
Computing Geodesic Distances in Tree Space

Megan Owen ∗

Abstract

We present two algorithms for computing the geodesic distance between phylogenetic trees in
tree space, as introduced by Billera, Holmes, and Vogtmann (2001). We show that the possible
combinatorial types of shortest paths between two trees can be compactly represented by a
partially ordered set. We calculate the shortest distance along each candidate path by converting
the problem into one of finding the shortest path through a certain region of Euclidean space.
In particular, we show there is a linear time algorithm for finding the shortest path between
a point in the all positive orthant and a point in the all negative orthant of Rk contained in
the subspace of Rk consisting of all orthants with the first i coordinates non-positive and the
remaining coordinates non-negative for 0 ≤ i ≤ k.

1 Introduction

Phylogenetic trees, or phylogenies, are used throughout biology to understand the evolutionary
history of organisms ranging from primates to the HIV virus. Outside of biology, they are used in
studying the evolution of languages and culture, for example. Often, reconstruction methods give
multiple plausible phylogenetic trees on the same set of taxa, which we wish to compare using a
quantitative distance measure. A more general open question is how best to analyze sets of trees in
a statistically rigourous manner, for example, by providing confidence intervals for the generated
trees. The tree space of Billera, Holmes, and Vogtmann [3] and its corresponding geodesic distance
measure were developed to provide a framework for addressing these issues ([13] and [14]). In this
paper, we give several combinatorial and metric properties of this space in the process of developing
two practical algorithms for computing this distance.

There are many different algorithms to construct phylogenetic trees from biological data ([9]
and its references), but their accuracy can be affected by such factors as the underlying tree shape
[12] or the rate of mutation in the DNA sequences used [15]. To compare these methods through
simulation, or to find the likelihood that a certain tree is generated from the data, researchers
need to be able to compute a biologically meaningful distance between trees [15]. Several different
distances between phylogenetic trees have been proposed (e.g. [7], [10], [11], [23], [25]). With the
exception of the weighted Robinson-Foulds distance [24], none of these distances incorporate tree
edge lengths.

In response to the need for a distance measure between phylogenetic trees that naturally in-
corporates both the tree topology and the lengths of the edges, Billera et al. [3] introduced the
geodesic distance. This distance measure is derived from the tree space, Tn, which contains all
phylogenetic trees with n leaves. The tree space is formed from a set of Euclidean regions, called

∗maowen@berkeley.edu. University of California Berkeley, Berkeley, CA, 95720. This work was supported in part
by NSF grant DMS-0555268 at Cornell University. A 2-page extended abstract of a preliminary version of Section 4
was published in the online proceedings of the 17th Fall Workshop on Computational and Combinatorial Geometry
(FWCG 2007).

1

ar
X

iv
:0

90
3.

06
96

v2
 [

m
at

h.
C

O
]

 7
 J

un
 2

01
1

orthants, one for each topologically different tree. Two regions are connected if their corresponding
trees are considered to be neighbours. Each phylogenetic tree with n leaves is represented as a
point within this space. There is a unique shortest path, called the geodesic, between each pair of
trees. The length of this path is our distance metric.

The most closely related work is by Staple [29] and Kupczok et al. [16], who developed al-
gorithms to compute the geodesic distance based on the notes of Vogtmann [30]. Both of these
algorithms are exponential in the number of different edges in the two trees. Although Kupczok et
al. developed their algorithm GeoMeTree independently, it can be considered a direct improve-
ment to the algorithm of Staple. We show in Section 5 that our algorithm performs significantly
better than GeoMeTree, although it is still exponential. A polynomial time,

√
2-approximation

of the geodesic distance was given by Amenta et al. [1]. Since the submission of this paper, a
polynomial time algorithm has been developed to compute the geodesic distance [21].

Our primary contribution is the three main combinatorial and geometric ideas behind the two
algorithms we give for computing the geodesic distance. First, the candidate shortest paths between
trees can be represented as an easily constructible partially ordered set, giving information about
the combinatorics of the tree space. Second, we can find the length of each candidate shortest
path by translating the problem into one of finding the shortest path through a region of a lower
dimensional Euclidean space. The solution to this new problem is a linear algorithm for a special
case of the Euclidean shortest-path problem with obstacles. Since the general problem is NP-hard
for dimensions greater than 2, this result is also of interest to computational geometers. Finally, we
show that the combinatorics of the geodesic depend on the combinatorics of the geodesic between
two simpler trees. This observation makes it possible to use either a dynamic programming or a
divide and conquer approach to significantly reduce the search space. The two resulting algorithms
are computationally practical on some biological data sets of interest.

The remainder of this paper is organized as follows. In Section 2, we describe the tree space
and the geodesic distance. The problem of finding the geodesic distance has both a combinatorial
component, which is investigated in Section 3, and a geometric component, which is covered in
Section 4. More specifically, we introduce a combinatorial framework in Section 3, which represents
the candidate shortest paths between trees by an easily constructible partially ordered set (Theo-
rem 3.7). In Section 4, we translate the problem of calculating the length of a candidate shortest
path into a problem in Euclidean space (Theorem 4.4), and then show that this Euclidean problem
can be solved in linear time (Theorem 4.10 and Theorem 4.11). Section 5 combines the ideas of
Sections 3 and 4 to show that the path taken by a geodesic is related to the geodesic path between
two simpler trees (Theorem 5.2). This theorem is exploited via dynamic programming and divide
and conquer techniques to give two algorithms.

2 Tree Space and Geodesic Distance

This section describes the space of phylogenetic trees, Tn, and the geodesic distance. For further
details, see [3]. A phylogenetic tree, or just tree, T = (X,Σ) is a rooted tree, whose leaves are
in bijection with a set of labels X representing different organisms, and whose interior edges are
represented by the set Σ of non-trivial splits. For this paper, let X = {1, ..., n}. The root is labelled
with 0 and sometimes treated like a leaf. We consider both bifurcating (or binary) trees, in which
each interior vertex has degree 3, and multifurcating (or degenerate) trees, in which at least one
interior vertex has degree > 3.

A split A|B is a partition of X ∪ {0} into two non-empty sets A and B. A split is in T if it
corresponds to some edge e in T , such that deleting edge e from T divides T into two subtrees,

2

with one subtree containing exactly the leaves in A and the other subtree containing exactly the
leaves in B. For example, in Figure 1, the split corresponding to the edge e3 partitions the leaves
into the sets {2, 3} and {0, 1, 4, 5}. We will refer to a split corresponding to an edge ending in
a leaf as a trivial split, and to all other splits as simply splits. A split of type n is a partition
of the set {0, 1, ..., n} into two blocks, each containing at least two elements. If A ⊆ Σ is a set
of splits in T , then let T/A be the tree T with the edges that correspond to A contracted. Two

2

4

3

1
5

e1

e3

e2

0

Figure 1: The split corresponding to the edge e3.

splits e = X|X ′ and e′ = Y |Y ′ are compatible if one of X ∩ Y , X ∩ Y ′, X ′ ∩ Y or X ′ ∩ Y ′ is
empty. Equivalently, two splits are compatible if their corresponding edges can exist in the same
phylogenetic tree. For example, in Figure 1, the split e3 = {2, 3}|{0, 1, 4, 5} is compatible with
the split e2 = {2, 3, 4}|{0, 1, 5}, because {2, 3} ∩ {0, 1, 5} = ∅. However, e3 is incompatible with
f = {1, 2}|{0, 3, 4, 5}. Two sets of mutually compatible splits of type n, A and B, are compatible if
A ∪B is a set of mutually compatible splits.

For a tree T = (X,Σ), each edge, and hence split, e ∈ Σ is associated with a non-negative
length |e|T . For example, this length often represents the expected number of mutations per DNA
character site. Two splits are considered the same if they have identical partitions, regardless of

their associated lengths. For any set of compatible splits A ⊆ Σ, let ‖A‖ =
√∑

e∈A |e|2T .

2.1 Tree Space

We now describe the space of phylogenetic trees, Tn, as constructed by Billera et al. [3]. It is
homeomorphic, but not isometric, to the tropical Grassmannian [27] and the Bergman fan of the
graphic matroid of the complete graph [2]. This space contains all bifurcating and multifurcating
phylogenetic trees with n leaves. In this space, each tree topology with n leaves is associated with
a Euclidean region, called an orthant. The points in the orthant represent trees with the same
topology, but different edge lengths. These orthants are attached, or glued together, to form the
tree space.

We do not use the lengths of the edges ending in leaves in the definition of tree space, but can
easily include them by considering geodesics through Tn × Rn

+, as noted in Billera et al. [3].
Any set of n − 2 compatible splits corresponds to a unique rooted phylogenetic tree topology

[26, Theorem 3.1.4]. For any such split set Σ corresponding to tree T , associate each split with a
vector such that the n−2 vectors are mutually orthogonal. The cone formed by these vectors is the
orthant associated with the topology of T . Recall that the k-dimensional (nonnegative) orthant is
the non-negative part of Rk, denoted Rk

+. A point (x1, ..., xn−2) in Rn−2
+ represents the tree in which

the edge associated with the i-axis has length xi, for all 1 ≤ i ≤ n− 2, as illustrated in Figure 2(a).
If xi = 0, then the tree is on a face of the orthant, and we say that it does not contain the edge
associated with the i-axis. Furthermore, two orthants can share the same boundary face, and thus

3

are attached. For example, in Figure 2(a), the trees T1 and T ′1 are represented as two distinct
points in the same orthant, because they have the same topology, but different edge lengths. The
tree T0 has only one edge, e1, and thus is a point on the e1 axis.

Notice that although Figure 2(a) is drawn in the plane, it actually sits in R3, with each of the
axes or splits corresponding to a different dimension. In general, Tn sits in RN , where N = 2n−n−2
is the number of possible splits of type n. However, as no point in Tn has a negative coordinate in
RN , we may draw the positive and negative parts of an axis as corresponding to different splits.

e2 e3

0

e2e1

1 2 3 4

0

e1

0

21
3 4

e1
e3

0

1 2
3

4

e1
= geodesic

T1 T2

T0

e1’
e2’

21
43

0

T1’

(a) Two orthants in T4.

T2

e2e1

1 2 3 4

0

e1

e3

0

1 2
3

4

e4

e3

0

1

2 3

4

e4

e5

0

1
2 3

4

e5

e5

e2

0

1

2
3 4

e4
e3

e1

e2

T1’T2’

T1

= geodesic

(b) Both edge length and tree topology determine the
geodesic.

Figure 2: The geometry of tree space.

For any set A of compatible splits with lengths, let T (A) represent the tree containing exactly
the edges corresponding to the splits A, with the given lengths. Let O(A) be the orthant of lowest
dimension containing T (A). For any t ≥ 0, let t · A be the set of splits A whose lengths have all
been multiplied by t. If A and B are two compatible sets of mutually compatible splits of type n,
then we define the binary operator + on the orthants of Tn by O(A) +O(B) = O(A ∪B).

