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Abstract

We consider the homogenization of parabolic equations with large spatially-
dependent potentials modeled as Gaussian random fields. We derive the homog-
enized equations in the limit of vanishing correlation length of the random po-
tential. We characterize the leading effect in the random fluctuations and show
that their spatial moments converge in law to Gaussian random variables. Both
results hold for sufficiently small times and in sufficiently large spatial dimensions
d > m, where m is the order of the spatial pseudo-differential operator in the
parabolic equation. In dimension d < m, the solution to the parabolic equation is
shown to converge to the (non-deterministic) solution of a stochastic equation in
the companion paper [2]. The results are then extended to cover the case of long
range random potentials, which generate larger, but still asymptotically Gaussian,
random fluctuations.
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cients, Gaussian fluctuations, large potential, long range correlations

AMS: 35R60, 60H05, 35K15.

1 Introduction

Let m > 0 and P(D) the pseudo-differential operator with symbol p(¢) = [¢|™. We
consider the following evolution equation in dimension d > m:

0 x B 4
<§+P(D)—€—q(g)>ue(t,x) = 0, xreRY >0,

(1)
u(0,2) = wup(z), z€R™L

Here, ug € L?*(RY) and ¢(z) is a mean zero stationary Gaussian process defined on a

probability space (2, F,P). We assume that ¢(x) has bounded and integrable correlation

function R(z) = E{q(y)q(x + y)}, where E is the mathematical expectation associated
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with P, and bounded, continuous in the vicinity of 0, and integrable power spectrum
(27 dR = Jpa € " R(z)dz in the sense that Jaav s BE)EI7™dE < oo. The size of
the potentlal is constructed so that the limiting solution as € — 0 is different from the
unperturbed solution obtained by setting ¢ = 0. The appropriate size of the potential
is given by
m 1
e2|lnelz d=m
E:a - m ’ 2
{ €2 d > m. 2)
The potential is bounded P-a.s. on bounded domains but is unbounded P-a.s. on
R?. By using a method based on the Duhamel expansion, we nonetheless obtain that
for a sufficiently small time 7" > 0, the above equation admits a weak solution u.(t,-) €
L*(Q x R?) uniformly in time ¢ € (0,7") and 0 < € < &.
Moreover, as € — 0, the solution u.(t) converges strongly in L?(2 x R?) uniformly
int € (0,7) to its limit u(t) solution of the following homogenized evolution equation

(a—i-P(D) p)u(t,x) = 0, reRY, t>0,

ot (3)
u(0,2) = wo(z), x€RY

where the effective (non-negative) potential is given by

cdziz(()) d=m,
p= R(¢) (4)
/Rd g —=d¢ d>m.

Here, ¢4 is the volume of the unit sphere S, We denote by G/ the propagator for the
above equation, which to ug(x) associates G'ug(x) = u(t, z) solution of (3.

We assume that the non-negative (by Bochner’s theorem) power spectrum R(€) is
bounded by f(|£]), where f(r) is a positive, bounded, radially symmetric, and integrable
function in the sense that [~ 7~ =™ f(r)dr < co. Then we have the following result.

Theorem 1 There exists a time T =T (f) > 0 such that for allt € (0,T), there exists
a solution u.(t) € L?(Q x RY) uniformly in 0 < & < g5. Moreover, let us assume that
R() is of class C'(RY) for some 0 < ~v < 2 and let u(t,z) be the unique solution in
L*(RY) to @). Then, we have the convergence results

B
H(ue_us)(t)HL?(Qde) S EZHUOHLQ(Rd)a (5)

(e = w)O)ll2@ay S € lluoll z2(ma),

where a < b means a < Cb for some C' > 0, a A'b = min(a,b), where u.(t,-) is a
deterministic function in L*(R%) uniformly in time, and where we have defined

|Ing|~! d=m,
d—m
B € m<d<2m, (6)
g™ lne| d=2m,
em d > 2m.

The Fourier transform U.(t,&) of the deterministic function u.(t,z) is determined ex-
plicitly in (B8]) below.



