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Abstract. We study the numerical solution of a PDE describing the relaxation of a crystal
surface to a flat facet. The PDE is a singular, nonlinear, fourth order evolution equation, which can be
viewed as the gradient flow of a convex but non-smooth energy with respect to the H

−1
per inner product.

Our numerical scheme uses implicit discretization in time and a mixed finite-element approximation
in space. The singular character of the energy is handled using regularization, combined with a
primal-dual method. We study the convergence of this scheme, both theoretically and numerically.
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1. Introduction. The relaxation of crystalline surfaces has been an area of ac-
tive research in recent years, motivated by the many applications of nanodevices. At
such small scales the properties of a device depend on its nanoscale features. How-
ever, nanoscale features are easily changed by surface diffusion. An understanding
of this relaxation process is therefore important for the modeling and fabrication of
nanoscale devices.

This paper addresses a widely-used PDE model for the relaxation of a crystalline
surface below the roughening temperature; see e.g. [18, 21, 23, 25, 26]. We introduce
a numerical solution scheme (using finite elements in space and implicit discretization
in time) and study its convergence.

The PDE we want to study is formally

ut = −∆∇ ·
(

β
∇u

|∇u| + |∇u|p−2∇u

)

with u = u0 at t = 0 (1.1)

(the proper interpretation of ∇u
|∇u| will be discussed soon). Unless otherwise stated

we assume p > 1, and β ∈ R. We work with periodic boundary conditions, writing
Ω =

∏d
i=1(ai, bi) for the period cell. Our initial data u(0, x) = u0(x) has mean

value zero,
∫

Ω u0 = 0, and this property is preserved by the dynamics. The analysis
presented here could presumably be extended to the solution of (1.1) on a polygonal
domain Ω with a suitable boundary conditions.

We expect a solution with facets, where ∇u = 0, so the PDE (1.1) is purely
formal. What we really mean is that u evolves by “H−1

per steepest descent” for the
functional

E(u) =

∫

Ω

β|∇u| + 1

p
|∇u|pdx.

∗Courant Institute of Mathematical Sciences, kohn@courant.nyu.edu. The support of NSF
through grant DMS-0313744 is gratefully acknowledged.

†IM, Universidade Federal do Rio de Janeiro, henrique@im.ufrj.br. This research was mainly
done while this author was a Visiting Member at the Courant Institute of Mathematical Sciences,
supported primarily by a grant from CNPq (Brazil). Additional support from NSF through grant
DMS-0313744 and CAPES-PRODOC fellowship is gratefully acknowledged.

1



We shall review what this means in Section 2. From the results in [19, 20] one can see
that the steepest-descent solution is the same as the one defined e.g. in [26, 18, 21]
via continuity of the chemical potential at the edge of the facet.

We are naturally not the first to consider the numerical solution of this PDE.
Numerous authors have relied on regularization, but other alternatives have also been
considered; see [18, 25, 22]. None of these methods have, to our knowledge, been
studied from a numerical analysis point of view; in other words there are no rigorous
results on their convergence rates.

In this paper we use implicit time-stepping, combined with a “mixed” finite el-
ement scheme (see e.g. [11]) for spatial approximation. Like many other authors
(see e.g. [12, 13, 14]) we use regularization to handle the singular character of the
surface energy. Since the PDE is H−1

per steepest-descent, the time-step problem min-

imizes a regularized and discretized version of E(v) + 1
2∆t‖v − un−1‖2

−1. When the
regularization parameter δ is small it is important to choose a good scheme for this
minimization problem. We use a primal-dual method introduced in [1, 7], which has
the advantage of being very efficient even when the regularization parameter is quite
small (see Section 5).

Our convergence analysis relies mostly on standard arguments for the numerical
analysis of parabolic problems. The overall strategy is to estimate separately the errors
associated with regularization, time-stepping, and spatial discretization. We do this
by first comparing u to uδ (the solution of the regularized problem), then comparing uδ

to its discrete-in-time approximation uτ
δ (obtained by solving a variational problem at

each time step), then finally comparing uτ
δ to its discrete-in-space approximation uτ,h

δ .
Our main convergence results is Theorem 4.10, which demonstrates convergence in
the natural (but rather weak) space L∞(0, T ; H−1

per). The methods needed to compare
u to uδ and uδ to uτ

δ are well-established; we follow [17] for the former and [24] for

the latter. The analysis needed to compare uτ
δ to uτ,h

δ draws some of its ideas from
the work of Barrett and Liu concerning the parabolic p-Laplacian [3].

Besides proving results about convergence, we also solve the PDE numerically. As
often happens, the numerically-observed convergence is somewhat better than what
we can prove.

Notation. Throughout the paper we use the notation ‖ · ‖s,q and | · |s,q for s ∈ [0,∞)
and q ∈ (0,∞] to denote, respectively, standard norms and seminorms associated to
Sobolev spaces W s,q(Ω). We also use the notation ‖·‖s and |·|s, for s ∈ [0,∞) to denote
respectively, standard norms and seminorms associated to Hilbert spaces Hs(Ω). We
use c to denote an arbitrary constant independent of mesh parameters and δ. Finally,
given a sequence of number an, we introduce the notation dta

n = (an − an−1)/τ , τ
representing the size of the time step.

Acknowledgement. We thank the anonymous referees for their helpful comments,
which led to substantial improvement of the paper.

2. Steepest Descent Framework. As already noted in the introduction, the
PDE (1.1) is not to be taken literally, since ∇u/|∇u| is apparently undefined on the
facets, where ∇u = 0. Our continuous-time, continuous-space solution u(x, t) is really
defined as the evolution of its initial data u0(x) under H−1

per steepest-descent for the
functional E. We explain briefly what this means in Section 2.1. Then we discuss
implicit time-stepping in Section 2.2 and the use of regularization in Section 2.3.

2.1. The steepest-descent interpretation of (1.1). The goals of this paper
are very concrete: numerical algorithms and convergence theorems for the solution
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of (1.1). The interpretation of (1.1) is by contrast a bit abstract: it requires defining
the Hilbert space H−1

per and discussing the subgradient of E. The reader who finds
this discussion uncomfortably abstract should skip to Sections 2.2 and 2.3, since as
a practical matter the only equations we ever study numerically are discrete-time,
regularized versions of (1.1).

The function space H−1
per is the dual of H1

per/R. This space is equipped with the
norm associated with the inner product

〈f, g〉−1 =

∫

Ω

〈∇(−∆−1f),∇(−∆−1g)〉 dx.

Here ∆−1 denotes the inverse of the Laplacian, and we use the fact that the Laplacian
is an isomorphism from H1

per/R to H−1
per .

We are interested in the H−1
per steepest descent of the functional

E(u) =

∫

Ω

β|∇u| + 1

p
|∇u|pdx =

∫

Ω

Φ(∇u) dx, (2.1)

defined as a special case of a much more general theory (see e.g. [6]). It is conventional
to define the domain of E by

D(E) = {v ∈ H−1
per : E(v) < ∞}. (2.2)

Since E is not differentiable, the steepest-descent evolution cannot be expressed as
ut = −∇H−1

per
E. Rather, it must be expressed in terms of the H−1

per subdifferential,

defined by

∂H−1

per
E(u) = {v ∈ H−1

per : 〈v, z − u〉−1 ≤ E(z) − E(u), for all z ∈ H−1
per}.

Kashima showed in [19] that this subgradient can be made quite explicit:

∂H−1
per

E(u) = {∆∇ · ξ : ξ(x) ∈ ∂Φ(∇u(x))}

where ∂Φ is the subgradient of the function Φ(η) = β|η| + 1
p |η|p, namely

∂Φ(η) =

{

βη/|η| + |η|p−2η if η 6= 0
{|ξ| ≤ β} if η = 0.