2.2 Geodesic Distance

There is a natural metric on Tn. The distance between two trees in the same orthant is the Euclidean
distance between them. The distance between two trees in different orthants is the length of the
shortest path between them, where the length of a path is the sum of the Euclidean lengths of the
intersections of this path with each orthant. For any trees T1 and T2 in Tn, the geodesic distance,
d(T1, T2), between T1 and T2 is the length of the geodesic, or locally shortest path, between T1 and
T2 in Tn. Billera et al. defined this distance, and proved that Tn is non-positively curved [5], and
in particular CAT(0) [3, Lemma 4.1], and thus the geodesic between any two trees in Tn is unique.

For example, in Figure 2(a), the geodesic between the trees T1 and T2 is represented by the
dashed line. Figure 2(b) depicts 5 of the 15 orthants in T4. This figure also illustrates that the edge
lengths, in addition to the tree topologies, determine the intermediate orthants through which the
geodesic passes.

2.3 The Essential Problem

The problem of finding the geodesic between two arbitrary trees in Tn can be reduced in poly-
nomial time to the problem of finding the geodesic between two trees with no splits in common.

4

Furthermore, the lengths of the pendant edges can easily be included in the distance calculation,
if desired.

Vogtmann [30] proved the following theorem, which explains how to decompose the problem of
finding the geodesic when the trees share a common split. An alternative proof is given in [20]. Let
T1 and T2 be two trees with a common split e = X|Y , where 0 ∈ X, as shown in Figure 3(a). For
i ∈ {1, 2}, let TX

i be the tree Ti with edge e and any edge below e contracted. That is, any edge
e′ = X ′|Y ′ such that X ′ ⊂ Y or Y ′ ⊂ Y is contracted, as shown in Figure 3(b). For i ∈ {1, 2}, let
T Y
i be the tree Ti formed by contracting edge e and all edges not contracted in TX

i . That is, any
edge e′ = X ′|Y ′ such that X ′ ⊂ X or Y ′ ⊂ X is contracted, as in Figure 3(c).

e

{
0

{

X \ 0

Y

(a) Tree Ti.

{

0

{
X \ 0Y

(b) Tree TX
i .

{

0

{

X \ 0

Y

(c) Tree TY
i .

Figure 3: Forming the trees TX
i and T Y

i from Ti for i ∈ {1, 2}.

Theorem 2.1. If T1 and T2 have a common split e, and TX
i and T Y

i are as described in the above

paragraph for i ∈ {1, 2}, then d(T1, T2) =
√
d(TX

1 , TX
2)2 + d(T Y

1 , T
Y
2)2 + (|e|T1 − |e|T2)2.

As noted in Section 2.1, the length of the edges ending in leaves can be included in the distance
calculations by considering the product space Tn×Rn

+, and the shortest distance, dl(T1, T2), between
the trees in this space. In this case, if the length of the edge to leaf i in tree T is |li|T for all 1 ≤ i ≤ n,

then dl(T1, T2) =
√
d(T1, T2)2 +

∑n
i=1 (|li|T1 − |li|T2)2.

Therefore, the essential problem is as follows, and we devote the rest of this paper to it.

Problem 1. Find the geodesic distance between T1 and T2, two trees in Tn with no common splits.

3 Combinatorics of Path Spaces

The properties of the geodesic imply that it is restricted to certain orthants in the tree space. In this
section, we model this section of tree space as a partially ordered set (poset), called the path poset,
in which each element corresponds to an orthant in tree space. This poset enables us to enumerate
all orthant sequences that could contain the geodesic, because each such orthant sequence, called
a path space, corresponds to one of the maximal chains of this poset by Theorem 3.7.

For this section, assume that T1 = (X,Σ1) and T2 = (X,Σ2) are two trees in Tn with no common
splits. That is, Σ1 ∩ Σ2 = ∅.

3.1 The Incompatibility and Path Partially Ordered Sets

We first define the incompatibility poset, which encodes the incompatibilities between splits in T1

and T2. It will be used to construct the path poset. To define these posets, we introduce the
following two definitions.

5

Let A and B be two sets of mutually compatible splits of type n, such that A ∩B = ∅. Define
the compatibility set of A in B, CB(A), to be the set of splits in B which are compatible with
every split in A. Define the crossing set of A in B, XB(A), to be the set of splits in B which are
incompatible with at least one split in A.

If D is a set of mutually compatible splits of type n such that D ⊆ A, then:

1. CB(A) ⊆ CB(D) (opposite monotonicity of the compatibility set),

2. XB(D) ⊆ XB(A) (monotonicity of the crossing set),

3. CB(A) and XB(A) partition B (partitioning).

A preposet or quasi-ordered set is a set P and binary relation ≤ that is reflexive and transitive.
See [28, Exercise 1] for more details. Define the incompatibility preposet, P̃ (Σ1,Σ2), to be the
preposet containing the elements of Σ2, ordered by inclusion of their crossing sets. So, for any
f, f ′ ∈ Σ2, f ≤ f ′ in P̃ (Σ1,Σ2) if and only if XΣ1(f) ⊆ XΣ1(f ′). Define the equivalence relation
f ∼ f ′ if and only if f ≤ f ′ and f ′ ≤ f . Thus, all the splits in an equivalence class have the same
crossing set, which we define to be the crossing set of that equivalence class.

Definition 3.1. The incompatibility poset, P (Σ1,Σ2), consists of the equivalence classes defined
by ∼ in the preposet P̃ (Σ1,Σ2) ordered by inclusion of their crossing sets.

Generally, we will be informal, and treat the elements of the incompatibility poset as sets of Σ2,
ordered by inclusion of their crossing sets in Σ1. For example, Figure 4(c) shows the incompatibility
poset P (Σ1,Σ2) for the trees T1 and T2, given in Figures 4(a) and 4(b), respectively.

For any A ∈ Σ2, define A ∈ Σ2 by

A 7→ A = {f ∈ Σ2 : XΣ1(f) ⊆ XΣ1(A)}.

Note that by definition, XΣ1(A) = XΣ1(A). The map X 7→ X is a closure operator on a set I if for

every subset X ⊂ I, it is extensive (X ⊂ X), idempotent (X = X), and isotone (if X ⊂ Y , then
X ⊂ Y) [4]. From the definition and the monotonicity of crossing set, A 7→ A is a closure operator
on Σ2.

Definition 3.2. The path poset from Σ1 to Σ2, K(Σ1,Σ2), is the closed sets of Σ2 ordered by
inclusion.

The path poset represents the possible orthant sequences containing the geodesic between T1

and T2, and we next make clear this correspondence. The path poset is bounded below by ∅, and
above by Σ2. It is a sublattice of the lattice of order ideals of P (Σ1,Σ2), but need not be graded
[20]. Figure 4(d) gives an example of a path poset. For simplicity in the figures, we omit the
brackets, writing f1f4 instead of {f1, f4}, for example.

3.2 Path Spaces

The geodesic is contained in some sequence of orthants connecting the orthants containing T1 and
T2. Billera et al. [3] defined a set of orthant sequences, such that at least one of them contains
the geodesic. We call such orthant sequences path spaces. We characterize all maximal path spaces
in Theorem 3.6, and show that they are in one-to-one correspondence with the maximal chains in
K(Σ1,Σ2) in Theorem 3.7.

Definition 3.3. For trees T1 and T2 with no common splits, let Σ1 = E0 ⊃ E1 ⊃ ... ⊃ Ek−1 ⊃
Ek = ∅, and ∅ = F0 ⊂ F1 ⊂ ... ⊂ Fk−1 ⊂ Fk = Σ2 be sets of splits such that Ei and Fi are
compatible for all 0 ≤ i ≤ k. Then ∪ki=0O(Ei ∪ Fi) is a path space between T1 and T2.

6

4

2

5

3

e1

e2

0

6

1

e4

e3

(a) Tree T1 = (X,Σ1).

3

2

4

1f3

f1

0

5 6

f4

f2

(b) Tree
T2 = (X,Σ2).

f3, X!1(f3) = {e1, e2, e3, e4}

f2, X!1(f2) = {e3, e4}

f4, X!1(f4) = {e4}

f1,

 X!1(f1) = {e1}

(c) Incompatibility poset P (Σ1,Σ2)

∅

f1 = {f1} f4 = {f4}

f2 = {f2, f4}f1f4 = {f1, f4}

f1f2 = {f1, f2, f4}

f3 = {f1, f2, f3, f4}

(d) Path poset K(Σ1,Σ2)

Figure 4: The incompatibility poset for the trees T1 (a) and T2 (b) is shown in (c). The crossing
sets of the elements of Σ2, which are ordered by inclusion to give the incompatibility poset, are
also shown in the labels. The path poset of T1 and T2 is given in (d).

A path space is a subspace of Tn consisting of the closed orthants corresponding to the trees
with interior edges Ei ∪ Fi for all 0 ≤ i ≤ k. The intersection of Oi and Oi+1 is the orthant
O(Ei+1 ∪ Fi). If the ith step transforms the tree with splits Ei−1 ∪ Fi−1 into the tree with splits
Ei ∪ Fi, then at this step we remove the splits Ai , Ei−1\Ei and add the splits Bi , Fi\Fi−1.
Using this notation, the i-th orthant corresponds to the splits B1 ∪ ... ∪ Bi ∪ Ai+1 ∪ ∪ Ak. To
simplify notation, let Oi = O(Ei ∪ Fi) and O′i = O(E′i ∪ F ′i).

The following property of path spaces follows directly from the definition.

Proposition 3.4. Let ∪ki=0O(Ei ∪Fi) be a path space between T1 and T2. Then Ei ⊆ CΣ1(Fi) and
Fi ⊆ CΣ2(Ei) for all 0 ≤ i ≤ k.

Remark 3.5. In order to ensure a unique representation of a path space in terms of Ei’s and Fi’s,
we make the inclusions strict in the definition of a path space. However, if we have sets of splits
Σ1 = E0 ⊇ E1 ⊇ · · · ⊇ Ek−1 ⊇ Ek = ∅ and ∅ = F0 ⊆ F1 ⊆ · · · ⊆ Fk−1 ⊆ Fk = Σ2 such that Ei

and Fi are compatible for all 0 ≤ i ≤ k, then ∪ki=0O(Ei ∪ Fi) can be represented by some ∪k′i=0O′i
such that Σ1 = E′0 ⊃ E′1 ⊃ · · · ⊃ E′k′−1 ⊃ E′k′ = ∅ and ∅ = F ′0 ⊂ F ′1 ⊂ · · · ⊂ F ′k′−1 ⊂ Fk′ = Σ2. To
do this, we group consecutive Ei’s and Fi’s into larger sets that are still mutually compatible with
each other, until we have a path space.

A path space is maximal if it is not contained in any other path space. Since [3, Proposition
4.1] proves that the geodesic is contained in a path space, it must be contained in some maximal
path space. We now characterize the maximal path spaces using split compatibility.