Note that the effective potential —p is non-positive. The theorem is valid for times T'
such that 4Tp; < 1, where p; is defined in lemma [Z2 below by replacing R(€) by f(|€])
in the definition of p in {@).

dizThe error term u. — u is dominated by detegginistic components when €% >
£7Z and by random fluctuations when " <« 7= . In both situations, the random
fluctuations may be estimated as follows. We show that

1
ul,a(ta ZL’) = Td—2a (ua - E{ua}) (t,l’), (7)
e 2
converges weakly in space and in distribution to a Gaussian random variable. More
precisely, we have

Theorem 2 Let M be a test function such that its Fourier transform M € L'(R%) N
L*(RY). Then we find that for all t € (0,T)

t
(ure(t,-), M) =0 M (z)odW,, M, () :/ GPM (x)G!_uo(x)ds, (8)
R4 0
where convergence holds in the sense of distributions, dW, is the standard multiparam-

eter Wiener measure on R? and o is the standard deviation defined by

7t i ) R(0) = [ Blal0)a(o)}dr )
This shows that the fluctuations of the solution are asymptotically given by a Gaussian
random variable, which is consistent with the central limit theorem.

We observe a sharp transition in the behavior of u. at d = m. For d < m, the
following holds. The size of the potential that generates an order O(1) perturbation is
now given by (see the last inequality in lemma [2.2))

Nl

¥ =¢go.
Using the same methods as for the case d > m, we may obtain that u.(t) is uniformly
bounded and thus converges weakly in L?(Q x RY) for sufficiently small times to a
function wu(t). The problem is addressed in [2], where it is shown that u(t) is the
solution to the stochastic partial differential equation in Stratonovich form

o P(D)ut oot =0, (10)
with u(0,2) = ug(z) and ¥ d-parameter spatial white noise “density”. The above
equation admits a unique solution that belongs to L?(€2 x R?) locally uniformly in time.
Stochastic equations have also been analyzed in the case where d > m (i.e., d > 2 when
P(D) = —A), see [9, 12]. However, our results show that such solutions cannot be
obtained as a limit in L?(2 x RY) of solutions corresponding to vanishing correlation
length so that their physical justification is more delicate. In the case d =1 and m = 2
with ¢(z) a bounded potential, we refer the reader to [13] for more details on the above
stochastic equation.



The above theorems [I] and ] assume short range correlations for the random poten-
tial. Mathematically, this is modeled by an integrable correlation function, or equiv-
alently a bounded value for }?(0) Longer range correlations may be modeled by un-
bounded power spectra in the vicinity of the origin, for instance by assuming that
R(&) = h(€)S(€), where S(€) is bounded in the vicinity of the origin and h(¢) is a
homogeneous function of degree —n for some n > 0. Provided that d > m + n so that
p defined in (@) is still bounded, the results of theorems [l and 2l may be extended to
the case of long range fluctuations. We refer the reader to theorem [l in section
below for the details. The salient features of the latter result is that the convergence
properties stated in theorem [ still hold with  replaced by 8 —n and that the random
fluctuations are now asymptotically Gaussian processes of amplitude of order S
Moreover, they may conveniently be written as stochastic integrals with respect to some
multiparameter fractional Brownian motion in place of the Wiener measure appearing
in ().

Let us also mention that all the result stated here extend to the Schrodinger equation,
where Z is replaced by i% in (). We then verify that —p in (3] is replaced by p so that

at
the homogenized equation is given by

(z'— + P(D)+ p)u(t, ) = 0.

The main effect of the randomness is therefore a phase shift of the quantum waves as
they propagate through the random medium. Because the semigroup associated to the
free evolution of quantum waves does not damp high frequencies as efficiently as for the
parabolic equation (I), some additional regularity assumptions on the initial condition
are necessary to obtain the limiting behaviors described in theorems [Il and 2 We do
not consider the case of the Schrédinger equation further here.

The rest of the paper is structured as follows. Section 2l recasts (II) as an infinite
Duhamel series of integrals in the Fourier domain. The cross-correlations of the terms
appearing in the series are analyzed by calculating moments of Gaussian variables and
estimating the contributions of graphs similar to those introduced in [5, [II]. These
estimates allow us to construct a solution to () in L*(Q x RY) uniformly in time for
sufficiently small times ¢ € (0,7). The maximal time T of validity of the theory depends
on the power spectrum ]%(5 ). The estimates on the graphs are then used in section Bl to
characterize the limit and the leading random fluctuations of the solution wu. (¢, x). The
extension of the results to long range correlations is presented in section

The analysis of ([I]) and of similar operators has been performed for smaller potentials
than those given in () in e.g. [Il 6] when wu. converges strongly to the solution of the
unperturbed equation (with ¢ = 0). The results presented in this paper may thus be seen
as generalizations to the case of sufficiently strong potentials so that the unperturbed
solution is no longer a good approximation of u.. The analysis presented below is
based on simple estimates for the Feynman diagrams corresponding to Gaussian random
potentials and does not extend to other potentials such as Poisson point potentials, let
alone potentials satisfying some mild mixing conditions. Extension to other potentials
would require more sophisticated estimates of the graphs than those presented here or
a different functional setting than the L?(2 x RY) setting considered here. For related
estimates on the graphs appearing in Duhamel expansion, we refer the reader to e.g.

