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Global Interactions in Random Field Models:
A Potential Function Ensuring Connectedness∗
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Abstract. Markov random field (MRF) models, including conditional random field models, are popular in
computer vision. However, in order to be computationally tractable, they are limited to incorpo-
rating only local interactions and cannot model global properties such as connectedness, which is a
potentially useful high-level prior for object segmentation. In this work, we overcome this limita-
tion by deriving a potential function that forces the output labeling to be connected and that can
naturally be used in the framework of recent maximum a posteriori (MAP)-MRF linear program
(LP) relaxations. Using techniques from polyhedral combinatorics, we show that a provably strong
approximation to the MAP solution of the resulting MRF can still be found efficiently by solving a
sequence of max-flow problems. The efficiency of the inference procedure also allows us to learn the
parameters of an MRF with global connectivity potentials by means of a cutting plane algorithm.
We experimentally evaluate our algorithm on both synthetic data and on the challenging image
segmentation task of the PASCAL Visual Object Classes 2008 data set. We show that in both cases
the addition of a connectedness prior significantly reduces the segmentation error.
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1. Introduction. We consider a discrete conditional random field (CRF) [32, 44] repre-
senting a probability distribution p(y|x,w) over a finite label set y ∈ Y, given a sample x ∈ X
and a parameter vector w ∈ R

d. The distribution is a Gibbs distribution over the possible
labels,

p(y|x,w) =
1

Z(x,w)
exp (−E(y;x,w)) ,

where E(y;x,w) is an energy function and Z(x,w) =
∑

y∈Y exp (−E(y;x,w)) is a nor-
malization constant known as a partition function [15, 33, 5, 24]. The energy function is
representable in terms of the graph structure of the random field as a sum over potential
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search, Roger Needham Building, 7 J J Thomson Ave, Cambridge CB3 0FB, United Kingdom (Sebastian.Nowozin@
microsoft.com).

‡Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany. Current address: Institute of Science
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GLOBAL INTERACTIONS IN RANDOM FIELD MODELS 1049

functions ψc : Yc × X × R
d → R+ ∪ {∞} over the cliques c ∈ C of the graph, i.e.,

(1.1) E(y;x,w) =
∑
c∈C

ψc(yc;x,w).

A convenient simplification is to define the potential functions as inner products between the
parameter vectorw and a feature function φ which is independent ofw; that is, ψc(yc;x,w) :=
w�φc(yc,x). This makes the overall model log-linear, as the potential function and hence the
energy are linear functions in w. If we treat all cliques of size k in the same way—termed

clique template in [44]—we can define individual feature functions φ
(k)
c (yc,x) and use one

weight vector wk for all cliques of the same size. Then, the energy (1.1) can be written as
follows:

(1.2) E(y,x,w) =
∑
i∈V

w�
1 φ

(1)
i (yi,x) +

∑
(i,j)∈V×V

w�
2 φ

(2)
i,j (yi, yj ,x) + · · ·+w�

|V |φ
(|V |)
V (y,x).

Many computer vision applications assume a grid structure for the graph such that the cliques
c ∈ C are only single nodes and pairs of nodes; hence only w1, w2 and φ(1) and φ(2) are used.

The function φ
(1)
i (yi,x) is the node feature function, extracting a feature vector at node i for a

given labeling yi. Likewise, the edge feature function φ
(2)
i,j (yi, yj ,x) extracts a feature vector for

the edge (i, j) with respective node labeling yi and yj. Restricting the energy to only pairwise
potentials limits the modeling power to local properties but allows efficient algorithms such
as graph cuts [7] to minimize (1.2), the so-called maximum a posteriori (MAP) problem.

Maximum a posteriori inference. For a given sample x and weight vector w, it is of great
practical importance to find the MAP labeling y, that is, to solve for

y∗ = argmax
y∈Y

p(y|x,w) = argmin
y∈Y

E(y;x,w).

In general, solving for the MAP state is NP-hard, even for the case of binary states. For
this reason, two classes of approximate inference approaches are popular: first, to give up on
global optimality and to solve for the MAP state only approximately by iteratively improving
a candidate solution, and second, to relax the problem but to solve this modified problem
exactly. In this work we take the latter route and extend the so-called linear programming
relaxation for the MAP-MRF (Markov random field) problem.

Linear programming relaxation. Recently, linear programming relaxations have been re-
discovered [48, 50, 53] for approximately solving for the MAP solution y∗ when the underlying
graph G = (V,E) consists of single and edge potentials. The MAP problem can then be for-
mulated exactly as an integer linear program (ILP). By relaxing the integer requirement one
can obtain a corresponding linear program (LP). In order to avoid confusion, in the following
ILP, only μ are variables; all remaining expressions are constants. The variable μi(yi) ∈ {0, 1}
indicates whether node i is in state yi ∈ Yi. The variable μi,j(yi, yj) ∈ {0, 1} indicates whether
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1050 SEBASTIAN NOWOZIN AND CHRISTOPH H. LAMPERT

node i is in state yi ∈ Yi and node j is in state yj ∈ Yj:
min
μ

∑
i∈V

∑
yi∈Yi

μi(yi)
(
w�

1 φ
(1)
i (yi,x)

)
(1.3)

+
∑
(i,j)
∈E

∑
(yi,yj)
∈Yi×Yj

μi,j(yi, yj)
(
w�

2 φ
(2)
i,j (yi, yj ,x)

)

subject to (s.t.)
∑
yi∈Yi

μi(yi) = 1 ∀ i ∈ V,
∑
yj∈Yj

μi,j(yi, yj) = μi(yi) ∀ (i, j) ∈ E, ∀ yi ∈ Yi,

μi(yi) ∈ {0, 1} ∀ i ∈ V, ∀ yi ∈ Yi,
μi,j(yi, yj) ∈ {0, 1} ∀ (i, j) ∈ E, ∀ (yi, yj) ∈ Yi × Yj.

The first set of equality constraints enforce that each node is assigned exactly one label.
The second set of equality constraints enforce proper consistency between node and edge
states. Given a solution vector μ to the ILP (1.3) the labeling y∗ is obtained by setting
yi ← argmaxyi∈Yi

μi(yi) for all i ∈ V .
The integer program (1.3) is exact but NP-hard. The corresponding LP relaxation is

obtained by relaxing the last two sets of constraints to the range [0; 1]. The LP relaxation
has been analyzed extensively [48, 49, 50]. Although linear programming is among the best
developed numerical disciplines [4], the primal LP (1.3) is practically restricted to graphs
with less than a hundred thousand nodes and with tens of node labels, because on the order
of O(|E|(maxi∈V |Yi|)2) variables are used. Recent improvements have been made in several
directions: (i) improving the relaxation tightness [27, 31, 42, 43, 51], (ii) examining tightness
of relaxations [30, 23], (iii) deriving fast specialized solvers for (1.3) by means of the dual [16,
31, 43, 29], and (iv) making precise the relationship between (1.3) and traditional message
passing algorithms [25, 49].