7

Theorem 3.6. The maximal path spaces from T1 to T2 are exactly those path spaces ∪ki=0Oi such
that:

1. Ei = CΣ1(Fi), for all 0 ≤ i ≤ k.

2. Fi = CΣ2(Ei), for all 0 ≤ i ≤ k.

3. for all 1 ≤ i ≤ k, the set of splits Bi is a minimal element in the incompatibility poset
P (Ai ∪ ... ∪Ak, Bi ∪ ... ∪Bk)

Proof. LetM be the set of path spaces described in the theorem. We first show, by contradiction,
that all path spaces in M are maximal. Suppose not. Then there exists some path space M =
∪ki=0Oi ∈M that is strictly contained in another path space S′ = ∪k′i=0O′i.

If Oj ⊆ O′l for some 0 ≤ j ≤ k and some 0 ≤ l′ ≤ k′, then since Σ1 and Σ2 are disjoint, we have
Ej ⊆ E′l and Fj ⊆ F ′l . By Proposition 3.4 and the opposite monotonicity of compatibility sets,
F ′l ⊆ CΣ2(E′l) ⊆ CΣ2(Ej) = Fj , where the last equality follows from Condition 2 on path spaces
in M. Hence, F ′l = Fj . Similarly, E′l ⊆ CΣ1(F ′l) = CΣ1(Fj) = Ej , where the last equality follows
from Condition 1. Therefore, E′l = Ej , and hence Oj = O′l.

Therefore, every orthant of M is also an orthant of S′, and thus S′ must contain at least
one other orthant not in M . Let j be the smallest index for such an orthant. More specifically,
the orthant Oj−1 is in M and S′, but O′j ,O′j+1, ...,O′j+l−1 are not in M and Oj = O′j+l. Then
by definition of M and S′, B′j ⊆ Bj and A′j ⊆ Aj . By Condition 3 and the definition of the
incompatibility poset, XAj∪...∪Ak

(B′j) = XAj∪...∪Ak
(Bj). Therefore, A′j = Aj , which implies that

O′j ⊆ Oj , a contradiction.

Let S = ∪ki=0Oi be some path space that is not in M. We will now prove that S is contained
in another path space, S′, and hence is not maximal. Since S /∈ M, at least one of the three
conditions does not hold.

Case 1: There exists a 0 ≤ j ≤ k such that E′ = CΣ1(Fj)\Ej is not empty. That is, Condition
1 does not hold.
We now construct a path space in which the splits E′ are dropped at the j-th step instead of an
earlier one. Define S′ = ∪ki=0O′i, where

O′i =

{
Oi +O(E′) if 0 ≤ i ≤ j
Oi if j < i ≤ k

Since we have only added dimensions to orthants in S to define S′ and O′i ⊂ Oi +O(E′), we have
S ⊂ S′. It remains to show that S′ is a path space. By definition, E′ is compatible with Fj , and
hence F0 ⊂ ... ⊂ Fj−1 ⊂ Fj , so the splits specifying each orthant of S′ are compatible. Since
Σ1 = E′0 ⊇ E′1 ⊇ ... ⊇ E′j ⊃ ... ⊃ E′k = ∅, then by Remark 3.5, S′ can be relabelled as a path space
and hence S is not a maximal path space.

Case 2: There exists 0 ≤ j ≤ k such that F ′ = CΣ2(Ej)\Fj is not empty. That is, Condition 2
does not hold.
We will now construct a path space in which the splits F ′ are added to the tree at the j-th step,
instead of a later step. Define S′ = ∪ki=0O′i, where

O′i =

{
Oi if 0 ≤ i < j

Oi +O(F ′) if j ≤ i ≤ k

By analogous reasoning to Case 1, S′ is a path space strictly containing S, and therefore S is
not maximal.

8

Case 3: Let P = P (Ej−1,Σ2\Fj−1) = P (Aj ∪ ...∪Ak, Bj ∪ ...∪Bk). Neither Case 1 nor Case 2
holds, and, for some 1 ≤ j ≤ k, there exist splits f ∈ Bj and g ∈ Bj ∪ ... ∪ Bk such that g < f in
P . That is, Conditions 1 and 2 hold, but Condition 3 does not hold.

We now construct a path space with an extra orthant, which we get by adding the splits g and
f in two distinct steps, instead of during the same step. Define S′ = ∪k+1

i=0O′i, where

O′i =

Oi if 0 ≤ i < j

O
(
Ei−1\XEi−1(g)

)
+O

(
Fi−1 ∪ g

)
if i =j

Oi−1 if j < i ≤ k

We will first show that O′j is neither contained in nor contains any orthant from S, by showing
that E′j−1 ⊃ E′j ⊃ E′j+1 and F ′j−1 ⊂ F ′j ⊂ Fj+1. We must have XEj−1(g) 6= ∅, or else g ∈
CΣ2(Ej−1)\Fj−1, implying Case 2 holds, which is a contradiction. This implies that Ej−1 ⊃
Ej−1\XEj−1(g), or E′j−1 ⊃ E′j . Since g < f in P , we have XEj−1(g) ⊂ XEj−1(f). To add f at step
j in S, we must drop all splits in Ej−1 that are incompatible with f , so XEj−1(f) ⊆ Aj . Along
with the previous statement, this implies that XEj−1(g) ⊂ Aj , and hence E′j+1 ⊂ E′j . Therefore,
we have shown that E′j−1 ⊃ E′j ⊃ E′j+1, as desired.

Since g /∈ Fj−1, we have Fj−1 ⊂ Fj−1 ∪ g, and hence F ′j−1 ⊂ F ′j . It now remains to show that

F ′j ⊂ F ′j+1, which we will do by showing that f ∈ Fj but f /∈ Fj−1 ∪ g. The first statement follows
because f ∈ Bj = Fj\Fj−1. For the second statement, g < f in P implies XEj−1(g) ⊂ XEj−1(f).
Since S is a path space, XEj−1(Fj−1) = ∅. Thus, XEj−1(Fj−1) ⊂ XEj−1(g) ⊂ XEj−1(f), which

implies that XΣ1(f) * XΣ1(Fj−1)∪XΣ1(g), and hence f /∈ Fj−1 ∪ g. Therefore, F ′j−1 ⊂ F ′j ⊂ Fj+1.
Finally we show that the splits in O′j are mutually compatible. By the definitions,

CΣ1(Fj−1 ∪ g) = CΣ1(Fj−1) ∩ CΣ1(g) ⊇ Ej−1\XΣ1(g) ⊇ Ej−1\XEj−1(g), and hence the splits
of O′j are mutually compatible. The other orthants remain unchanged, and thus S′ is a path space.
Since S′ strictly contains S, the path space S is not maximal.

Recall that in a poset P , x < y is a cover relation, or y covers x, if there does not exist any
z ∈ P such that x < z < y. A chain is a totally ordered subset of a poset. A chain is maximal
when no other elements from P can be added to that subset. See [28, Chapter 3] for an exposition
of partially ordered sets.

Theorem 3.7. Let g : K(Σ1,Σ2) → Tn be given by g(L) = OL, where OL = O(CΣ1(L) ∪ L), for
any element L ∈ K(Σ1,Σ2). For any maximal chain L0 < L1 < ... < Lk in K(Σ1,Σ2), define
h(L0 < L1 < ... < Lk) = ∪ki=0g(Li). Then ∪ki=0g(Li) = ∪ki=0OLi is a maximal path space and h is
a bijection between maximal path spaces from T1 to T2 and maximal chains in K(Σ1,Σ2).

Proof. The map g is one-to-one, because if L 6= L′, then OL 6= OL′ . We now show that h maps
maximal chains in K(Σ1,Σ2) to maximal path spaces.

Let ∅ = L0 < L1 < ... < Lk = Σ2 be a maximal chain in K(Σ1,Σ2). For every 0 ≤ i ≤ k, let
Fi = Li and Ei = CΣ1(Li). We now show that ∪ki=0Oi is a path space. Since K(Σ1,Σ2) is the closed
sets of Σ2 ordered by inclusion, Fi ⊂ Fi+1 for all 0 ≤ i < k. By the monotonicity of crossing sets,
XΣ1(Li) ⊆ XΣ1(Li+1). If XΣ1(Li) = XΣ1(Li+1), then Li+1 ⊆ Li = Li, since Li is a closed set. This
is a contradiction, and therefore, XΣ1(Li) ⊂ XΣ1(Li+1). This implies that CΣ1(Li) ⊃ CΣ1(Li+1)
by the partitioning property, and hence Ei ⊃ Ei+1 for all 0 ≤ i < k.

Since L0 = ∅, E0 = CΣ1(L0) = Σ1, and since Lk = Σ2, Ek = CΣ1(Lk) = ∅, or else T2 would
contain more than n − 2 splits. Finally, for all 0 ≤ i ≤ k, Ei is compatible with Fi by definition.
Therefore, ∪ki=0O(Ei ∪ Fi) is a path space.

9

We will now show that ∪ki=0Oi satisfies the three conditions of Theorem 3.6, and hence is
maximal. Since Ei = CΣ1(Fi), Condition 1 is met. By Proposition 3.4, Fi ⊆ CΣ2(Ei). We now
show that Fi ⊇ CΣ2(Ei). For any f ∈ CΣ2(Ei), by definition of the crossing set, XΣ1(f) ∩ Ei = ∅.
Since XΣ1(Li) and CΣ1(Li) = Ei partition Σ1, then XΣ1(f) ⊆ XΣ1(Li). This implies that f ∈ Li =
Li = Fi, and hence Condition 2 holds.

To show Condition 3, suppose that for some 1 ≤ j ≤ k, there exists f ∈ Bj and a minimal
element g in P (Ej−1,Σ2\Fj−1) such that g < f in P (Ej−1,Σ2\Fj−1). As shown in the proof of
Theorem 3.6, Fi−1 ⊂ Fi−1 ∪ g ⊂ Fi. This implies that Li−1 < Fi−1 ∪ g < Li, and hence Li < Li−1

is not a cover relation, which is a contradiction. Therefore, Condition 3 also holds, and ∪ki=0Oi is
a maximal path space.

So as claimed, if L0 < L1 < ... < Lk is a maximal chain, then h(L0 < ... < Lk) is a maximal
path space. It remains to show that h is a bijection. For any maximal path space ∪ki=0Oi, Fi < Fi+1

is a cover relation for all 0 ≤ i < k since for any f ∈ Bi, Fi ∪ f = Fi+1 by Condition 3 of Theorem
3.6. This implies that ∅ = F0 < F1 < ... < Fk = Σ2 is a maximal chain in K(Σ1,Σ2) such that
h(F0 < F1 < ... < Fk) = ∪ki=0Oi, and hence h is onto. We have that h is one-to-one, because g is
one-to-one. Therefore, h is a bijection, which establishes the correspondence.

0

1 32
5
4

6

nn-1
n-2n-3

e1 e2
e3 e4

en-4
en-2

en-3

(a) Tree T1.