14, 5], 11].



2 Duhamel expansion and existence theory

Since ¢(z) is a stationary mean zero Gaussian random field, it admits the following
spectral representation

4(z) = / €2 0(de), (11)

(2m)4
where Q(d§ ) is the complex spectral process such that

Bl | f©Q@) /R 90U | = [ F©)a()2m) R(E)de

for all f and g in L2(R% R(€)d¢) with the power spectrum and correlation function of
q respectively defined by

0 < (2m) R(E) = / R, R()=E{gbaGy)(2)

In the sequel, we write Q(d€) = §(&)de so that E{§(€)¢(¢)} = R(€)6(€ + ¢) and
E{q(£)q(C)} = R(§)d(§ = ¢).

2.1 Duhamel expansion

Let us introduce §-(§) = e %¢(e€), the Fourier transform of e*¢(%). We may now
recast the parabolic equation (II) as

0

(57 T €™t = g x i, (13)

with 4.(0,&) = Go(§), where
Je * Uc(8,8) = Ue(t, & — Ae dg) = Ue(t, € — C)ge dg.
derin(t.€) = [ 6.6~ Q0 = [ iulti ~ Qi)

Here and below, we use the notation ™ = [£|™. After integration in time, the above
equation becomes

t
i:(t,8) = e i () + / e " /d Ge(§ — &1)te(t — 5,61)d& ds. (14)
0 R
This allows us to write the formal Duhamel expansion
0e(t,€) = ) (£, (15)
neN

Nl rt(s) _
Une(t, &) = /RdH/O e—ER sk o= (=330 sk)En qu — &p1 )0 (&) dsdE. (16)
" k=0

Here, we have introduced the following notation:

s = (S0y.--ySn-1), te(8) =t — 50— ... — Sk_1, to(s) =t, ds—Hdsk, € = Hd&k



We now show that for sufficiently small times, the expansion (IH) converges (uni-
formly for all e sufficiently small) in the L?(€2 x R?) sense. Moreover, the L? norm of
u.(t) is bounded by the L?(R%) norm of 7, which gives us an a priori estimate for the
solution. The convergence results are based on the analysis of the following moments

U™ (t,€,C) = Efien(t, €)tem(t, O}, (17)
which, thanks to (I6), are given by

noletp(s) Mol pty(7) n-1 m—1
/ H/ H / 6—sk51': 6_(t_zk:0 Sk)ﬁ?ﬂe_q—lglme_(t—zl:o T
Rd(n+m) k—0 0 =0 0
n—1m-—1 - B
E{ TT I de(6r = Grs)de(G — Cl+1)}ﬁo(€n)ﬁo(ém) dsdrd&dc.
k=0 (=0

Let us introduce the notation s,(s) = t,(s) = t — S.r—g s and 7,,(7) = tp(T) =
t— l";gl 7;. We also define &, 111 = Gnr and S, yp11 = Ti—x for 0 < k < m. Since ¢.

is real-valued, we find that

n+m+1 n+m B
U2t osomen) = [ T] e FB{ T a6 €ovn) ia(6)al6oer s,
k=0 k=0,k#n

where the domain of integration in the s and £ variables is inherited from the previous
expression. Note that no integration is performed in the variables s,(s) and s,41(7).
The integral may be recast as

n+m+1 n+m n n+m-+1
/ [T e 9] T @6 — e bao)io(&n)dlt = 3 s0)dt — > sy)dsdé,
k=0 k=0,k#n k=0 k=n+1

where the integrals in all the s, variables for 0 < &k < n + m + 1 are performed over
(0,00). The ¢ functions ensure that the integration is equivalent to the one presented
above. The latter form is used in the proof of lemma 2.1] below.