1.1. Related work. Recently, higher-order than pairwise potentials have been considered.
They are known as “higher-order cliques” [21, 38, 48] or “high-arity interactions” [51]. With
the exception of the last paper, the potentials considered in these works are of a restricted
form or limited to small clique sizes of three or four nodes. In this work we consider a high-
order potential not limited to a small number of nodes but restricted to a special functional
form.

Kohli, Kumar, and Torr [21] extend the generalized Potts model for pairwise potentials [8]
to higher-order interactions. For a clique C ⊆ V of size two or larger, they consider the
potential function

(1.4) ψC(μC) =

{
γk if all vertices i ∈ C are assigned label k,
γmax otherwise.

The constants γk, γmax must satisfy γmax > γk for all labels k. For |C| = 2 the potential
function reduces to a pairwise Potts P2 potential [8]. In case γk = 0 for all classes k, the
potential is a metric potential [21].
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In [22], Kohli, Ladický, and Torr use potential functions of this form to ensure label
consistency over large image regions. The image regions are created by multiple unsupervised
segmentations of the image. For each image region a potential function of the form (1.4) is
used, and γk, γmax are set to constants derived from the image such that homogeneous and
large regions receive a large potential if their respective pixel labels are not assigned to the
same label. In [21] specialized α-expansion moves [8] are developed to solve these high-order
potentials. Recently, sparse higher-order potentials in which only a small subset of the feasible
configurations have a value distinct from a default value have been considered by Rother et
al. [40] and Komodakis and Paragios [28]. The latter paper also introduces a general and
efficient method for higher-order potentials, but their algorithm cannot be applied to the
potential functions considered here because it requires all configurations to be feasible.

For the general problem of global potential functions, Werner [51] is closest to the spirit
of our work; he discusses global interactions and uses as an example a hard potential on the
number of nodes labeled with a certain class label. A greedy algorithm is used to solve a
relaxation of the potential. We continue his line of work and derive global constraints to be
used in (1.3) directly from the combinatorial polytope associated with the global interaction.

Segmentation under connectivity constraints has recently been considered by Vicente,
Kolmogorov, and Rother [47]. They define a “problem C0” which is a binary segmentation
task where the subset of nodes labeled as foreground is restricted to form a single connected
component. Because the authors consider this problem too complex to solve, they propose a
simplified problem C1, in which only a given pair of nodes must be connected. They prove
NP-hardness for both problems. For this restricted problem C1 they propose DijkstraGC,
a heuristic based on the graph cut algorithm [7], which is able to produce good connected
segmentations from an unconnected segmentation and user-supplied pairwise connectivity
constraints. The DijkstraGC method is not directly applicable in our setting because it does
not solve problem C0. Our contribution can be seen to provide a tractable way to solve
problem C0.

Zeng et al. [54] incorporate global topology-preserving constraints into the graph cut
framework. Given a global user initialization, their algorithm finds a local optimum that
respects the initial topology. Impressively, the algorithm is as fast as the popular min-cut
algorithm of [7]. Their algorithm considers a global NP-hard potential, but obtains only
a local minimum; our method instead also uses an NP-hard global potential, but solves a
relaxation for the global optimum. Das et al. [11] propose a simple global shape prior which
favors compact shapes and can be realized within the normal graph cut energy framework.
For their approach to work, the object center needs to be marked by a user; additionally, their
approach is not rotation invariant.

The potential functions we consider are defined on all nodes in the graph, denoted
ψV (y;x,w). We consider a “connectedness potential,” which enforces connectedness of the
output labeling with respect to a graph. We derive our algorithm in a principled way using
results from polyhedral combinatorics. Although in this work we consider only one global
potential function, the overall approach by which we incorporate the function is general and
applicable to other higher-order potential functions with suitable polyhedral structure.

In the following section we formalize connectedness by analyzing the set of all connected
MRF labelings. In section 3 we derive tractable global potential functions, and in section 4
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and section 5 we evaluate the proposed MRF/CRF with connectedness potentials on both
a synthetic data set and on the challenging PASCAL Visual Object Classes (VOC) 2008
segmentation data set. We conclude in section 6.

This work is an extended version of our earlier work [37].

2. Connected subgraph polytope. The LP relaxation (1.3) has variables μi(yi) ∈ {0, 1}
encoding if a node i has label yi. In this section we derive a polyhedral set which can be
intersected with the feasible set of LP (1.3) such that for all remaining feasible solutions all
nodes labeled with the same label form a connected subgraph. This set is the connected
subgraph polytope, the convex hull of all possible labelings that are connected. We first define
this set and then analyze its properties.

Definition 2.1 (connected subgraph polytope).Given a simple, connected, undirected graph
G = (V,E), consider indicator variables yi ∈ {0, 1}, i ∈ V . Then let C = {y : G′ =
(V ′, E′) connected, with V ′ = {i : yi = 1}, E′ = (V ′ × V ′) ∩ E} denote the finite set of
connected subgraphs of G. Then we call the convex hull Z = conv(C) the connected subgraph
polytope.

The convex hull of a finite set of points is the tightest possible convex relaxation of the
set. Furthermore, for the case of minimizing a linear function over the convex hull, it is known
from classic linear programming theory [4, 41] that at least one optimal solution exists at a
vertex of the polytope. By construction, this solution is then also in C, and the relaxation
is exact. Unfortunately, optimizing over this polytope is NP-hard, as the following theorem
shows. The theorem is identical to Theorem 1 in [47]; we state it here for the reference to the
earlier work of Karp [20].

Theorem 2.2 (see Karp [20]). It is NP-hard to optimize a linear function over Z = conv(C).

The proof can be found in [18, 20], where the problem appears under the name “Maximum-
Weight Connected Subgraph Problem.”

Therefore, if we plan to intersect conv(C) with the feasible set of (1.3), we are planning to
optimize a linear function over this polytope. Unfortunately, from Theorem 2.2 it follows that
optimizing a linear function over conv(C) is NP-hard, and it is unlikely that conv(C) has a
“simple” description (one which is polynomially separable); see [41, Chapter 18]. To overcome
this difficulty we will derive a strong relaxation to conv(C) which is still polynomially solvable.

To do this, we focus on the properties of C and the polyhedral structure of its convex hull
Z. We first show that Z has full dimension, i.e., does not live in a proper subspace of R|V |.
Second, we show that yi ≥ 0 and yi ≤ 1 are facet-defining inequalities for all graphs. Figure 1
shows what this means: d�1 y ≤ 1 and d�2 y ≤ 1 are both valid, but only d�3 y ≤ 1 is facet-
defining [52]. Therefore, the polytope is fully contained in the |V |-dimensional hypercube and
touches all sides of the hypercube.

Lemma 2.3. dim(Z) = |V |.
Lemma 2.4. For all i ∈ V , the inequalities yi ≥ 0 and yi ≤ 1 are facet-defining for Z.

The proofs can be found in Appendix A. For a better characterization of the connected
subgraph polytope we need to define vertex-separator sets, as follows.

Definition 2.5 (vertex-separator set).Given a simple, connected, undirected graph G = (V,E),
for any pair of vertices i, j ∈ V , i �= j, (i, j) /∈ E, the set S ⊆ V \ {i, j} is said to be a vertex-
separator set with respect to {i, j} if the removal of S from G disconnects i and j.
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Z

d�1 y ≤ 1

d�2 y ≤ 1
d�3 y ≤ 1

Figure 1. Three valid inequalities, only one of which is facet-defining.

i j

S

. . . . . . . . .. . .

