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Abstract. We discuss the relation of a certain type of generalized Lyapunov equations to Grami-
ans of stochastic and bilinear systems together with the corresponding energy functionals. While
Gramians and energy functionals of stochastic linear systems show a strong correspondence to the
analogous objects for deterministic linear systems, the relation of Gramians and energy functionals
for bilinear systems is less obvious. We discuss results from the literature for the latter problem and
provide new characterizations of input and output energies of bilinear systems in terms of algebraic
Gramians satisfying generalized Lyapunov equations. In any of the considered cases, the definition
of algebraic Gramians allows us to compute balancing transformations and implies model reduction
methods analogous to balanced truncation for linear deterministic systems. We illustrate the per-
formance of these model reduction methods by showing numerical experiments for different bilinear
systems.
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1. Introduction. Model order reduction by balanced truncation is a standard
method, which has been introduced by Moore in [40] for linear deterministic control
systems of the form

(1.1) t=Axr+Bu, y=Cz,

where A € R™" B € R™™ (C ¢ RP*" and z(t) € R”, y(t) € RP, u(t) € R™
are the state, output, and input of the system, respectively. It preserves stability
and provides guaranteed error estimates. The main obstacle in its realization is the
computation of controllability and observability Gramians as solutions of the dual
Lyapunov equations

(1.2) AP+ PAT = —BBT, ATQ+QA=-C"C.

Although this requires a higher effort than, e.g., methods, based on Krylov subspace
approximations, there are algorithms which allow balanced truncation for sparse sys-
tems of dimensions O(10°) and more; see, e.g., [46, 5, 36, 29].

The appealing features of balanced truncation have motivated similar approaches
for other system classes. In a series of papers, Scherpen and others (see, e.g., [50, 52,
51, 24, 27, 23, 59]) have developed a theory of balancing for nonlinear systems. The
notion of Gramians is replaced by controllability and observability energy functionals.
While on a conceptional base this generalization is quite attractive, often it is hardly
practicable from the computational point of view, since the energy functionals are

*Received by the editors February 23, 2009; accepted for publication (in revised form) December
28, 2010; published electronically April 5, 2011.
http://www.siam.org/journals/sicon/49-2/75041.html
fMax Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magde-
burg, Germany (benner@mpi-magdeburg.mpg.de).
fAG Technomathematik, Fachbereich Mathematik, TU Kaiserslautern, 67663 Kaiserslautern,
Germany (damm@mathematik.uni-kl.de).

686

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/21/12 to 193.175.53.21. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENERGY FUNCTIONALS AND MODEL ORDER REDUCTION 687

obtained as solutions of nonlinear Hamilton—Jacobi equations, which are very expen-
sive for large dimensions. Recently in [33], there have been attempts to reduce the
complexity of the optimality equations by POD methods, but nevertheless the scope
of the approach seems to be limited. To overcome this drawback, other generaliza-
tions of Gramians have been considered, especially for bilinear systems in the context
of model order reduction; cf. [1, 25, 26, 63, 64, 11]. These generalized Gramians are
solutions of generalized Lyapunov equations of the forms

AP+ PA" +) A;PA] = —BBT,

(1.3) It
ATQ+QA+> ATQ4A; = -CTC,

j=1

where A, B,C are as in (1.1), (1.2), and A; € R"*" for j =1,...,m. If A; =0 for
all 7, then the linear matrix equations in (1.3) boil down to (1.2). Therefore, we call
them generalized Lyapunov equations, but they should not be confused with other
types of generalized Lyapunov equations such as

APET + EPAT = —BBT

arising in the context of generalized state-space systems [45]. The Gramians defined
by (1.3) have already been considered in [49, 13] to characterize controllability and
observability of bilinear systems

(1.4) o'c:Ax—i—ZAjujx—i—Bu, y=Cz.
j=1

A first attempt to give an energy-based interpretation of these algebraic Gramians
apparently was made by Gray and Mesko in [25]. Their results look quite promising
and have been taken up recently, e.g., in [34, 17, 11, 28, 16]. Unfortunately, however,
the characterization of energy functionals given in [25] does not hold in the stated
generality. This issue, together with the nonuniqueness of singular value functions
and balancing of nonlinear system, has been addressed by Gray and Scherpen in [24].
Their analysis is quite subtle and applies to general nonlinear systems. However, it
does not discuss the special role of the algebraic Gramians of bilinear systems from
[49, 13], which is of particular interest to us from the computational point of view.
Moreover, the implications of [24] are not fully accounted for in subsequent papers on
bilinear systems, e.g., [11].

Hence, for the special case of bilinear systems, we try to clarify conditions un-
der which the algebraic Gramians give quantifiable information on reachability and
observability properties of the state vectors. In section 3, we first suggest a new ap-
proach to characterize unreachable and unobservable states (Theorem 3.1) via the
Gramians and then give a simple example to illustrate how an integrability condition
contradicts the characterization of energy functionals in [25]. We also discuss some
patches, which, however, do not give satisfactory error estimates for truncation errors.

Since we mainly aim at practical methods for model order reduction applicable
to large-scale problems, we review solvability conditions for the generalized Lyapunov
equations and, in section 4, provide numerical examples to support the significance
of the generalized Gramians in (1.3) for model order reduction of a bilinear system
(1.4)—at least in special cases.
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On the other hand, it is a well-known fact that generalized Lyapunov equations of
the forms (1.3) are naturally associated to stochastic linear control systems; see, e.g.,
[32, 31, 15]. Therefore it is not surprising that P and @ can be interpreted as Gramians
of stochastic systems and that the method of balanced truncation can immediately
be carried over to this class of systems. Although, of course, work has been done in
this direction, e.g., in [42, 62, 59], to our knowledge this connection between bilinear
and stochastic Gramians has not really been documented in the literature so far; it is
thus another goal of this paper (pursued in section 2) to fill this gap and to open up
the field for further research.

2. Gramians and energy functionals of linear systems. The representation
of input and output energies for deterministic linear control systems as quadratic forms
involving the Gramians is a classical result. Factorizations of the Gramians are used to
compute balanced realizations which can be reduced by truncation. This method has
first been described for time-invariant systems in [40] and for time-varying systems in
[54, 60]. Our adaptation to stochastic systems is quite analogous. To clarify the idea
and the notation as well as for later reference in the discussion of bilinear systems,
we will briefly recapitulate some basic results for time-varying systems.

2.1. Time-varying deterministic linear equations. Let us consider a linear
control system

(2.1) t=At)r+ B({t)u, y=C(t)x

with coefficient matrices A(t) € R™*"™, B(t) € R™*™, and C(t) € RP*" being mea-
surable functions of t. Here u € R™ and y € RP are called input and output vectors,
while € R™ is the state vector. For a given measurable input function v : R — R™
and an initial vector zg € R™, let x(t, zo,u) denote the solution of (2.1) with input u
and z(0, xg,u) = xo; the corresponding output will be denoted by y(¢, zg,u). For the
fundamental solution of the homogeneous system & = A(t)z, we write ®(t, 7).

