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QUIET PLANTING IN THE LOCKED CONSTRAINT
SATISFACTION PROBLEMS

LENKA ZDEBOROVÁ∗ AND FLORENT KRZAKALA†

Abstract. We study the planted ensemble of locked constraint satisfaction problems. We
describe the connection between the random and planted ensembles. The use of the cavity method
is combined with arguments from reconstruction on trees and the first and the second moment
considerations. Our main result is the location of the hard region in the planted ensemble. In a part
of that hard region instances have with high probability a single satisfying assignment.

Key words. Constraint Satisfaction Problems, Planted Random Ensemble, Belief Propagation,
Reconstruction on Trees, Instances with a Unique Satisfying Assignment.

AMS subject classifications. 90C27 68Q25 05C80

Constraint Satisfaction Problems (CSPs) are very general in their nature: Con-
sider a set of N discrete variables and a set of M Boolean constraints; the problem
consists in finding a configuration of variables that satisfies all the constraints or in
proving that no such configuration exists. As such, CSPs are a subject of interest in
many different fields such as computer science, discrete mathematics, physics, engi-
neering and computational biology. Random ensembles of CSPs are a fertile source
of research activity; as hard benchmarks they serve for testing new algorithmic ideas
[5, 31], they are used to create efficient coding schemes [14, 15], to model complex glass
forming liquids [4, 23], or to understand the origin of average computational hardness
[30, 43]. Combining know-how from many branches of mathematics, computer science
and statistical physics seems to be a fruitful strategy for the understanding of these
stunning objects and of their very rich behavior.

The most commonly studied random ensembles of CSPs are created by choosing
the graph of variables and constraints as a random bipartite graph with a certain left
and right degree distribution. Another natural way of creating a random instance,
called planting, is to first assign a configuration to all variables, and then to choose
only constraints compatible with this configuration. Both these ensembles can be
useful to mimic instances created in some practical applications, as e.g. the low
density parity check codes [14]. In particular planted instances may be created in
adaptive situations when only constraints satisfied by the current state of variables
can be added.

By planting, we create by definition a satisfiable instance. Such instances are par-
ticularly useful as benchmarks to evaluate the performance of incomplete solvers, such
as stochastic local search [38]. Based on the example of the planted K-satisfiability
problem it is, however, often anticipated that the planted ensemble is algorithmically
easier than the random one because a bias towards the planted assignment is created
in the graph. Also, for most of the studied problems, it was proven that at large
density of constraints is it indeed easy to find a satisfying assignment near to the
planted one, see e.g. [3, 7, 13]. On the other hand if the planted ensemble would be
algorithmically hard in some region of parameters than these instances could serve
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as one-way functions and have applications in cryptography. Yet, compared to the
random ensemble, relatively little is known about the existence, size and properties
of algorithmically hard regions in the planted ensemble.

In this paper we study a way of planting an assignment which changes only in a
minimal way the properties of the random ensemble. We call this a quiet planting.
Although the concept of quiet planting was introduced in [24], many result were actu-
ally first demonstrated and used as a tool for proofs in [2]. Both these works, however,
were mainly concentrated on the coloring problem (and on hyper-graph bi-coloring).
In the present work we generalize this idea and we will focus on quiet planting in
the so-called locked CSPs, introduced recently in [43, 42]. On one hand, the locked
CSPs have a very interesting phase diagram which description-wise is much simpler
than the one of the graph coloring or K-satisfiability. On the other hand they are
much harder algorithmically and the boundaries between the easy and hard regions
are, unlike in the coloring or K-satisfiability, relatively well understood (at least on
the heuristic level of the cavity method [43, 42]). This special behavior stems from
the fact that in the locked problems the space of solutions consists of points separated
by an extensive (i.e. Θ(N)) Hamming distance instead of clusters of solutions.

Here, we combine the idea of quiet planting with the special behavior of the locked
CSPs and obtain random CSPs ensembles with many interesting properties that are
summarized in Sec. 1 in the context of related works. In Sec. 2 we introduce the
necessary definitions and notations, and in Sec. 3 we summarize the phase diagram
of the locked problems derived in [43, 42]. In Sec. 4 we argue about the equivalence
between the random and the planted ensemble based on heuristic considerations and
on a second moment computation. In Sec. 5 we describe the interesting phase where
instances of our problems have with large probability a single solution. Finally, in
Sec. 6 we discuss the algorithmic hardness of the planted instances, and compute the
critical degree beyond which instances become easy to solve. We conclude the paper
with a list of open problems in Sec. 7.

1. Main results and related works. The results of this paper apply to the
factorized locked CSPs, see Defs. 2.2, 2.4. We list in six points the most important
contributions of the present article:

(i) The planted configuration is equivalent to randomly sampled sat-
isfying assignment: The idea of quiet planting is to plant a configuration
that in many important properties does not differ from a satisfying assign-
ment sampled uniformly at random on the resulting graph. Such a problem
is closely related to the reconstruction on trees [10, 34, 26] where we con-
sider an assignment taken uniformly at random from all the satisfying ones.
Constructing such an assignment on a tree is always possible in polynomial
time, as the exact marginal probabilities can be obtained via the belief prop-
agation (BP) algorithm. On random graphs, uniform sampling is in general
exponentially costly. However, the quiet planting can be achieved asymptot-
ically on the factorized CSPs, see Def. 2.4. In a statistical physics language
quiet planting is possible whenever the quenched entropy equals the annealed
one, see condition (4.2). The possibility of quiet planting and its relation to
a concentration property (4.2) was previously discussed for other constraint
satisfaction problems in [32, 2, 24].

(ii) Equivalence between the planted and the random ensemble in the
satisfiable phase: Many properties of the planted ensemble created via quiet
planting can be deduced from the properties of the purely random ensemble.
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Among others, in the satisfiable phase the random and planted ensembles
are asymptotically equivalent, see Def. 4.2. Such equivalence can also be
established rigorously based on a second moment argument, as in [2]. In the
factorized locked problems treated in this article the second moment is able
to pin the satisfiability threshold sharply and hence the equivalence between
the planted and the random ensemble holds in the whole satisfiable phase.

(iii) Equivalence between planted and satisfiable ensembles: Based on
heuristic (cavity) arguments we conjecture that the planted ensemble is in
the factorized locked problems asymptotically equivalent to the ensemble of
satisfiable instances in the whole range of Θ(1) constraint densities. In par-
ticular, this means that one can recognize easily almost all the rare satisfiable
instances above the robust reconstruction threshold by using belief propaga-
tion. We stress here that we do not expect this equivalence to be true in the
non-locked CSPs, such as graph coloring or K-satisfiability.