0

1
2

6

3

7

n

n-1n-2

4 5

f1
f3

fn-3

f2
f4

f6
fn-2

(b) Tree T2.

f2,

X!1(f2) =

{e1,e2}

f4,

X!1(f4) =

{e2,e3,e4}

f6,

X!1(f6) =

{e4,e5,e6}

f1,

X!1(f1) =

{e2}

f3,

X!1(f3) =

{e4}

fn-1,

X!1(fn-1) =

{en-2}

fn-2,

X!1(fn-2) =

{en-4,en-3,en-2}

(c) Incompatibility poset P (Σ1,Σ2).

Figure 5: A family of trees whose path poset is exponential in the number of leaves.

Remark 3.8. The number of elements in a path poset K(Σ1,Σ2) can be exponential in the number
splits in the two sets. For example, for any even positive integer n, consider the trees T1 = (X,Σ1)
and T2 = (X,Σ2) depicted in Figures 5(a) and 5(b). Their incompatibility poset is given in
Figure 5(c). Let W be the set of minimal elements in P (Σ1,Σ2). Then |W | = n−2

2 . Each subset
of W is a distinct closed set, and hence an element in K(Σ1,Σ2). This implies there are at least
2(n−2)/2 elements in K(Σ1,Σ2), and hence also an exponential number of maximal chains.

4 Geodesics in Path Spaces

Given a path space, this section shows how to find the locally shortest path, or path space geodesic,
between T1 and T2 within that space in linear time. We do this by transforming the problem into
a Euclidean shortest-path problem with obstacles ([18] and references) in Theorem 4.4. We next
reformulate the problem as a touring problem [8]. A touring problem asks for the shortest path
through Euclidean space that visits a sequence of regions in the prescribed order. Lemma 4.8
and Lemma 4.9 give conditions on the path solving the touring problem. The linear algorithm
for computing the path space geodesic is given in Section 4.2.1, with Theorem 4.10 proving its
correctness.

10

4.1 Two Equivalent Euclidean Space Problems

Let T1 and T2 be two trees with no common splits, and let S = ∪ki=0O(Ei ∪ Fi) be a path space
between them. Define the path space geodesic between T1 and T2 through S to be the shortest path
between T1 and T2 contained in S. Let dS(T1, T2) be the length of this path.

We will now show that the path space geodesic between T1 and T2 through a path space
containing k + 1 orthants is contained in a subspace of Tn isometric to the following subset of Rk.
For 0 ≤ i ≤ k, define the orthant

Vi = {(x1, ..., xk) ∈ Rk : xj ≤ 0 if j ≤ i and xj ≥ 0 if j > i}.

Let V (Rk) = ∪ki=0Vi.
We prove three properties of path space geodesics, and hence also geodesics, in Proposition 4.1,

Proposition 4.2, and Corollary 4.3. These properties imply that the path space geodesic is a straight
line except possibly at the intersections between orthants, where it may bend. Furthermore, if we
know the point on the path space geodesic at which an edge is added or dropped, then we know
the length of that edge at any other point on the path space geodesic. Analogous properties were
proven by Vogtmann [30] for geodesics.

Proposition 4.1. The path space geodesic is a straight line in each orthant that it traverses.

Proof. If not, replace the path within each orthant with a straight line, which enters and exits the
orthant at the same points as the original path, to get a shorter path.

Proposition 4.2. Moving along the path space geodesic, the length of each non-zero edge changes
in the trees on it at a constant rate with respect to the geodesic arc length. That is, for any edge
e ∈ Σ1 ∪ Σ2, there exists a constant ce > 0 such that |e|T

dS(T1,T) = ce for any tree T on the geodesic
that contains edge e.

Proof. By Proposition 4.1, each edge must shrink or grow at a constant rate with respect to the other
edges within each orthant, but these rates can differ between orthants. That is, Proposition 4.1
allows the constant ce to depend on the orthant containing T , but we will now show that it does
not. It suffices to consider when the geodesic goes through the interiors of the two adjacent orthants
Oi−1 = O(Ei−1 ∪ Fi−1) and Oi = O(Ei ∪ Fi), and bends in the intersection of these two orthants.
Let a be the point at which the geodesic enters Oi−1, and let b be the point at which the geodesic
leaves Oi.

The edges Ai = Ei−1\Ei are dropped and the edges Bi = Fi\Fi−1 are added as the geodesic
moves from Oi−1 to Oi. Thus the edges Ai and Bi all have length 0 in the intersection O(Ei∪Fi−1).

Let m = |Ei∪Fi−1|, the dimension of Oi−1∩Oi. An affine hull of a set S in Rn is the intersection
of all affine sets containing S. Consider the subset S = Ha∪Hb of Oi−1∪Oi, where Ha is the affine
hull of a∪ (Oi−1 ∩Oi) intersected with Oi−1 and Hb is the affine hull of b∪ (Oi−1 ∩Oi) intersected
with Oi. This subset can be isometrically mapped into two orthants in Rm+1 as follows. For each
tree T ∈ Ha, let the first m coordinates be given by the projection of T onto Oi−1 ∩ Oi. Let the
(m+1)-st coordinate be the length of the projection of T orthogonal to Oi−1∩Oi. More specifically,
let the edges in Ei ∪ Fi−1 be e1, e2, ..., em. Then we map T to the point (|e1|T , |e2|T ,, |em|T , s)
in Rm+1, where s =

√∑
e∈Ai
|e|2T . Similarly, for each tree T ∈ Hb, let the first m coordinates be

given by the projection of T onto Oi−1 ∩ Oi. Let the (m+ 1)-st coordinate be the negative of the
length of the projection of T orthogonal to Oi−1 ∩ Oi. In other words, we map T to the point

(|e1|T , |e2|T ,, |em|T ,−s) in Rm+1, where s =
√∑

e∈Bi
|e|2T .

11

We have mapped S into Euclidean space, and hence the shortest path between the image of a
and the image of b is the straight line between them. Along this line, each edge e1, ..., em changes
at the same rate with respect to the geodesic arc length. Since we can make this argument for each
pair of consecutive orthants, we have proven this proposition.

Corollary 4.3. Let T be a tree on the path space geodesic between T1 and T2 through the path
space S = ∪ki=0O(Ei ∪ Fi). Suppose T ∈ Oi. Then if 1 ≤ j ≤ i, we have |f1|T

|f1|T2
= |f2|T
|f2|T2

for any

f1, f2 ∈ Bj, and if i < j ≤ k, we have |e1|T
|e1|T1

= |e2|T
|e2|T1

for any e1, e2 ∈ Aj.

Proof. Let f1, f2 ∈ Bj be edges in the tree T ∈ Oi from the hypothesis. Then by Proposition 4.2,
there exist cf1 , cf2 > 0 such that |f1|T = cf1 ·dS(T1, T), |f1|T2 = cf1 ·dS(T1, T2), |f2|T = cf2 ·dS(T1, T),

and |f2|T2 = cf2 · dS(T1, T2). Then |f1|T
|f1|T2

=
cf1 ·dS(T1,T)

cf1 ·dS(T1,T2) = dS(T1,T)
dS(T1,T2) =

cf2 ·dS(T1,T)

cf2 ·dS(T1,T2) = |f2|T
|f2|T2

. The

argument to show |e1|T
|e1|T1

= |e2|T
|e2|T1

for any e1, e2 ∈ Aj is analogous.

Therefore, there is one degree of freedom for each set of edges dropped, or alternatively for
each set of edges added, at the transition between orthants. Thus, the path space geodesic lies
in a space of dimension equal to the number of transitions between orthants. We will now show
that each path space geodesic lives in a space isometric to V (Rk). For example, in Figure 6(a), the
path space Q consists of the orthants O({e1, e2, e3}), O({f1, e2, e3}), and O({f1, f2, f3}). We apply
Theorem 4.4 to see that the geodesic through Q is contained in the shaded region of R2 shown in
Figure 6(b).

A2

B2

(e1,e2,e3)

(-f1,e2,e3)

e2

e3

e1

(-f1,-f2,-f3)

(0,e2,e3)

(-f1,0,0)

= geodesic

f1
f2

f3

(a) Part of T5.

B2

A2

e1f1

(

e1,

√

e
2
2
+ e

2
3

)

(

−f1,

√

e2
2
+ e2

3

)

(

−f1,−

√

f2
2

+ f2
3

)

(b) Isometric mapping to V (R2).

Figure 6: An isometric map between a path space and V (R2).

Theorem 4.4. Let Q = ∪ki=0O(Ei∪Fi) be a path space between T1 and T2, two trees in Tn with no
common splits. Then the path space geodesic between T1 and T2 through Q is contained in a space
isometric to V (Rk).

Proof. By Corollary 4.3, any tree T ′ ∈ Q on the path space geodesic satisfies the following two
conditions for each 1 ≤ j ≤ k:

1. if T ′ ∈ Oi and j ≤ i, then there exists a cj = cj(T
′) ≥ 0, depending on T ′, such that

|f |T ′
|f |T2

= cj

for all f ∈ Bj ,

12

2. if T ′ ∈ Oi and j > i, then there exists a dj = dj(T
′) ≥ 0, depending on T ′, such that

|e|T ′
|e|T1

= dj

for all e ∈ Aj .

Let Q′ ⊂ Tn be the set of trees satisfying this property. For 0 ≤ i ≤ n, define hi : Q′ ∩ Oi → Vi by

hi
(
T ′
)

= hi
(
T (c1 ·B1 ∪ ... ∪ ci ·Bi ∪ di+1 ·Ai+1 ∪ ... ∪ dk ·Ak)

)
=
(
−c1||B1||, ...,−ci||Bi||, di+1||Ai+1||, ..., dk||Ak||

)
.

We claim that hi is a bijection from Q′ ∩ Oi to the orthant Vi in V (Rk). All trees in the interior
of orthant Oi have exactly the edges {B1, ..., Bi, Ai+1, ..., Ak}. Let N = |B1| + |B2| + ... + |Bi| +
|Ai+1|++ |Ak|, the number of edges in trees in Oi. Then Oi is an N -dimensional orthant, and
we can assign each edge to a coordinate axis so that the edges in B1 are assigned to coordinates
1 to |B1|, the edges in B2 are assigned to coordinates |B1| + 1 to |B1| + |B2|, the edges in Ai+1

are assigned to the coordinates |B1| + |B2| + ... + |Bi| + 1 to |B1| + |B2| + ... + |Bi| + |Ai+1|, etc.
Let ej be the edge assigned to the j-th coordinate. By abuse of notation, for all 1 ≤ j ≤ i, let
Bj be the N -dimensional vector with a 0 in every coordinate except those corresponding to the
edges Bj , where we put the length of that edge in T2. Similarly, for all i < j ≤ k, let Aj be
the N -dimensional vector with a 0 in every coordinate except those corresponding to the edges in
Aj , where we put the length of that edges in T1. For example, B1 is the N -dimensional vector
(|f1|T2 , |f2|T2 , ..., |f|B1||T2 , 0, ..., 0).