Assuming that the homogeneous system & = A(t)z is exponentially asymptoti-
cally stable, we can define the controllability and observability Gramian by

0
P = / ®(0,7)B(r)B(t)T ®(0,7)T dr ,
(2.2) e
QR = / o(t,0)TCt)TC(t)®(t,0)dt .
0

Furthermore, for zg € R™, we define the input and output energy functionals as

0
E.(x0) = inf lu(t)||*dt ,
'?6L2]7oo;o] oo

z(—oo,zg,u)=0

Ey(xo) = ly(t, o, 0)||* dt .
0

Note that E.(xo) = oo if 29 cannot be reached from 0 over the time-interval |— oo, 0].
It is easy to see that this is equivalent to x¢o ¢ Im P. The following result is well
known. We present a proof both to motivate similar arguments for other systems and
to discuss some issues of forward and backward solutions (see Remark 2.2), which are
important for the stochastic case. Some details of the argument will also play a role
in the bilinear setup.
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THEOREM 2.1. Consider the time-varying system (2.1) and the Gramians P and
Q defined by (2.2). If xo € Im P, then

E.(z0) =z Ptz ,

where P! denotes the Moore—Penrose inverse.
For zg € R™ we have

Ey(xo) = xOTon .

Proof. For fixed xo we define u : |— 00, 0] — R™ by
(2.3) u(t) = B(t)T®(0,t)T Ptz .
Then

t

z(t, xo,u) = / O(t, 7)B(T)u(r) dr

— 00

is well defined by the exponential stability of the homogeneous equation and satisfies
(2.1) as well as the boundary conditions lim; . (¢, o, u) = 0 and

0 0
(0, 70, 1) = / ®(0,7)B(r)u(r) dr — / (0, 7)B(r) B(H)T®(0, )T dr Pay

— 00 — 00

= PPﬁa:O =z .

Among all @ with z(co, ¢, %) = 0 the given control has minimal L?-norm. To show
this, let us assume that « = u + @ is another solution to the control problem. Then

0 0
o = / ®(0,7)B(7)(u(r) +4(r))dr, whence / &0, 7)B(r)u(r)dr =0.

—0o0 — 00
This implies f?oo u(t)Ta(t)dt = 0, so that
lall7e = lu+alZ: = lullZ + 1al 22 > [ulz: -

Since

0 0
fult = [ Ju@lPde= [ afPa.0BOBOT 00,07 Py de

=zl P*PPYxy = 2T Phag ,

the proof of the first assertion is complete.

To prove the second, assume that the system starts in state xg and is not con-
trolled. Then the corresponding output is y(¢t) = C(t)®(¢,0)xo. The output energy is
the L?-norm of v,

Eufan) = Iyl = | Ty y(t) dt = o ( / T8 (1,0)T OO (1,0) dt) %0
=23 Quo ,

which we had to show. O
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Remark 2.2.

(i) If a state zp minimizes the quadratic form zJ Pxg, then either it is in ker P
or it maximizes xOTPﬁxo among all g € Im P. Hence a state is hard to reach
if 1 Pzg is small. Similarly, we can say that a state is hard to observe if
' Qx is small.

(ii) We will need later for the controllability Gramian to be interpreted as the
observability Gramian of the dual system. Note that ®(0,¢) = ®(¢,0)71,
whence

%@(O,t) = —®(0,t)A(t)®(¢t,0)P(0,t) = —D(0,t)A(t) ,

%cp(o, BT = A=)TD(0, —1)T ;

see, e.g., [55]. Therefore,
P / (0, —7)B(—7)B(—7)"®(0, )" dr
0

_ / & (r,0)T B(—)B(—7)Td(r,0) dr |
0

where ® is the fundamental solution of the equation & = A(—t)Tz.

(iii) Tt is customary to define E.(xo) as the minimal energy needed to steer from
0 to zo over the interval | — oo, 0]. Alternatively, one can steer asymptotically
from tg to zo over an interval [tg, to+7T], where tyg € Rand T' > 0 are arbitrary,
and set

to+T
E{(zg) =  inf OIS
w€L2[tg,tg+T],T>0
@ (tg+Tstg,u)=z(

For time-varying systems in general this yields a different value, Eéto)(xo) #
E.(x0), but in the time-invariant case it is the same (which is well known and
follows also as a special case from our discussion in the next subsection). An
advantage is that we may also consider solutions for positive times, and these
are also defined for stochastic systems.

(iv) For completeness, let us recall that in the time-invariant case, P and @ satisfy
the Lyapunov equations AP + PAT = —BBT and QA+ ATQ = —-C"C.

2.2. Stochastic linear differential equations. Consider a stochastic linear
control system of Itd type (see, e.g., [3, 44])

dx Axdt—l—Z;y:l Ajx dw; + Budt

(2.4) oo

The w; = w;(t) are independent zero mean real Wiener processes on a probability
space (€, F, n) with respect to an increasing family (F;);er, of o-algebras F; C F.

Let L? (R, RY) denote the corresponding space of nonanticipating stochastic pro-
cesses v with values in R? and norm

el =€ ([ IoolPar) <oc.
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where £ denotes expectation. We assume that the homogeneous equation dr =

Az dt + 3 Ajz dw; is mean-square-stable, i.e., E(|lz(t)]?) 2% 0, for all initial con-

ditions x(0) = zo. Its fundamental solution will be denoted by @, so that z(t) =
®(t,0)zp. Since stochastic differential equations in general can be solved only forward
in time (see, e.g., [44]), note that ®(t, 7) is defined only for ¢ > 7. By time-invariance,
we have ®(t,7) = ®(¢t — 7,0). For simplicity, we write ®(¢t) = ®(¢,0), where t > 0. By
the stability assumption, the generalized Lyapunov equations

N
AP+ PAT +3 " A;PAT = - BBT,
j=1
(2.5) N
ATQ+QA+> ATQA; = -CTC
j=1

have nonnegative definite solutions P > 0 and @ > 0, which can be written (cf. [15])
as

P=¢ (/OOO o(t)BBTo(1)T dt) and Q=¢ </OOO dt)'CcTod(t) dt) :

Let zp € R™ be given. We determine the minimal energy of an input w, so that
E(x(T,0,u)) = zo for some T > 0. In other words, u steers the average state from 0
to xo over an arbitrary time-interval [0, T]. Similarly, we consider the output energy
produced by xg. Thus, we consider the energy functionals

T
Fuwo)= inf & / @) dt |
w€L?2[0,T],T>0 0

x(T,zg,u)=0
Eo(ao) = £ ( / |y<t,xo,0>|2dt) |
0

Note that E.(rg) = oo if the average state xo cannot be reached from 0. It is
easy to see that this is equivalent to zp ¢ Im P. We have the following analogue of
Theorem 2.1.