(iv) Easy-hard-easy transition: Next to the interesting conceptual results, the
most important practical result is the identification and the location of the
region where the instances from the planted ensemble of the factorized locked
problems are on average computationally hard. We show that an easy-hard-
easy pattern for finding a solution appears in the planted ensemble as the
constraint density is increased, where easy means that an on-average poly-
nomial algorithm is known, while hard means that no on-average polynomial
algorithm is known (and maybe does not exist). We conjecture that the
two boundaries of the hard phase correspond to two different reconstruction
thresholds – the onset of hardness coincides with the small noise reconstruc-
tion threshold [42], called the dynamical transition in the physics literature
[22], and the end of the hard region is given by the threshold for the robust
reconstruction [16]. This last point also corresponds to the Kesten-Stigum
bound for the canonical reconstruction on trees [19, 20], and to the spin glass
local instability in the purely random ensemble [29]. We also show that out-
side the hard region algorithms based on belief propagation are able to find
solutions efficiently. In particular in the high average degree easy region, the
belief propagation algorithm converges directly to the planted solution.

(v) Hard satisfiable benchmarks: Given we have located the values of param-
eters where the instances of the planted ensemble are hard, these can serve as
very challenging satisfiable benchmarks. Such benchmarks are in particular
interesting for the evaluation of regions in which incomplete solvers work —or
do not work— in polynomial (linear) time. Note that for complete exhaus-
tive solvers the locked problems are not necessarily harder than the canonical
K-satisfiability. On the contrary, locked constraints produce more implica-
tions when a variable is fixed, hence exhaustive branch-and-bound techniques
might come to a decision relatively faster than in the random K-satisfiability.

(vi) Instances with unique satisfying assignment (USA): We show that be-
yond the threshold corresponding to the satisfiability threshold in the random
ensemble the planted instances have with high probability a single satisfying
assignment (or a pair of them in case a global symmetry is present). Moreover
depending on the constraint density these USA instances can be found in the
hard or in the easy region. Some USA instances are extensively used in eval-
uation of quantum algorithms, see e.g. [40, 12]. In these previous works these
instances are, however, generated with exponential cost, and their classical
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typical computational hardness has not been evaluated.

A large part of our results is based on the heuristic cavity method approach [28].
We were also able to prove part of our results for the R-in-K SAT problem on random
regular graphs using computations of the second moment and the expander property.
This includes some results about the equivalence between the planted and random
ensembles in the satisfiable phase, and the uniqueness of the satisfying assignment in
the unsatisfiable phase. Completing and extending these proofs to the other locked
factorized CSPs should be possible although more involved.

Table 1.1

Sketchy summary of the properties of the different phases in the random ensemble of the fac-
torized locked problems, the parameter l is the average number of constraints in which a variable
appears. The three thresholds ld, ls and ll are defined in detail later in the paper.

RANDOM l < ld ld < l < ls ls < l < ll ll < l

BP, random init. converges converges converges does not
BP fixed point uniform uniform uniform ×

# of solutions exponential exponential none none
finding solution easy hard × ×

reconstruction not possible possible × ×

Table 1.2

The same as Tab. 1.1 for the random planted ensemble, its definition is given in Sec. 4.

PLANTED l < ld ld < l < ls ls < l < ll ll < l

BP, random init. converges converges converges converges
BP fixed point uniform uniform uniform planted

BP, planted init. converges converges converges converges
BP fixed point uniform planted planted planted

# of solutions exponential exponential one/two one/two
finding solution easy hard hard easy

reconstruction not possible possible possible possible
robust recons. not possible not possible not possible possible

2. Definitions and notations. In this section we specify the class of constraint
satisfaction problems to which our results apply. The crucial notions will be the
definition of a locked [43] and factorized constraint satisfaction problem. It is only on
the factorized problems where there is a very close relation between the usual random
and the planted ensemble, as discussed in [24]. It is also the fact that in the locked
problems solutions (i.e. satisfying assignments) are mutually far from each other in
terms of their Hamming distance [43] that makes them particularly interesting for
considerations in this context.

Definition 2.1. A constraint a containing K variables, the domain of each
variable being X, is a function from XK to {0, 1}. If the function evaluates to 1 (0)
we say that constraint a is satisfied (not satisfied). A constraint is locked if and only
if there are no two satisfying assignments of variables which would differ in a single
value (out of the K ones). In this paper we will consider for concreteness binary
variables, that is X = {0, 1}, but the results are generalizable to larger domain sizes.
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Definition 2.2. A constraint satisfaction problem consists in deciding if there
exists a configuration of N variables which satisfies simultaneously a set of M con-
straints. A constraint satisfaction problem is called locked if and only if all the M
constraint are locked and each of the N variables belongs to at least two different con-
straints. Thus anytime we speak about a locked problem we implicitly suppose that
the corresponding factor-graph does not have any leaves (variables of degree one).
The degree of a variable is defined as the number of constraints to which the variable
belongs, while the degree of a constraint is the number of variables it contains.

We shall illustrate our findings on the so called occupation constraint satisfaction
problems [33, 42].

Definition 2.3. In occupation problems every constraint a depends only on
the sum of the variables it contains. Thus every occupation constraint containing Ka

variables can be characterized by a binary Ka + 1 component vector Aa such that
the constraint is satisfied if and only if the sum r of the Ka variables is such that
Aa(r) = 1.

An occupation constraint a is locked if and only if for all i = 0, . . . ,Ka−1 we have
Aa(i)Aa(i+ 1) = 0. We will consider occupation problems where every constraint
contains K variables and is given by the same vector A. To give an example of this
notation, the vector A = 0100 corresponds to the 1-in-3 SAT problem (also called
exact cover), which is indeed locked. The vector A = 0110 corresponds to the hyper-
graph bi-coloring problem, which is not locked (since there are two neighboring 1s).
Many other examples can be found in [42]. For problems which do not have other
name established in the literature, we will use the notation i-or-j-...-in-K SAT for a
vector A with non-zero components A(i),A(j), etc.