Then Q′∩Oi is generated by the vectors
{

B1
‖B1‖ ,

B2
‖B2‖ , ...,

Bi
‖Bi‖ ,

Ai+1

‖Ai+1‖ , ..,
Ak
‖Ak‖

}
. Since these gen-

erating vectors are pairwise orthogonal, they are independent, and hence Q′∩Oi is a k-dimensional

orthant contained in Oi. Furthermore, for all 1 ≤ j ≤ i, Bj

‖Bj‖ corresponds to the tree T
(

1
‖Bj‖ ·Bj

)
,

and for all i < j ≤ k,
Aj

‖Aj‖ corresponds to the tree T
(

1
‖Aj‖ ·Aj

)
. For all 1 ≤ j ≤ k, let uj be the

k-dimensional unit vector with a 1 in the j-th coordinate. Then for 1 ≤ j ≤ i,

hi

(
Bj

‖Bj‖

)
= hi

(
T

(
1

‖Bj‖
·Bj

))
= − 1

‖Bj‖
· ‖Bj‖uj = −uj.

Similarly, for all i < j ≤ k,

hi

(
Aj

‖Aj‖

)
= hi

(
T

(
1

‖Aj‖
·Aj

))
=

1

‖Aj‖
· ‖Aj‖uj = uj.

The basis of Vi is {−u1, ...,−ui,ui+1, ...,uk}, so hi maps each basis element of Q′ ∩Qi to a unique
basis element of Vi. Thus, hi is a linear transformation, whose corresponding matrix is the identity
matrix, and hence a bijection between Q′ ∩Qi and Vi for all i. Furthermore, since the determinant
of the matrix of hi is 1, hi is also an isometry. So Q′ is piecewise linearly isometric to V (Rk).

For all 0 ≤ i ≤ n, the inverse of hi is gi : Vi → Q′ defined by gi(−x1, ...− xi, xi+1, ..., xk) = T ′,

where xj ≥ 0 for all 1 ≤ j ≤ k and T ′ is the tree with edges Ei ∪ Fi with lengths
|xj |
‖Bj‖ · |e|T2 if

e ∈ Bj for 1 ≤ j ≤ i and
|xj |
‖Aj‖ · |e|T1 if e ∈ Aj for i < j ≤ k.

Notice that if T ′ ∈ Q′ ∩ Oi ∩ Oi+1, then hi(T
′) = hi+1(T ′), since the lengths of all the edges

in Ai+1 and Bi+1 are 0. Therefore, define h : Q′ → V (Rk) to be h(T ′) = hi(T
′) if T ′ ∈ Oi ∩ Q′,

which is well-defined. Define g : V (Rk)→ Q′ by setting g(−x1, ...− xi, xi+1, ..., xk) = gi(−x1, ...−
xi, xi+1, ..., xk), for all 1 ≤ i ≤ k and for all xj ≥ 0 for all 1 ≤ j ≤ k. Then g is also well-defined
and the inverse of h.

For any geodesic q in Q′, map it into V (Rk) by applying h to each point on q to get path p.
Notice that since both hi and gi are distance preserving, p is the same length as q. We claim p

13

is a geodesic in V (Rk). To prove this, suppose not. Let p′ be the geodesic in V (Rk) between the
same endpoints as path p. Then p′ is strictly shorter than p. Use g to map p′ back to Q′ to get
q′. Again distance is preserved, so q′ is strictly shorter than q. But q was a geodesic, and hence
the shortest path between those two endpoints in Q′, so we have a contradiction. Therefore, the
geodesic between T1 and T2 in Q is isometric to the geodesic between A = (‖A1‖, ..., ‖Ak‖) and
B = (−‖B1‖, ...,−‖Bk‖) in V (Rk).

Thus, finding the geodesic through a (k + 1)−orthant path space ∪ki=0O(Ei ∪ Fi) is equivalent
to finding the geodesic through V (Rk) between the point A = (‖A1‖, ..., ‖Ak‖) and the point
B = (−‖B1‖, ...,−‖Bk‖). Now consider the Euclidean space Rk in which every orthant that is not
in V (Rk) is replaced by an obstacle. Then finding the shortest path from A to B in this new space
with obstacles will give us the path space geodesic in tree space.

We will now generalize, and somewhat abuse notation, by letting A be any point in the all-
positive orthant of Rk and by letting B be any point in the all-negative orthant of Rk. Then we
can reformulate this general problem as the following touring problem:

Problem 2 (Touring). Let A be any point in the positive orthant of Rk and let B be any point
in the negative orthant of Rk. Let Pi be the boundary between the i-th and (i+ 1)-st orthants in
V (Rk), for all 1 ≤ i ≤ k. That is,

Pi = {(x1, ..., xk) ∈ Rk : xj ≤ 0 if j < i; xj = 0 if j = i; xj ≥ 0 if j > i}.

Find the shortest path between A and B in Rk that intersects P1, P2, ..., Pk in that order.

In dimensions 3 and higher, the Euclidean shortest path problem with obstacles is NP-hard in
general [6], including when the obstacles are disjoint axis-aligned boxes [19]. The touring problem
can be solved in polynomial time as a second order cone problem when the regions are polyhedra
[22]. In the special case of the above touring problem, we find a simple linear algorithm.

4.2 Touring Problem Solution

In this section, we give a solution to Problem 2. Since this is a convex optimization problem, this
solution is unique [22], and we will call it the shortest, ordered path. As in the problem statement,
let A = (a1, ..., ak), where ai ≥ 0 for all 1 ≤ i ≤ k, and let B = (−b1, ...,−bk), where bi ≥ 0
for all 1 ≤ i ≤ k. First, Lemma 4.5 establishes when a straight line from A to B passes through
the regions in the desired order. Two further properties of the shortest, ordered path are given in
Lemmas 4.8 and 4.9. Theorem 4.10 shows how exploiting this last property, in conjunction with
using Theorem 4.4 to reduce the dimension of the problem, gives a linear algorithm for finding the
shortest, ordered path from A to B.

Lemma 4.5. The line from A to B, AB, passes through the regions P1, P2, ..., Pk in that order and

has length
√∑k

i=1(ai + bi)2 if and only if a1
b1
≤ a2

b2
≤ ... ≤ ak

bk
.

Proof. Parametrize the line AB with respect to the variable t, so that t = 0 at A and t = 1 at B,
to get (x1, ..., xk) = (a1, ..., ak)+ t(−a1−b1, ...,−ak−bk). Let ti be the value of t at the intersection
of AB and Pi. Setting xi = 0, and solving for t gives ti = ai

ai+bi
. For AB to cross P1, P2, ..., Pk in

that order, we need t1 ≤ t2 ≤ ... ≤ tk or a1
a1+b1

≤ a2
a2+b2

≤ ... ≤ ak
ak+bk

. Since for any 1 ≤ i, j ≤ k,
ai

ai+bi
≤ aj

aj+bj
is equivalent to ai

bi
≤ aj

bj
by cross multiplication, we get the desired condition. By the

Euclidean distance formula, the length AB is
√∑k

i=1(ai + bi)2.

14

Corollary 4.6. Let A = (a1, ..., ak) and B = (−b1, ...,−bk) be points in Rk with ai, bi ≥ 0 for all
1 ≤ i ≤ k. Then ai

bi
= ai+1

bi+1
if and only if AB intersects Pi ∩ Pi+1.

Proof. This follows directly from the proof of Lemma 4.5.

In general, we will not have a1
b1
≤ a2

b2
≤ ... ≤ ak

bk
, and hence the shortest path is not a straight

line. Since the shortest, ordered path corresponds to a path space geodesic in the shortest Euclidean
path with obstacles problem, Proposition 4.1, Proposition 4.2, and Corollary 4.3 also hold here.
Therefore, the shortest, ordered path intersects each region Pi at a unique point pi, where the path
may bend. The path is a straight line from pi to pi+1 for 1 ≤ i < k. We can straighten a bend in
the path by isometrically mapping the problem to a lower dimensional space using the following
Corollary 4.7 to Theorem 4.4. We repeat this process for each successive bend until Lemma 4.5
applies.

Corollary 4.7. Consider the shortest path from A = (a1, a2, ..., ak) to B = (−b1,−b2, ...,−bk) in
Rk passing through P1, ..., Pk in that order. Let {Mj}mj=1 be any ordered partition of {1, 2, ..., k}
such that i, l ∈ Mj implies pi = pl. Then this path is contained in a region of Rk isometric to
V (Rm).

Proof. Suppose i, i + 1 are in the same block in {Mj}mj=1. Then pi = pi+1, and travelling
along the pre-image of the path in tree space, the tree loses splits Ai and Ai+1 simultane-
ously, and gains splits Bi and Bi+1 simultaneously. Hence, this path is in the path space

S = O0 ∪
(
∪mj=1O

(
(∩i∈MjEi) ∪ (∪i∈MjFi)

))
. Apply Theorem 4.4 to S to see that its path space

geodesic is contained in a region isometric to V (Rm), as desired.

Notice that under the mapping to V (Rm) described in the above proof, A is

mapped to Ã =
(√∑

i∈M1
a2
i ,
√∑

i∈M2
a2
i , ...,

√∑
i∈Mm

a2
i

)
and B is mapped to B̃ =(

−
√∑

i∈M1
b2i ,−

√∑
i∈M2

b2i , ...,−
√∑

i∈Mm
b2i

)
.

To apply Corollary 4.7, we need to know when pi = pi+1. A condition for this is given in
Lemma 4.9. The following Lemma 4.8 is used in proving Lemma 4.9, but it also shows that the
shortest path only bends at the intersection of two or more Pi’s (by setting J = i).

Lemma 4.8. Let q be the shortest path from A to B that passes through P1, P2, ..., Pk in that order.
Let pj be the intersection of q and Pj for each 1 ≤ j ≤ k. If aJ

bJ
≤ aJ+1

bJ+1
≤ ... ≤ ai

bi
, for some

1 ≤ J ≤ i < k, q is a straight line until it bends at pJ = pJ+1 = ... = pi, and pJ−1 6= pJ if J > 1,
then pi = pi+1.

Proof. This proof is by contradiction, so assume that pi 6= pi+1. Since q is a shortest, ordered
path, q is a straight line from pi to pi+1. Let Y = (−y1, ...,−yi, yi+1, ..., yk), where yj ≥ 0 for all
1 ≤ j ≤ k, be a point on the line pipi+1, ε > 0 past pi. Note that AY pJ forms a non-trivial triangle,
since q bends at pJ . We will now show that AY intersects P1, P2, ..., Pi in that order.

Parametrize the paths q and AY with respect to time t, so that t = 0 at A and t = 1 at Y .
The j-th coordinate, for 1 ≤ j ≤ J − 1, decreases linearly from aj to −yj in both q and AY , and
thus become 0 at the same time in both paths. This implies that since q crosses P1, ..., PJ−1 in that
order, AY also crosses P1, ..., PJ−1 in that order.