We need to introduce additional notation. The moments of 4., are defined as

UL (t,€) = E{ten(t, )} (18)

We also introduce the following covariance function

V(€ Q) = cov(iien(t, §), tiem(t, €)) = U™ (L€, C) = U UL C). (19)

These terms allow us to analyze the convergence properties of the solution U (t,€). Let
M (£) be a smooth (integrable and square integrable is sufficient) test function on R
We introduce the two random variables

O XTI (20)
X0 = [ o (21)




2.2 Summation over graphs

We now need to estimate moments of the Gaussian process ¢.. The expectation in
U™ vanishes unless there is 7 € N such that n +m = 2n is even. The expectation
of a product of Gaussian variables has an explicit structure written as a sum over all
possible products of pairs of indices of the form &, — &,1. The moments are thus given
as a sum of products of the expectation of pairs of terms §.(& — x41), where the sum
runs over all possible pairings. We define the pair (&, &), 1 < k < [, as the contribution
in the product given by

E{Ge (&1 — &)= (E-1 — &)} = e R(2(& — &-1))0(& — &1 + & — &-1).

We have used here the fact that R(—¢) = R(€).
The number of pairings in a product of n +m = 2n terms (i.e., the number of
allocations of the set {1,...,2n} into 7 unordered pairs) is equal to
(2n —1)! (2n)!

= = — 1\
G a2 D

There is consequently a very large number of terms appearing in U™ (¢, &, Enyms1)-
In each instance of the pairings, we have n terms k and 7 terms [ = (k). Note that
I(k) > k + 1. We denote by simple pairs the pairs such that [(k) = k + 1, which thus
involve a delta function of the form §(&,1 — &k1).

o £1 & &3

O O O 0] O

55354

| O

O

Figure 1: Graph with n = 3 and m = 1 corresponding to the pairs (£1,&3) and (&9, &5)
and the delta functions §(&; — & + & — &) and §(& — & + & — &4).

The collection of pairs (x, §x)) for 7 values of k and 7 values of (k) constitutes a
graph g € & constructed as follows; see Figlll and [5]. The upper part of the graph
with n bullets represents ., while the lower part with m bullets represents . ,.
The two squares on the left of the graph represent the variables & and &,.,,41 in
Un™(t, &, Enyme1) While the squares on the right represent g(¢,) and @g(&,.1). The
dotted pairing lines represent the pairs of the graph g. Here, & denotes the collection
of all possible || = % graphs that can be constructed for a given n.

We denote by Ay = Ag(g) the collection of the 1 values of k and by By = By(g) the
collection of the n values of I(k). We then find that

n-+m

E{ H = (& — 5k—1)} = Z H e R(e(&r — &-1))6(& — Erm1 + Gy — Gi-1)-

k=0,k#n 9€® keAo(g)



This provides us with an explicit expression for U™ (t, &y, {imi1) as a summation over
all possible graphs generated by moments of Gaussian random variables. We need to
introduce several classes of graphs.

We say that the graph has a crossing if there is a k¥ < n such that I(k) > n + 2.
We denote by &, C & the set of graphs with at least one crossing and by &,,. = &\ &,
the non-crossing graphs. We observe that V"™(t, &y, {nimy1) is the sum over the
crossing graphs and that U (¢, {) UM (¢, &nym+1) is the sum over the non-crossing graphs
in Uen,m (ta §0a §n+m+1)'

The unique graph g, with only simple pairs is called the simple graph and we
define &, = B\gs. We denote by &, the crossing simple graphs with only simple
pairs except for exactly one crossing. The complement of &, in the crossing graphs is
denoted by B.,s = B.\B..

As we shall see, only the simple graph g contributes an O(1) term in the limit
¢ — 0 and only the graphs in &., contribute to the leading order O(&t%(d_zo‘)) in the
fluctuations of ..

The graphs are defined similarly in the calculation of U (¢, &) in (I8) for n = 2n and
m = 0, except that crossing graphs have no meaning in such a context. A summation
over k € Ag(g) of all the arguments &, — §r—1 + &) — §r)—1 of the 6 functions shows
that the last delta function may be replaced without modifying the integral in U (¢, &)
by 3( — &)-

This allows us to summarize the above calculations as follows:

n+m+1 B
Uen’m(tv 507 £n+m+1) = / H e_Skg;? ao(gn)fm(gn—l-l) Z
s @)

H e1PR(e(& — Ee-1))0 (& — Eom1 + Sy — Sy —1)dSdE.

keAo(g)

Similarly,

Uzt 60) = taléo) [ T[S
X k=0 ged (23)
[T e Re(& = &1))6(& — &1 + &iry — Supy—1)dsdE.
keAo(g)

2.3 Analysis of crossing graphs

We now analyze the influence of the crossing graphs on I.(¢) and X.(¢) defined in (20
and (210), respectively, for sufficiently small times. We obtain from ([[9) and (22)) that

n+m+1

Vet o) = 3 [ T] ¢ il o)
. geB, k=0 (24)
H e12R(e (& — &i-1))0 (& — o1 + &) — Sugiy—1) ds dE,

keAo(g)

involves the summation over the crossing graphs &,.. Let us consider a graph g € &,
with M crossing pairs, M > 1. Crossing pairs are defined by & < n and (k) > n + 2.