Let us now write the belief propagation (BP) equations [35, 25, 27] for the oc-
cupation constraint satisfaction problems. The basic quantities in BP are messages.
We define µa→i

si
as the probability (over all satisfying assignments) that the variable i

has value si given that i belong only to constraint a. The BP equations approximate
these probabilities µa→i

si
by messages ψa→i

si
by assuming that the factor graph [25]

underlying the CSP is a tree

ψa→i
si

=
1

Za→i

∑

{sj}

δA(si+
∑

j
sj),1

∏

j∈∂a−i

∏

b∈∂j−a

ψb→j
sj

, (2.1)

where Za→i is a normalization constant assuring ψa→i
1 + ψa→i

0 = 1, ∂a is the set of
neighbors of a, ∂a − i are neighbors of a except i, and the sum over {sj} is over
all values variables sj can take. Fig. 2.1 shows the corresponding part of the factor
graph.

We define νi to be the probability (over all satisfying assignments) that a variable
i is occupied. The BP estimate of the probability that a variables i is occupied is

χi =

∏

a∈∂i ψ
a→i
1

∏

a∈∂i ψ
a→i
1 +

∏

a∈∂i ψ
a→i
0

, (2.2)

Note that if an assignment {σ} is a solution of the locked problem, then ψa→i
σi

= 1,
ψa→i
¬σi

= 0 is a fixed point of the BP equations (2.1). If the underlying factor-graph is a
tree then the fixed point of the BP equations is unique and µa→i

si
= ψa→i

si
and νi = χi in

the fixed point (note that on a tree the problem is not locked). On a graph with cycles
this is not the case in general. We will call a BP fixed point asymptotically (N → ∞)
exact on a random ensemble of graphs if µa→i

si
= ψa→i

si
+ o(1) and νi = χi + o(1) for

almost all a and i with high probability, where N is the number of nodes in the graph.
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Fig. 2.1. Part of the factor graph to illustrate the meaning of indices in the belief propagation
equations (2.1).

All our results are restricted to ensembles of constraint satisfaction problems
where at least one BP fixed point is asymptotically exact. We define such ensembles
in the remaining of this section. A graph ensemble is locally tree-like if the shortest
loop going trough a random node has w.h.p. length diverging as N → ∞. Families of
sparse random graphs, i.e. the degree distribution of variables Q(l) does not depend
on N , are locally tree-like as long as the mean of Q(l) is finite. The variable degree
distributions we will be using mostly are:

• Regular Q(l) = δL,l.
• Truncated Poisson Q(0) = Q(1) = 0, Q(l) = cl/[(ec − 1− c)l!] for l ≥ 3. The
average degree in this case is l = c(1− e−c)/[1− (1 + c)e−c].

In order to generate random graphs with a given variable degree distribution, one can
apply the following algorithm:

• Repeat until KM =
∑N

i=1 li: Draw N random numbers li from distribution
Q(l).

• Consider K legs going from every constraint, order them arbitrarily and in-
dex them from 1 to KM , consider li legs from every variable i, order them
arbitrarily and index them from 1 to KM .

• Repeat until there are no double edges: Draw a random permutation π of
KM numbers and connect i-th leg from constraints with π(i)-th leg from
variables.

We define an iteration of the belief propagation algorithm as taking all the KM
edges ai in a random order and updating the message ψa→i

si
according to eq. (2.1).

Definition 2.4. A given instance of a constraint satisfaction problem is fac-
torized if and only if the belief propagation equations initialized randomly converge
almost surely (with probability approaching one as the number of variables N → ∞)
to a uniform fixed point, i.e., the value of ψa→i is the same for almost all edges ai.

Note that it is a non-trivial task to provably decide if a problem satisfies this
definition, and the answer depends on the degree distribution. In practice we generate
a large random instance of the problem, initialize BP randomly and iterate. We
observe that the result (i.e. if the condition in def. 2.4 is satisfied or not) is the same
on almost all large random instances. The condition of def. 2.4 can hence be checked
computationally with a small computer-time effort.

Definition 2.5. Let NG be the number of satisfying assignments of an instance
of the constraint satisfaction problem G. We define the annealed entropy sann to be

sann = lim
N→∞

1

N
logE(NG) , (2.3)
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where the expectation is over the graph ensemble. The quenched entropy is defined as

squen = lim
N→∞

1

N
E[log (NG + 1)] . (2.4)

Definition 2.6. Let us also define the Bethe entropy [25, 27] that is associated
to any BP fixed point as

s =
1

N

∑

a

log (Za)−
1

N

∑

i

(li − 1) log (Zi) . (2.5)

where

Za =
∑

{si}

δA∑
i si

,1

∏

i∈∂a

(

∏

b∈∂i−a

ψb→i
si

)

, (2.6a)

Zi =
∏

a∈∂i

ψa→i
0 +

∏

a∈∂i

ψa→i
1 . (2.6b)

The following statement stands on the basis of the cavity method: If a BP fixed
point is asymptotically exact (for a given random graph ensemble) then the Bethe
entropy (2.5) is equal to the quenched entropy (2.4).

The following result was obtained in [33] (section 5.1.2) for the occupation con-
straint satisfaction problems, and we conjecture it is general: The annealed entropy
(2.3) is equal to the Bethe entropy evaluated in the uniform BP fixed point (when
more than one uniform BP fixed point exists then consider the maximum of the Bethe
entropy over the uniform fixed points).

If the problem is factorized and the uniform BP fixed point is asymptotically
exact then the annealed entropy is equal to the quenched entropy, sann = squen.
Our results in the remaining of this paper apply to random constraint satisfaction
problems where indeed sann = squen (at least in some region of constraint densities).
This condition is sometimes amenable to a rigorous proof, as it is in general weaker
than E(N 2

G) < C [E(NG)]
2, see [2]. If we are, however, interested in a fast heuristic

check, then checking if the random constraint satisfaction problem is factorized may
be more suitable.

3. Basic properties of the random factorized locked problems. For the
locked problems, a detailed empirical analysis was done in [43, 42]. In this section
we summarize the most relevant results (heuristically reasoned conjectures) of those
works. It was found that a locked CSP is factorized in (at least) the two following
cases:

(a) Any locked problem on random regular graphs, that is when every
variable is contained in L constraints. On regular graphs, the uniform fixed
point of the BP equations then satisfies

ψ0 =
1

Z

K−1
∑

r=0

δA(r),1

(

K − 1

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (3.1)

ψ1 =
1

Z

K−1
∑

r=0

δA(r+1),1

(

K − 1

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (3.2)
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where Z is the normalization. For the probability that a variable in occupied
one has in this case in the N → ∞ limit

χ =
ψL
1

ψL
1 + ψL

0

, (3.3)

Let us call xr the probability that a constraint contains r occupied variables.
Then

xr =

(

K
r

)

δA(r),1ψ
r(L−1)
1 ψ

(K−r)(L−1)
0

∑K

t=0

(

K
t

)