Thus: the steepest-descent framework interprets (1.1) by permitting ∇u/|∇u| to be
replaced by any vector of length ≤ 1 when ∇u = 0.

The general theory [6, 19] shows that for any u0 ∈ D(E) there is a unique steepest-
descent evolution starting from u0. The energy E decreases with time, and

−ut ∈ ∂H−1
per

E(u). (2.3)

2.2. Implicit-in-time approximation. A basic fact about the steepest-descent
evolution is that it can be approximated by implicit time-stepping.

Fixing a timestep τ > 0 and a time interval [0, T ], let N be the smallest integer
such that Nτ ≥ T . For n ∈ {0, 2.., N} we define the functions un recursively by
letting u0 be the initial data and letting un solve the minimization problem

min
v∈D(E)

E(v) +
‖v − un−1‖2

−1

2τ
. (2.4)
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Now define uτ (x, t) by piecewise-linear interpolation in time:

uτ = un−1 +
t − (n − 1)τ

τ

(

un − un−1
)

for t ∈ [(n − 1)τ, nτ). (2.5)

The general theory assures that uτ → u as τ → 0; the error is linear in τ , as one
naturally expects [24].

2.3. Regularization. Our numerical scheme relies on regularization. We now
examine in detail the associated error. Let ϕδ(x) be a regularization of |x|, for example

ϕδ(∇v) =
√

|∇v|2 + δ (2.6)

(the regularization we used for our numerics) and consider the regularized energy

Eδ(v) =

∫

Ω

βϕδ(∇v) +
1

p
|∇v|pdx =

∫

Ω

Φδ(∇uδ)dx. (2.7)

The associated regularized evolution uδ solves

uδt = −∆∇ · (Φ′
δ(∇uδ)) in Ω. (2.8)

with the δ-independent initial data u0 at t = 0. (Our notation is a bit informal:
Φ′

δ(∇uδ) = βϕ′
δ(∇u) + |∇u|p−2∇u represents the vector-valued function ∂Φδ/∂∇u.)

The PDE (2.8) equation amounts to H−1
per steepest-descent for Eδ.

We want to estimate the difference between uδ and u. Rather than focus on the
example (2.6), let us say more generally what constitutes a “reasonable” regularization
ϕδ. We shall assume that

0 < δ < 1; ϕδ is convex; ϕδ(x) ≤ C(|x| + |x|p + 1) for all x and

with C independent of δ; there exists α > 0 such that |ϕδ(x) − |x|| ≤ Cδα

for all x, with C independent of δ and α.

(2.9)

The second condition guarantees that the functionals Eδ and E have the same domain,
since if E(u) is finite then a fortiori ∇u ∈ Lp. The third condition specifies a rate for
the convergence ϕδ(x) → |x|.

Theorem 2.1. Let u and uδ be the solutions of Equations (1.1) and (2.8),
respectively. Assume that the regularization satisfies (2.9). Then

ess sup
t∈[0,T ]

‖u(t) − uδ(t)‖−1 ≤ c
√

Tδα/2. (2.10)

Proof. The argument is almost the same as used in [17] to prove that paper’s
Theorem 2; the only difference is that we are considering an H−1

per steepest descent
rather than an L2 steepest descent.

Remark 2.2. The regularization we use in our numerical work, (2.6), satisfies
|ϕδ(x) − |x|| ≤ δ1/2; thus (2.9) holds with α = 1/2.

3. Discretization using Finite Elements. This section introduces a conve-
nient spatial discretization using piecewise-linear finite elements and a mixed formula-
tion. Section 3.1 lays the foundation introducing a mixed formulation of the time-step
variational problem. Section 3.2 discusses the associated finite element scheme. Fi-
nally, Section 3.3 introduces modifications associated with the primal-dual scheme.
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3.1. A mixed variational formulation. Section 2 discussed implicit time step-
ping and regularization separately, but we want to use them together. So our goal is
to discretize the timestep variational problems, which define un

δ recursively by solving

min
v∈D(E)

‖v − un−1
δ ‖2

−1

2τ
+ Eδ(v) (3.1)

with u0
δ = u0. The functions un

δ determine a spatially-continuous approximate solu-
tion uτ

δ of our PDE by linear interpolation:

uτ
δ = un−1

δ +
t − (n − 1)τ

τ

(

un
δ − un−1

δ

)

for t ∈ [(n − 1)τ, nτ). (3.2)

The optimality condition for (3.1) is

〈u
n
δ − un−1

δ

τ
, v〉−1 = −

∫

Ω

Φ′
δ(∇un

δ ) · ∇v dx ∀v ∈ D(E). (3.3)

One might be tempted to ask that the finite-element version of un
δ satisfy (3.3) for

all v in the finite-element space. But this is not convenient, because the H−1 inner
product of two finite-element functions is nonlocal and laborious to compute.

This difficulty is familiar: the same issue arises when discretizing the biharmonic
equation. The solution is also familiar: one can avoid the use of negative norms by
introducing a “mixed formulation,” see e.g. [11, 16]. In the present setting the mixed
formulation of (3.3) is this: given un−1

δ ∈ D(E), find ũn
δ ∈ D(E) and wn

δ ∈ H1
per(Ω)/R

such that
∫

Ω

ũn
δ − un−1

δ

τ
v dx =

∫

Ω

∇wn
δ · ∇v dx ∀v ∈ H1

per(Ω)/R (3.4)

∫

Ω

wn
δ φdx = −

∫

Ω

Φ′
δ(∇ũn

δ ) · ∇φdx ∀φ ∈ D(E).

We state the equivalence as a lemma:
Lemma 3.1. If un

δ solves (3.3), then the unique solutions ũn
δ and wn

δ of (3.4)
are ũn

δ = un
δ and wn

δ = ∇ · Φ′
δ(∇un

δ ).
Proof. The result follows easily from the definitions.

3.2. FEM approximation. Let T h(Ω) be a regular partition of the domain Ω
by triangular elements Ki. Our finite element space is

V h(Ω) =
{

φ ∈ H1
per(Ω) : φ|Ki

∈ P1(Ki) for all i and
∫

Ω
φdx = 0

}

,

where P1(Ki) is the space of polynomials of degree less than or equal to 1. Note that
V h(Ω) ⊂ D(E).

The Galerkin approximation un,h
δ of un

δ is defined recursively as follows. When

n = 0, u0,h
δ = u0,h = Ihu0 −

∫

Ω
Ihu0 dx, where Ih : D(E) → V h(Ω) is a suitable

finite element interpolation operator. Here depending on the regularity of v, the
interpolation Ihv in V h(Ω) is obtained either by a standard pointwise interpolation
(if v is continuous) or by a local averaging procedure (if v is not continuous; see [9]).