8



Denote by (&g, &i(gn)), 1 < m < M the crossing pairs and define @ = max,,{¢,.}. By
summing the arguments inside the delta functions for all £ < n, we observe that the
last of these delta functions may be replaced by

M
06— &nt D Lo — Egmmt)-
m=1

Similarly, by summing over all pairs with £ > n 4 2, we obtain that the last of these
delta functions may be replaced by

M
(st = Enpmer T Y Etam) — Eilam)-1)-
m=1

The product of the latter two delta functions is then equivalent to

M-1

(Entme1 = nt1 T &n —&0)0(E0 — o1+ o — &+ D &g — Egumr).
m=1

The analysis of the contributions of the crossing graphs is slightly different for the energy
in (20) and for the spatial moments in (2I]). We start with the energy.

Analysis of the crossing terms in I.(t). We evaluate the expression for |V (¢, &, &)
in 24) at &,1me1 = & and integrate in the & variable over RY. Let us define A’ =
Ap\{Q}. For each k € A" U {0}, we perform the change of variables & — %k We then

define
ge_{ gk ]ngIU{O}
Pl g2 ke Au{o}.

Note that &, = &,41 since &, 11 = &. This allows us to obtain that

(25)

n+m

/e—(so+sn+m+1)€m53‘ H e " i (&)
k=1
&k

€

Lo goldsa < 3

geB,

[T e R(& — =60

keA'(g)

M
e R(Go — ebn+ ) Eg — 65,10 (Enr1 — &n)dsdE.

m=1

ko1 + &my — Siwy—1) (26)

Here d€ also includes the integration in the variable &,. The estimates for V™ here
and in subsequent sections rely on integrating selected time variables. All estimates are
performed as the following lemma indicates.

Lemma 2.1 Lett > 0 given and consider an integral of the form

n—1 t1:(s) n—1 n—1
=TT [ (TL ) TTase (27)
k=00 k=0 k=0



where 0 < fr(s) <1 for 0 < k < n and assume that f(f fno1(8p_1)ds,—1 < h At. Then
Lo < (hA)I, ;. (28)

Moreover, let s be a permutation of the indices 0 < k <n—1. Define IS, as I,,_1 with
fr replaced by fsuy. Then I3 _ = 1I,_;.

Using the above result with the permutation leaving all indices fized except s(n—1) =
K and s(K) =n—1 for some 0 < K <n — 2 allows us to estimate I,,_y by integrating
in the Kth variable.

Proof. The derivation of (28] is immediate. We also calculate

I,_1 = /R”“ (ﬁfk(sk)>5(t — sk) ﬁdsk

k=0 k=0
B /n+1 (H Fstiy 85 ) Sﬁ(k)) Hdsk
R™ £ k=0 k=0
= / » (H fs(k)(sk)>5(t > s [ dse = g
R™ _ k=0 k=0

0

Note that e~*"®E)™ and e=s+1EE ™™ are bounded by 1. We now estimate the in-
tegrals in the variables sg, S,im+1, and s for £ € A" in ([26). Note that n + 1 cannot
belong to A" and that n does not belong to A’ either since either n = @ (last crossing)
or n € By is a receiving end of the pairing line £ — [(k). Each integral is bounded by:

T/\t —mem
/ A P /\t (29)
0 g

The remaining exponential terms e **€)" are bounded by 1. Using lemma 211 this
allows us to obtain that

v 6o |dfo<§( [ as) [lante)r
H ° a( )R(&“—g&—l)‘s(%_52—1+5l(k>—€f(k)—1)

keA' (g 34

g—m( gmm) R(& - 5§n+Z§qm €65 )0(Enst — &n) dE.