Let tj be the time at which AY intersects Pj , for 1 ≤ j ≤ i. Then 0 = aj + tj(−yj − aj) or
tj =

aj
yj+aj

. In q, each coordinate between J and i becomes 0 at the same time. These coordinates

then decrease linearly, so the ratio between any two consecutive coordinates remains constant as
time increases. This implies

yj
yj+1

=
bj

bj+1
for each J ≤ j ≤ i. Since aJ

bJ
≤ aJ+1

bJ+1
≤ ... ≤ ai

bi
by

15

the hypothesis, then aJ
yJ
≤ aJ+1

yJ+1
≤ ... ≤ ai

yi
. This implies aJ

aJ+yJ
≤ aJ+1

aJ+1+yJ+1
≤ ... ≤ ai

ai+yi
, or

tJ ≤ tJ+1 ≤ ... ≤ ti. Thus AY intersects PJ , PJ+1, ..., Pi in that order.
It remains to show that AY intersects PJ−1 before PJ if J > 1, which we do by contradiction.

So assume that tJ < tJ−1. Let rJ−1 and rJ be the points of intersection of AY with PJ−1 and
PJ , respectively. By the hypotheses and assumption, rJ and pJ are contained in PJ\PJ−1. Since
PJ−1 and PJ are convex, rJ−1pJ−1 and rJpJ are contained in PJ−1 and PJ , respectively. Now
rJ−1pJ−1 intersects rJpJ inside the triangle AY pJ . This implies that rJpJ passes from PJ\PJ−1

into PJ−1 ∩PJ , on the boundary of PJ , and back into PJ\PJ−1. But this contradicts the convexity
of PJ . Thus tJ−1 ≤ tJ , and AY passes through P1, P2, ..., Pi in that order.

By the triangle inequality, AY is shorter than the section of q from A to Y . This contradicts q
being the shortest, ordered path, and thus pi = pi+1.

Lemma 4.9. For the shortest path q from A to B that passes through P1, P2, ..., Pk in that order,
if a1

b1
≤ a2

b2
≤ ... ≤ ai

bi
> ai+1

bi+1
, then this path intersects Pi ∩ Pi+1.

Proof. Parametrize q with respect to the variable t, so that the path starts at A when t = 0, ends at
B when t = 1, and passes through Pj at point pj = (pj,1, pj,2, ..., pj,k) when t = tj , for all 1 ≤ j ≤ k.

If q bends before pi+1, then let pj be the first place that it bends. By repeated applications of
Lemma 4.8, q also passes through Pi∩Pi+1 and we are done. So assume that q is a straight line from
A to pi+1. Thus, the i-th coordinate changes linearly from ai to −bi, and from the parametrization
of this, we get ti+1 =

ai−pi+1,i

ai+bi
.

Case 1: pi+1,i+2 6= 0 (That is, the shortest ordered path q does not bend at pi+1.)
In this case, pi+1,i+1 = 0 = ai+1 + ti+1(−bi+1 − ai+1), which implies ti+1 = ai+1

ai+1+bi+1
. Equate

this value of ti+1 with the one found above, and rearrange to get pi+1,i = ai − ai+1(ai+bi)
ai+1+bi+1

. The

definition of Pi+1 and the assumption pi 6= pi+1 implies that pi+1,i < 0. Hence, ai <
ai+1(ai+bi)
ai+1+bi+1

,

which can be rearranged to ai
bi
< ai+1

bi+1
, a contradiction.

Case 2: pi+1,i+2 = 0 (That is, the shortest ordered path q bends at pi+1, and pi+1 = pi+2.)
Let J ≥ 2 be the largest integer such that pi+J = pi+1, but pi+J+1 6= pi+1. Apply Corollary 4.7

using the partition {1}, {2}, ..., {i}, {i+ 1}, {i+ 2, ..., i+ J}, {i+ J + 1}, ..., {k} to reduce the space
by J − 2 dimensions. A and B are mapped to Ã = (ã1, ..., ãk−(J−2)) and B̃ = (−b̃1, ...,−b̃k−(J−2)),
respectively, in the lower dimension space, where:

ãj =

aj if j ≤ i+ 1√∑J

l=2 a
2
i+l if j = i+ 2

aj+J−2 if j > i+ 2

and b̃j =

bj if j ≤ i+ 1√∑J

l=2 b
2
i+l if j = i+ 2

bj+J−2 if j > i+ 2

Let k̃ = k−(J−2). Let p̃j be the image of pj in Rk̃ under the above mapping if j ≤ i+2 and the image

of pj+J−2 if j > i+ 2. Let P̃j = {(x1, ..., xk̃) ∈ Rk̃ : xl ≤ 0 if l < j; xl = 0 if l = j; xl ≥ 0 if l > j}.
So P̃j is the boundary between the j-th and (j + 1)-st orthants in the lower dimension space Rk̃.
Let q̃ be the image of q.

Then q̃ is a straight line from Ã to p̃i+1, and p̃i+1 = p̃i+2 6= p̃i+3, so q̃ bends in P̃i+1 ∩ P̃i+2.

Since q̃ does not intersect P̃i+2 ∩ P̃i+3, by the contrapositive of Lemma 4.8, ãi+1

b̃i+1
> ãi+2

b̃i+2
. In Rk,

this translates into the condition that ai+1

bi+1
>

√∑J
l=2 a

2
i+l√∑J

l=2 b
2
i+l

. Cross-multiply, square each side, add

16

a2
i+1b

2
i+1, and rearrange to get ai+1

bi+1
>

√∑J
l=1 a

2
i+l√∑J

l=1 b
2
i+l

.

The remaining analysis is in Rk. If the shortest, ordered path is a straight line through pi+1,
then we make the same argument as in Case 1. Otherwise, since the path does not bend at pi, the
i-th coordinate changes linearly from ai to −bi. We use this parametrization to find ti+2 = ti+1 =
ai−pi+1,i

ai+bi
.

Furthermore, the (i+ 1)-st to (i+ J)-th coordinates decrease at the same rate from A to pi+1

and at the same, but possibly different than the first, rate from pi+1 to B. Therefore, we can apply
Corollary 4.7 to the partition {1}, {2}, ..., {i}, {i+1, i+2, ..., i+J}, {i+J+1}, ..., {k} to isometrically

map the shortest, ordered path into Rm−(J−1). Let ã =
√∑J

l=1 a
2
i+l, and let b̃ =

√∑J
l=1(−bi+l)2.

Then in Rm−(J−1), the (i+ 1)-st coordinate of the shortest ordered path changes at a constant rate
from ã to −b̃. This implies 0 = ã+ ti+1(−b̃− ã), or ti+1 = ã

ã+b̃
. Equate the two expressions for ti+1

to get pi+1,i = ai − (ai+bi)ã

ã+b̃
. By definition of Pi+1, pi+1,i < 0. This implies ai

bi
< ã

b̃
=

√∑J
l=1 a

2
i+l√∑J

l=1(−bi+l)2
.

But we showed that

√∑J
l=1 a

2
i+l√∑J

l=1(−bi+l)2
< ai+1

bi+1
, so ai

bi
< ai+1

bi+1
, which is also a contradiction.

By repeatedly applying this lemma, we find the lowest dimensional space containing the shortest,
ordered path. In this space, the ratios derived from the coordinates of the images of A and B form
a non-descending sequence. The following theorem gives the shortest path through V (Rk) from a
point in the positive orthant to a point in the negative orthant, or equivalently, the shortest tour
that passes through P1, ..., Pk in Rk.

Theorem 4.10. Let A = (a1, a2, ..., ak) and B = (−b1,−b2, ...,−bk) with ai, bi ≥ 0 for all 1 ≤ i ≤ k
be points in Rk. Alternate between applying Lemma 4.9 and Corollary 4.7 until there is a non-
descending sequence of ratios ã1

b̃1
≤ ã2

b̃2
≤ ... ≤ ãm

b̃m
, where ãi and b̃i are the coordinates in the lower

dimensional space. There is a unique shortest path between Ã = (ã1,, ãm) and B̃ = (−b̃1, ...,−b̃m)

in V (Rm), with distance

√∑m
i=1(ãi + b̃i)2. This is the length of the shortest path between A and B

in V (Rk).

Proof. For the smallest i such that ai
bi
> ai+1

bi+1
, Lemma 4.9 implies that pi = pi+1 in the shortest,

ordered path in Rk. Thus, we can isometrically map this problem to the space one dimension
lower that results from applying Corollary 4.7 using the partition {1}, {2}, ..., {i−1}, {i, i+1}, {i+
2}, ..., {m}. We repeat these two steps, iteratively mapping this problem to lower dimensional
spaces, until the new ratio sequence is non-descending. Let ã1

b̃1
≤ ã2

b̃2
≤ ... ≤ ãm

b̃m
be this ratio

sequence. By Lemma 4.5, the geodesic between Ã and B̃ is the straight line. Furthermore, its

length is

√∑m
i=1(ãi + b̃i)2. Since we mapped from V (Rk) to V (Rm) by repeated isometries, both

the length of the path and the order it passes through P1, ..., Pm, or their images, remain the same.
Thus the pre-image of this path is the shortest path in V (Rk).

4.2.1 PathSpaceGeo: A Linear Algorithm for Computing Path Space Geodesics

Theorem 4.10 can be translated into a linear algorithm called PathSpaceGeo, for computing the
path space geodesic between T1 and T2 through some path space S = ∪ki=0Ok. For all 1 ≤ i ≤ k,
let Ai = Ei−1\Ei and Bi = Fi\Fi−1, and let ai = ‖Ai‖ and bi = ‖Bi‖.

17

Let 1 ≤ i < k be the least integer such that ai
bi
> ai+1

bi+1
. Then by Theorem 4.10, to find

the path space geodesic through S, we should apply Lemma 4.9 and Corollary 4.7 to the ra-
tio sequence a1

b1
, a2b2 , ...,

ak
bk

to map the problem to V (Rk−1), where the ratio sequence becomes

a1
b1
, ..., ai−1

bi−1
,

√
a2i +a2i+1√
b2i +b2i+1

, ai+2

bi+2
..., akbk . Repeat this process until the ratio sequence is non-descending.

Unfortunately, this process is not deterministic, in that different non-descending ratio sequences
can be found for the same geodesic, depending on the starting path space. This occurs, because
by Corollary 4.6, two equal ratios can be combined to give a ratio sequence corresponding to a
path with the same length. However, if we modify the algorithm to also combine equal ratios, the
output ascending ratio sequence will be unique for a given geodesic.

Define the carrier of the path space geodesic through S between T1 and T2 to be the path space
Q = ∪li=0Oc(i) ⊆ S such that the path space geodesic through S traverses the relative interiors of
Oc(0), Oc(1), ..., Oc(l), where the function c : {0, 1, ..., l} → {0, ..., k} takes i to c(i) if the i-th orthant
is Q is the c(i)-th orthant in S. If a path space geodesic is the geodesic, we just write carrier of the
geodesic. Then the carrier of the path space geodesic is the path space whose corresponding ratio
sequence is the unique ascending ratio sequence for the path space geodesic.

We now explicitly describe the algorithm for computing the ascending ratio sequence corre-
sponding to the path space geodesic, PathSpaceGeo, and prove it has linear runtime.