Given un−1,h
δ , we determine un,h

δ by asking that un,h
δ , wn,h

δ ∈ V h(Ω) solve

∫

Ω

un,h
δ − un−1,h

δ

τ
vh dx =

∫

Ω

∇wn,h
δ · ∇vh dx ∀vh ∈ V h(Ω) (3.5)

∫

Ω

wn,h
δ φh dx = −

∫

Ω

Φ′
δ(∇un,h

δ ) · ∇φh dx ∀φh ∈ V h(Ω).
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To show that this problem has a unique solution, we argue as Barrett, Blowey, and
Garcke did in [4] for a different nonlinear fourth-order problem. Define the discrete
inverse Laplacian ∆−1,h : H−1

per → V h(Ω) by

∫

Ω

∇(−∆−1,hv) · ∇φh dx =

∫

vφhdx, ∀φh ∈ V h(Ω). (3.6)

Note that ∆−1,hv ∈ V h(Ω) exists and is unique for any v ∈ H−1
per (we use here the fact

that the functions in H−1
per have mean value zero). We also define the inner product

〈·, ·〉−1,h on H−1
per , and the norm associated with it by

〈φ, v〉−1,h =

∫

Ω

∇(∆−1,hφ) · ∇(∆−1,hv) dx, ‖v‖−1,h = 〈v, v〉1/2
−1,h (3.7)

Lemma 3.2. Given un−1,h
δ ∈ V h(Ω) the problem (3.5) has a unique solution

un,h
δ and wn,h

δ ∈ V h(Ω); moreover un,h
δ solves the variational problem

min
v∈V h(Ω)

‖v − un−1,h
δ ‖2

−1,h

2τ
+ Eδ(v). (3.8)

and satisfies, for every vh ∈ V h(Ω)

〈dtu
n,h
δ , vh〉−1,h = −

∫

Ω

(βϕ′
δ(∇un,h

δ ) + |∇un,h
δ |p−2∇un,h

δ ) · ∇vhdx. (3.9)

Proof. One verifies using the definitions and injectivity of the map ∆−1,h :
V h(Ω) → V h(Ω) that (3.5) and (3.9) are equivalent, and that they are the first-order
optimality conditions for the variational problem (3.8). Existence and uniqueness
follow, using the strict convexity of (3.8).

As usual, the functions un,h
δ determine an approximate solution uτ,h

δ of our PDE
by linear interpolation:

uτ,h
δ = un−1,h

δ +
t − (n − 1)τ

τ

(

un,h
δ − un−1,h

δ

)

for t ∈ [(n − 1)τ, nτ). (3.10)

The rest of this subsection develops some properties of the inner product 〈·, ·〉−1,h

and the norm ‖ · ‖−1,h which will be needed for our convergence analysis.
Lemma 3.3. Let v ∈ L2(Ω) and φ ∈ H−1

per. Then

|〈φ, v〉−1 − 〈φ, v〉−1,h| ≤ ch‖φ‖−1‖v‖0, (3.11)

and

|‖v‖−1 − ‖v‖−1,h| = ‖v‖−1 − ‖v‖−1,h ≤ ch‖v‖0. (3.12)

Proof. From the definition of the inner product we have

〈φ, v〉−1 − 〈φ, v〉−1,h =

∫

Ω

φ(−∆−1v + ∆−1,hv) dx ≤ ‖φ‖−1‖∆−1v − ∆−1,hv‖1.

Inequality (3.11) follows from easily, using the standard finite element error estimate

‖∆−1v − ∆−1,hv‖1 ≤ ch‖∆−1v‖2 ≤ ch‖v‖0.
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Next we show that ‖v‖−1,h ≤ ‖v‖−1. Indeed, −∆−1v and −∆−1,hv minimize
the functional I(z) = |z|21/2 − 〈v, z〉 on H1

per(Ω)/R and V h(Ω) respectively. There-

fore I(−∆−1v) ≤ I(−∆−1,hv). Since I(−∆−1v) = −‖v‖2
−1/2 and I(−∆−1,hv) =

−‖v‖2
−1,h/2 it follows that ‖v‖−1,h ≤ ‖v‖−1.

Finally we show (3.12). Arguing as for the proof of (3.11) we find that

∣

∣‖v‖2
−1 − ‖v‖2

−1,h

∣

∣ ≤ ch2‖v‖2
0.

This implies (3.12) since (‖v‖−1 − ‖v‖−1,h)2 ≤ ‖v‖2
−1 − ‖v‖2

−1,h (using the fact that
0 ≤ ‖v‖−1,h ≤ ‖v‖−1).

3.3. Numerical Implementation. We now discuss how to solve the discretized
problem (3.5). When δ is relatively large this can be done by minimizing (3.8) using an
iterative optimization scheme such as Newton’s method. When δ gets small however
that works poorly, due to the nearly-singular character of the energy. We obtained
better results using a version of the primal-dual method introduced in [1, 7]. The
basic idea in a continuous-space setting is to introduce the new unknown

zn
δ =

∇un
δ

√

|∇un
δ |2 + δ

.

The system (3.3) can then be written as

〈u
n
δ − un−1

δ

τ
, v〉−1 = −

∫

Ω

(βzn
δ + |∇un

δ |p−2∇un
δ ) · ∇v dx ∀v ∈ D(E) (3.13)

zn
δ

√

|∇un
δ |2 + δ = ∇un

δ .

and we can use Newton’s method to solve for zn
δ and un

δ simultaneously. The advantage
of this scheme is that it remains robust when δ is small. In particular, the number of
Newton iterations required to solve (3.13) is almost independent of δ; see Subsection
5.1.

To implement this idea in our discrete finite-element setting, we take advantage
of the fact that our finite elements are piecewise linear. Therefore

zn,h
δ =

∇un,h
δ

√

|∇un,h
δ |2 + δ

(3.14)

is constant on each element.

The discrete version of (3.13) is obtained as follows. We focus for simplicity
on the case p = 3 (the exponent of primary physical interest) and Ω = (0, 1) (one-
dimensional dynamics, representing the evolution of a two-dimensional staircase; the
case Ω = (0, 1)×(0, 1) is similar). Our finite-element space V h(Ω) consists of piecewise
linear, mean-zero, periodic functions on a uniform mesh of size h = 1/M ; each function

in V h(Ω) has the form
∑M

i=1 αiφi where
∑M

i=1 αi = 0 and {φi}M
i=1 is the periodic

piecewise linear function that equals 1 at the ith node and 0 at the other nodes for
i 6= 1 and φ1 has value 1 at x = 0 and x = 1 and vanishes at the other nodes. The
functions zn,h belong to the space of functions that are constant on each interval; the
general form of such a function is

∑M
i=1 ηiσi where σi is equal to 1 on the ith interval

and 0 on the others:
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Suppose un,h
δ =

∑M
i=1 αn

i φi with
∑M

i=1 αn
i = 0 and zn,h

δ =
∑

ηn
i σi. Then, for

p = 3 we obtain the following discrete version of (3.13)

M
∑

i=1

(

dtα
n
i 〈φi, φj〉−1,h +

∫

Ω

βηn
i σi · ∇φj + αn

i |
∑

k

αn
k∇φk|∇φi · ∇φj dx

)

= 0

(

∑

i

ηiσi

)





√

|
∑

k

αn
k∇φk|2 + δ



 =
∑

k

αn
k∇φk

for all j. We solve this nonlinear system (subject to the constraint
∑

αi = 0) by
Newton’s method. The implementation is straightforward, since its Jacobian is easily
accessible.

4. Convergence Analysis for the FEM. This section studies the convergence
of our finite element scheme. We shall assume that the discretized problem (3.9) is
solved exactly. Our main result is Theorem 4.10, which estimates the error between
the the exact solution u (with δ = 0) and its numerical approximation uτ,h

δ , in the
norm ‖ · ‖L∞(0,T ;H−1

per).

There are three sources of error: regularization, time-stepping, and spatial dis-
cretization. We shall estimate them separately, using the triangle inequality

‖u − uτ,h
δ ‖ ≤ ‖u − uδ‖ + ‖uδ − uτ

δ‖ + ‖uτ
δ − uτ,h

δ ‖.

We already estimated the first term on the right, in Theorem 2.1. An estimate for
the second term is available from the existing literature (see Theorem 4.1). The main
task of this section is thus to handle the spatial discretization error.