Here, ds corresponds to the integration in the remaining time variables s, for k &
A"U{n+m+ 1}. There are 2n — 1 — (n + 1) = n — 2 such variables. Note the square
on the last line, which comes from integrating in both variables sy and s, 11

The delta functions allow us to integrate in the variables & for k& € A'(g) and
the initial condition @y(&,) in the variable &,. Thanks to lemma [Z2] below, the power
spectra allow us to integrate in the remaining variables in A’U{0}. The integrals in the
variables in A" are all bounded by p; defined in lemma whereas the integral in &,

10



results in a bound equal to £%p 7, where e is defined in (@). As a consequence, we have
the bound

/ (V" (, €, &) déo < Z (/d§>p?—1’|@0||2pfgﬁ = Z (/dé)P?gﬁHﬂon-
R? geB, geB,
(2n—1)!

Using Stirling’s formula, we find that [&.| < 5557
to evaluate the integrals in time. We verify that

is bounded by (22)". It remains

e

n—Ll ag(s) "
H/ dso~-~dsn_1:—', tr(s) =t —so—...— Sk_1. (30)
o Jo n!

Let p = p(g) be the number of s; for & < n in § and ¢ = g(g) be the number of s for
k>mn+1in s, with p+ ¢ =n — 1. Using ([B0), we thus find that

</d~) tP 11 "t a—1 - t,—H(ﬁ— 1)—ﬁ+1 - tﬁ_1_<ﬂ>‘ﬁ
sl == — nl{ —
plgt (n—1!\ p - 2e - 2e

using Stirling’s formula. This shows that

S ([ i) < papsry 1)

geB.

uniformly for ¢ € (0,77). We thus need to choose 1" sufficiently small so that 4p;7" < 1.
Then, for v such that 4p,7 < t? < 1, we find that

ﬂW%@@%ﬁﬁW%WR (32)

for some positive constant C'. It remains to sum over n and m to obtain that

X C 50s
[E{L.(t)} — /Rd E{ic(t, )} *de] < Ze7 o] (33)
We shall analyze the non-crossing terms generating |E{.(t, ) }|? shortly. Before doing
so, we analyze the influence of the crossing terms on X.. We can verify that the error
term 7 in (B3] is optimal, for instance by looking at the contribution of the graph with

n=m=1.

Analysis of the crossing terms in X.. It turns out that the contribution of the
crossing terms is smaller for the moment X, than it is for the energy I.. More precisely,
we show that the smallest contribution to the variance of X, is of order =2 for graphs
in &, and of order €422 for the other crossing graphs.

We come back to (24]) and this time perform the change of variables & — %" for
k € A" only. We re-define

kg A
g={& 2% 39

11



and find that

n+m+1
Vnm(t 507£n+m+1 Z/ H &)" uO £n>u0(£n+1>
gEB,
H eT2R(E — e&5_)0 (@ — &1 T &) — Eiry—1) (35)

keA'(g)

Ed—2aé(€(€Q — 56_1))5(§n+m+1 - gn-i-l + gn - §O)de£

Note that neither n nor n +m + 1 belong to A'(g). For each k € A’'(g), we integrate in
s and obtain using (29) that

|‘/En7m(ta§0a§n+m+l)| S Z/ H 6_8k£?|ﬁ0(§n)ﬁ0(€"+1)|

9€B: © kg A(g)
&k

[T == (G )Rl )i G bw =G O
keA'(g

d 2aR( (gQ gQ—l))5(£n+m+1 - £n+1 + £n - go)dédé
By assumption on f%(f ), we know the existence of a constant R such that

e R(e(bg — &_1)) < e R, (37)

This is where the factor €472 arises. We need however to ensure that the integral in &g

is well-defined. We have two possible scenarios: either () =n or n € By. When @Q = n,
the integration in p is an integration in &, for which we use 4y(&,). When n € By,
we thus have n = [(kq) for some ky and we replace the delta function involving &, by a
delta function involving £ given equivalently by

M
0(g—Eg1+& =t D> Egn — Egumr). (38)
m=1

In either scenario, we can integrate in the variable {g without using the term f%(e({Q —
€g-1)). We use the inequality

_ = L7, _
()0 (Ens)] < 5 (lio(En) 2 + [i70(6 = &0+ Ensmi) ). (39)
to obtain the bound
V2060, )] < <2 3 ([ a5) ool (40)

geB,
The bound is uniform in & and &,,,,11. Using (I]) and ([32]), we obtain
V2t €0, Enpmn)| < €200 g2, (41)

After summation in n,m € N, we thus find that
C ioan- -
E{(X. - E{X.})?’} < t—2€d 2 o (| 13- (42)
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Similarly, by setting &,1m11 = &, we find that
~ 12 ~ 2 C d—2a|| 5 |12
B{ [l Oe©de} - | ELat O @) < s aolPllell,  (43)
Rd Rd T

for any test function ¢ € L'(R?). This local energy estimate is to be compared with
the global estimate obtained in (B3)).