Figure 2. Vertex i and j and one vertex separator set S ∈ S̄(i, j).

If the removal of S from G disconnects i and j, then there exists no path between i and
j in G′ = (V \ S,E \ (S × S)). As an additional definition, a set S̄ is said to be an essential
vertex-separator set if it is a vertex-separator set with respect to {i, j} and any strict subset
T ⊂ S̄ is not. Let S(i, j) = {S ⊂ V : S is a vertex-separator set with respect to {i, j}} denote
the collection of all vertex-separator sets, and let S̄(i, j) ⊂ S(i, j) be the subset of essential
vertex-separator sets.

Theorem 2.6. C, the set of all connected subgraphs, can be described exactly by the following
constraint set:

yi + yj −
∑
k∈S

yk ≤ 1 ∀(i, j) /∈ E, ∀S ∈ S(i, j),(2.1)

yi ∈ {0, 1}, i = 1, . . . , |V |.(2.2)

The proof can be found in Appendix A.
Theorem 2.6 has a simple intuitive interpretation, shown in Figure 2. If two vertices i and

j are selected (yi = yj = 1, shown in black), then any set S of vertices separating them must
contain at least one selected vertex. Otherwise i and j cannot be connected because any path
from i to j must pass through at least one vertex in S.

Having characterized the set of all connected subgraphs exactly by means of (2.1) and (2.2),
it is natural to look at the linear relaxation, replacing (2.2) by yi ∈ [0; 1] for all i. Such a
relaxation yields a polytope P ⊇ Z = conv(C) ⊃ C, which can be a strong, hence good, or
loose, hence bad, approximation to conv(C). The quality of the approximation improves if
facets of the polytope P are true facets of conv(C). The following theorem states that in
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our relaxation a large subset of the constraints (2.1)—exactly those associated to essential
vertex-separator sets—are indeed facets of conv(C).

Theorem 2.7. The following linear inequalities are facet-defining for Z = conv(C):

(2.3) yi + yj −
∑
k∈S

yk ≤ 1, ∀(i, j) /∈ E, ∀S ∈ S̄(i, j).

The proof can be found in Appendix A.

Let us summarize our progress so far. We have described the set of connected subgraphs
and the associated connected subgraph polytope. Furthermore, we have shown that a relax-
ation of the connected subgraph polytope is locally exact in that the set of linear inequali-
ties (2.3) are true facets of conv(C). However, in general the number of linear inequalities (2.3)
used in our relaxation is exponential in |V |.

We now show that optimization over the set defined by (2.3) is still tractable because
finding violated inequalities—the so called separation problem—can be solved efficiently using
max-flow algorithms.

Theorem 2.8 (polynomial-time separation). For a given point y ∈ [0; 1]|V |, finding the most
violated inequality (2.3) or proving that no violated inequality exists requires only time poly-
nomial in |V |.

Proof. We give a constructive separation algorithm based on solving a linear max-flow
problem on an auxiliary directed graph. For a given point y ∈ [0; 1]|V |, consider all (i, j) ∈
V × V with i �= j, (i, j) /∈ E, and yi > 0, yj > 0. For any such (i, j) consider the statement

yi + yj −
∑
k∈S

yk − 1 ≤ 0 ∀S ∈ S̄(i, j).

Note that in the above statement, the individual variables y are not necessarily binary. We
can rewrite the set of inequalities above in equivalent variational form,

(2.4) max
S∈S̄(i,j)

(
yi + yj −

∑
k∈S

yk − 1

)
≤ 0.

If we prove that (2.4) is satisfied, we know that no violated inequalities exist for (i, j). If, how-
ever, a violation exists, then the essential vertex-separator set producing the highest violation
is given as

(2.5) S∗(i, j) = argmin
S∈S̄(i,j)

∑
k∈S

yk.

In order to find this separator set, we transformG into a directed graphG′ with edge capacities.
In the directed graph each original edge is split into two directed edges with infinite capacity.
Additionally each vertex k in the original graph is duplicated, and an edge of finite capacity
equal to yk is introduced between the two copies.

Formally, we construct G′ = (V ′, E′), E′ ⊆ V ′ × V ′ × R as follows. Let V ′ = V ∪ {k′ :
k ∈ V \ {i, j}}. Further, let E′ = {(i, k,∞) : k ∈ V, (i, k) ∈ E} ∪ {(k′, j,∞) : k ∈ V, (j, k) ∈
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i j

a b

c

Figure 3. Example graph G. There are three vertex-separator sets in S(i, j) = {{a, c}, {b, c}, {a, b, c}}, of
which only {a, c} and {b, c} are essential.

∞

∞

∞

∞

∞

∞ ji

ya yb

yc

Figure 4. Directed auxiliary graph G′ for finding the minimum essential vertex-separator set in G among
all sets in S̄(i, j).

E} ∪ {(s′, t,∞), (t′, s,∞) : (s, t) ∈ E \ ({i, j} × {i, j})} ∪ {(k, k′, yk) : k ∈ V \ {i, j}}. The
construction is illustrated for an example graph in Figures 3 and 4.

Finding an (i, j)-cut of finite capacity in G′ is equivalent to finding an essential (i, j)
vertex-separator set in G. This can be seen by recognizing that the only edges that can be
cut—hence saturated in a max-flow problem—are the edges (k, k′) with finite capacity, which
correspond to vertices in the original graph. Solving the max-flow problem in the auxiliary
directed graph solves (2.5). After finding S∗(i, j), we simply check whether (2.4) is satisfied.

Solving a linear maximum network flow problem is very efficient [7]. The best algorithms
known have a computational complexity of O(|V |3) and O(|V ||E| log(|V |)). We need to solve
one max-flow problem per (i, j) pair with yi > 0, yj > 0, so that the overall separation problem
of checking feasibility with respect to (2.3) can be solved in time O(|V |5).

In practice we do not have to check all (i, j) node pairs. Instead, we decompose the graph
into connected components such that for all vertices in a connected component there exists an
all-1-path to every other vertex in the component. These connected components can be found
in linear time using a disjoint set union-rank data structure [10]. Only one representative
node is chosen at random from each component, and the separation is carried out only for the
representative vertices. This procedure is exact.

Note that the structure of the separation problem (2.4) remains fixed and the solution thus
depends only on the coefficients yk. Therefore, one could also exploit warm-starting dynamic
network flow algorithms to quickly resolve (2.4) for new yk coefficients.
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Integrality of the solution. Both the polytope defined by the MRF LP relaxation and our
relaxation of the connected subgraph polytope are not exact: a relaxation is a superset of the
true feasible set. This property allows tractable optimization of otherwise NP-hard problems.
If the optimal solution over the relaxed feasible set is integral, that is, if the solution is 0, 1-
valued, then the relaxation is locally exact and the solution is globally optimal also over the
true feasible set.