THEOREM 2.3. Consider the stochastic system (2.4) and the Gramians P and Q
defined by (2.5). If xo € Im P, then

E.(z0) = xf Pfxy .
For xy € R™ we have
Ey(xo) = xOTon )

Proof. ForT' > 0, we set Pr = E(IOT ®(t)BBT ®(t)T dt), and for fixed ¢ € Im Pr,
we define u : [0,7] — R™ via u(t) = BT®(T — t)TPqnwxo. By the “variation of
constants” formula for stochastic linear differential equations (see, e.g., [3, 15]) we
have

T T
E(z(T,0,u)) =& (/0 ®(T — t)Bu(t) dt) :/O (T — t)BBT®(T — t)¥ Phay dt

T
—¢ ( / &(1)BBT & ()T dT> Phag = PrPhzg = .
0
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Moreover, u is the unique control with &(z(T,0,u)) = ¢ and minimal L2 [0, T]-norm

lullZs =€ (/0 [|u(t)]|? dt) = (/_OOO 2l P*o(—t)BBT®(—t)T Phag dt)

— 00

= a:gP%PTP%xO = xgp%xo .

To prove minimality, we assume that @ = u + @ is another solution to the control
problem. Then

T T
o= & ( / B(T — ) Blu(t) + a(t))dt> . whence £ ( / B(T — #)Ba(t) dt) ~0.
0 0

This implies E(f; w(t)7a(t) dt) = 0, so that
a2 0.7 = llu+ a2 0,71 = NullZz 0.0 + @172 107 = 1wl 207 -

Hence E.(xg) = infrso xOTP%a:O. From the definitions it is clear that Pr is monoton-
ically increasing and limpr_,.. Pr = P. Hence Pqﬁw is decreasing, and the infimum is
given by xl Ptx.

On the other hand, if the system starts in state x¢ and is not controlled, then the
corresponding output is y(t) = C®(t)zg. The output energy is the L2 -norm of v,

Eulon) =l =€ ([ voute) i)
=ale (/OOO ot)TcTCca(t) dt) Ty = 24 Qo

which concludes the proof. d

Remark 2.4.

(a) Likewise, the matrices P and @ can be interpreted as state and output co-
variances of a white-noise driven linear system; cf. [59]. We come back to this
idea for bilinear systems in subsection 3.5.

(b) Balancing of systems with stochasticity is also discussed, e.g., in [43, 42], but
not in the case of differential equations with multiplicative noise and not on
the basis of the stochastic Lyapunov equations (2.5).

2.3. Stochastic linear discrete-time systems. Let us now consider a stochas-
tic linear discrete-time control system (see, e.g., [9, 20])

Tpr1 = Az + Aozpwy + Buyg,

2.6
(26) ye = Cuxp .

Here (wy) denotes a scalar stochastic process with zero mean and variance 1. Let
2 . . . . . . . .
¢z (N,R?) denote the corresponding space of nonanticipating stochastic processes v

with values in RY and norm

o0
o2 =& [ S lwsll? | < 0.
§=0
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As in the previous subsection, we could also introduce vector-valued Wiener processes
and write

N
Tp1 = Az + ZAja:kw(J) + Buy, ,
j=1
but this only complicates the notation without leading to new insight.
We assume that the homogeneous equation xy41 = Az + Apzw; is mean-square-

stable, which means that for all initial conditions xq, we have &(||zg||?) — 20, Tts
fundamental solution is

where multiplication is always from the left, i.e., @11 = (A + wrAp)Pg. Under the
stability assumption, the generalized discrete-time Lyapunov equations

APAT + AgPAY - P = —-BBT,

(27) ATQA+ ATQA —Q = —CTC

have nonnegative definite solutions P > 0 and @ > 0, which can be written (cf. [41])
as

P=¢£|Y ®BB"®] | and Q=£() @/C"CY;
j=0 =0

Note that (1.3) is a special form of (2.7) if we set A= 11 and N = 1.
Let xg € R™ be given. In analogy to the continuous-time situation, we define

Ee(zo) = | inf § luil? ]
ueeZ [0,N], N>0
=(N, zg,u)=0

oo
> llyil?
=0

Again, E.(xg) = oo if the average state z¢ cannot be reached from 0, which is equiv-
alent to zp ¢ Im P. We have the following analogue of Theorem 2.3.

THEOREM 2.5. Consider system (2.6) and the Gramians P and @ given by (2.7).

If xy € Im P, then E.(z9) = xj TPz, and for all xg € R™ we have E,(xg) =
Lo § Quo.

Proof. For N > 0 we set Py = E(ZN Lo, BBT<I>T), and for zg € Im P, we

define a sequence uo,...,uy_1 via u; = B @{N 1y JPNa:O Then
N-—1 N-—1
& (x(N,0,u) Z Oy_1)_jBu; | =& > ®n_1)_;BBTO{ 4, ;Pixo
Jj= =0
N
<Z P, BBT<I>T> Pz = PyPlao = .
=0
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Moreover, u is the unique control with £ (z(NN,0,u)) = xo and minimal ¢2 -norm

N—1 N—1

fullz =€ | Y llusl? | =€ (Z xOTP}‘V@iBBT@fP}iva) = 2T PtPPiz,

=0 i=0
= $5Pﬂ$0 .

To prove minimality, we assume that @ = w 4 @ is another solution to the control

problem. Then

N-1 N1
T =& Z O(n_1)—;B(u; +1a5) | , whence & Z Oy 1y_;Ba; | =0.
Jj=0 )

This implies & Z?;Bl ul't;) = 0, so that

lallZe = llu+alZ = llul + lallz > [l -

As in the previous subsection, we have E.(z¢) = infyo xOTPﬁ,xO = 2 Ptxy.
On the other hand, if the system starts in state x¢ and is not controlled, then the
corresponding output is y; = C®;x¢. The output energy is the ¢2-norm of y,

Eo(wo) =yl =& | Y vju; | =ab€ (Z (I’JTCTO@j) o = x5 Qo
0

J=0

which concludes the proof. d

Remark 2.6. The discrete-time stochastic Gramians (2.7) are also discussed, e.g.,
in [64, 62] in the context of model order reduction. But we have no reference for the
specific energy interpretation given in this section.

In summary, in this section we have shown that the solutions P and @ of the
Lyapunov equations (1.3) exactly represent the energy functionals for different classes
of autonomous linear systems. We could also have added deterministic discrete-time
systems as a special case of stochastic discrete-time systems (2.6) with Ag = 0. Time-
varying stochastic versions can be obtained along the lines of subsection 2.1. Thus,
given P and @ the method of model reduction by balanced truncation can be applied
to the corresponding system in an obvious way; we skip the details here but will
discuss the same idea for bilinear systems in Remark 3.2.