δA(t),1ψ
t(L−1)
1 ψ

(K−t)(L−1)
0

. (3.4)

(b) The balanced locked problems [42], are problems where the vector A
is symmetric, A(i) = A(K − i) for all i = 0, . . . ,K and this 0-1 symmetry
is not spontaneously broken (that is when a satisfying assignment chosen
uniformly at random has the same number of 0’s and 1’s up to a o(N) factor).
Note that the absence of the symmetry breaking might depend on the degree
distribution Q(l). In the balanced locked problems the uniform BP fixed
point ψ1 = ψ0 = χ = 1/2. For the probability that a constraint contains r
occupied variables we have here

xr =

(

K
r

)

δA(r),1
∑K

t=0

(

K
t

)

δA(t),1

. (3.5)

A particularly simple case of (a) is the R-in-K SAT where 1 ≤ R ≤ K/2. If every
variable has L connections and every constraint has to contain exactly R occupied
variables, then the number of occupied variables is exactlyMR/L, and thus ν = R/K.

The authors of [43, 42] conjectured that when the N → ∞ limit of the Bethe en-
tropy for a locked problem is positive, then the Bethe entropy is equal to the quenched
entropy, and the BP fixed point reached from random initialization is asymptotically
exact. If the Bethe entropy is negative then no satisfying assignment exists with high
probability.

The Bethe entropy for all the balanced locked problems reads

s
(

l
)

= log 2 +
l

K
log

[

2−K

K
∑

r=0

δA(r),1

(

K

r

)

]

, (3.6)

where l is the average degree of a variable (as we speak only about locked problems,
the degree distribution has to have a zero weight on variables of degree zero and one).
For all the locked problems on random regular (degree fixed to L) graphs the entropy
reads

s(L) =
L

K
log

[

K
∑

r=0

δA(r),1

(

K

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−r)
0

]

− (L− 1) log
[

ψL
0 + ψL

1

]

, (3.7)

where ψ1, ψ0 is the fixed point of eqs. (3.1-3.2). This entropy simplifies further for
the R-in-K SAT on regular graphs (where the values of the ψs obey the simple form
discussed previously) where we get an explicit formula

s(L) =
L

K
log

(

K

R

)

− (L− 1)H

(

R

K

)

, (3.8)
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where H(x) = −x logx− (1 − x) log (1 − x) is the entropy function.

The satisfiability transition ls is then defined by

satisfiability threshold ls : s(ls) = 0 (3.9)

for the corresponding entropy function. For l < ls the problem has almost surely
exponentially many solutions (the exponent being given by s(l)) whereas for l > ls
the problem almost surely does not have any solution.

The authors of [43, 42] also argued about the existence of a second phase tran-
sition in the locked problems, ld < ls, traditionally called in the physics literature
the dynamical transition because of its connection to dynamics of glasses [32]. This
critical point separates a region where for {σ} being a typical satisfying assignment
the ψa→i

σi
= 1, ψa→i

¬σi
= 0 defines a stable fixed point of the BP equations (2.1), from

a region where this does not hold anymore. In other words, if an infinitesimal per-
turbation is introduced to these messages, the iteration of (2.1) goes back to the
solution-related fixed point for l > ld, but not for l < ld. The authors of [43, 42]
also conjectured that for l > ld a typical solution does not have solutions up to an
extensive (i.e. Θ(N)) Hamming distance, whereas for l < ld there are other solutions
at sub-extensive (i.e. o(N)) Hamming distance. Let us call the phase corresponding
to l > ld the separated phase, and the one corresponding to l < ld the non-separated
phase.

For the locked problems on regular graphs, the following inequality always holds:
2 < ld < 3. In other words at L = 2 the system is in the non-separated phase while for
L ≥ 3 the solutions are always separated and the solution-corresponding fixed points
are stable. For the balanced locked problems whenever the degree of every variable
is larger or equal to three the system is in the phase where solutions are separated.
When the fraction of variables of degree two is positive, Q(2) > 0, then the expression
for ld follows [42]:

ld
Q(2)

= 2(K − 1)− 2

∑K−2
r=1 r

(

K−1
r

)

δA(r+1),1 δA(r),0 δA(r−1),0
∑K−2

r=0 δA(r+1),1

(

K−1
r

)
. (3.10)

There is a deep connection between this dynamical threshold ld and the recon-
struction problem [10, 34, 26]. In the reconstruction problem one creates a tree with
the same degree properties as the random graph. Then one considers a satisfying
assignment chosen uniformly at random from all the possible ones. The reconstruc-
tion problem finally consists in deciding whether this assignment on the leaves of the
tree contains some information about the value assigned to the root. In the locked
problems the value of the root is always uniquely implied by the values of the leaves,
as follows from the very definition of these problems. However, if an infinitesimal
noise is introduced on the leaves then there is no information left if and only if l < ld.
This value ld was called the small noise reconstruction threshold in [42].

To summarize, the random locked factorized problems are in the non-separated
phase for l ≤ ld, which was shown to be algorithmically easy in [43, 42]. For ld ≤ l ≤ ls
the space of solutions is separated and it is then hard to find any solution. For l ≥ ls
no solution exists anymore.

4. Equivalence of the random and planted ensembles. The planted en-
semble of graphs, which is the main subject of the present paper, is created in the
following way:
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Table 3.1

The critical values for all the balanced locked problems up to K = 8 on the regular and truncated
Poissonian ensembles. We remind here that the vector A codes for what are the allowed sums of
variables around a constraint. We consider only problems where A(0) = A(K) = 0, that do not have
a trivial all true or all false satisfying assignment. The integer value Ls (resp. Ll) is defined as the
first larger or equal to ls (resp. ll), the stars denote that Ls = ls (resp. Ll = ll). For definition of
the threshold ll see Sec. 6. The corresponding values of c are the coefficients that in the truncated
Poisson distribution correspond to the average degree l. The sign ’×’ means that the problem ceases
to be balanced before the instability arises.