On the other hand, if the solution has fractional elements 0 < v < 1, then the solution
is outside the true feasible set and the achieved objective of the relaxation provides a lower
bound on the true optimal objective. In this case, a popular method for dealing with fractional
solutions is to use rounding to construct a feasible solution from the fraction solution.

Our construction to enforce high-order potentials by intersecting a polytope with the MRF
LP relaxation is exact if restricted to the set of integral solutions. But in order to obtain a
tractable optimization problem, we do not enforce integrality and instead solve the relaxed
LP. Then our approach provides only the solution to the relaxation, which may have fractional
elements.

Because we started with two relaxations it seems natural that when intersecting their fea-
sible sets we also obtain a relaxation. In general, however, even if we would have started with
the exact marginal polytope with only integral vertices, and another integral polytope, then
their intersection could have fractional vertices and therefore provide only a relaxation [41].
In Appendix B, we elaborate further on this point by means of a simple example.

3. From the connected subgraph polytope to ψconn
V . We now transform the connected

subgraph polytope into a potential function of a random field. We let μj(y) = [μ1(yj), . . . ,
μ|V |(yj)]� ∈ R

|V | be the set of variables in the LP relaxation (1.3) indicating assignment to
class j over all vertices. One way to enforce connectivity in the LP solution for the vertices
assigned to the jth class is to define the following hard-connectivity potential function:

(3.1) ψ
hard(j)
V (y) =

{
0, μj(y) ∈ Z,
∞ otherwise.

This potential function can be incorporated by adding the respective constraints (2.3) to the
LP relaxation (1.3). Geometrically, this intersects the connected subgraph polytope relaxation
with a subspace of the feasible set of the LP (1.3). By applying this potential function to
different labels yj, this naturally applies also for multilabel MRFs.

Alternatively, we can define a soft connectivity potential by defining a feature function

measuring the violation of connectivity. We define ψ
soft(j)
V (y;w) = wsoft(j)φ

conn(j)(y) where

φconn(j) ≥ 0 measures the violation of connectivity:

φconn(j)(y) =

{
0, μj ∈ Z,

max
d∈D

{d�μj(y)− 1} otherwise,

where D is the set of coefficient vectors of the inequalities (2.3). We can calculate the violation
maxd∈D{d�μj(y) − 1} efficiently by means of Theorem 2.8. This potential function can be
realized by introducing constraints into the LP relaxation as for ψhard(j) but also adding one
global nonnegative slack variable lower bounded by φconn(j) for all y ∈ Y and having an
objective coefficient of wsoft(j).
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Algorithm 1. MAP-MRF LP cutting plane method.

(y, B) = LPCuttingPlane(x,w)
Input:

Sample x ∈ X , weight vector w ∈ R
d

Output:
Approximate MAP-MRF labeling y ∈ Y
Lower bound on MAP energy B ∈ R

Algorithm:
C ← R

dim(Y), B ← −∞ {Initially: no cutting planes}
loop
μ← argminy∈Y ,y∈C E(y;x,w)

c← most violating constraint (2.3) with c�μj > 1
if no c�μj > 1 can be found then

break
end if
C ← C ∩ {y : c�μj ≤ 1}

end loop
B ← E(y(μ);x,w)

3.1. LP MAP-MRF with ψV . Algorithm 1 iteratively solves the MAP-MRF LP relax-
ation (1.3). After each iteration (3.1) is checked and if the labeling is connected, the algorithm
terminates. In the case of an unconnected segmentation, a violated constraint is found and
added to the master LP (1.3).

The algorithm is finitely convergent because the number of facet-defining inequalities is
finite. The equivalence of optimization and separation guarantees polynomial-time solvability
of the MAP-MRF LP relaxation with the connected subgraph polytope relaxation [41, section
14.2].

We now validate our connectedness potential on two tasks: (i) an MRF denoising problem,
and (ii) object segmentation by learned CRFs.

4. Experiment: Denoising. We consider a standard denoising problem [26]. The 32× 32
pixel pattern shown in Figure 5 is corrupted with additive Gaussian noise, as shown in Figure 6.
The pattern should be recovered by means of solving a binary MRF. We use a 4-neighborhood
graph defined on the pixels, and the node potentials are derived from ground truth labeling
as

ψi(“FG”) =

{ −1 +N (0, σ) if i is true foreground,
0 otherwise

ψi(“BG”) =

{ −1 +N (0, σ) if i is true background,
0 otherwise.

The edge potentials are regular [26] and chosen as Potts ψi,j(yi, yj) = |N (0, k/
√
d)|I(yi �= yj),

where d = 4 is the average degree of our vertices. The parameters are varied over σ ∈
{0, 0.1, . . . , 1.0}, k ∈ {0, 0.5, . . . , 4}, and each run is repeated 30 times. For each of the 30
runs, the potentials are sampled once, and we derive three solutions: (i) “MRF,” the solution
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Figure 5. Pattern “X” to be recog-
nized.
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Figure 6. Noisy node potential,
σ = 0.9.
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Figure 7. MRF labeling
error.
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Figure 8. MRFcomp la-
beling error.
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Figure 9. Connected MRF
labeling error.
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Figure 10. Error diff. MRF-CMRF.
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Figure 11. Error diff. MRFcomp-CMRF.

to standard binary MRF, (ii) “MRFcomp,” the largest connected component of the MRF,
and (iii) “CMRF,” a binary MRF with additional hard-connectivity potential (3.1) on the
foreground plane.

The results are shown in Figures 7 to 11. They show the connected MRF averaged absolute
error over the parameter plane and the errors relative to the standard MRF and component
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Figure 12. MRF/MRFcomp/CMRF results, with energies E = −985.61, E = −974.16, E = −984.21, and
errors 36, 46, 28, respectively. The connectivity constraint solution CMRF is a substantial improvement over
the solutions of MRF and MRFcomp.
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Figure 13. MRF/MRFcomp/CMRF results, with energies E = −980.13, E = −974.03, E = −976.83, and
errors 34, 34, 24, respectively. Note that although the CMRF solution becomes fractional, it is a substantial
improvement over the MRF and MRFcomp results.

heuristic. The advantage of the connectedness constraint over a standard MRF can be seen
by looking at the relative errors in Figure 10. For almost all parameter regimes the error of
the MRF is higher (positive values in the plot). Also, from Figure 11 it can be seen that
the connectedness constraint outperforms the largest-connected-component heuristic except
when very weak edge potentials are used (upper left corner). Typical examples are shown in
Figures 12 and 13.

4.1. Integrality. Because we use relaxations for both the marginal polytope (the LP re-
laxation) and the connected subgraph polytope (the relaxation described by (2.3)), it is not a
priori clear that the solution obtained will be integral. Only if it is, we do have a solution to
the true, unrelaxed problem. If it is fractional, the solution is still optimal in the relaxation,
but outside the true feasible set.

In Figure 14 we show the integrality, i.e., the fraction of variables which are integral. We
see that our approach is very effective: for medium noise and edge interactions, the solution
is always integral, whereas even when there is more noise and edge interaction, very few
variables—less than 0.5% for most configurations—become fractional.