3. Gramians and energy functionals for bilinear systems. Let us now
consider a bilinear control system of the form

(3.1) T = Ax—i—Zijuj + Bu,
j=1
(3.2) y = Cuz,

with A, N; € R™" B € R™™ O € RP*" z(t) € R", u(t) = [us(t),...,un@®)]? €
R™, y(t) € RP.

The system is locally controllable if the pair (A, B) is controllable, and locally ob-
servable if the pair (A, C) is observable. It is asymptotically stable for all u € L2[0, oof
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if A is stable. Assuming these properties, we can consider the energy functionals

(33) EC(ZEO): ueLrgi—noo,o] HuH%2(]foo7O])7
x(—oo,zg,u)=0

(34) Bo(zo) = Eg(wo) = max y(-,z0,u) | 220,00 »
weL2[0,00 ([0,00])
lull 2 <a

where a > 0 is a fixed small parameter. While in the definition of E. we naturally
consider the solution x of (3.1) with the given boundary conditions and minimize over
all u € L?] — 00,0], there is some ambiguity concerning the roles of y and « in the
definition of E,. For reasons of duality (as we will see later), we prefer to consider y
as the output of the following homogeneous system:

& = Ax+ Nzu;,
(3.5) ; I
y = Czx

instead of the inhomogeneous system (3.1), (3.2). Both versions are considered by
Gray and Mesko in [25], while, e.g., Scherpen in [50] defines E, for general nonlinear
systems with zero control input, i.e., with o = 0.

Based on further duality considerations, we will suggest an alternative definition
of E,, which does not involve additional parameters. If the controllability condition
or the observability condition is not satisfied, then we may have E.(z9) = oo or
E,(zo) = 0 for arbitrarily small xg.

The aim is to compare E,. and E, with the quadratic forms defined by the algebraic
Gramians P > 0 and @ > 0 from the generalized Lyapunov equations

AP+ PAT +3 N;,PN] = —-BBT,

(3.6) il
ATQ+QA+> NfQN; = -CTC.

j=1

In section 3.4 we will review necessary and sufficient conditions for these Gramians to
exist. Let us now show how the definiteness of the Gramians is related to reachability
and observability of the bilinear system.

THEOREM 3.1.

(a) Consider the bilinear system (3.1) and assume that P defined by (3.6) is
nonnegative definite. Then x(t,0,u) € ImP for all t > 0 and all input
functions u, i.e., E.(xg) = oo for all xop & Im P.

(b) Consider the homogeneous bilinear system (3.5) and assume that () defined
by (3.6) is nonnegative definite. If xo € Ker @, then y(t,z¢,0) = 0 for all
t>0, e, Ey,(xg) =0.

Proof. (a) If v € Ker P, then by the defining equation for P we have

0=v" [ AP+ PA" +Y N;PN] + BB | v=0" | Y N;PN] + BB" | v,
j=1 j=1

which, by the nonnegativity of P, implies BTv = 0 and PNJTU =0forj=1,...,m.
Hence NJT Ker P C Ker P C Ker BT. Again by (3.6), this implies PATv = 0, i.e.,
AT Ker P C Ker P. Let z(t) denote an arbitrary solution of (3.1).
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If 2(t) € Im P = (Ker P)* for some ¢, then

i) v =a2t)T @ + Zuj(t)a:(t)T ﬁfi’ +u(t)” g@ =0,
€KerP J=1 cKer P =0
ie., #(t)Lv for all v € Ker P. Thus #(¢t) € Im P if z(t) € Im P, which means that
Im P is invariant under the dynamics. Hence 2(0) = 0 € Im P implies z(¢t) € Im P for
all t > 0.

(b) For 2y € Ker () we can argue as above to show that V; Ker Q@ C Ker @ C KerC
and AKer@ C Ker@. Hence z(t) € Ker @ implies @(t) € Ker @, so that Ker @ is
invariant under the dynamics. If z¢ € Ker @, then z(t, zo,u) € Ker @ for all ¢ > 0,
implying y(t, zo,u) = Cx(t, zo,u) = 0. d

Remark 3.2. Tt follows that states in Ker P or Ker ) are irrelevant for the transfer
behavior of the system and can be eliminated. The idea of balanced truncation is to
dispense also with those states which are almost in Ker P or Ker @, i.e., which belong
to small singular values of P and @. In analogy to the linear case (see, e.g., [2]), one
can use factorizations P = LLT and LTQL = UX?U7T to compute a transformation
matrix 7 = LUY /2 and an equivalent system

g'c:flx—i—Zijuj, y:éx,
j=1

with
A=T7'AT, N;=T7'N,T, B=T"'B, C=CT.
Then (cf. [1]) the corresponding Gramians are balanced, i.e., equal and diagonal,

o1
(3.7) P=Q= with oy >--->0,>0.

On

Hence, we may assume without loss of generality that P and ) are balanced, when
it is convenient. As in the linear case, we call the numbers o1, ..., 0, the generalized
Hankel singular values of the bilinear system. If, e.g., 0,41,...,0, are particularly
small for some r € N, then locally the states in the subspace spanned by the canon-
ical unit vectors e,41,...,e, are both hard to reach and hard to observe, and thus
negligible for the transfer behavior. Partitions 7' = [T1,T] and 7' = | Z; | with

the projection matrices 77 € R™*" and S; € R"*" then define the truncated system
matrices A7) = S1AT, ij = S1N;17, B = S1B, and c) = CTy, which give a
good local approximation of the original system. It is, however, not obvious how to
measure the error caused by such a procedure.

3.1. Some comments on recent results. In [25] (see also [11]), it is stated
that locally, i.e., for z # 0 with ||z|| sufficiently small, the gradients of E. and E, are
given by

(3.8) VE.(x)=P(z)"'z and VE,(z) = Q(z)x
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with
(3.9) AP(z) + P(z)AT = i(zv z +b;)(Njz 4 b))7,
j=1
(3.10) ATQ(x) + Q(2)A = = > Q(z)N;zz" NJ Q(x) - CTC .

I
-

J

From this the authors derive the inequalities
(3.11) E.(z0) > al P7'zg and  E,(x0) < 2 Qo ,

under the assumption that at least one of the N; is nonsingular.

The statements (3.8), and thus the reasoning of [25, 11] leading to (3.11), however,
require a further integrability condition. Note that P(x) and Q(x) are the Gramians
of the linearization of (3.1) at € R™ and u = 0. The functionals z7 P(z) 'z thus
describe the minimal local cost associated with moving in direction z. Equation (3.8)
implies that the cost on a whole neighborhood of zero can be obtained from these
local forms. Verriest in [59, sect. 5] discusses in detail that an integrability condition
generally will be an obstruction to this. The following explicit example illustrates
that the field P(z)~'2 need not be integrable.