A Ls Ll cd cs cl ld ls ll
00100 3 4* 1.256 1.853 2.821 2.513 2.827 3.434
0001000 4 6* 1.904 3.023 4.965 2.856 3.576 5.144
000010000 5 8* 2.337 3.942 6.994 3.116 4.276 7.039
5-in-10 5 10* 2.660 4.794 8.999 3.325 4.944 9.009
6-in-12 6 12* 2.918 5.455 11.00 3.502 5.586 11.00
01010 4* ∞ 1.904 3.594 ∞ 2.856 4 ∞
0101010 6* ∞ 2.660 5.903 ∞ 3.325 6 ∞
010101010 8* ∞ 3.132 7.978 ∞ 3.654 8 ∞
0010100 6 46* 2.561 5.349 45.00 3.260 5.489 45.00
000101000 7 29* 2.975 6.650 28.00 3.542 6.708 28.00
001010100 8 > 100 3.110 7.797 > 100 3.638 7.822 > 100
010010010 6 x 2.173 4.896 x 3.014 5.083 x

Table 3.2

The critical values for all the regular (non-balanced) locked problems up to K = 6. The integer
value Ls (resp. Ll) is defined as the first larger or equal to ls (resp. ll), the stars denote that
Ls = ls (resp. Ll = ll).

A Ls Ll

0100 3 3*
01000 3 4*
010000 3 5*
0100000 3 6*
001000 4 5*
0010000 4 6*

A Ls Ll

010100 5 > 50
0101000 6 > 50
010010 4 10
0100100 4 14
0100010 4 7

(i) Make each of the N variables occupied with probability χ (3.3), call the
number of occupied variables N1.

(ii) Choose a degree sequence from the probability distribution Q(l) in such a

way that KM =
∑N

i=1 li.
(iii) For each constraint, and according to the probabilities xr (3.4), choose the

number ra of occupied variables to which it is connected. Repeat until
∑M

a=1 ra =
∑N1

i=1 li. Here i are the indexes of the occupied variables. If
this condition cannot be achieved go back to step (i) and repeat it until the
condition is achievable.

(iv) Now consider the ra legs going out of every constraint a, order them arbitrarily

and index them by i going from 1 to
∑M

a=1 ra. Consider li legs going out from
every occupied variable and index them. Choose a random permutation π of
∑M

a=1 ra numbers, and connect the leg with index i going out from occupied
variables to the leg with index π(i) going out from constraints. Do the same
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with the empty variables and the remaining K − ra legs going out from the
constraints. Repeat until there are no double edges.

Note that there are several other models how to plant a solution (e.g. choose exactly
the integer value of χN occupied variables in the step (i)), we could have chosen any
other which is equivalent (for typical properties) to the above one in the N → ∞
limit.

Definition 4.1. Call a property of a large random graph drawn from a given
random ensemble a thermodynamic property if and only if in the N → ∞ limit the
probability that this property holds is smaller than 1 − exp(−cN), where c is some
Θ(1) constant. In statistical physics of random systems it is often the case that large
deviations are exponentially rare and hence all usually considered properties are ther-
modynamic in this sense. Without attempting a rigorous proof, in statistical physics
the following examples are often assumed to be thermodynamic properties: The de-
gree distribution, the entropy density, the fraction of occupied variables in a random
satisfying assignment, the distance between two random satisfying assignments, etc.
Properties that are not thermodynamic are all those relying on the behavior of expo-
nentially rare instances, e.g. moments of some exponentially large quantities, as for
instance the number of satisfying assignments.

Definition 4.2. Consider two ensembles of random graphs A and B, we call the
two ensembles asymptotically equivalent if and only if every property that is thermo-
dynamic in ensemble A is thermodynamic in ensemble B, and vice versa.

Definition 4.3. The planting is called quiet if the corresponding planted and
random ensembles are asymptotically equivalent.

Quiet planting intuitively means that if one is given a large random graph, one
is not able to tell if that graph was drawn from the random or from the planted
ensemble. This is because properties that are usually measured to distinguish the two
graphs ensembles are thermodynamic (even if proving they are thermodynamic might
be in general difficult).

The close relation between the random and the planted ensemble was explored
in [2] for the random graph coloring and bi-coloring problems, see Theorem 6 and
Theorem 7 in the appendix A of [2]. In statistical physics the quiet planting for graph
coloring was discussed in [24].

Proposition 4.4. Denote NG the number of satisfying assignments of an in-
stance G drawn from the random ensemble. If E[log (NG + 1)]/N is a thermodynamic
property, i.e.

∃c > 0 : ∀ǫ > 0 lim
N→∞

P (| logNG − E[log (NG + 1)]| > ǫN) < e−cN (4.1)

and if the annealed entropy is equal to the quenched one, i.e.

logE(NG) = E[log (NG + 1)] + o(N). (4.2)

then the planted ensemble and the random ensemble are asymptotically equivalent.
Proof. [of Prop. 4.4] In the random ensemble we are drawing graphs uniformly

from all the graphs with a given degree distribution. In the planted ensemble we
are drawing from the same set of graphs but with probability proportional to NG.
Since (4.1) and (4.2) hold by assumption for the random ensemble, relation (4.1)
holds for some c′ also for the planted ensemble. Indeed, if (4.1) holds and if there
would be larger than exponentially small probability that planting draws instances
with | logNG − E[log (NG + 1)]| > ǫN then (4.2) could not hold. For every other
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thermodynamic property, i.e. such that large deviations are exponentially rare, the
the same argument applies.

Statements equivalent to Prop. 4.4 first appeared in eq. (4) and Theorem 6 in [2].
Note that when the concentration condition (4.2) can be proven in a stronger form,
then the condition on the exponentially rare large deviation can be weakened.

In statistical physics, using the cavity method arguments, the condition (4.2) can
be evaluated. As we state at the end of sec. 2, when the Bethe entropy is asymp-
totically exact then the factorization and the equality of the quenched and annealed
entropies are equivalent. Hence quiet planting is possible in all the factorized prob-
lems as long as the Bethe entropy is asymptotically exact. In the non-locked factorized
problems, such as the random graph coloring, condition (4.2) ceases to be true strictly
before the satisfiability threshold, as discussed in [24].

In the next section we argue that in the factorized locked problems (4.2) holds
up to the satisfiability threshold, and hence the planted and the random ensembles
are asymptotically equivalent for the factorized locked problems in the whole range
of parameters corresponding to the satisfiable phase on the random ensemble.

4.1. Second moment argument. Relation (4.2) is in general rather hard to
prove rigorously. Achlioptas and Coja-Oghlan [2] used instead a stronger condition
E(N 2

G) < C [E(NG)]
2 which they proved for the coloring and the bi-coloring of factor-

graphs problem for sufficiently sparse graphs.
For the factorized locked problems we conjecture that the relation E(N 2

G) <
C [E(NG)]

2 holds in all the factorized locked problems on the purely random ensemble
as long as l ≤ ls.