Analysis of the leading crossing terms in X.. The preceding estimate on X. may
be refined as only the crossing graphs in &., have contributions of order 2. We
return to the bound (Bl and obtain that

|‘/;n’m(t> €0> €n+m+l)| < Ed_zaéoo Z H 6_8k(§k)m |ﬁ0(€n)ﬁ0(€"+1)|

- 9EG: ¥ kg A'(g)
H 5_2a<6_ A t) é(fk - 552—1)5(@ o1 &) — gla(k)—l) )

keA'(0) & <
8 (Enpmat — Ens1 + & — &o)dSdE.

The 1 + 3 variables in time left are sg, 5,41, 5@, S(@), and the i — 1 variables s;(a/(g))-

Let g € &,. Let us assume that for some k& such that (&, &) is not a crossing pair,
we have [(k) — 1 > k, i.e., g € &,.. The non-crossing pairs are not affected by the
possible change of a delta function involving &, to a delta function involving ;. We
may then integrate in the variable s;;) and obtain the bound for the integral

Ed_2a1f€oo / d§d£|a0<£n)60(£n+l)‘5(£n+m+1 - £n+1 + gn - £0>

i e” » € gk € c
keg[l(g) (@ AN t) <|€k — 552_1 — Egls(k)_1|m A t) R(fk - Egk—l)(;(; — gk—l + gl(k) — gl(k)—l)

< ezt ( [ ds) fou o]

thanks to lemma below. The summation over all graphs in &, of any quantity
derived from V™™ (t &y, Enimer) is therefore €’ smaller than the corresponding sum
over all graphs in .. We thus see that any non-crossing pair has to be of the form
l(k) — 1 =k, i.e., a simple pair, in order for the graph to correspond to a contribution
of order g4-2«,

Let us consider the graphs composed of crossings and simple pairs. We may delete
the simple pairs from the graph since they contribute integrals of order O(1) thanks to
lemma below and assume that the graph is composed of crossings only, thus with
n = m and Q = n after deletion of the simple pairs. Let us consider k& < n with
I(k) > n+ 1 so that the delta function

&k

5(; — & &w) — Sim-1)

is present in the integral defining V»™. We find for the same reason as above that
the contribution of the corresponding graph is of order e72¢# by integration in the

13



variable 5. As a consequence, the only graph composed excluswely of crossing pairs
that generates a contribution of order ¢4=2 is the graph with n = m = 1. This concludes
our proof that the contribution of order £472® in V*™ is given by the nm graphs in &,
when both n and m are even numbers (otherwise, &, is empty). All other graphs in
&. provide a contribution of order ” smaller than what we obtained in ({I]). In other
words, let us define

n+m-+1

VI (s G0y Envmr1) = Z / H e~k Gl (£ )0 (Ent1)
gEBGes (45)
I] e R(e(& - &-1)) (€k — &1+ &uw) — Sigry—1)dsdE.
keAo(g)
We have found that
H/en’m(tv 507 £n+m+1> - ‘/sr,Ls’m(tv 507 £n+m+1)‘ 5 8d—2a+ﬁtn+m“a0||2. (46)

2.4 Analysis of non-crossing graphs

We now apply the estimates obtained in the preceding section to the analysis of the
moments UZ(t) defined in (I8) and given more explicitly in (23]). Our objective is to
show that only the simple graph g contributes a term of order O(1) in (23]) whereas all
other graphs in ,,, contribute (summable in n) terms of order O(e”). Note that n = 27,
for otherwise, UZ(t) = 0. We recall that the simple graph is defined by I(k) = k + 1.
We thus define the simple graph contribution as

Uarfs(ta 50) = uan(ta 50)110(&3)

n n—1 . (47)
Urt, &) = /H e ok H e R(e(&arp1 — o)) 0(Eogrrn) — Eon)dsdE,
k=0 k=0
and
Uss(t, &) = Z (1, &0) == U(t, &o)to(&o)- (48)

neN
For all k € Ay, we perform the change of variables &, — & k- and (re-)define as before

e __ gk kgAO

This gives

U2 (&) = dol€) 3 / He—wk
0c® (50)