Example 3.3. Let us concentrate on the controllability Gramian. We introduce a
locally controllable system for which the vector field  — P(z) 'z defined by (3.9) is
not integrable, so that (3.8) cannot hold. To see this we consider the second derivative
in direction h € R™. Assuming (3.8) and (3.9), we have

%VEc(x)(h) = P(z)"'h — P(z) ' P.(h)P(z) 'z,

with

APL(h) + PL(R)AT = = 3" N;h(Njz + ;)" + (Njz + b;)h" NT .
j=1

We now check the integrability condition for the field F'(z) := P(z)~'z. Its derivative
is

h— F'(z)h = P(z)"'h — P(z)"*P.(h)P(x)"!
The matrix F’(xz) must be symmetric for the field to be integrable (see, e.g., [39,
sect. 18.2]). As a solution of a Lyapunov equation with symmetric right-hand side,

P(z) is symmetric. Hence we concentrate on the matrix representation of the second
term, which we rewrite in terms of Kronecker products. We have

vec (ﬁ(x)—lﬁ;(h)ﬁ(x)—lx) YD) (P(x) ® 15(:,;)) " vee PI(h)
where

vec PL(h) = (A@T+1® A)~" > ((Njz+b;) ® Nj + N; @ (Njz +b;)) I
j=1
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Thus we have to check the symmetry of the n X n matrices F; given by

@ oD (P@) e Pe) (AI+I104) " ((Nz+b)oN;+N; @ (Nz+b)) .

In general, this condition is not fulfilled. Let us consider a simple explicit example:

[ 2] et 1] )

Here v and § are parameters which can be chosen small, but which turn out to be
irrelevant for the computation. We can solve explicitly for P(x)~!:

AP(x) + P(2)AT = =(Nz +b)(Nz +b)" = —(1 +v€)° [ 1 i }

SR 2| 1/2 1/3 51 6 3 —4
= P(x) = (1 + v¢) [1/3 14| P(x) —7(14_”5)2 4 6l
Hence the matrix F; = F' now takes the form

r T

10 9 —12 -12 16 —3 0 2
36v¢ 10 -12 18 16 —24 3 11
(I+v€)3 |0 1 -12 16 18 —24 : 11
[ 01 16 —24 —24 36 i 2 0
o 1we [ o2 -1
w4 27

which is not symmetric. We can argue similarly for the observability Gramian and
conclude that the corresponding assertions in [25, 11] are not true in general.

Remark 3.4. The critical step in [25] and [11] is the following. In the Hamilton—
Jacobi equation

IE, TTaET OE. ‘ } 0B,
5 A o +3 (ij—l—bj)(Nx—i—b)ax

=0,

the authors replace %E; by the ansatz xTP(x)*l. This gives
2T P(x) YAz + 2T ATP(2) 'z + 2T P(x) ! i Njz 4 b;)(Njz +b;)P(x) "tz =0
j=1
for all x € R™, from which, however, in general it cannot be concluded that
M(z) = P(x) YA+ ATP(z)~ 1iNx+b (Njz +b))P(x)" ' =0.
j=1

In [24] this issue is treated properly. The authors call M(x) a null matriz function
if it satisfies M(0) = 0 and 27 M(x)z = 0 on an open neighborhood of V. Then
they analyze the nonunique singular value decompositions of different null matrix
functions. This analysis, however, does not give an explicit comparison of the energy
functional E. with the algebraic Gramian P.
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3.2. Some patches. We wish to compare the energy functionals and the quadra-
tic form given by the algebraic Gramians and follow another line of reasoning in [25]
(see also [24, 22] for related fixes). It suffices to concentrate on the control energy
E.(zp) and to consider the system

i=|A+> Nju;t) | =+ Bu.
j=1

Assume that P is the unique positive definite solution of a generalized Lyapunov
equation

AP+ PA" +> N;PN] = -BB"
j=1
where typically, but not necessarily, Nj = Nj;. For simplicity let P be balanced as
in (3.7). For a fixed zp € R" let u = ug,: |— 00,0] = R™ denote the minimizing

control in the definition of E.(x¢) (see, e.g., [50]). With this function we consider the
time-varying homogeneous linear differential equation

p=[A+D_ Nju(t) | ¢ = Au(t)p(t)
j=1

and its fundamental solution @, (¢, 7). The controllability Gramian of the time-varying
control system & = A, (t)x + Bu is then given by

0
Pu:/ ®,(0,7)BBT®,(0,7)T dr .

—0o0
Since u also steers the state of the time-varying system from 0 to zg, we have
lull7z > 25 Plao -

By Remark 2.2(iii), we can write P, also as an observability Gramian
P, = / U, (t,0)" BBTW,(t,0) dt ,
0

where ¥, is the fundamental solution of the dual system

Uy = [ AT+ NJuj(—t) | O, Wu(t,t)=1.

j=1

With 2, () = Uy (

~+

,0)xo, we have

- _ /Oo zy (t)T ( A+ i Njuj(—t)> P+P <AT + i Nfuj(—t)> ) T, (t) dt
0 j=1 j=1
- /Oo xu(t)T<<AP+ PAT + iNjPNjT»xu(t) dt
0 =1
+/O 2 ()T ; (NjPNf — Njuj(—t)P — PNfuj(—t))xu(t) dt .
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Here

— / z, ()7 (AP +PAT +3° NjPNjT> T, (t) dt = / x, ()T BBz, (t) dt
0 0

Jj=1
= QIgPuZIJO .

Hence, if

(3.12) /OOO z, ()7 zm: (NjPNjT — Njuj(—t)P — PNJ.Tuj(—t))xu(t) dt >0,

J=1

then x?;Pxo > xOTPuxo and ng*1x0 < xoPu’lxo = E, for canonical unit vectors
xo = €; (cf. [30, Thm. 7.7.8]). Note that (3.12) obviously holds, if Z;n:l NjPNf >0
(i.e., P > 0) and sup,cp_ [|us, (t)|| is sufficiently small.

For small ||zo]|, it follows from the continuous dependence of the solution x (¢, zo, u)
on the data that the optimal control u = u,, for the bilinear system is close to the op-
timal control uli" of the linearized system (compare (2.3)). Thus supcp_ ||ua, ()] will
be arbitrarily small if we restrict our attention to sufficiently small ||zq||. This reestab-
lishes an essential part of the first assertion in (3.11), which we summarize as follows.

PROPOSITION 3.5. Consider the bilinear system (3.1) and assume that the
Gramian P defined by (3.6) is positive definite and diagonal, i.e., P = diag(o1,...,0,)
with o > 0. Then there exists an € > 0, so that for all canonical unit vectors e; the
inequality E.(ce;) > 526;‘-FP*161» = % holds.

Remark 3.6.