To analyze the effect of discretization in time, we observe that for δ > 0 the H−1

subgradient ∂H−1
per

Eδ has just one element, namely ∆∇ · Φ′
δ(∇u). Abusing notation

slightly, we shall write ∂Eδ(u) = ∆∇ · Φ′
δ(∇u) in what follows. The standard tools

for controlling the time discretization error of a steepest descent are the resolvent and
the Yosida approximation of the associated operator, which in the present setting are
respectively

Jδ
λ = (I + λ∂Eδ)

−1 and Aδ
λ =

1

λ
(I − Jδ

λ). (4.1)

Here I is the identity operator and λ > 0; for more properties of these operators
see [6, 15]. The following theorem estimates the time discretization error, i.e. the
difference between uδ and uτ

δ :
Theorem 4.1. Let uδ and uτ

δ be defined by Equations (2.8) and (3.2), and set
uτ

δ (s) = un−1
δ for (n − 1)τ ≤ s < nτ . Then

‖uδ(t) − uτ
δ (t)‖2

−1 + 4

∫ t

0

(Aδ
τ (uτ

δ (t)) − ∂Eδ(uδ(t)), J
δ
∆t(u

τ
δ (t)) − uδ(t)) dt

+ τ

∫ t

0

‖∂Eδ(uδ(t)) − Aδ
τ (uτ

δ (t))‖2
−1 dt ≤ Cτ2‖∂Eδ(u

0)‖2
−1 (4.2)

for all t ∈ [0, T ]. The constant C depends on T but not on δ or ∆t.
Proof. This is essentially Theorem 5 of [24]. The only difference is that in the

result just cited, the term ‖uδ(t) − uτ
δ (t)‖2

−1 on the left side of (4.2) is replaced by
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‖uδ(t) − uτ
δ (t)‖2

−1. However, it easy to see that the argument in [24] also proves our
assertion.

While the constant in (4.2) is independent of δ, the right hand side nevertheless
depends on δ through the term ‖∂Eδ(u

0)‖−1. The following Lemma shows that this
dependence is at worst proportional to 1/δ when the initial data are smooth enough.
(This would not be the case for faceted initial data, but it would be the case for
example if u0(x) = c sin(x).)

Lemma 4.2. Assume ϕδ is given by (2.6), 0 < δ ≤ 1, and p ≥ 3. If the spatial
dimension is d ≤ 4 then for any v ∈ H3(Ω) we have

‖∂Eδ(v)‖−1 ≤ b(‖v‖3)

δ
(4.3)

where b(·) is a polynomial of degree less or equal than p. Moreover in any space
dimension we have a similar statement for any v ∈ W 3,4(Ω), with the RHS of the last

inequality replaced by
b(‖v‖3,4)

δ . Where b(·) is a polynomial of degree less than or equal
to p.

Proof. To simplify the exposition we focus on the proof of (4.3) in space dimension
one (the arguments for d > 1 are similar). We have

‖∂Eδ(v)‖−1 =

[∫

Ω

(Φ′
δ(vx))2xx dx

]1/2

=

[∫

Ω

(

βvxxx

(v2
x + δ)1/2

− βv2
xvxxx

(v2
x + δ)3/2

− 3
βvxv2

xx

(v2
x + δ)3/2

+ 3
βv3

xv2
xx

(v2
x + δ)5/2

+ (|vx|p−2vx)xx

)2

dx

]1/2

≤ 2
β|v|3
δ1/2

+ 6
β|v|22,4

δ
+ ‖(|vx|p−2vx)xx‖0. (4.4)

Here we have used the triangle inequality and an L∞ bound for the terms of the form
va0

x /(|vx|2 + δ)a1 to obtain the last line. For instance, the term |βvxxx/(v2
x + δ)1/2|

is bounded by |βvxxxδ−1/2|. To estimate the last term of the above inequality, we
observe that the function f(s) = |s|p−2s has derivative

f ′(s) = (p − 1)|s|p−2 if s 6= 0.

Therefore f ′ is continuous if p ≥ 2 and f ′′ is bounded at s = 0 if p ≥ 3, and

‖(|vx|p−2vx)xx‖0 = (p − 1)(p − 2)‖vp−3
x ‖0.

Combining these observations with (4.4) we easily obtain (4.3) from the hypothesis
v ∈ H3(Ω) and an application of the Sobolev inequality.

Remark 4.3. Theorem 4.1 and Lemma 4.2 give ‖uδ(t) − uτ
δ (t)‖−1 ≤ c τ

δ .
We turn now to the main task of this section: estimation of the spatial discretiza-

tion error.
The following result is Lemma 2.2 from [3]. It will be used to prove Lemma 4.5,

and also for handling the term |∇u|p−2∇u in the proof of Lemma 4.7.
Lemma 4.4. For any p ∈ (1,∞), ǫ ≥ 0 and d ≥ 1 there exist positive constants

c1 and c2 such that: for all ξ, η ∈ R
d,

||ξ|p−2ξ − |η|p−2η| ≤ c1|ξ − η|1−ǫ(|ξ| + |η|)p−2+ǫ (4.5)
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and

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ c2|ξ − η|2+ǫ(|ξ| + |η|)p−2−ǫ.

Our next result bounds dtu
n
δ = (un

δ − un−1
δ )/τ and dtu

n,h
δ = (un,h

δ − un−1,h
δ )/τ in

the norms ‖ · ‖−1 and ‖ · ‖−1,h. We will use it in the proof of Lemma 4.7.

Lemma 4.5. Let un
δ and un,h

δ be defined by (3.3) and (3.9). Assume ϕδ satisfies
(2.9). Then there exists a constant c > 0 independent of τ , h and δ such that

‖dtu
n
δ ‖−1 ≤ ‖∂Eδ(u

0)‖−1, ‖dtu
n,h
δ ‖−1,h ≤ ‖dtu

1,h
δ ‖−1,h ≤ c

τ1/2
(4.6)

Furthermore, if u0 satisfies Lemma 4.2’s hypothesis, and ϕδ is given by (2.6), then

‖dtu
1,h
δ ‖−1,h ≤ cκτ,h

δ (4.7)

where

κτ,h
δ = min

[ |u0,h − u0|1,∞

h2−(d/2)
(

1

δ1/2
+ |u0|p−2

1,∞) + ‖∇ · Φ′
δ(u0)‖1,

c

τ1/2

]

(4.8)

Proof. To prove the first inequality of (4.6), recall the nonlinear resolvent operator
defined by (4.1). Clearly

un
δ = (Jδ

τ )nu0,

and applying the contraction property of Jδ
τ (see for example Theor. 2 pg 526 of [15])

we obtain

‖un
δ − un−1

δ ‖−1 ≤ ‖(Jδ
τ )n−1u0

δ − (Jδ
τ )n−2u0

δ‖−1 ≤ ‖Jδ
τ u0

δ − u0
δ‖−1.

We now observe that Jδ
τ u0

δ − u0
δ = τAδ

τu0. Finally, from the properties of the Yosida
approximation we have ‖Aδ

τu0‖−1 ≤ ‖∂Eδ(u
0)‖−1.