The first and second moment of the number of solutions in the occupation prob-
lems has been computed for a general degree distribution in [42]. Based on numerical
results it has been also argued non-rigorously in [42] that the above conjecture holds
in the balanced locked problems. Here we illustrate that it also holds in the R-in-K
SAT on random L-regular graphs for L < ls. The first moment entropy, defined by
(2.3), is in the R-in-K SAT on random L-regular graphs given by eq. (3.8). The
second moment entropy s2nd = limN→∞ logE(N 2

G)/N is given by s2dn = maxts2nd(t)
where [42]

s2nd(t) =
L

K
log



















K!

R
∑

s=0

[

(

tR
K

)s
[

(1−t)R
K

]2(R−s) [

1 + (t−2)R
K

]K−2R+s
]1− 1

L

(R − s)! (R− s)! s! (K − 2R− s)!



















. (4.3)

The interpretation of the parameter 0 ≤ t ≤ 1 follows from expression

E(N 2
G) =

∑

σ1,σ2

P (σ1 SAT, σ2 SAT ) , (4.4)

where σ1 and σ2 are configurations and P (·) is a probability over the graph ensemble.
The parameter t in (4.3) is then the number of sites occupied in both σ1 and σ2
divided by number of sites occupied in one of the solutions, RN/K. We remind that
in the R-in-K SAT the satisfiability threshold is given by cancellation of the entropy
(3.8)

ls =

[

1−
log
(

K
R

)

KH
(

R
K

)

]−1

. (4.5)
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As s2nd is a maximum of a function of a single variable t, we plot s2nd(t) at L = ls
in Fig. 4.1. Evaluation of the polynomial function (4.3) for many values of R and K
in Mathematica shows that for L < ls we have 2sann = s2nd ≥ 0, and for L > ls we
have sann = s2nd ≤ 0.
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Fig. 4.1. The second moment entropy function s2nd(t) (4.3) at ls for several values of K, in
the K-in-2K SAT problem on the left, and 1-in-K SAT on the right.

We also investigated numerically general formulas for the second moment pre-
sented in [42] and concluded that 2sann = s2nd for l < ls, and sann = s2nd ≤ 0 for
l > ls, holds also for all the other locked factorized problems.

4.2. Satisfiable factorized locked problems equivalent to the planted
ones. We also conjecture that in the factorized locked models the planted ensemble
is asymptotically equivalent to the ensemble of satisfiable instances in the whole region
of l.

For a general (non necessarily locked) constraint satisfaction problem the space of
satisfying assignments is separated into clusters. We define the entropy s of a cluster as
the logarithm of the number of assignments that belong to this cluster. We also define
the complexity Σ(s) as the logarithm of the number of clusters of a given entropy s.
The function Σ(s) is well defined even in the unsatisfiable region: when Σ(s) < 0 it
then corresponds to the large deviation function for the existence of a cluster of a given
size [36]. It was argued in [24] that the cluster containing the planted configuration
has a size s∗ such that s∗ = argmax[Σ(s) + s]. On the other hand from the large
deviation interpretation of the Σ(s) function, most of the rare satisfiable instances in
the unsatisfiable region will have one cluster of size s′ = argmaxΣ(s) ≤ s∗.

In the locked problems, all clusters contain a single satisfying assignments, hence
s = 0 for all clusters. Keeping in mind the large deviation interpretation of the
complexity Σ [36], the rare satisfiable instances have a single solution and should be
asymptotically equivalent to planted instances. And hence the satisfiable and planted
ensembles are asymptotically equivalent in the whole range of l in the factorized locked
problems.

5. Single solution instances. As discussed in the introduction, it is of practical
importance to be able to create hard instances which have a single solution with a
large probability. Based on the heuristic cavity method results of [24] we conjecture
that in the region l > ls with high probability there is a single solution on large planted
instances of the factorized locked problems (or a couple in case of balanced problems).
In this section we prove (assuming the properties of the 1st and 2nd moment from
the previous section) this statement for the R-in-K SAT on random regular graphs.
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We believe that the generalization of the proof is possible also for the other factorized
locked problems.

First note that the first moment in the plantedR-in-K SAT sann,pl = maxtsann,pl(t)
is related in a simple way to the first and second moment in the purely random en-
semble. It holds for the entropies

sann,pl(t) = s2nd(t)− sann . (5.1)

See an example of the function sann,pl(t) in Fig. 5.1.
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Fig. 5.1. The first moment entropy in the 4-in-8 SAT on L regular planted ensemble.

From the previous section it follows that for L > ls the first moment entropy in
the planted ensemble is a negative function for all 0 < t < 1. The parameter t is in the
planted ensemble interpreted as the distance from the planted solution. Therefore, for
L > ls there are no solutions at an extensive (i.e. Θ(N)) distance from the planted
solution (except the solution at distance one in the balanced problems).

Theorem 5.1. Consider a large instance of the R-in-K SAT problem drawn from
the planted ensemble, the degree of variables be L > 2. Then there exists an ǫ > 0
such that with high probability there is no solution at distance smaller than ǫN from
the planted solution We will use the expander properties of regular bipartite graphs.
The following theorem is well known in the theory of expanders [39].

Theorem 5.2. [Sipser and Spielman [39]] Consider a random factor-graph with
degree of variables L and degree of constraints K. Then, for any δ < L−1, there exists
a constant ǫ > 0, such that with high probability for every set of Ñ ≤ ǫN variables the
number of neighboring constraints is larger than δÑ . In other words the factor graph
is a (ǫ, δ) expander.

Proof. [of Theorem 5.1] Let us prove the statement by contradiction. Suppose
that as N → ∞ for every ǫ > 0 there is a solution at distance smaller that ǫN
from the planted solution. Denote the distance between the planted and this nearby
solution N1 = ǫ′N . Now consider the factor-graph and the planted solution, N1 of
variables have to be changed to reach the nearby solution. Since ǫ′ can be arbitrarily
small Theorem 5.2 implies that there is at least δN1 constraints in which at least
one variable has been changed. The property defining a locked constraint is that if a
variable is changed then at least one other has to be changed in order to satisfy the
constraint again. Hence each of the at least δN1 constraints have to be connected by
at least two edges to the N1 changed variables. There is hence at least 2δN1 edges
connected to changed variables. The total degree of changed variables is LN1, hence
LN1 > 2δN1. But as δ can be as near to L − 1 as we wish this inequality cannot
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hold and we hence reached a contradiction. This proofs that there exists ǫ > 0 such
that with high probability there is no solution at distance smaller than ǫN from the
planted one.