The problems defined by the marginal polytope and the connected subgraph polytope are
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Figure 14. Mean solution integrality of the MRF with hard-connectivity potential over 30 runs for varying
problem parameters.
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Figure 15. MRF runtime in seconds.
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Figure 16. CMRF runtime in seconds.

both NP-hard. Hence, it is likely that no polynomial-time approach can provide the guar-
anteed optimum. In theory, a logical step within our approach would be to prove properties
of the fractional solutions, for example, that they satisfy half-integrality or can be rounded
with optimality guarantees in order to obtain a polynomial-time approximation algorithm. In
practice, the approach already works very well.

4.2. Runtime analysis. We compare the runtime overhead of the connectivity constraint
on the MAP-MRF inference in Figures 15 and 16.

The first observation is that the LP relaxation (MRF) is solved in time independent of the
edge attraction strength and node potential noise. For the connected CMRF relaxation, this
is not the case: the runtime increases with node potential noise and edge attraction strength.
It remains efficient, with a runtime within a small factor of the MRF relaxation runtime for
large parts of the parameter space.

One exception to this is the high node potential noise region with low edge attraction
strength, shown in the upper-left of Figure 16. There, many pixels around the image prefer
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Figure 17. Number of objects of individual classes per image in the PASCAL VOC 2008 trainval data
set for the object detection task.

to be labeled positive. The connectivity potential then connects these pixels, requiring many
outer iterations in Algorithm 1, and a large number of constraints are generated. The solution
obtained is of bad quality, as most pixels being connected are actually in the background. This
same effect causes the bad performance of the CMRF method in this regime and can also be
seen in the top left part of Figure 11.

5. Experiment: Learning object segmentation. Connectivity is a strong global prior for
object segmentation. In this experiment we use the connectivity assumption to segment out
objects from the background in the PASCAL VOC 2008 data set [12]. The data set is known
to be particularly challenging as the images contain objects of 20 different classes with a lot
of variability in lighting, viewpoint, size, and positioning of the objects.

We first look at a simple statistic of the training and validation set for the detection task:
how many objects of each individual class are present in an image? Figure 17 shows the
number of objects of individual classes per image in the PASCAL VOC 2008 trainval data
set. The statistics confirms that if an object is present in an image, in 70% of the cases there
is no other object of the same class in the image. For some classes, like aeroplane, cat, and
diningtable, this is more often the case than for classes like bottle, chair, person, and
sheep.

5.1. Experimental setup. In our setting, we let x = (V,E) be the graph resulting from
a superpixel segmentation [39] of an image, where each i ∈ V is a superpixel. The superpixel
segmentation is obtained using the method1 of Mori [36], where we use ≈ 100 superpixels.

1See http://cs.sfu.ca/∼mori/research/superpixels/.

http://cs.sfu.ca/~mori/research/superpixels/
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Example segmentations are shown in the left-hand images of Figures 18 to 20. Using su-
perpixels has three advantages: (i) the information in each superpixel is more discriminative
because all image information in the region can be used to describe it, (ii) the complexity of
the inference is drastically reduced with only a negligible approximation error, and (iii) the
notion of connectivity becomes more meaningful if larger, equal-sized parts are considered.

Each superpixel becomes a vertex in the graph. An edge joins two vertices if the superpixels
are adjacent in the image. Therefore connectivity in the graph implies connectivity of the
segmentation. We prefer the normalized-cuts based superpixels over superpixels generated by
using mean-shift clustering [9] and spanning-tree heuristics [13] because the normalized-cuts
superpixels are approximately of the same size and each superpixel has a similar number of
neighboring superpixels. This behavior fits our notion of connectivity and prevents a single
superpixel from being connected to a large number of other superpixels.

For each image, we extract 50,000 speeded-up robust features features [2] at random
positions and assign each feature to the superpixel which contains the center pixel of the
feature. For each vertex, a bag-of-words histogram xi ∈ R

H is created by nearest-neighbor
quantizing the features associated to the superpixel in a codebook of 500 words (H = 500),
created by k-means clustering on a random sample of 500,000 features from the training set.

We treat each of the 20 classes separately as a binary problem. That is, for each image
showing an object of the class, a class-versus-background labeling is sought. Hence each vertex
i in the graph has a label vector yi ∈ {0, 1}×{0, 1}. We report the average intersection-union
metric, defined as the TP

TP+FP+FN ratio, where TP , FP , and FN are true positives, false
positives, and false negatives, respectively, per pixel labeling for the object class [12]. Because
the VOC 2008 segmentation trainval set includes only 1023 images for which ground truth is
available, with some classes having as few as 44 positive images (only 19 for train alone), we
use a three-fold cross validation estimate on the trainval set. For all CRF variants described
later, we use the following feature functions.

• Node features, φ
(1)
i (yi,x) = vec(xiy

�
i ).

Thus the output of φ
(1)
i (yi,x) is an (H, 2)-matrix of two weighted replications of the

node histogram xi. The matrix is stacked columnwise.

• Edge features, φ
(2)
i,j (yi, yj,x) = vecΔ(yiy

�
j ).

This is the upper-triangular part including the diagonal of the outer product yiy
�
j .

By making this feature available, the CRF can learn the weights for the interclass and
intraclass Potts potentials separately.

We test three CRFs: (i) a CRF with these feature functions, (ii) the same CRF with ψ
hard(class)
V ,

and (iii) the same CRF with ψ
soft(class)
V . All three models are trained using the structured

support vector machine (SVM) algorithm, and all models have access to exactly the same
features.

5.2. Learning the parameters w. For learning the parameters of the model, we use the
structured SVM framework [46], recently also used in computer vision [6, 34, 45]. It minimizes
the following regularized risk function:

(5.1) min
w

‖w‖2 + C

�

�∑
n=1

max
y∈Y

(Δ(yn,y) + E(yn;xn,w)− E(y;xn,w)) ,
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where (xn,yn)n=1,...,� are the given training samples and Δ : Y × Y → R+ is a compatibility
function which has a high value if two segmentations are different and a low value if they are
very similar. More precisely, we define Δ(y1,y2) =

∑
i∈V

ri∑
j∈V rj

(
y1i + y2i − 2y1i y

2
i

)
, where ri

is the size in pixels of the region i in the superpixel segmentation.

Note that this definition (i) is symmetric, Δ(y1,y2) = Δ(y2,y1), (ii) is zero-based,
Δ(y,y) = 0, and nonnegative, (iii) corresponds to the Hamming loss if all elements are
binary, and (iv) decomposes linearly over the individual elements if one of y1, y2 is constant.
Because of the last point it is easy to incorporate into the MRF inference procedure by means
of a bias on the node potentials [14, 45]. We train with C ∈ {.00001, .0001, . . . , 10, 100} and
report the highest achieved performance of each model.

The objective (5.1) is convex, but nondifferentiable. Still, it can be solved efficiently by
iteratively solving the following quadratic program (see [46, 19]):

min
w,ξ

‖w‖2 + C

�

�∑
n=1

ξn(5.2)

s.t. E(yn;xn,w) + Δ(yn,y) ≤ E(y;xn,w) + ξn ∀n = 1, . . . , �, ∀y ∈ Y,(5.3)

ξn ≥ 0, n = 1, . . . , N.