Turning now to the second inequality of (4.6), we begin by showing that ‖un,h
δ −

un−1,h
δ ‖−1,h ≤ ‖un−1,h

δ − un−2,h
δ ‖−1,h. Recall from (3.9) that

〈dtu
n,h
δ , vh〉−1,h = −

∫

Ω

Φ′
δ(∇un,h

δ ) · ∇vh dx

and

‖un−1,h
δ − un−2,h

δ ‖2
−1,h = ‖un,h

δ − un−1,h
δ − (un,h

δ − un−1,h
δ ) + un−1,h

δ − un−2,h
δ ‖2

−1,h

= ‖un,h
δ − un−1,h

δ ‖2
−1,h + ‖un,h

δ − 2un−1,h
δ + un−2,h

δ ‖2
−1,h

+ 2τ

∫

Ω

(Φ′
δ(∇un,h

δ ) − Φ′
δ(∇un−1,h

δ )) · ∇(un,h
δ − un−1,h

δ ) dx

≥ ‖un,h
δ − un−1,h

δ ‖2
−1,h,

where we have used (3.9) to obtain the second equation, and the last inequality follows

from the convexity of Φδ. Finally, we estimate ‖dtu
1,h
δ ‖−1,h using the steepest descent
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feature of the problem (‖dtu
1,h
δ ‖2

−1,h ≤ Eδ(u
0,h)/τ ; see (3.8)), and the stability of the

FEM interpolation operator.
Next we prove inequality (4.7). Let w0,h

δ ∈ V h(Ω) be defined by

∫

Ω

w0,h
δ φhdx = −

∫

Ω

Φ′
δ(∇u0,h) · ∇φh dx ∀φh ∈ V h(Ω), (4.9)

and let w0
δ = ∇ · Φ′

δ(∇u0). Using Equation (3.9), and adding and subtracting the

term
∫

Ω
Φ′

δ(∇u0,h) · ∇dtu
1,h
δ dx we obtain

‖dtu
1,h
δ ‖2

−1,h =

∫

Ω

−(Φ′
δ(∇u1,h

δ ) − Φ′
δ(∇u0,h)) · ∇dtu

1,h
δ − Φ′

δ(∇u0,h) · ∇dtu
1,h
δ dx

≤ −
∫

Ω

Φ′
δ(∇u0,h) · ∇dtu

1,h
δ dx, by the convexity of Φδ

≤
∫

Ω

(w0,h
δ − P h

0 w0
δ )dtu

1,h
δ + P h

0 w0
δ · dtu

1,h
δ dx, by (4.9)

≤ (‖w0,h
δ − P h

0 w0
δ‖1 + ‖P h

0 w0
δ‖1)‖dtu

1,h
δ ‖−1,h (4.10)

where P h
0 denotes the L2 projection on V h(Ω). The last inequality comes from the

fact that if f, g ∈ V h(Ω), then
∫

Ω
fg dx =

∫

Ω
∇f · ∇(−∆−1,hg) dx ≤ |f |1‖g‖−1,h.

The first term on the right hand side of the last inequality is estimated as follows.
We first apply an inverse estimate (see Lemma 4.5.3 of [5]):

‖v‖m,r ≤ chl−m+(d/r)−(d/s)‖v‖l,s ∀v ∈ V h(Ω) (4.11)

to obtain

‖w0,h
δ − P h

0 w0
δ‖1 ≤ ch−1‖w0,h

δ − P h
0 w0

δ‖0.

Then we use a basic property of the L2 projection, and integration by parts to obtain

‖w0,h
δ − P h

0 w0
δ‖2

0 =

∫

Ω

(w0,h
δ − w0

δ )(w0,h
δ − P h

0 w0
δ ) dx

= −
∫

Ω

(Φ′
δ(∇u0,h) − Φ′

δ(∇u0)) · ∇(w0,h
δ − P h

0 w0
δ) dx

≤ c|u0,h − u0|1,∞(
1

δ1/2
+ (|u0,h|1,∞ + |u0|1,∞)p−2)‖w0,h

δ − P h
0 w0

δ‖1,1 by (4.5)

≤ c|u0,h − u0|1,∞(
1

δ1/2
+ |u0|p−2

1,∞)h−1+d/2‖w0,h
δ − P h

0 w0
δ‖0.

To obtain the last inequality we used the stability of the finite element interpolation
operator, i.e. the estimate |u0,h|1,∞ ≤ c|u0|1,∞, combined with (4.11).

The second term on right hand side of (4.10) can be estimated as follows. From
the stability property of the L2 projector we have ‖P h

0 w0
δ‖1 ≤ c‖w0

δ‖1. Substituting
the preceding results into (4.10) we confirm (4.8).

The following standard result will be needed to handle the term |∇u|p−2∇u in
the proof of Lemma 4.7.

Lemma 4.6. For any p ∈ (1,∞) there exists ǫ0 > 0 with the following property:
for any ǫ ∈ (0, ǫ0) and any a, b, c ≥ 0 we have

(a + b)p−2bc ≤ ǫ(a + b)p−2b2 + C(ǫ, p)(a + c)p−2c2
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for some constant C(ǫ, p) (independent of a, b, c).

Proof. This is Lemma 2.3 from [3].

The heart of any convergence theory for a Galerkin method is an estimate of the
error in terms of the best approximation of the solution in the Galerkin space. Our
next result provides such a estimate. The first term on the RHS of (4.13) comes from
the fact that we use the norm ‖ · ‖−1,h to approximate the norm ‖ · ‖−1 in (3.1).

Lemma 4.7. Let un
δ and un,h

δ be defined as usual by (3.3) and (3.9). The

regularization need not be ϕδ(z) =
√

|z|2 + δ, but we assume it satisfies

|ϕ′
δ(z)| ≤ c0, ∀z ∈ R

d, (4.12)

for some constant c0 and (2.9). Let en
δ = un

δ − un,h
δ . Then there exists constants

c, γ > 0 and independent of τ , h and δ, such that for any vh ∈ V h(Ω) we have

‖en
δ ‖2

−1,h

τ
+ γ

∫

Ω

(|∇un
δ | + |∇en

δ |)p−2|∇en
δ |2 dx (4.13)

≤ ch‖∂Eδ(u
0)‖−1 + cντ,h

δ ‖un
δ − vh‖−1 + c

∫

Ω

|∇(un
δ − vh)| dx

+ c

∫

Ω

(|∇un
δ | + |∇(un

δ − vh)|)p−2|∇(un
δ − vh)|2 dx +

‖en−1
δ ‖−1,h

τ
‖en

δ ‖−1,h

where ντ,h
δ = cτ−1/2. Furthermore, if u0 satisfies Lemma 4.2’s hypothesis, and ϕδ is

given by (2.6), then ντ,h
δ = κτ,h

δ ; see (4.8).

Proof. From (3.3) and (3.9) we obtain

〈dtu
n
δ−dtu

n,h
δ , en

δ 〉−1,h = 〈dtu
n
δ , en

δ 〉−1,h −〈dtu
n
δ , en

δ 〉−1+〈dtu
n
δ , en

δ 〉−1−〈dtu
n,h
δ , en

δ 〉−1,h

= 〈dtu
n
δ , en

δ 〉−1,h − 〈dtu
n
δ , en

δ 〉−1 −
∫

Ω

(Φ′
δ(∇un

δ ) − Φ′
δ(∇un,h

δ )) · ∇en
δ dx

− 〈dtu
n,h
δ , un

δ 〉−1,h −
∫

Ω

Φ′
δ(∇un,h

δ ) · ∇un
δ dx.

Let vh be an arbitrary element of V h(Ω). Adding and subtracting
∫

Ω
(Φ′

δ(∇un
δ ) −

Φ′
δ(∇un,h

δ )) · ∇vh dx on the right hand side of the preceding equation, moving the
third term on the right hand side to the left side, and using the convexity of ϕδ we
obtain

〈dtu
n
δ − dtu

n,h
δ , en

δ 〉−1,h +

∫

Ω

(|∇un
δ |p−2∇un

δ − |∇un,h
δ |p−2∇un,h

δ ) · ∇en
δ dx

≤ 〈dtu
n
δ , en

δ 〉−1,h − 〈dtu
n
δ , en

δ 〉−1 + 〈dtu
n
δ , un

δ − vh〉−1

− 〈dtu
n,h
δ , un

δ − vh〉−1,h −
∫

Ω

(Φ′
δ(∇un

δ ) − Φ′
δ(∇un,h

δ )) · ∇(un
δ − vh) dx.