Properties of the first moment in the planted ensemble together with Theorem
5.1 imply that in the planted R-in-K SAT on random regular graphs there is almost
surely a single solution (or a pair of solutions for R = K/2).
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Fig. 5.2. Left: Probability (over 5000 instances) that there is a single pair of solutions in the
2-in-4 SAT as a function of the average degree and the size of the graph. Right: Data are the
average entropy density (logarithm of the number of solutions per variables) of the instances. The
line represents the entropy density in the N → ∞ limit, eq. (3.7). The data are obtained with the
relsat algorithm [18]. In both parts we marked the threshold ls = 2.827.

6. Average computational hardness. One of the most interesting aspects of
the study of random constraint satisfaction problems is the average computational
hardness of a given ensemble. This has been discussed extensively in both the com-
puter science and the physics literature, in particular for the K-satisfiability and color-
ing problems. It has been shown empirically that the hardest instances lie very near to
the satisfiability threshold ls, and an easy-hard-easy pattern is often described [5, 31].
Later works focused on predicting up to which connectivity polynomial algorithms
are able to find solutions, see e.g. [30, 41, 37]. Instances with a very large density
of constraints are typically unsatisfiable. In some problems, e.g. K-satisfiability, no
on average polynomial algorithms are known to show unsatisfiability for arbitrary
large but constant density of constraints [6]. In other, more constraint, problems unit
clause propagation based schemes were shown to be efficient [1]. In the planted in-
stances, which are always satisfiable, it is known that for sufficiently large density of
constraints solutions can be found in polynomial time, see e.g. [21, 8]. The situation
in the planted factorized locked problems is very interesting: on top of the easy low
and high constraint density phases we show that there also exists an intermediate
hard phase, and we locate both the boundary thresholds.

We argued that in the satisfiable phase l < ls the planted and random ensembles
are asymptotically equivalent, this includes the average behavior of algorithms. It was
argued in [43, 42] that for average degree l < ld the locked problems are algorithmically
easy whereas for ld < l < ls they are on average hard.

The second hard-easy transition is particular to the planted ensemble and happens
in the unsatisfiable phase l > ls. We will study the behavior of the BP equations
initialized randomly to locate this transition.
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6.1. The spinodal point. By definition of the factorized locked problems the
belief propagation equations (2.1) initialized randomly converge to a uniform fixed
point. But as the average degree is growing this ceases to be true. In the problems
that we are studying here, there actually exists a critical average degree ll beyond
which belief propagation converges spontaneously towards the planted solution. This
yields a clear hard-easy transition in the algorithmic complexity. In statistical physics
terms this threshold ll corresponds to a spinodal point of the liquid state [24]. The
spinodal point also corresponds to the Kesten-Stigum bound [19, 20], and to the
robust reconstruction threshold on trees [16]. This is yet another important connection
between the reconstruction problem and the planted ensemble.

In order to compute the spinodal point let us first define matrix z(s′|s). Consider
a variable and one of its neighbors, z(s′|s) is then the probability that in the planted
configuration the variable was assigned s′ given that its neighbors was s. In the terms
on reconstruction on trees z(s′|s) is the probability that in the broadcasting a variable
was assigned s′ given its parent was s. Components of z(s′|s) can be computed as

z(0|0) =
K
∑

r=0

(

1−
r

K − 1

)

yr(0) , z(1|0) = 1− z(0|0) , (6.1)

z(1|1) =
K
∑

r=0

r − 1

K − 1
yr(1) , z(0|1) = 1− z(1|1) . (6.2)

where

yr(0) =
(K − r)xr

∑K
t=0(K − t)xt

, yr(1) =
r xr

∑K
t=0 t xt

, (6.3)

where xr is given by (3.4) or (3.5). Explicit formulas for the regular problems are

z(0|0) =

∑K−2
r=0

(

K−2
r

)

δA(r),1ψ
r(L−1)
1 ψ

(K−r−1)(L−1)
0

∑K−1
r=0

(

K−1
r

)

δA(r),1ψ
r(L−1)
1 ψ

(K−r−1)(L−1)
0

, (6.4)

z(1|1) =

∑K

r=2

(

K−2
r−2

)

δA(r),1ψ
(r−1)(L−1)
1 ψ

(K−r)(L−1)
0

∑K

r=1

(

K−1
r−1

)

δA(r),1ψ
(r−1)(L−1)
1 ψ

(K−r)(L−1)
0

. (6.5)

The first eigenvalue of this matrix is equal to one, and is associated with a trivial
homogeneous eigenvector. The second eigenvalue of the matrix z is given by

λ = z(0|0) + z(1|1)− 1 . (6.6)

A well-known property of the reconstruction on a tree is that reconstruction is
always possible beyond the so called Kesten-Stigum (KS) threshold [19, 20]. In our
notation the KS condition says that if (L− 1)(K − 1)λ2 > 1 then the reconstruction
is possible, i.e., the leaves asymptotically contain some information about the value
sent by the root. In statistical physics the Kesten-Stigum condition is equivalent to
the de Almeida-Thouless instability of the paramagnetic phase towards a spin-glass
phase [9, 26, 22], that is for (L − 1)(K − 1)λ2 > 1 the belief propagation equations
(2.1) do not converge. This can be seen from the fact that

λ =
∂ψa→i

1

∂ψb→j
1

, (6.7)
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where j ∈ ∂a \ i, and b ∈ ∂j \ a.
The eigenvalue λ and the condition for reconstructibility (L − 1)(K − 1)λ2 > 1

also appear in the problem of robust reconstruction on trees [16]. In the problem
of robust reconstruction it is required that even if an arbitrary large fraction of the
values on the leaves is erased there is still information about the root left.

The analysis of the instability of the uniform BP fixed point towards the planted
solution then goes as follows. Consider a part of the factor-graph as depicted in
Fig. 2.1. Denote the values of the messages in the uniform fixed BP fixed point by
over-bars. Consider the incoming message to be perturbed from the uniform value as

(

ψb→j
1 = ψ1 + ǫ

ψb→j
0 = ψ0 − ǫ

)

. (6.8)

Note that ǫ can be both negative or positive. The equation (6.7) then implies that
the outgoing message will be

(

ψa→i
1 = ψ1 + λǫ

ψa→i
0 = ψ0 − λǫ

)

. (6.9)

In other words, any infinitesimal noise in one of the incoming message is multiplied
by λ in the recursion.