PathSpaceGeo
Input : Path space S or its corresponding ratio sequence R = a1

b1
, a2b2 , ...,

ak
bk

Output : The path space geodesic, represented as an ascending ratio sequence, which is understood

to be the partition of R where the ratio

√∑J
j=0 a

2
i+j√∑J

j=0 b
2
i+j

corresponds to the block
{

ai
bi
, ai+1

bi+1
, ...,

ai+J

bi+J

}
.

Algorithm: Starting with the ratio pair a1
b1
, a2b2 , PathSpaceGeo compares consecutive ratios. If

for the i-th pair, we have ai
bi
≥ ai+1

bi+1
, then combine the two ratios by replacing them by

√
a2i +a2i+1√
b2i +b2i+1

in the ratio sequence. Compare this new, combined ratio with the previous ratio in the sequence,
and combine these two ratios if they are not ascending. Again the newly combined ratio must be
compared with the ratio before it in the sequence, and so on. Once the last combined ratio is
strictly greater then the previous one in the sequence, we again start moving forward through the
ratio sequence, comparing consecutive ratios. The algorithm ends when it reaches the end of the
ratio sequence, and the ratios form an ascending ratio sequence.

Theorem 4.11. PathSpaceGeo has complexity Θ(k), where k + 1 is the number of orthants in
the path space between T1 and T2.

Proof. We first show the complexity is O(k). Combining two ratios reduces the number of ratios
by 1, so this operation is done at most k − 1 = O(k) times. It remains to count the number of
comparisons between ratios. Each ratio is involved in a comparison when it is first encountered
in the sequence. There are k − 1 such comparisons. All other comparisons occur after ratios
are combined, so there are at most k − 1 of these comparisons. Therefore, PathSpaceGeo has
complexity O(k). Any algorithm must make k−1 comparisons to ensure the ratios are in ascending
order, so the complexity is Ω(k), and thus this bound is tight.

5 Algorithms

In this section, we show in Theorem 5.2 how to compute the geodesic distance between two trees
T1 and T2 by computing the geodesic between certain smaller, related trees. This allows us to use

18

the results from Sections 3 and 4, as well as either dynamic programming or divide and conquer
techniques, to devise two algorithms for finding the geodesic between two trees with no common
splits. Experiments on random trees show these algorithms are exponential, but practical on trees
with up to 40 leaves, as well as larger trees from biological data.

5.1 A Relation between Geodesics

Let T1 and T2 be two trees in Tn with no common splits. The following theorem shows that there
exists a path space containing the geodesic between T1 and T2 such that a certain subspace of it
contains the geodesic between two smaller, related trees, T ′1 and T ′2. As T ′1 and T ′2 have fewer splits
than T1 and T2, it is easier to compute this geodesic. Therefore, we can find the geodesic between
T1 and T2 by finding the geodesic between all such possible T ′1 and T ′2.

Definition 5.1. Let S = ∪ki=0Oi be a path space between T1 and T2. Define r(S) =
∪k−1
i=0O(Ei\Ek−1 ∪ Fi) to be the truncation of S.

Then r(S) is a path space between T ′1 = T (Σ1\Ek−1) and T ′2 = T (Fk−1). That is, T ′1 and T ′2
are exactly the trees T1 and T2 with the edges Ek−1 = Ak and Fk\Fk−1 = Bk contracted, and r(S)
is the subspace of S formed by removing all trees having edges in Ak or Bk of non-zero length.
Finally, if the path space S′ = ∪k−1

i=0O′i is the truncation of a path space between trees T1 and T2,
then there is a unique path space S = ∪k−1

i=0

(
O′i +O(Σ1\E′k−1)

)
∪ O(Σ2) between T1 and T2 such

that r(S) = S′.

Theorem 5.2. Let T1 and T2 be two trees in Tn with no common splits. Then there exists a path
space Q = ∪ki=0Oi that contains the geodesic between T1 and T2, such that the truncation Q′ = r(Q)
is the carrier of the geodesic between T ′1 = T (Σ1\Ek−1) and T ′2 = T (Fk−1).

To prove this theorem, we first prove two lemmas which hold for any path space S between T1

and T2, with truncation S′. Lemma 5.3 shows that the path space geodesic through S is contained
in a path space whose truncation is the carrier of the path space geodesic of S′. Lemma 5.4 shows
that if S′ does not contain the geodesic between T ′1 and T ′2, and hence we can find another path
space P ′ containing a shorter path space geodesic, then the corresponding path space P between
T1 and T2 does not contain a path space geodesic longer than the one in S.

Lemma 5.3. Let T1 and T2 be two trees in Tn with no common splits, and let S = ∪ki=0Oi be
a path space between them. Let Q′ be the carrier of the path space geodesic through S′ = r(S)
between T ′1 = T (Σ1\Ek−1) and T ′2 = T (Fk−1). Let Q be the path space between T1 and T2 such that
r(Q) = Q′. Then dQ(T1, T2) = dS(T1, T2).

Proof. Since Q′ is the carrier of the path space geodesic through S′, both Q′ and S′ have the same
path space geodesic, and hence PathSpaceGeo will return the same ascending ratio sequence for

either input Q′ or S′. Let this ascending ratio sequence be
a′1
b′1
,
a′2
b′2
, . . . ,

a′l
b′l

. The ratio sequences

corresponding to the path spaces Q and S are just the ratio sequences for Q′ and S′, respectively,
with the ratio ‖Ak‖

‖Bk‖ added to the end of each. So for both inputs Q and S, the ratio sequence when

PathSpaceGeo compares ‖Ak‖
‖Bk‖ for the first time is

a′1
b′1
,
a′2
b′2
, . . . ,

a′l
b′l
, ‖Ak‖
‖Bk‖ . This implies that the ratio

sequence output by PathSpaceGeo(Q) is the same as that output by PathSpaceGeo(S), and
hence dQ(T1, T2) = dS(T1, T2).

Lemma 5.4. Let T1 and T2 be two trees in Tn with no common splits, and let S be a path space
between them. If S′ = r(S) does not contain the geodesic between T ′1 = T (Σ1\Ek−1) and T ′2 =

19

T (Fk−1), then there exists a path space P ′ between T ′1 and T ′2 such that dP ′(T
′
1, T

′
2) < dS′(T

′
1, T

′
2)

and dP (T1, T2) ≤ dS(T1, T2), where P is the path space between T1 and T2 with truncation P ′.

Proof. Let S′ = ∪li=0O′i, and let Q′ = ∪li=0O′c(i) be the carrier of the path space geodesic through

S′. Let q be the path space geodesic through Q′ between T ′1 and T ′2, and let qi = O′c(i−1) ∩O
′
c(i) ∩ q

for every 1 ≤ i ≤ l. Since q is not the geodesic from T ′1 to T ′2, q cannot be locally shortest in Tn.
By Proposition 4.1, for all 1 ≤ i ≤ l − 1, the part of q between qi and qi+1 is a line, and cannot
be made shorter in Tn. Thus we can only find a locally shorter path in Tn by varying q in the
neighbourhood of some qj . In particular, there exists some ε such that if s and t are the points on
q, ε before and after qj in the orthants Oc(j−1) and Oc(j), respectively, then the geodesic between
s and t does not follow q. Replace the part of q between s and t with the true geodesic between
s and t to get a shorter path in Tn, with distance ds. Let Oc(j−1),O′′1 = O(E′′1 ∪ F ′′1), ...,O′′m =
O(E′′m∪F ′′m),Oc(j) be the sequence of orthants through whose relative interiors the geodesic between
s and t passes. Note that O′′1 , ...,O′′m are not in S′. These orthants must form a path space, and
thus P ′ = Q′∪(∪mi=0O′′i) is a path space. Since the path space geodesic is the shortest path through
a path space, dP ′(T

′
1, T

′
2) ≤ ds < dQ′(T

′
1, T

′
2). By definition of Q′, dQ′(T

′
1, T

′
2) = dS′(T

′
1, T

′
2), and

hence dP ′(T
′
1, T

′
2) < dS′(T

′
1, T

′
2), as desired.

To show that dP (T1, T2) ≤ dS(T1, T2), let Q be the path space between T1 and T2 such that
r(Q) = Q′. Then Q ⊂ P , which implies dP (T1, T2) ≤ dQ(T1, T2). By Lemma 5.3, dQ(T1, T2) =
dS(T1, T2), and so P ′ is the desired path space.

We use Lemma 5.3 and Lemma 5.4 to prove Theorem 5.2.

Proof of Theorem 5.2. We first show there exists a path space M containing the geodesic between
T1 and T2, such that its truncation M ′ contains the geodesic between T ′1 and T ′2. So let S be any
path space containing the geodesic between T1 and T2, with truncation S′ = r(S). If S′ contains
the geodesic between T ′1 and T ′2, then we are done. If not, then by Lemma 5.4, there exists a path
space P ′ from T ′1 to T ′2 with dP ′(T

′
1, T

′
2) < dS′(T

′
1, T

′
2) and dP (T1, T2) ≤ dS(T1, T2), where P is the

path space between T1 and T2 such that P ′ = r(P). Since S contains the geodesic from T1 to
T2, we have dP (T1, T2) = dS(T1, T2), and hence P also contains the geodesic. If P ′ contains the
geodesic between T ′1 and T ′2, then we are done. Otherwise, repeat this step by applying Lemma 5.4
to P and P ′. This process produces a path space containing a strictly shorter path space geodesic
at each iteration, so since there are only a finite number of path spaces, it eventually finds a path
space containing the geodesic from T ′1 to T ′2.

Let Q′ be the carrier of the path space M ′ containing the geodesic between T ′1 and T ′2, and let
Q be the path space from T1 to T2 such that r(Q) = Q′. Then by Lemma 5.3, Q also contains the
geodesic between T1 and T2, and we are done.

We will now present two algorithms for computing geodesics. Both of these algorithms use
Theorem 5.2 to avoid computing the path space geodesic for every maximal path space between
T1 and T2. This significantly decreases the runtime. We call these algorithms GeodeMaps,
which stands for GEOdesic DistancE via MAximal Path Spaces. The first algorithm uses dynamic
programming techniques, and is denoted GeodeMaps-Dynamic, while the second uses a divide
and conquer strategy, and is denoted GeodeMaps-Divide.

5.2 GeodeMaps-Dynamic: a Dynamic Programming Algorithm

Theorem 5.2 implies that we can find the geodesic between trees T1 and T2 by just considering
certain geodesics corresponding to the elements covered by Σ2 in K(Σ1,Σ2). More specifically, for

20

any A ∈ K(Σ1,Σ2) covered by Σ2, let Q′A be the carrier for the geodesic gA from T (XΣ1(A)) to
T (A). Then the geodesic from T1 to T2 is the minimum-length path space geodesic through the
path spaces {QA : A ∈ K(Σ1,Σ2) is covered by Σ2 and Q′A = r(QA)}.

An analogous method can be applied to find the geodesic gA. In general, for any element
A 6= ∅ in K(Σ1,Σ2), the geodesic between trees T (XΣ1(A)) and T (A) can be computed from
the carriers Q′B of the geodesics from T (XΣ1(B)) to T (B) for each B covered by A. This is
done by finding the minimum-length path space geodesic through the path spaces {QB : B ∈
K(Σ1,Σ2) is covered by A and Q′B = r(QB)}.