We now use Lemma 4.4, the fact that the terms |∇un
δ | + |∇en

δ | and |∇un
δ | + |∇un,h

δ |
are equivalent, and (4.12) to estimate the second term on LHS and the fifth term on
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the RHS of the above inequality, obtaining

〈dtu
n
δ − dtu

n,h
δ , en

δ 〉−1,h + γ

∫

Ω

(|∇un
δ | + |∇en

δ |)p−2|∇en
δ |2 dx

≤ 〈dtu
n
δ , en

δ 〉−1,h − 〈dtu
n
δ , en

δ 〉−1 + 〈dtu
n
δ , un

δ − vh〉−1

− 〈dtu
n,h
δ , un

δ − vh〉−1,h + c

∫

Ω

(1 + (|∇un
δ | + |∇en

δ |)p−2|∇en
δ |)|∇(un

δ − vh)| dx.

Next we use Lemmas 3.3 and 4.5 to estimate the sum of the first four terms on the
right hand side of the last inequality, obtaining

‖en
δ ‖2

−1,h

τ
+ γ

∫

Ω

(|∇un
δ | + |∇en

δ |)p−2|∇en
δ |2 dx

≤ ch‖∂Eδ(u
0)‖−1‖en

δ ‖1 + cντ,h
δ ‖un

δ − vh‖−1

+ c

∫

Ω

(1 + (|∇un
δ | + |∇en

δ |)p−2|∇en
δ |)|∇(un

δ − vh)| dx +
‖en−1

δ ‖−1,h

τ
‖en

δ ‖−1,h.

Now we estimate the term ‖en
δ ‖1 that appears in the first term on the RHS of the last

inequality. Taking v = un−1
δ in (3.1) we obtain

‖dtu
n
δ ‖2

−1 + 2Eδ(u
n
δ ) ≤ 2Eδ(u

n−1
δ ), (4.14)

hence Eδ(u
n
δ ) ≤ Eδ(u

0) ≤ c(E(u0) + 1). From (3.8) we obtain similar bound for

Eδ(u
n,h
δ ). Therefore

‖en
δ ‖1 ≤ ‖un

δ ‖1 + ‖un,h
δ ‖1 ≤ c(E(u0) + E(u0,h) + 1) ≤ c.

where we have used a Poincare and Sobolev inequality, and (for the last inequality)
the stability of the finite element interpolation operator.

We finally obtain

‖en
δ ‖2

−1,h

τ
+ γ

∫

Ω

(|∇un
δ | + |∇en

δ |)p−2|∇en
δ |2 dx

≤ ch‖∂Eδ(u
0)‖−1 + cντ,h

δ ‖un
δ − vh‖−1

+ c

∫

Ω

(1 + (|∇un
δ | + |∇en

δ |)p−2|∇en
δ |)|∇(un

δ − vh)| dx +
‖en−1

δ ‖−1,h

τ
‖en

δ ‖−1,h. (4.15)

Applying Lemma 4.6 to the third term on the right hand side of (4.15) gives the
desired result (4.13).

The following auxiliary Lemma will be used in the proof of Proposition 4.9.
Lemma 4.8. Let {ai}M

i=0 be a sequence of positive real numbers satisfying, for
some γ > 0, a2

i ≤ τγ+aiai−1, for i = 1, 2, .., M . Assume furthermore that a0 ≤ γ1/2.
Then ai ≤ (iτ + 1)γ1/2, for i = 0, 1, .., M .

Proof. We argue by induction. The result holds for i = 0 by hypothesis. Assuming
the result is true for i, we now prove it for i + 1: If ai+1 ≤ γ1/2 we are done. If
ai+1 > γ1/2 then from hypothesis we have a2

i+1 ≤ τai+1γ
1/2 + ai+1ai; dividing both

sides by ai+1 and using the induction hypothesis to estimate ai we conclude that
ai+1 ≤ (τ(i + 1) + 1)γ1/2.
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The following proposition is our main estimate for the spatial discretization error.
It controls en

δ = un
δ −un,h

δ in the norm ‖ ·‖−1,h and the seminorm | · |1,p. It also allows
us to estimate en

δ in the H−1
per norm through Lemma 3.3.

Proposition 4.9. Let un
δ and un,h

δ be defined by as usual by (3.3) and (3.9).
Assume ϕδ satisfies (2.9) and (4.12). Then there exists a constant c > 0 independent
of n, τ , h and δ, such that

‖en
δ ‖2

−1,h ≤ cρτ,h
δ (4.16)

where

ρτ,h
δ = h‖∂Eδ(u

0)‖−1 + max
n≤N

inf
vh∈V h(Ω)

(

ντ,h
δ ‖un

δ − vh‖−1 (4.17)

+

∫

Ω

|∇(un
δ − vh)| + (|∇un

δ | + |∇(un
δ − vh)|)p−2|∇(un

δ − vh)|2 dx

)

where ντ,h
δ = cτ−1/2. Furthermore, if u0 satisfies Lemma 4.2’s hypothesis, and ϕδ is

given by (2.6), then ντ,h
δ = κτ,h

δ ; see (4.8). Also,

‖∇en
δ ‖p

Lp ≤ cντ,h
δ (ρτ,h

δ )1/2 + cρτ,h
δ . (4.18)

Proof. The first inequality (4.16) is an immediate consequence of (4.13) and
Lemma 4.8. As for the second inequality (4.18): subtracting ‖en

δ ‖2
−1,h/τ from both

sides of (4.13) gives

∫

Ω

|∇en
δ |p dx ≤ ‖dte

n
δ ‖−1,h‖en

δ ‖−1,h + ch‖∂Eδ(u
0)‖−1 + cντ,h

δ ‖un
δ − vh‖−1

+ c

∫

Ω

|∇(un
δ − vh)| + (|∇un

δ | + |∇(un
δ − vh)|)p−2|∇(un

δ − vh)|2 dx. (4.19)

We estimate the first term on the RHS of the last inequality using (4.16) and the
following inequality:

‖dte
n
δ ‖−1,h ≤ ‖dtu

n
δ ‖−1,h + ‖dtu

n,h
δ ‖−1,h ≤ cντ,h

δ .

Here, to obtain the last inequality we have used Lemma (4.5), the steepest descent
estimate ‖dtu

n
δ ‖−1 ≤ cτ−1/2, and the fact that ‖∂Eδ(u

0)‖−1 ≤ ‖∇ · Φ′
δ(u

0)‖1. We
estimate the second and third terms on the RHS of (4.19) using (4.16) and (4.17).
This leads directly to (4.18).

We now combine our estimates for the errors due to regularization, implicit time
stepping, and spatial discretization. The following theorem bounds the error between
the unregularized continuum solution u and its numerical approximation uτ,h

δ , in the
‖ · ‖L∞(0,T ;H−1

per) norm.

Theorem 4.10. Let u and uτ,h
δ be defined by (1.1) and (3.10), respectively.

Assume ϕδ satisfies (2.9) and (4.12). Then there exists a constant c independent of
τ , h, δ, such that

ess sup
t∈[0,T ]

‖u(t) − uτ,h
δ (t)‖−1 ≤ c

(

T 1/2δ1/4 + τ‖∂Eδ(u
0)‖−1 + (ρτ,h

δ )1/2
)
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where ρτ,h
δ is defined by Equation (4.17). Furthermore, if u0 satisfies Lemma 4.2’s

hypothesis, and ϕδ is given by (2.6), then we may take ντ,h
δ = κτ,h

δ in the definition

of ρτ,h
δ ; see (4.8) and (4.17).
Proof. We use the triangle inequality to obtain

‖u(t) − uτ,h
δ (t)‖−1 ≤ ‖u(t) − uδ(t)‖−1 + ‖uδ(t) − uτ

δ (t)‖−1

+ ‖uτ
δ (t) − uτ,h

δ (t)‖−1 − ‖uτ
δ (t) − uτ,h

δ (t)‖−1,h + ‖uτ
δ (t) − uτ,h

δ (t)‖−1,h.