We call the perturbation of the incoming message ǫ+ if j was occupied in the
planted configuration, and ǫ− otherwise. If the variable i was planted in the occupied
state, then j was planted occupied with probability z(1|1), and empty with proba-
bility z(0|1). Similarly, if the variable i was planted in the empty state, then j was
planted empty with probability z(0|0) and occupied with probability z(1|0). Thus the
evolution of the perturbation is governed by the equation:

(

ǫa→i
+

ǫa→i
−

)

= λ

(

z(1|1) z(0|1)
z(1|0) z(0|0)

)(

ǫb→j
+

ǫb→j
−

)

. (6.10)

Moreover there are (K − 1)(L − 1) possible incoming messages in the regular
graph, thus the criterion (K − 1)(L − 1)λ2 = 1. If (K − 1)(L − 1)λ2 < 1 then the
perturbation decreases and we find only the uniform BP fixed point, if on the contrary
(K−1)(L−1)λ2 > 1 the uniform BP fixed point is unstable and a perturbation towards
the planted configuration amplifies exponentially.

As the planted configuration corresponds to a stable BP fixed point1 the BP
iterations converge instead to the planted solution. Fig. 6.1 confirms that this is true
even on rather small graphs. On the balanced locked problems, where we are not
restricted to regular graphs, the correct condition is (K − 1)γλ2 = 1, where γ is the
mean of the excess degree distribution q(l) = (l+1)Q(l+1)/l. The spinodal point ll,
see Tabs. 3.1,3.2, is then defined by

(K − 1)(ll − 1)λ2 = 1 (6.11)

for the regular graphs, and

(K − 1)λ2 =
1− e−cl

cl
(6.12)

1Note that in the above calculation we considered the stability around the uniform BP fixed
point, if we consider the BP fixed point corresponding to the planted solution the perturbation does
not amplify.
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for the truncated Poissonian distribution.
The existence of this spinodal point, together with the conjecture about equiv-

alence between the planted ensemble and the ensemble of satisfiable instances from
the random ensemble, Sec. 4, implies that for l > ll it is easy to recognize almost
all satisfiable instances of the locked problems. Similar conclusions, without a sharp
threshold, were established for the coloring and satisfiability problems in [7, 11].

6.2. Belief propagation as a solver. Belief propagation reinforcement is a
good solver in the region l < ld as shown empirically in [43, 42] in the random
ensemble. Since the two ensembles are equivalent in that region, nothing changes for
the planted ensemble. We have indeed verified this numerically.

Based on the above arguments, belief propagation equations converge to the uni-
form fixed point for l < ll and directly to the planted solution for l > ll. In order
to verify that on finite size instances, we have performed the following numerical ex-
periment: we have generated many planted instances for different sizes and average
degrees (5000 instances for each set of parameters). We then iterated the BP equa-
tions (2.1) starting from random initial conditions. For numerical stability reasons we
used dumping in the iterations, i.e. each time we computed a new message we kept
one half of the sum of the new and old message. As a convergence criterion we used
that the messages should not change more that 2.10−3 per message (we checked that
a smaller criterion does not change the quality of results, and only slows down the
computation). This way every iteration converged either to a configuration where the
bias of each variable pointed towards the planted solution (or to its negation) or to a
point very near to the uniform fixed point. Fig. 6.1 shows in what fraction of the runs
we were able to find the planted solution and in particular it confirms that for l > ll
it is easy to find it in linear time. On the right of the same figure we plot the average
convergence time (given the criterion 2.10−3 per message). We see that around the
spinodal point ll the convergence time diverges from both the sides (slightly faster
from the large degree side).
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Fig. 6.1. Belief propagation on the 2-in-4 SAT problem. Left: Probability that the belief
propagation algorithm finds the planted configuration when initialized randomly plotted as a function
of the average degree for several system sizes. Right: The convergence time dependence on the
average degree. In both cases, we have stopped the BP iterations when the average change per
message was less than 2.10−3. In both parts we marked the spinodal threshold ll = 3.434.

7. Conclusions and perspectives. In this work we have studied a class of
constraint satisfaction problems on a planted ensemble. The solution is planted in a
quiet way, i.e. the planted configuration is one of the typical solutions of the resulting
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instance. So far we know how to realize such plantings only on the factorized prob-
lems. We describe several connections between this quiet planting and the problem
of reconstruction on trees.

We study the locked problems because of the simple structure on the space of
their solutions — solutions are isolated points instead of clusters. This property
makes the locked problems, however, very hard algorithmically. We focused on the
class of occupation locked problems in this manuscript, all our results generalize easily
to any factorized locked problem, on non-binary variables for example.

On non-locked but factorized problems, as e.g. graph coloring, the concept of
quiet planting stays valid [24], however, the random and planted ensembles are not
equivalent up to the satisfiability threshold. Moreover, in the unsatisfiable phase the
planted ensemble has exponentially many solutions, instead of a single one as is the
case in the locked problems. The non-locked problems are also much less friendly for
first and second moment considerations. The phase diagram of the locked but non-
factorized problem will not be very different from the one presented here. However,
the thresholds will be different in the planted and random ensembles and the two
ensembles are not equivalent.

One of the most important results of our work is the location of the algorithmically
hard region, between ld ≤ l ≤ ll, in the problems under investigation. It would be
in particular interesting to design an algorithm which would provably find solutions
in the region l > ll, as we have only heuristic and numerical arguments. This is also
challenging in the non-locked problems, as e.g. graph coloring, where we predicted
the planted Poisson ensemble to be easy above ll = (q−1)2 (on planted regular graphs
Ll = (q − 1)2 + 1), where q is the number of colors. Results establishing that the
planted ensemble on coloring is easy above Cq2, where C is some constant quite larger
that one, are already known [21, 8].

Finally, another consequence of our work worth discussing is that we know how to
generate unique satisfying assignment instances - both in the hard and easy regions.
Such instances are often used for evaluating the performance of the quantum anneal-
ing algorithm, but so far they have been generated with an exponential cost from an
ensemble with unknown classical average computational complexity [40, 12]. In our
opinion, these works should be repeated on instances of the locked problems. We
conjecture that in the classically hard region also the quantum annealing will be ex-
ponential (this is because we anticipate a first order phase transition in the transverse
magnetic field, as in [17]).
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[24] Florent Krzakala and Lenka Zdeborová, Hiding quiet solutions in random constraint
satisfaction problems, Phys. Rev. Lett., 102 (2009), p. 238701.

[25] F. R. Kschischang, B. Frey, and H.-A. Loeliger, Factor graphs and the sum-product algo-
rithm, IEEE Trans. Inform. Theory, 47 (2001), pp. 498–519.
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