The set (5.3) of linear inequalities describes an intersection of half-spaces. In our case both
N and |Y| are finite in (5.3), so the constraints describe a polyhedron. Despite being finite,
|Y| is of exponential size in the length of the input representation. Therefore, (5.3) cannot be
explicitly optimized over.

Instead, we use delayed constraint generation where we start with no constraints (5.3)
and solve (5.2) to obtain a candidate solution. We then verify whether the candidate solution
violates any of the inequalities (5.3). If it does, the violated inequality is explicitly generated
and added to the problem and the problem is resolved. If the candidate solution turns out
not to violate any inequality, then by the above reasoning the candidate solution is also the
optimal solution. The incrementally growing problem is the restricted master problem, and
the problem of finding violated inequalities is the separation problem.

The overall procedure is summarized in Algorithm 2. The algorithm iterates between
solving the restricted master problem and generating violated constraints. The constraints
found are used to tighten the master problem which is then resolved. If no violated constraints
can be found, the procedure terminates. In each iteration, the maximum violation magnitude
can be used as a convergence criterion and usually in practice one stops training once it is
small enough. Because in our case |Y| is finite, the algorithm is finitely convergent, a fact
proved in Tsochantaridis et al. [46].

In each algorithm iteration we are given a candidate parameter vector w, and for each
sample (xn,yn) we need to solve the separation problem

max
y∈Y

(Δ(yn,y) + E(yn;xn,w)− E(y;xn,w)) .

As the last term is constant and Δ(yn,y) can be incorporated into E(y;xn,w), Algorithm 1
can be used to find the maximizer y∗n. This maximizer defines a new constraint, and by
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Algorithm 2. Structured SVM training.

1: w = StructuredSVM(X,Y,C)
2: Input:
3: {(xn, yn)}n=1,...,N training set, (xn, yn) ∈ X × Y
4: C > 0 regularization parameter
5: ε ≥ 0 convergence tolerance
6: Output:
7: w ∈ R

F learned weight vector
8: Algorithm:
9: Dw,ξ ← R

F × R
N
+ {Initially: no constraints}

10: loop

11: (w∗, ξ∗)←
{

argmin
w,ξ

‖w‖22 + C
∑N

n=1 ξn

s.t. (w, ξ) ∈ Dw,ξ

{Solve master}

12: maxviol← −∞
13: for n = 1, . . . , N do
14: (viol,yv)← (max, argmax)

y∈Y
[E(yn;xn,w

∗)− E(y;xn,w
∗)

15: +Δ(yn,y)− ξ∗n] {Solve separation problem}
16: if viol > 0 then
17: Dw,ξ ← Dw,ξ ∩ {w, ξ : E(yn;xn,w) + Δ(yn,yv) ≤ E(yv;xn,w) + ξn}
18: end if
19: maxviol← max{viol,maxviol}
20: end for
21: if maxviol > ε then
22: break
23: end if
24: end loop

iterating between generating constraints and solving the quadratic program, we can obtain
successively better parameter vectors w.

Finley and Joachims [14] have shown that if the inference in the learning problem is hard,
then approximately solving this hard problem can lead to classification functions which do not
generalize well. Instead, it is preferable to solve exactly a relaxation to the original inference
problem. This is precisely what we are doing, because the intersection of (2.3) with the
MAP-MRF LP local polytope defines an exactly solvable relaxation.

5.3. Results. Table 1 shows for each class the averaged intersection-union scores of the
three different methods.

For most classes the connected CRF models outperform the baseline CRF. This is espe-
cially true for classes such as aeroplane and cat, whose images usually contain only one large
object. In contrast, classes such as bottle and sheep often have more than one object in an
image. This is a violation of our connectedness assumption, and in this case the CRF model
outperforms the connected ones. We also see that in some cases the extra flexibility of the
soft-connectedness over the hard-connectedness prior pays off: for the boat, bus, cow and
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Table 1
Results of the VOC 2008 segmentation experiment. Cases in bold are where a method outperforms the others.

Method aerop. bicyc. bird boat bottle bus car cat chair cow

CRF 0.355 0.087 0.189 0.261 0.138 0.383 0.194 0.278 0.084 0.225
Hard 0.380 0.091 0.202 0.275 0.115 0.391 0.185 0.311 0.121 0.236
Soft 0.341 0.090 0.176 0.288 0.130 0.406 0.165 0.283 0.101 0.270

dtable dog horse mbike person plant sheep sofa train tv

CRF 0.279 0.245 0.232 0.239 0.188 0.088 0.298 0.214 0.419 0.158
Hard 0.269 0.244 0.209 0.268 0.194 0.075 0.249 0.200 0.393 0.152
Soft 0.294 0.220 0.194 0.273 0.184 0.074 0.277 0.209 0.419 0.151

motorbike classes, the ability to weight the connectivity strength versus the other potentials
is useful in improving over both the baseline CRF and the hard-connected CRF. The typical
behavior of the hard-connectedness CRF on test images is shown in Figures 18–20 for the
aeroplane class. In the first two segmentations, connectedness helps by completing a discon-
tinuous segmentation and by removing clutter. Figure 20 shows a hopeless case: if the CRF
segmentation is that wrong, connectedness cannot help.

6. Conclusions. We have shown how the limitation of considering only local interactions
in discrete random field models can be overcome in a principled way. We considered a hard
global potential encoding whether a labeling is connected or not. We derived an efficient
relaxation that can naturally be used with MAP-MRF LP relaxations. Experimentally, we
demonstrated that a connectedness potential reduces the segmentation error on both a syn-
thetic denoising and real object segmentation task.

Clearly, other meaningful global potential functions could be devised by the method in-
troduced in this paper. The principled use of polyhedral combinatorics opens a way to better
model high-level vision tasks with random field models. Another direction of future work is
to see if the addition of complicated primal constraints like (2.3) can be accommodated into
recent efficient dual LP MAP solvers [16, 29, 31, 43, 35] or graph-cut based algorithms [8, 7].

In this work we have considered constraints enforcing labeling with only one connected
component. It is an open question how to generalize this to constraints that enforce or
bias the solution toward a given number of connected components. The general polyhedral
approach outlined in this work still applies, but we believe this multiple-component case has
considerably more complex polyhedral structure.

In a wider sense, most computer vision research into MRF models have focused attention
only on low-order interactions in sparsely connected graphs. Although even for this setting the
general case is already hard, the conditional independence embodied in the Markov assumption
allowed the development of tractable inference procedures. But there is additional structure
possible which does not fit well in this standard setting: the global potential function we
considered in this paper does not have a factorizable structure. Still, efficient approximate
inference is possible by exploiting the combinatorial structure. In this work we have achieved
this by combining the LP MAP-MRF relaxation with a suitable polytope derived from the
global potential function. Whether there are more efficient ways to achieve the same effect is
an open question.

All software is available as open-source at http://www.kyb.mpg.de/bs/people/nowozin/
tuwo/.

http://www.kyb.mpg.de/bs/people/nowozin/tuwo/
http://www.kyb.mpg.de/bs/people/nowozin/tuwo/
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Figure 18. Image/CRF/CRF + conn. Case where connectedness helps: the local evidence
is scattered; enforcing connectedness (right) helps.

