.4. Neutral stability boundaries in the LeF -k plane when QD = Q/(Tc − 1) = 1.25,
LeY = 1, and Q = 5 with θ = 60 (Tc = 5, β = 9.6) (solid line) Q = 9, θ = 60 (Tc = 8.2, β = 6.4)
(dashed line), and Q = 9, β = 9.6 (θ = 89.7, Tc = 8.2) (dotted line).

vation energy is decreased with Tb held constant: Tc = Tb = 3.54 in the HAEA limit,
while Tc = 4.45, 5, and 5.46 when θ = 110, 60, and 40, respectively. According to
the HAEA analysis, increasing Tc towards 1 + Q has a major destabilizing effect on
the flame [11]. Here both Tc and θ are varying, but the effect of changing Tc is much
stronger than that of changing θ, so the destabilizing effect of increasing Tc dominates.

5.2.3. QD fixed. In the HAEA limit, the flame structure and stability depend
on Q and Tc only through the combination QD = Q/(Tc − 1). Here, we investigate
whether this remains the case for finite activation energies. Figure 5.4 shows the
neutral stability boundary for Q = 5 and Tc = 5 or QD − 1 = 1.25 when θ = 60
(β = 9.6). Also shown are the boundaries for a larger heat of reaction Q = 9, but
with QD −1 held constant (so that Tc = 8.2) and either θ or β held fixed. This shows
that increasing Q has a weak destabilizing effect for finite activation energies.

6. Conclusions. The linear stability of premixed flames has been investigated
using a constant density, two-step chain-branching chemistry model in the case where
the activation energy of the branching step has finite value. Emphasis was on com-
paring the results to the high activation energy asymptotic predictions of the model
considered previously [11]. In the HAEA limit, a pulsating instability is present only
if the inhomogeneous crossover temperature is sufficiently close to the adiabatic flame
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temperature and then only if the Lewis number of the fuel is sufficiently high. Even
then, this instability mode is suppressed for realistic activation energies and parame-
ter regimes appropriate to gaseous flames. This is due to the much more major role
of radicals in the flame than the HAEA theory predicts, leading to a more stable
structure. It is possible, however, for a pulsating instability to reemerge at a low
activation energy extinction limit of the two-step model [18].

The flame is found to be unstable for a cellular mode, provided that the Lewis
number of the fuel is sufficiently less than unity, as predicted by the HAEA analy-
sis. However, the HAEA results are quantitatively inaccurate in predicting the finite
activation energy results. The effect of activation energy on the cellular instability is
complex and depends on which quantities are fixed as the activation energy is varied.
If the inhomogeneous crossover temperature, Tc, is held constant, then the critical
Lewis number for instability is lower than the HAEA analysis predicts, but its value
depends nonmonotonically on activation energy. The stability boundaries for different
activation energies can cross each other as LeF is varied. If the homogeneous crossover
temperature is kept fixed, decreasing activation energy has a destabilizing effect due to
the effective increase in Tc, so that the critical Lewis number becomes closer to unity.

In this paper we have considered adiabatic, freely propagating premixed flames.
Secondary effects, such as buoyancy, heat loss, endothermic branching reaction, etc.,
could also be included in future linear stability studies. However, calculations of the
fully nonlinear stages of the evolution, and studies of how these compare and contrast
to the fully nonlinear one-step model results, would perhaps be a more important
next step. Direct numerical simulations using the two-step model, along the lines
of the one-step computations in Sharpe and Falle [10], will be presented in a future
article. Indeed, one purpose of the present work is to provide quantitative results
against which simulations can be validated.
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