This suggests the following algorithm. Let GK(Σ1,Σ2) be the directed graph with vertices in
bijection with the elements of K(Σ1,Σ2), and with an edge between two vertices if and only if
there is a cover relation between their corresponding elements in K(Σ1,Σ2). The edge is directed
from the covered element to the covering element. Then we can compute the geodesic distance
by doing a breath-first search on GK(Σ1,Σ2). As we visit each node A in GK(Σ1,Σ2), we construct
the geodesic between T (XΣ1(A)) and T (A) using the geodesics between T (XΣ1(B)) and T (B) for
each B covered by A. This algorithm visits every node in the graph, of which there can be an
exponential number as shown in Remark 3.8, so this algorithm is exponential in the worst case.
However, this is a significant improvement over considering each maximal path space.

We implemented a more memory-efficient version of this algorithm, called GeodeMaps-
Dynamic. This version uses a depth-first search of GK(Σ1,Σ2). For each element A in GK(Σ1,Σ2),
store the distance of the shortest path space geodesic found so far between T (XΣ1(A)) and T (A).
If GeodeMaps-Dynamic revisits an element with a longer path space geodesic, it prunes this
branch of the search.

GeodeMaps-Dynamic stores the carrier of the shortest path space geodesic found so far be-
tween T1 and T2. As a heuristic improvement, at each step in the depth-first search, GeodeMaps-
Dynamic chooses the node with the lowest transition ratio of the nodes not yet visited. For more
details and an example of GeodeMaps-Dynamic, see [20, Section 5.2.1].

5.3 GeodeMaps-Divide: a Divide And Conquer Algorithm

If A is an element in K(Σ1,Σ2), then the trees in the corresponding orthant share the splits A
with T2. This inspires the following algorithm, which we call GeodeMaps-Divide. Choose some
minimal element of P (Σ1,Σ2), and add the splits in this equivalence class to T1 by first dropping the
incompatible splits. For example, if we choose to add the split set F1, then we must drop XΣ1(F1).
The trees with this new topology now have splits F1 in common with T2. Apply Theorem 2.1 to
divide the problem into subproblems along these common splits. For each subproblem, recursively
call GeodeMaps-Divide. Since some subproblems will be encountered many times, store the
geodesics for each solved subproblem in a hash table.

Each subproblem corresponds to an element in K(Σ1,Σ2), and GeodeMaps-Divide is poly-
nomial in the number of subproblems solved. Hence an upper bound on the complexity of
GeodeMaps-Divide is the number of elements in K(Σ1,Σ2), which is exponential in general
by Remark 3.8. See [20, Section 5.2.2] for details of this algorithm, an example, and a family of
trees for which GeodeMaps-Dynamic has exponential runtime.

5.4 Performance of GeodeMaps-Dynamic and GeodeMaps-Divide

We now compare the runtime performance of GeodeMaps-Dynamic and GeodeMaps-Divide
with GeoMeTree [16], the only other geodesic distance algorithm published when this paper
was written. For n = 10, 15, 20, 25, 30, 35, 40, 45, we generated 200 random rooted trees with n

21

leaves, using a birth-death process. Specifically, we ran evolver, part of PAML [31] with the
parameters estimated for the phylogeny of primates in [32], that is 6.7 for the birth rate (λ), 2.5
for the death rate (µ), 0.3333 for the sampling rate, and 0.24 for the mutation rate. For each n,
we divided the 200 trees into 100 pairs, and computed the geodesic distance between each pair.
The average computation times are given in Figure 7. Memory was the limiting factor for all
three algorithms, and prevented us from calculating the missing data points. Both GeodeMaps-

Comparison of Algorithm Average Runtimes

-3

-2

-1

0

1

2

3

4

10 15 20 25 30 35 40

Number of Leaves in Trees

A
v

er
ag

e
T

im
e

p
er

 D
is

ta
n
ce

 C
o
m

p
u
ta

ti
o
n

 (
lo

g
 s

)

GeodeMaps-Dynamic

GeodeMaps-Divide

GeoMeTree

Figure 7: Average runtimes of the three geodesic distance algorithms.

Dynamic and GeodeMaps-Divide exhibit exponential runtime, but they are significantly faster
the GeoMeTree. Note that as the trees used were random, they have very few common splits.
Biologically meaningful trees often have many common splits, resulting in much faster runtimes. For
example, for a data set of 31 43-leaved trees representing possible ancestral histories of bacteria and
archaea [17], we computed the geodesic distance between each pair of trees. Using GeodeMaps-
Dynamic the average computation time was 0.531 s, while using GeodeMaps-Divide the average
time was 0.23 s. This contrasts to an average computation time of 22 s by GeodeMaps-Dynamic
for two random trees with 40 leaves. All computations were done on a Dell PowerEdge Quadcore
with 4.0 GB memory, and 2.66 GHz x 4 processing speed. The implementation of these algorithms,
GeodeMaps 0.2, is available for download from www.math.berkeley.edu/˜megan/geodemaps.html.

6 Conclusion

We have used the combinatorics and geometry of the tree space Tn to develop two algorithms to
compute the geodesic distance between two trees in this space. In doing so, we developed a poset
representation for the possible orthant sequences containing the geodesic, and gave a linear time
algorithm for computing the shortest path in the subspace V (Rn) of Rn, which will help characterize
when the general problem of finding the shortest path through Rn with obstacles is NP-hard. We
also showed that geodesics can be computed by solving smaller subproblems.

Acknowledgements

We thank Louis Billera for numerous helpful discussions and suggestions about this work; Karen
Vogtmann for sharing her notes and thoughts on the problem; Seth Sullivant for suggestions that

22

greatly improved the presentation of this work; Philippe Lopez for the kind provision of the bio-
logical data set; Joe Mitchell for pointing out that finding the geodesic in V (Rk) is equivalent to
solving a touring problem; and an anonymous referee for constructive and helpful comments.

References

[1] N. Amenta, M. Godwin, N. Postarnakevich, and K. St. John. Approximating geodesic tree
distance. Inform. Process. Lett., 103:61–65, 2007.

[2] F. Ardila and C. Klivans. The Bergman complex of a matroid and phylogenetic trees. J.
Combin. Theory Ser. B, 96:38–49, 2006.

[3] L. Billera, S. Holmes, and K. Vogtmann. Geometry of the space of phylogenetic trees. Adv.
in Appl. Math., 27:733–767, 2001.

[4] G. Birkhoff. Lattice Theory. American Mathematical Society, 1967.

[5] M.R. Bridson and A. Haefliger. Metric Spaces of Non-positive Curvature. Springer-Verlag,
1999.

[6] J. Canny and J. Reif. Lower bounds for shortest path and related problems. In Proceedings
of the 28th Annual Symposium on Foundations of Computer Science (FOCS), 1987.

[7] B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp. On the linear-cost subtree-transfer
distance between phylogenetic trees. Algorithmica, 25:176–195, 1999.

[8] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring a sequence of polygons. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing (STOC), 2003.

[9] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[10] G.F. Estabrook, F.R. McMorris, and C.A. Meacham. Comparison of undirected phylogenetic
trees based on subtrees of four evolutionary units. Syst. Zool., 34:193–200, 1985.

[11] J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony.
Math. Biosci., 98:185–200, 1990.

[12] M.D. Hendy and D. Penny. A framework for the quantitative study of evolutionary trees. Syst.
Zool., 38:297–309, 1989.

[13] S. Holmes. Statistics for phylogenetic trees. Theoretical Population Biology, 63:17–32, 2003.

[14] S. Holmes. Statistical approach to tests involving phylogenetics. In Mathematics of Evolution
and Phylogeny. Oxford University Press, 2005.

[15] M.K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny algorithms under
equal and unequal evolutionary rates. Mol. Biol. Evol., 11:459–468, 1994.

[16] A. Kupczok, A. von Haeseler, and S. Klaere. An exact algorithm for the geodesic distance
between phylogenetic trees. J. Comput. Biol., 15:577–591, 2008.

[17] P. Lopez. Personal communications, 2006.

23

[18] J.S.B. Mitchell. Geometric shortest paths and network optimization. In Handbook of Compu-
tational Geometry, pages 633–701. Elsevier Science, 2000.

[19] J.S.B. Mitchell and M. Sharir. New results on shortest paths in three dimensions. In 20th

Annual Symposium on Computational Geometry, 2004.

[20] M. Owen. Distance Computation in the Space of Phylogenetic Trees. PhD thesis, Cornell
University, 2008.

[21] M. Owen and J.S. Provan. A fast algorithm for computing geodesic distances in tree space.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8:2–13, 2011.

[22] V. Polishchuk and J.S.B. Mitchell. Touring convex bodies - a conic programming solution. In
17th Canadian Conference on Computational Geometry, 2005.

[23] D.F. Robinson. Comparison of labeled trees with valency three. J. Combinatorial Theory,
11:105–119, 1971.

[24] D.F. Robinson and L.R. Foulds. Comparison of weighted labelled trees. In Combinatorial
Mathematics VI, volume 748 of Lecture Notes in Mathematics, pages 119–126, Berlin, 1979.
Springer.

[25] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Math. Biosci., 53:131–147,
1981.

[26] C. Semple and M. Steel. Phylogenetics. Oxford University Press, Oxford, 2003.

[27] D. Speyer and B. Sturmfels. The tropical Grassmannian. Adv. Geom., 4:389–411, 2004.

[28] R.P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, 1997.

[29] A. Staple. Computing distances in tree space. Unpublished research report, Stanford Univer-
sity, 2004.

[30] K. Vogtmann. Geodesics in the space of trees. Available at
www.math.cornell.edu/vvogtmann/papers/TreeGeodesicss/index.html, 2007.

[31] Z. Yang. PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol.
Biol. Evol., 24:1586–1591, 2007.

[32] Z. Yang and B. Rannala. Bayesian phylogenetic inference using DNA sequences: A Markov
Chain Monte Carlo method. Mol. Biol. Evol., 14:717–724, 1997.

24

	1 Introduction
	2 Tree Space and Geodesic Distance
	2.1 Tree Space
	2.2 Geodesic Distance
	2.3 The Essential Problem

	3 Combinatorics of Path Spaces
	3.1 The Incompatibility and Path Partially Ordered Sets
	3.2 Path Spaces

	4 Geodesics in Path Spaces
	4.1 Two Equivalent Euclidean Space Problems
	4.2 Touring Problem Solution
	4.2.1 PathSpaceGeo: A Linear Algorithm for Computing Path Space Geodesics

	5 Algorithms
	5.1 A Relation between Geodesics
	5.2 GeodeMaps-Dynamic: a Dynamic Programming Algorithm
	5.3 GeodeMaps-Divide: a Divide And Conquer Algorithm
	5.4 Performance of GeodeMaps-Dynamic and GeodeMaps-Divide

	6 Conclusion