(a) In [25] an analogue of the inequality (3.12) is taken as an assumption at some

stage in the discussion of the output energy and the observability Gramian.

(b) It is surprising and, in fact, dissatisfying that the N, do not really play a
role in our reasoning here. The same is true for the arguments in [25, 11]. In
special examples, it could be that inequality (3.12) is more likely to hold for
larger u; if N; = N;, but there is no evidence for that.

(c) If weset N; = N;, and if none of these matrices has full rank, then (3.12) need
not hold. Another approach might be based on considering the generalized
Lyapunov equation with a shifted matrix A. This idea in different contexts
can be found, e.g., in [7, 14] or [15, sects. 1.6 and 2.3.2]. Let

(A+KI)P+P(A+kD)" +> N;PN] +BB" =0,
j=1

where x > 0 is small enough, so that (A + kI) C C_. Then the previous
computation yields

xOT Pz — nguxo

_ / 2a®T | S0 (N;PNT = Nyjus(—t)P — PNTu;(—1)) + 26P | a, (1) dt |
0 =

where now we have

> (N;PNT = Nyus(~t)P = PNJ ()} +26P 2 0,

Jj=1

as long as the |u;| are sufficiently small.
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3.3. Dual definition and characterization of output energy. As mentioned
before, the presence of the parameter « in the definition of the output energy is
awkward. Here we wish to give an alternative definition, which—in analogy to Re-
mark 2.2(ii)—is based on the input energy of a dual control problem. If we regard
the homogeneous system (3.5) for fixed u as a time-varying linear system, then the
output energy for a given x( is equal to the minimal energy needed to steer the dual
system from zy to 0. The dual system, however, can be interpreted again as a bilinear
system, which allows us to fix an adequate w. This is formalized in the following
definition.

We can assume that m = p, since adding zero columns to B or zero rows to C
changes neither the energies nor the Gramians.

DEFINITION 3.7. Together with (3.5), where y(t) € R™, consider the antistable,
locally controllable dual system

(3.13) E=—AT¢ - i Nl ¢uj+C"u .

j=1

For small o € R™ let u = ug, denote the control of minimal L?-norm, so that
limy—y o0 £(, zo,u) = 0.

With this input consider the output y(-,xo,us,) of (3.5) and define the output
energy

(314) EO(xO) = Hy('vxovuwo)”%/Q[O,oo['

Note that, in contrast to maximizing over a class of bounded inputs in the def-
inition (3.4), here we choose a special input uz, for each zo. This input maximizes
the output energy in the following sense. Let u be an arbitrary L2-input to both the
primal system (3.5) and the dual system (3.13). If « and £ denote the corresponding
solutions with initial value zg, then we have

d . ) m m
afTarszx—FfTa:: —fTA—ZujfTNj—FuTC z+ &7 Ax—|—Zuija:

J=1 Jj=1
=uy.

If £(t, 20, u) is bounded, then &(¢)7x(t) — 0 as t — oo and

> d
ol = ’/0 STt

< lullz2lly(s 2o, w2

/OO uw(t)Ty(t, zo,u) dt
0

and

ol

[z

Iy (-, zo, u)[L2 >

The right-hand side is maximized if u = ug,.
Applying Proposition 3.5 to the dual system (3.13), we obtain the dual result.

PROPOSITION 3.8.  Consider the bilinear system (3.2) and assume that
the Gramian @ defined by (3.6) is positive definite and diagonal, i.e., Q@ =
diag(o1,...,0n) with o5 > 0. Then there exists an € > 0, so that for all canoni-

cal unit vectors e; the inequality E,(ce;) < azeerj = 52aj holds.
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3.4. Solvability of generalized Lyapunov equations. In the previous sec-
tions we have encountered dual pairs of matrix equations of the forms (1.3). To
characterize their solvability, it suffices to concentrate on the equation

(3.15) AP+ PA" +)  A;PAT = -BB",

j=1

where P is required to be nonnegative definite. We cite a general theorem (cf. [53, 15,
16]), which gives necessary and sufficient criteria for the existence of a positive definite
solution P > 0. (In particular see [15, Thm. 3.6.1] for further equivalent conditions.
Note that parts of this theorem are contained also in [61, 32].) To apply the result to
(3.15), we have to note that the linear matrix operator

I(X) — Y A;XAT

j=1

is nonnegative in the sense that II(X) > 0, whenever X > 0. Moreover, we write
o(T) C C for the spectrum of a linear operator 7' and p(T') = max{|)| | A € o(T)}
for the spectral radius.

THEOREM 3.9. Let A € R™™ "™, and consider linear operators La,I1 : R™*™ —
R"*" where L4 is defined by Lao(X) = AX + XAT, and 11 is nonnegative. The
following are equivalent:

(a) ForallY >0: 3X > 0: L4(X) +1I(X) =-Y;

(b) Y >0: 3X > 0: L4(X)+1I(X) =-Y;

(c) Y >0 with (A,Y) controllable: 3X > 0: Lo(X) +1I(X) = -Y;
(d) o(La+T) CC_;
(e) o(La) C C_ and p(L,'T) < 1.

In particular we note that (3.15) possesses a positive definite solution P if A is
stable, (A4, B) is controllable, and the norms of the A; are sufficiently small. If the
pair (4, B) is not controllable, then P is not necessarily definite. This is consistent
with Theorem 3.1.

The algebraic Gramians may not exist if the A; are too large. For the stochastic
systems discussed in section 2, this is equivalent to the system being unstable, so that
the energy functionals are not well defined either.

In the context of locally stable bilinear systems, however, we may always rescale
the input variable u so that the algebraic Gramians exist (see also [11]). More pre-
cisely, we replace the bilinear system (3.1) by the equivalent one

= Az + Z(’yNj)x Yo ('yB)E = Az + Zijﬁj + B,
j=1 v v j=1
y=Cx.

Then equations (3.6) for the algebraic Gramians have to be replaced by

AP+ PA" +4*Y N;PN] = -BBT,

=1

(3.16) "
ATQ+QA+~*) NfQN; = -CTC.

j=1
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Choosing v > 0 small enough guarantees the existence of the algebraic Gramians
at the price of possibly decreasing the region where the energy estimates hold (i.e.,
decreasing € in Propositions 3.5 and 3.8). In particular, as we will also see in the
following numerical examples, the smaller v is chosen, the faster the decay of the
generalized Hankel singular values. Note, however, that in exact arithmetic the kernel
of P is independent of v > 0.