Figure 19. Image/CRF/CRF + conn. Connectedness can remove clutter: local evidence
(edges on the runway) is overridden.

Figure 20. Image/CRF/CRF+conn. Failure case: the CRF segmentation is bad (middle);
connectedness does not help (right).

Appendix A. Proofs.

Proof of Lemma 2.3. Every single node k constitutes a connected subgraph. By setting
yk = 1, yh = 0 for h �= k, a feasible solution is obtained. All these solutions are affinely
independent. Furthermore, the empty graph is also a feasible subgraph. It follows that
dim(Z) = |V |; i.e., the connected subgraph polytope has full dimension.

Proof of Lemma 2.4. First, yi ≥ 0. For each i, we construct |V | affinely independent
points in C with yi = 0. Fix i; then one solution is obviously x = 0, the empty subgraph.
Next, for all p �= i, obtain one solution by setting only yp = 1, and for all j �= p set yj = 0.
Clearly, yj = 0 and the |V | − 1 solutions thus obtained are affinely independent. In total we
have |V | solutions with yi = 0; thus yi ≥ 0 is facet-defining.

Second, yi ≤ 1. Again let i be arbitrary. We construct |V | affinely independent points in C
with yi = 1. For this, set yi = 1 and yj = 0 for all j �= i. This is obviously one solution. Now
root a spanning tree in i and set one node k at a time to yk = 1, respecting the order of the
spanning tree; i.e., the subgraph of selected nodes j with yj = 1 always remains a connected
subgraph of the spanning tree. This constructs |V | − 1 solutions, all affinely independent.
Adding the first solution yields |V | solutions in total, completing the proof.
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Proof of Theorem 2.6. First, the direction “is feasible,” implying “is connected.” Consider
an arbitrary feasible y. Due to integrality we have yi ∈ {0, 1} for all i ∈ V . If

∑
i yi ≤ 1,

the resulting subgraph is trivially connected; hence assume
∑

i yi ≥ 2. For arbitrary yi = 1,
yj = 1, i �= j, assume i and j are not connected; that is, (i, j) /∈ E, and, moreover, there exists
no path on G with all vertex variables being one. Trivially, we construct a vertex-separator
set S = {k ∈ V : yk = 0} with S ∈ S(i, j). The removal of S from V must disconnect i and
j, as (i, j) /∈ E. However, by (2.1) we must have yi + yj −

∑
k∈S yk − 1 = 2− 0 − 1 = 1 ≤ 0,

which is clearly violated. Thus, feasibility implies connectedness. Second, the direction “is
connected,” implying “is feasible.” Take any yi = 1, yj = 1, i �= j, and i, j connected in
G by a path starting at i and ending at j such that all intermediate nodes k satisfy yk = 1.
For all separators S ∈ S(i, j), at least one node t of this path must satisfy t ∈ S. Therefore
yi + yj −

∑
k∈S yk − 1 ≤ yi + yj − yt − 1 = 0 ≤ 0 is satisfied. Thus any connected subgraph is

feasible.

Proof of Theorem 2.7. We will prove this for any i, j ∈ V by constructing |V | affinely
independent points in C which satisfy the inequality nonstrictly; that is, they also satisfy the
corresponding equality. By [52, section 9.2.3] this shows that the inequality is facet-defining.

For i, j ∈ V arbitrarily chosen, for any S ∈ S̄(i, j), let S = {s1, . . . , s|S|} be the set of
nodes in the essential vertex-separator set. Further, let S induce a partitioning of the graph
into the set S, the connected subgraphs Pi and Pj , containing i and j, respectively, and the
connected subgraphs Ps connected to exactly one s ∈ S (if any subgraph is connected to more
than one s ∈ S, remove all but one edge arbitrarily). This is shown in Figure 21.

i j

Pi

Pj

Pq1

S

s1

s2

Figure 21. The separator set S induces a graph partitioning.

First, we construct |Pi|+|Pj| affinely independent solutions in C which satisfy the equality.

1. For the connected subgraph Pi, root a spanning tree in i. Set yi = 1, yk = 0 for
all k ∈ Pi, k �= i. For each such k ∈ Pi, enlarge the subgraph incrementally by one
node in an arbitrary ordering respecting the spanning tree; i.e., set yk = 1. Each
enlarged solution is a connected subgraph of Pi and G, and is affinely independent of
all previous ones and satisfies the equality.

2. Likewise, do this for Pj , starting with just yj = 1.
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1 2μ1(y1)
μ1(y2)

μ2(y1)
μ2(y2)

μ1,2(y1, y1)
μ1,2(y1, y2)
μ1,2(y2, y1)
μ1,2(y2, y2)

Figure 22. Simple two-node MRF. The representation used in the LP relaxation defines four variables for
the node states and four variables for the pairwise node states associated to the edge.

Next, for each s ∈ S, we construct |Ps|+1 affinely independent solutions satisfying the equality
as follows.

1. Set yk = 1, for all k ∈ Pi ∪Pj , and ys = 1. This solution is in C because S is essential
and thus s connects Pi and Pj . Construct |Ps| more solutions by building a spanning
tree for Ps, rooted in the node connected to s. By incrementally setting yk = 1 in
an order respecting the spanning tree, |Ps| affinely independent solutions in C are
obtained.

We now consider the total number of solutions constructed:

|Pi|+ |Pj |+
∑
s∈S

(|Ps|+ 1) = |V |.

We have constructed |V | affinely independent solutions in C satisfying the equality. Therefore,
by [52, section 9.2.3], the inequality defines a facet of conv(C).

Appendix B. Solution integrality. We now discuss the integrality of the solutions to the
constructed relaxation. The property we are interested in is the preservation of tightness of
the relaxation: if we have two polytopes describing tight relaxations and we construct the
intersection, do we still obtain a tight relaxation?

In general, the answer is no. By means of constructing a simple counterexample, we show
that even if both the marginal polytope relaxation and the relaxation of the restricted feasible
set in the node-label dimensions are tight, the intersection of both polytopes need not be.
That is, it can contain new fractional vertices, even if both original polytopes contain only
integral {0, 1}-vertices.

To see this, consider the simple two-node MRF shown as a graphical model in Figure 22. In
the parametrization used by the linear programming relaxation (1.3), there are eight variables,
four for the node states (μ1(y1), μ1(y2), μ2(y1), μ2(y2)) and four for the pairwise node states
at the edge (μ1,2(y1, y1), μ1,2(y1, y2), μ1,2(y2, y1), μ1,2(y2, y2)).

The feasible set described by the constraints of the LP relaxation is given by the following



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL INTERACTIONS IN RANDOM FIELD MODELS 1069

set of constraints:

M = {μ : μ1(y1) + μ1(y2) = 1,(B.1)

μ2(y1) + μ2(y2) = 1,

μ1,2(y1, y1) + μ1,2(y1, y2) = μ1(y1),

μ1,2(y2, y1) + μ1,2(y2, y2) = μ1(y2),

μ1,2(y1, y1) + μ1,2(y2, y1) = μ2(y1),

μ1,2(y1, y2) + μ1,2(y2, y2) = μ2(y2),

μ1(y1), μ1(y2), μ2(y1), μ2(y2) ≥ 0,

μ1,2(y1, y1), μ1,2(y1, y2), μ1,2(y2, y1), μ1,2(y2, y2) ≥ 0}.