The first, second, and the fourth terms on the RHS of the last inequality can be
estimated using Theorem 2.1 and Remark 2.2, Theorem 4.1, and Proposition 4.9
respectively. The third term on the RHS of the last inequality is estimated as follows:
first use inequality (3.12) to obtain

|‖uτ
δ (t) − uτ,h

δ (t)‖−1 − ‖uτ
δ (t) − uτ,h

δ (t)‖−1,h| ≤ ch‖uτ
δ (t) − uτ,h

δ (t)‖1. (4.20)

Next use a Sobolev inequality, the steepest descent feature of the Equation (2.8),
(4.14), and a Poincare inequality to obtain

‖uτ
δ (t) − uτ,h

δ (t)‖1 ≤ c‖uτ
δ (0) − uτ,h

δ (0)‖1,p ≤ c‖u0‖1,p

(for the last inequality we used the stability property of the finite element interpolation
operator, i.e. the fact that ‖u0,h‖1,p ≤ c‖u0‖1,p). This gives the desired result.

As usual in the finite element method, the convergence rate depends on the regu-
larity of the exact solution. Alas, we do not know very much about the undiscretized
time-step problem (3.3). In the next Corollary we assume some reasonable-sounding
hypotheses about the regularity of un

δ . Using those hypotheses, we provide an estimate

for the term ρτ,h
δ .

Corollary 4.11. Let u and uτ,h
δ be the solutions of Equations (1.1) and (3.10),

respectively, and d be the dimension of Ω. Assume p ≥ 3, u0 ∈ H3(Ω) ∩ W 2,∞(Ω),
d ≤ 4, ϕδ is defined by (2.6), and un

δ ∈ W r,l(Ω) ∩ W 1,∞(Ω), 1 < r ≤ 2, with

‖un
δ ‖1,∞, ‖un

δ ‖r,l, ‖u0‖3, ‖u0‖2,∞ ≤ γmax

for some constant γmax independent of δ, τ and n. Then there exists a constant c
independent of τ , h, δ, such that

ess sup
t∈[0,T ]

‖u(t)−uτ,h
δ (t)‖−1 ≤ T 1/2δ1/4+

τ

δ
b(γmax)+

[

ζτ,h
δ hθ1 +

h

δ
+ hθ2

]
1

2

b(γmax).

(4.21)
Here

ζτ,h
δ = min

[(

hd/2−1

δ1/2
+

1

δ

)

c,
c

τ1/2

]

, (4.22)

θ1 =
d

sd
− d

l
+ r and θ2 = min

[

d − d

l
+ r − 1, d − 2d

l
+ 2r − 2

]

, (4.23)

where sd = 1 if d = 1, sd > 1 if d = 2, or sd = 2d/(2 + d) if d ≥ 3; b(·) denotes a
suitable polynomial of degree less or equal than p, whose coefficients are independent
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of τ , h and δ. (The value of sd changes with dimension due to a Sobolev inequality
used in the proof. We obtain a better estimate in lower dimensions. The value of
b(γmax) depends on the choice of sd, since it incorporates the constant of the Sobolev
inequality. When d = 2 we are free to choose any sd > 1. However, in this case
b(γmax) → ∞ as sd → 1.)

Proof. We first estimate the term ρτ,h
δ , defined by (4.17). The first term on the

right side of (4.17) is estimated by Lemma 4.2: h‖∂Eδ(u
0)‖−1 ≤ hδ−1b(γmax). To

estimate the second term on the RHS of (4.17), we use the following property of the
standard finite element interpolation operator Ih:

‖v − Ihv‖s,q ≤ ch(d/q)−(d/l)+r−s‖v‖r,l for s ≤ 1, if W s,q(Ω) →֒ W r,l(Ω) (4.24)

(see e.g. Theorem 3.1.5 of [10]. For the term κτ,h
δ we use (4.24) and Lemma 4.2 to

obtain

κτ,h
δ = min

[ |u0,h − u0|1,∞

h2−d/2
(

1

δ1/2
+ |u0|p−2

1,∞) + ‖∇ · Φ′
δ(u

0)‖1,
c

τ1/2

]

(4.25)

≤ min

[(

hd/2−1

δ1/2
+

1

δ

)

b(γmax),
c

τ1/2

]

.

Here the estimate ‖∇·Φ′
δ(u

0)‖1 ≤ c/δ is obtained proceeding as in the proof of Lemma
4.2. Let Mv =

∫

Ω vdx; preparing to choose vh = Ihun
δ − MIhun

δ
in (4.17) we observe

that:

‖un
δ − Ihun

δ + MIhun
δ
‖−1 ≤ c‖un

δ − Ihun
δ ‖0,sd

+ c‖MIhun
δ
‖0,sd

.

Here we used a Sobolev and a triangle inequality to obtain the last inequality. To
estimate the second term on the RHS of the last inequality first we use an inverse
inequality and the fact that un

δ has mean value zero to obtain

‖MIhun
δ
‖0,sd

≤ chd/sd−d‖MIhun
δ
‖0,1 = chd/sd−d|MIhun

δ
| ≤ chd/sd−d‖Ihun

δ − un
δ ‖0,1.

Next, we use (4.24) to estimate ‖Ihun
δ − un

δ ‖0,sd
and ‖Ihun

δ − un
δ ‖0,1. Hence

‖un
δ − Ihun

δ + MIhun
δ
‖−1 ≤ chd/sd−d/l+rγmax by (4.24)

We now observe that ‖∇(un
δ − Ihun

δ )‖0,1 ≤ c‖∇(un
δ − Ihun

δ )‖0, and from the
stability of the interpolation operator we have ‖∇(un

δ − Ihun
δ )‖0,∞ ≤ cγmax. Hence

the choice vh = Ihun
δ − MIhun

δ
gives

∫

Ω

|∇(un
δ − vh)| + (|∇un

δ | + |∇(un
δ − vh)|)p−2|∇(un

δ − vh)|2dx

≤ b(γmax)(|un
δ − vh|1,1 + |un

δ − vh|21) ≤ (hd− d
l
+r−1 + hd− 2d

l
+2r−2))b(γmax) by (4.24)

We thus conclude that ρτ,h
δ ≤

[

ζτ,h
δ hθ1 + hθ2

]
1

2

b(γmax). Finally, we obtain (4.21) by

combining the last inequality with Theorem 4.10 and Lemma 4.2.
The preceding estimates all controlled the error in the H−1 norm. That was

natural, because continuum model is a steepest descent in the H−1 inner product.
However estimates in stronger norms are also possible, by interpolation.

Remark 4.12. We see from the last corollary that the order of convergence
depends on the regularity of the solution u. We know that u develops facets with time.
Near the edge of a facet we expect ux to behave like the square root of the distance to
the facet’s edge; see [18]. This suggests that u ∈ W 2,l for every l < 2.
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Fig. 5.1: Plot of uh,τ
δ (t, ·) for t = 0 and t = 10−3, and u0(x) = x(x−1)y(y−1)−1/36.

Here h = 1/160, τ = 10−6 and δ = 10−6.

5. Numerical Results. We implemented the finite element scheme discussed in
Section 3 in one and two dimensions. This section reports on the results, emphasizing
the observed convergence rates as the regularization parameter δ tends to 0, the
spatial discretization gets finer (h → 0), and the time step tends to 0. For all the one
dimension simulations reported here, we solved the PDE with period cell Ω = (0, 2)
and initial condition u0(x) = 0.1 cos(πx). For the two dimensions experiments we
considered Ω = [0, 1] × [0, 1], and u0(x) = x(x − 1)y(y − 1) − 1/36. The exponent p
was always taken to be 3 (the case of primary interest for surface relaxation).