3.5. Covariance approximation. To conclude this section we give another
interpretation of the Gramians (3.16) as residual covariances; for linear systems this
interpretation is suggested in [59]. Assume that (3.1) is driven by white noise, i.e., u
is a vector of independent white-noise processes of given spectral density «. Then we
interpret the system as a linear It0-type stochastic differential equation

(3.17) dx zAxdt—l—ZNja:dwj + B dw,
j=1

(3.18) y=Cx.
The covariance matrix P(t) = E(zx”) satisfies the deterministic differential equation
P(t) = AP(t) + P(t)A" +4* > N;P(t)N] + BB" .
j=1

If the system (3.17) is mean-square-stable, then P(t) converges to a limiting covariance
P > 0 satisfying (3.16). For the output we have

& B ) = 5

where (X,Y) = trace XY for symmetric matrices X and Y. Hence

E@@®)TcTcxz(t)) = (P(t),CTC),

E(y(t)Ty(t)) = (P(t),CTC) "25° (P,CTC) = (BBT,Q) .

Summarizing this section, we have shown that the kernels of the algebraic Grami-
ans P and @ of bilinear systems are unreachable and unobservable, respectively. But
we have observed some difficulties with the energy interpretation. In contrast to the
linear case, we can only expect the Gramians to provide a bound for the energies.
Moreover, this estimate seems to hold only locally. Nevertheless we expect that small
Hankel singular values correspond to states, which are both hard to reach and hard
to observe. We will provide some numerical evidence for this in the next section.
In any case, the existence of the algebraic Gramians of bilinear systems allows us
to apply balanced truncation to bilinear systems by using a truncated version of the
contragradient transformation represented by 7' € R™*"™ nonsingular, which balances
P vs. Q via

TPTT =17-TQT~! = diag(oy,...,0,) ,

where the o; are the generalized Hankel singular values. The implementation of the
corresponding model reduction method using the square-root [35, 56] or balancing-
free square-root [58] versions of balanced truncation is straightforward: after solving
the generalized Lyapunov equations (3.6) for the Cholesky factors of P, @, the only
difference is that the truncation operators have to be applied to the matrices IVj,
analogous to their application to A. In the following section, we report results achieved
by this approach.
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4. Numerical examples. Numerically, the solution of the generalized Lya-
punov equations (3.16) is a challenge even for medium-sized systems. A naive direct
approach has complexity O(n®), which is impracticable. Iterative methods can be
based on the contraction property in Theorem 3.9(e). In [16] a preconditioned Krylov
subspace method has been described, which converges reasonably fast in many cases
and has complexity O(n?). This allows us to deal with dimensions n up to a few thou-
sand (let us call this medium-sized) on a standard computer, but in general not more.
In the following we consider several medium-sized numerical examples and compare
the approximation property of balanced truncation with that of a Krylov subspace
projection method, developed in [4], which we briefly summarize below. (Other Krylov
subspace methods for bilinear systems can be found, e.g., in [47, 38, 21, 12, 8].) Since
it is not obvious to define a transfer norm for nonlinear systems, we compare just the
outputs of the original system and the reduced systems for a given input function.
As in the linear case, we observe that for a fixed r < n the worst case approximation
error of a reduced system of order r seems to be particularly small if we use balanced
truncation. We interpret this as a strong indication that balanced truncation yields
good error bounds also for bilinear systems.

We also try a two-step reduction procedure, where in the first step a system is
reduced by a Krylov subspace projection, and the smaller system is reduced further
in the second step by balanced truncation. This method can be used also for a large-
scale system if the first step reduces it to medium-sized. We expect that the two-step
reduction can give better error bounds than just a Krylov subspace projection.

Krylov subspace projection. In [4], Bai and Skoogh describe a Krylov sub-
space projection method for the order reduction of SISO bilinear systems (3.1), (3.2).
Given parameters qi,p2,q2 € N, the method produces a reduced system of order
r = q1 + p2q2, which matches the first and second moments (cf. [19])

(4.1) m(l)) = —CA B for (4 =1,2,...,¢1 and
' m(él,ég) = CA_bNA_ElB f0r€1:1,2,...,p2, 62:1,2,...,q2.

It is easy to generalize the algorithm for the MIMO case.

To sum up, we compare three methods:

BT. Balanced truncation as in Remark 3.2, where P and @ solve (3.16) with a
given v > 0. In particular, if v = 0, the transformation is based only on the
linear part of the system.

Krylov. Krylov subspace projection with moment matching for given parameters
q1,P2,q2-

Krylov & BT. Two-step reduction, where the first step is Krylov and the second
is BT.

A nonlinear RC circuit. In [4, Example 2] a large system obtained by Carle-
man bilinearization of an RC circuit with nonlinear resistor is considered. See that
paper for further details on the derivation of the model and the structure of the matri-
ces; the same system has also been discussed, e.g., in [10, 18, 11, 12]. If the dimension
of the nonlinear system is Ny, then the bilinear system has dimension n = Ng + Np.
For Ny = 200 the authors of [4] compute a reduced model of order r = 21 with
@1 =20,pa=¢q =1

Since n = 40,200 is too large for our generalized Lyapunov solver, we first consider
the case Ny = 50, which still gives a medium-sized bilinear system with n = 2550.
This system is reduced to order » = 21 by the different methods. Our first plots in
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Figure 4.1 show the advantage of BT with respect to the relative error. Even the

mixed method, which first reduces the system to order 76 by Krylov and then to 21
by BT, is superior to Krylov alone in this example.

Reduction of 2550-dimensional system, relative errors o Reduction of 2550-dimensional system, relative errors

10 10
10 10

o r=21 BT, y=0.1 o r=21 BT, y=0.1
10 F (... r=21 Krylov SISO, q1=20, q2=1, p2=1 1 10 F (... r=21 Krylov SISO, q1=20, q2=1, p2=1

...... r=21 Krylov & BT, q1=40, q2=6, p2=6, y=0.1 _.....r=21 Krylov & BT, q1=40, q2=6, p2=6, y=0.1

-12 -12

10 10
0 05 1 15 2 0 05 1 15 2

FiG. 4.1. For the input function u(t) = e~t (left) and u(t) = cos((27wt)/10) + 1)/2 (right) the
outputs of the full and the reduced systems are compared. The plots show the relative errors over
time.