The above constraints define the feasible set as a three-dimensional polytope embedded in
eight dimensions. We can visualize the polytope partially by projecting it onto subspaces. For
this, let us define the projection of a polytope.

Definition B.1 (projection of a polytope).For a given polytope Q ⊆ (Rn×Rp), the projection
of Q onto the subspace R

n, denoted projxQ, is defined as

projxQ = {x ∈ R
n : (x,w) ∈ Q for some w ∈ R

p}.

Therefore, a point is in the projected set if there is at least one point in the higher-
dimensional polytope which has identical coefficients in the projection dimensions. For addi-
tional properties of projected polytopes, see [1, 52, 41].

Figure 23 shows the projection projμ1(y1),μ2(y1),μ1,2(y1,y1)M of the feasible set of the MRF
shown in Figure 22. The full set of vertices of the polytope M is given as follows:

{(μ1(y1), μ1(y2), μ2(y1), μ2(y2), μ1,2(y1, y1), μ1,2(y1, y2), μ1,2(y2, y1), μ1,2(y2, y2))}
= {(1, 0, 1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0, 1, 0), (0, 1, 0, 1, 0, 0, 0, 1)}.

Therefore, all vertices are integral, and for this particular MRF the LP relaxation is tight.
The feasible set defined by the LP relaxation is therefore identical to the true set, the marginal
polytope [48].

Now suppose that we want to restrict the labelings such that both nodes are not labeled
y1 at the same time. Then, the only allowed combinations for (μ1(y1), μ2(y1)) are from the set
L = {(0, 0), (0, 1), (1, 0)}. The convex hull conv(L) is shown in Figure 24. The facet-defining
constraints of the convex hull are simply μ1(y1) ≥ 0, μ2(y1) ≥ 0, and μ1(y1)+μ2(y1) ≤ 1. We
plan to add these new constraints to the feasible set of the MRF, defined by (B.1). Because the
first two nonnegativity constraints are already in the constraint set, we only have to consider
the new inequality μ1(y1) + μ2(y1) ≤ 1.

Adding a constraint in the subspace of μ1(y1) and μ2(y1) is the same as first extending the
set shown in Figure 24 to the full-dimensional space and then intersecting it with the marginal
polytope. We show a three-dimensional projection of the extended feasible set in Figure 25.

The intersection of polytopes shown in Figures 25 and 23 is shown in Figure 26. The new
polytope contains only points which satisfy μ1(y1) + μ2(y1) ≤ 1 and (B.1). The polytope has
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μ2(y1)

μ1(y1)

μ1,2(y1, y1)

Figure 23. Projection of the
marginal polytope M onto the μ1(y1),
μ2(y1), and μ1,2(y1, y1) dimensions, i.e.,
projµ1(y1),µ2(y1),µ1,2(y1,y1)

M .

μ2(y1)

μ1(y1)

Figure 24. Desired feasible set with
respect to μ1(y1), μ2(y1). The nontriv-
ial facet-defining inequality is μ1(y1) +
μ2(y1) ≤ 1.

μ2(y1)

μ1(y1)

μ1,2(y1, y1)

Figure 25. Projected view of the exten-
sion to the full space of the desired feasible
set with respect to μ1(y1), μ2(y1). Note that
this polytope has only integral vertices.

μ2(y1)

μ1(y1)

μ1,2(y1, y1)

Figure 26. Projected view of the result-
ing intersection with new fractional vertex
(μ1(y1), μ2(y1), μ1,2(y1, y1)) = ( 1

2
, 1
2
, 1
2
).

the following set of vertices:

{(μ1(y1), μ1(y2), μ2(y1), μ2(y2), μ1,2(y1, y1), μ1,2(y1, y2), μ1,2(y2, y1), μ1,2(y2, y2))}
=
{
(1, 0, 0, 1, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0, 1, 0), (0, 1, 0, 1, 0, 0, 0, 1),

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0,

1
2

)}
.

Therefore, although both polytopes have only integral vertices, their intersection has frac-
tional ones. Note that the restriction of the intersection to the set of integral vertices still
remains the exact set we are interested in: the subset of vertices of the marginal polytope
satisfying μ1(y1) + μ2(y1) ≤ 1.

In the above example, the simplified construction is qualitatively the same as the in-
tersection of the connected subgraph polytope with the LP MAP-MRF relaxation LOCAL
polytope [48]. Therefore, it is insightful in a number of ways.

First, having tight relaxations for both the connected subgraph polytope and the marginal
polytope does not guarantee a tight relaxation for the convex hull of the integral vertices of
their intersection.
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Second, restricted to the set of integral solutions, the construction is exact. However,
optimizing over only the integral solutions of the intersection is intractable, whereas optimizing
over the intersection of two polytopes remains tractable if optimizing over the individual
polytopes is tractable. Intersecting polytopes can therefore be thought as tractable relaxation
to the intersection of their individual integral vertices: the new vertex set is a superset of the
intersection of the individual polytopes’ vertex sets.

To put this result into perspective, note the following three points. First, we never had
a tight relaxation to start from. For general pairwise potentials, optimizing over the exact
marginal polytope is NP-hard [48], so the LP relaxation is used. Optimizing over the exact
subgraph polytope is NP-hard, so a relaxation is used. In order to remain tractable, both sets
are relaxations and individually have fractional vertices. Whether the additional fractional
vertices caused by intersection are an issue has to be settled empirically, as shown in Figure 14.
Second, in general, finding inequalities which cut off fractional vertices of the intersection of
two polytopes is hard; see [1, 52]. Third, as observed by Finley and Joachims in [14], structured
learning of parameters in linear relaxations can “learn to avoid fractional solutions,” as these
always have a nonzero loss. In summary, intersecting polytopes weakens the overall relaxation.

Appendix C. Implementation details.
Separation routine. Our separation routine to find violated inequalities (2.3) is written in

C++ and uses the boost 1.36 push-relabel max-flow solver.

MAP-MRF linear program. We solve (1.3) using the open-source COIN-OR Clp 1.8 solver2

with the COIN-OR Osi 0.98.2 interface.3 Instead of generating a single constraint at a time,
we use multiple pricing and add as many violated constraints as we can find in each iteration,
usually a few thousand. The cost of re-solving the LP relaxation is small compared to that
of generating constraints. Finding additional violated constraints besides the most violating
one incurs almost no additional cost.

Structured SVM. We solve (5.1) using the QP reformulation [46] in the dual by coordinate
descent, similar to the approach in [17]. Unlike in that work, we need to ensure differentia-
bility of the dual problem. Therefore, we add a small strictly convex proximal term in the
primal, making it strictly convex in all variables. Strict convexity in the primal asserts dual
differentiability everywhere [3], allowing our simple coordinate descent method to work. The
advantage of the dual approach is the ability to rapidly warm-start once violating constraints
have been found.

Acknowledgment. The authors would like to thank the anonymous reviewers for their
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