It is well-known that the solution develops facets near the maxima and minima of
the initial data, and that it reaches u = 0 in finite time. Figure 5.1 shows the initial
data u0(x) = x(x−1)y(y−1)−1/36 and the profile at time 3×10−5. All our 1D tests
used a final time T on the order of 10−3 (long enough to show significant evolution,
but short enough that the surface has not yet flattened).

5.1. Superiority of the Primal-Dual Method. In order to show the supe-
riority of the Primal-Dual Newton Method, we implemented another version of the
FEM method using regular Newton Method. For fixed values of τ = 10−6, error
tolerance of 2 × 10−9, and maximum number of 400 iterations for the Primal-Dual
and regular Newton method, we observed the following results:

Primal-Dual Method. For h = 1/10: Converged for δ = 9×10−6 and did not converge
for δ = 8 × 10−6. For h = 1/20: Converged for δ = 2 × 10−5 and did not
converge for δ = 1.5 × 10−5.

Regular Newton Method. For h = 1/10: Converged for δ = 1.5 × 10−3 and did not
converge for δ = 10−3. For h = 1/20: Converged for δ = 4.5 × 10−3 and did
not converge for δ = 4 × 10−3

Table 5.1 shows the maximum number of iterations to solve the nonlinear system
for different values of δ for the regular (RNM) and Primal Dual Newton Method
(PDNM). We used τ = 10−6 or τ = 10−3, h = 1/20, error tolerance of 2 × 10−9 and
allowed a maximum number of 400 iterations for the both methods.

Finally, we note that for fixed values δ = 2.5×10−3, h = 1/20 and error tolerance
of 2 × 10−9 and maximum number of 400 iterations for the Primal-Dual and regular
Newton method, we observed the following results:

Primal-Dual Method. Converged for any choice of τ ≤ 2 × 10−2.
Regular Newton Method. Converged for τ = 10−7. Did not converge for τ ≥ 2×10−7.
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Table 5.1: Maximum number of iterations to solve the nonlinear system, for both
regular (RNM) and Primal Dual Newton Method (PDNM). Here h = 1/20.

τ = 10−6

δ 2 × 10−2 10−2 5 × 10−3 2.5 × 10−3 1.25 × 10−3 6.25 × 10−4

PDNM 6 6 7 7 7 7
RNM 5 11 28 DNC DNC DNC

τ = 10−3

δ 10−4 10−5 10−6 10−7 10−8 10−9

PDNM 9 9 10 10 10 10

Similar results were also observed for different values of δ and h. All results in this
subsection were obtained in dimension 2.

5.2. Regularization error. The functional analysis of steepest descent assures
us that there is a well-defined solution in the limit δ → 0. The simulations bear
this out; for example, Table 5.2 demonstrates that for fixed values h = 1/160, and

τ = 10−6, maxx uτ,h
δ is virtually independent of δ once this parameter is less than

10−6.

Table 5.2: The value of maxx uτ,h
δ at time t = 2.8×10−3, for various values of δ. Here

h = 1/160 and τ = 10−6.

δ 10−3 10−4 10−5 10−6 10−7 10−9

0.0080 0.0040 0.0029 0.0026 0.0025 0.0025

Theorem 2.1 and Remark 2.2 show that regularization error, measured in the
H−1 norm, is bounded by Cδ1/4. The regularization error we observed numerically
was actually much smaller, more like Cδ6/10. Indeed, Table 5.3 gives the value of
supt∈(0,T ) ‖uτ,h

δ − uτ,h
δ/2‖−1 for selected choices of δ, when h = 1/640 and τ = 10−6. A

Table 5.3: The value of supt∈(0,T ) ‖uτ,h
δ − uτ,h

δ/2‖−1 for various choices of δ. Here

h = 1/640 and τ = 10−6.

δ 8 × 10−3 4 × 10−3 2 × 10−3 10−3 5 × 10−4

13.01e-4 8.92e-04 5.89e-04 3.69e-04 2.30e-04

bit of arithmetic using the data in the Table reveals that

sup
t∈(0,T )

‖uτ,h
δ/2 − uτ,h

δ/4‖−1 ≈ 0.65 sup
t∈(0,T )

‖uτ,h
δ − uτ,h

δ/2‖−1.

If uτ,h
δ = uτ,h

0 + Cδα + o(δα), then 2−α ≈ .65, whence α ≈ .62. Thus, the observed
H−1 error due to regularization is about δ6/10.

We did the same test as in Table 5.3 but using the L2 norm instead of the H−1

norm. We found that

sup
t∈(0,T )

‖uτ,h
δ/2 − uτ,h

δ/4‖0 ≈ 0.73 sup
t∈(0,T )

‖uτ,h
δ − uτ,h

δ/2‖0.
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Since 2−α = .73 ⇒ α ≈ .47, the observed L2 error due to regularization is about δ1/2.
Our analysis of the convergence as τ → 0 gave a bound of the form Cτ/δ (see

Theorem 4.1, Lemma 4.2, and Remark 4.3). The bound is proportional to δ−1 due to
the presence of ‖∂Eδ(u

0)‖−1 on the right side of (4.2). Our convergence estimates as
h → 0 also have terms proportional to δ−1, whose origin is essentially the same (for

example, in Proposition 4.9 the error estimate BN,h
δ includes a term h2‖∂Eδ(u

0)‖−1).
Therefore it is interesting to assess the sharpness of Lemma 4.2, which showed that
‖∂Eδ(u

0)‖−1 ≤ C/δ. In fact the estimate appears not to be sharp when u0(x) =
.1 cos(πx). For this specific choice of u0, our numerics shows that ‖∂Eδ(u

0)‖−1 ∼
δ−3/4.

5.3. Time discretization error. Fixing δ = 10−3 and h = 1/320. We observed
that

∫ T

0 ‖uτ/2,h
δ − u

τ/4,h
δ ‖−1 ds

∫ T

0
‖uτ,h

δ − u
τ/2,h
δ ‖−1 ds

= .60 or .53

depending on the choice of τ = 2.5× 10−4 or τ = 1.25× 10−4. The anticipated linear
behavior in τ corresponds to a ratio of 1/2.

5.4. Finite element discretization error. The numerically-observed conver-
gence rate as h → 0 was O(h2), far better than the h1/2 behavior suggested by

Corollary 4.11 and Remark 4.12. Indeed, we computed
∫ T

0
‖uτ,h

δ − u
τ,h/2
δ ‖−1 ds for

different values of h ∈ {1/10, 1/20, 1/40, 1/80}, and a few different choices of δ ∈
{10−4, 10−5, 10−6} and τ ∈ {10−6, 10−8, 10−9}. Our results suggest that

∫ T

0

‖uτ,h/2
δ − u

τ,h/4
δ ‖−1 ds ≈ 0.25

∫ T

0

‖uτ,h
δ − u

τ,h/2
δ ‖−1 ds.

Since 2−α = 1/4 ⇒ α = 2, the observed discretization error in the L1(0, T ; H−1
per)

norm is about h2. This same convergence rate was also observed for the error in the
norms L∞(0, T ; H−1

per) and L1(0, T ; L2).

6. Conclusions. We have discussed the numerical solution of a widely-used
PDE model for surface relaxation below the roughening temperature. We use im-
plicit time-stepping and a mixed finite-element spatial discretization. The singular
surface energy is regularized, and the time-step problem is solved using a primal-
dual scheme. Our convergence analysis is the first rigorous analysis of any numerical
scheme for solving (1.1). Our estimates may not be optimal. Indeed, the numerically-
observed convergence as δ → 0 and h → 0 for the 1D problem with u0(x) = .1 cos(πx)
is considerably better than our estimates would suggest.
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