The choice of parameters, of course, is important. Let us have a look at the role of
r and -y, since these are essential in BT. We solve the generalized Lyapunov equations
(3.16) for vy =0 ,v = 0.2, vy = 0.5, and v = 1 and compute the generalized Hankel
singular values. From these we can read off a local error estimate if we truncate at
r = 21. Moreover, we can determine the numerical rank 7., of the balanced Gramians
and truncate for this value as well. The results in Figure 4.2 clearly indicate that one
should use v > 0; i.e., for the approximation it is unfavorable to consider only the
linearization. On the other hand, increasing v does not improve the approximation
in this special example. In fact, if we fix r = 21, then the best results are obtained
for v = 0.2, while the results are quite similar if we choose r = r,,.

v=0 ¥=0.2 10 .
. 16308 \\\\ Vi v 9 .
1e-14 ] fesid ~ : 0%~
B || - r=16,BT,y=0
107 e 1=89, BT, y=0.2 ik
e e r=103, BT, y=0.5 10
16 2l 8 r=113, BT, y=1

v=0.5 y=1
1e-07 \\\\\ B =g i

~— e -8 i r=16, BT, y=0
1e-15 <1 2615 B3 10 =21, BT, y=0.2
----- r=21, BT, y=0.5

” o r=21, BT, y=1

107 107 ¥:
21 103 21 113 0 1 2 0 1 2

F1G. 4.2. The plots on the left show the largest generalized Hankel values for different . The
dotted line shows the truncation error for r = 21, and the dashed line shows the numerical rank.
For v = 0 the numerical rank is less than 21. On the right we see the relative errors at the output
(with uw = e~t) for the corresponding v and .
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A heat transfer model. As another example we introduce a bilinear controlled
heat transfer system. On the unit square = [0,1] x [0,1], we consider the heat
equation z; = Ax with the mixed Dirichlet and Robin boundary conditions

n-Ve=u(z—1)onTy:={0}x]0,1[,
n-Va =uz(x—1) on Ty :=1]0,1[ x{0},
z=0o0nTs:={1} x [0,1] and I'y =[0,1] x {1} .

Here the heat transfer coefficients u; and us on the left and the lower boundaries I'y
and I’y are the input variables. They can be interpreted, e.g., as spraying-intensities
of a cooling-fluid acting on these boundaries (cf. [48, 57, 6, 37]), where in [6], linear
and bilinear control systems are derived using different choices of controls. The tem-
perature of the fluid is normalized to the value 1, and the heat flow over the boundary
is proportional to the difference of temperatures x — 1 on the boundary. Note that
the inputs u; enter these conditions bilinearly.

By a finite difference discretization of the Poisson equation on an equidistant
k X k-mesh (meshsize h = with nodes z;;, we obtain the well-known Poisson
matrix

1
=)

IQTu+T.®I, where Ty= h € RF¥F

Together with the boundary conditions, this leads to the bilinear system
T = Az +ui N1z + uaNox + Bu

for x = vec(x;;), where

_ L

Ah2

T+ T I+ E1 1+ 1 Ey)) , Ejzejef.

The coefficient matrices N; and the columns b; of B corresponding to the left and
lower boundaries are given by

1 1 1 1
N1:EE1®I, N2:E1®Ek, blzﬁel®e, bgzﬁe®ek, e=[1,...,1]T eRF .

As an output, we consider the average temperature

k
1 1
y=Cr=13 Z%‘Zﬁ(@@@)%-

4,j=1
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Example 4.1. We illustrate these definitions for the sim-

ple 2 x 2 mesh (i.e., k =2, h = 1/3) shown on the right. I,

The state vector x = [z11,¥21, T12,T22]7 contains the o o1 oz

temperatures at the inner points and the Laplacian is

approximated via T10 (11 ¢T12 (713
Pl F3

Az;j ~ 52 (4Zij — Tiv1j — Tijr1 — Ti1j — Tij-1) - 120 Q21 gT22 423

For the boundary points a discretization of the Robin ® 31 4032 4,

condition [y

n-Vr=u(r—1)
gives, e.g., the approximations
r10 R w11 — huy(zn — 1), @20 R 21 — hui(war — 1), 231 = 21 — hug(z2r — 1) .

Altogether this leads to the bilinear system

-3 1 1 0 $11—1 0
o 1 -2 0 1 CL‘21—1 {E21—1
Sl T B o [Tl o | ™
0 1 1 -3 0 {E22—1
= Ax + (Nld? + bl)ul + (N2$ + bQ)UQ ,
1
y:z[l 11 1]z=Cx,

where the matrices A, N1, No, C' and the vectors by, by are as above.

Now let k& = 50, so that the discretized bilinear system has order n = k2 = 2500,
two inputs, and one output. As in the previous example, we first compare BT, Krylov,
and Krylov & BT (see Figure 4.3). Then, in Figure 4.4 we compare the results of BT
for different ~.

% Reduction of 2500-dimensional system, relative errors v=0 v=0.2

10 S
r=50 BT, y=0.2

3 <<-..1=52 Krylov, MIMO, q,=20, q,=2, p,=2 1 I\

1 i i ; 4e-04
L r=50 Krylov & BT, q‘=4o, q2=4, p2=4, y=0.2 A

-4 : T : 1e-09 36-10
10 : : HEE N
10°

5 35 50 208
10

v=0.5 y=1

107

° 7e-03 0.1
10

o 1&g 3e-10
10
10"

0 1 2 3 4 5 50 225 50 530

FiG. 4.3. Relative output errors for the input functions u;(t) = cos(jnt) and Hankel singular
values for different .
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Reduction of 2500-dimensional system, relative errors Reduction of 2500-dimensional system, relative errors
; r r . r
107 £ r=35 BT, y=0
------ r=50 BT, y=0.2 r=35 BT, y=0
b = r=50 BT, y=0.5 0%t e r=208 BT, y=0.2
10° ; { r=50BT.y=1 || | [ 1=225 BT, y=05
i ] r=530 BT, y=1
N . ! 5
10° f-ix A
-8 i - ' i i 13 10"
10 i | i i
10
10"
0 2 4 6 8 10 0 2 4 6 8 10

F1G. 4.4. Relative output error for different v. For v = 0 the solution is unstable. For fized
r = 50 we see that the error seems to increase if v > 0.2 increases. If we choose r = ry, i.e., the
numerical rank of the balanced Gramians, then the errors are almost equal.

5. Conclusions. We have discussed the relation of a certain type of generalized
Lyapunov equations to Gramians of stochastic and bilinear systems together with
the corresponding energy functionals. The Gramians of continuous- and discrete-
time stochastic linear systems allow the same energy interpretations as in the case
of deterministic linear systems. The relation of algebraic Gramians solving gener-
alized Lyapunov equations and energy functionals for bilinear systems is less clear.
We have discussed results from the literature for the latter problem and point out
some inaccuracies in the energy interpretations used so far. In order to provide some
motivation for using the algebraic Gramians of bilinear systems for model reduc-
tion, we have derived new characterizations of input and output energies of bilinear
systems. In any of the considered cases, the definition of the algebraic Gramians
allows us to compute balancing transformations, which in turn implies model re-
duction methods analogous to balanced truncation for linear deterministic systems.
We have illustrated the performance of these model reduction methods by show-
ing numerical experiments for different bilinear systems. The results demonstrate
that model reduction for bilinear systems based on balanced truncation often ap-
pears to be superior to Krylov subspace methods. In order to make these meth-
ods more efficient and reliable, it would be necessary to derive numerical methods
for the generalized Lyapunov equations that would enable us to solve such equa-
tions for dimensions n > 10,000, as well as error bounds for the reduced order
models.
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