H eTOR(E — e5_,)0 (% — &1 T Sy — Eigy—1)dsdE.

keAo(g)

14



Assuming that [(k) — 1 > k for one of the pairings, we obtain as in the analysis leading
to (6] the following bound for the corresponding graph:

ito(%) |/de£ H )5—2a( ><|€k — el fm &y |™ At)

keAo(

R(fk —e€iq)0 (f — &1 &) gle(k)—l)

<=( [ ds)ojtiatcall

This shows that

(U2 (t, &) — UL, (t, &) < |dio(&)l”c™, (51)
so that 1
[E{a.}(t, &) — Uss(t, €)|<:'—56|uo( I, (52)

at least for sufficiently small times ¢ € (0,7") such that 4p;7" < 1. It remains to analyze

the limit of U, 4(¢,£) to obtain the limiting behavior of X, and I.,. This analysis is

carried out in the next section. Another application of lemma 2.2 shows that U (¢, £) is

square integrable and that its L?(R?) norm is bounded by |[|@l|. In other words, we have

constructed a weak solution 4. (t) € L*(2 x R?) to (I3)) since the series ([T converges

uniformly in L?(Q x R?) for sufficiently small times ¢ € (0,7") such that 4p,T < 1.
Collecting the results obtained in (33) and (52)), we have shown that

A~ By
[(de = Us,s) @)l L2ioxrey S €2 lldollLe(ra),

where U, s is the deterministic term given in ([48]). The analysis of U, ; and that of X, is
postponed to section 3] after we state and prove lemma [2.2] which allows us to analyze
the contributions of the different graphs.

Lemma 2.2 Let us assume that R is bounded by a smooth radially symmetric, decreas-
ing function f(r). We also assume that f(r) < /™" for some 0 < n < d—m in
dimension d > m and n =0 when d < m. Then we obtain the following estimates.

For d >m, we have

PG )6 < py = a [ DI el v
€kl o [l
uniformly in y € R, where cg =S| and a vV b = max(a,b). Moreover,
1. m gm " d>2m-—n
/—mR(ﬁk—y)(im/\t)dﬁk S pp g €™ Ing| d=2m—n
€] & = = gd—m-n m<d<2m-—n.

For d =wm, we define py = cqf(0) and have

em [N m|1n5| =1
[ oo { 50121

For d < m, we have

/ (i A t)lﬁ(fk —y)d& Sty 1> 1.

|&e — 2|™
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Proof. Once R is bounded above by a decreasing, radially symmetric, function f (r),
the above integrals are maximal when y = z = 0 thanks to lemma below since
|€|7™ and (e™|¢|”™ A t) are radially symmetric and decreasing. The first bound is then
obvious and defines p;. The second bound is obvious in dimension d > 2m since || ™™
is integrable.

All the bounds in the lemma are thus obtained from a bound for

/000 (i—: A t)lrd_lf(r)dr.

We obtain that the above integral restricted to r € (1,00) is bounded by a constant
times e™p; for d > m and by a constant times e™ for d < m. It thus remains to bound
the integral on r € (0, 1), which is equal to

Eti% 1 Elm
/ tlrd_lf(r)dr +/ ) l—rd_lf(r)dr.
0 et—wm T m

m

n

Replacing f(r) by 777", we find that the first integral is bounded by a constant times
£4=" and the second integral by a constant times 27"V &™ when d — n — Im # 0 and
e?™Ine| when d = 2m — n. It remains to divide through by €™ when [ = 2 to obtain

the desired results. D

Lemma 2.3 Let f, g, and h be non negative, bounded, integrable, and radially sym-
metric functions on RY that are decreasing as a function of radius. Then the integral

o= [ 16~ Qule —rhe)ds. (53)
which is well defined, is mazximal at ( =7 = 0.

Proof. In a first step, we rotate ( to align it with 7. The first claim is that the
integral cannot increase while doing so. Then we send ¢ and 7 to 0. The second claim
is that the integral again does not increase.

We assume that the functions f, g, and h are smooth and obtain the result in the
general case by density. We choose a system of coordinates so that 7 = |7|e;, where
(e1,...,eq4) is an orthonormal basis of RY, and ¢ = \§|é with § = (cosf,sinb,0,...,0).
Without loss of generality, we may assume that § € (0, 7). Then I, may be recast as
Iy and we find that

Iy = / €[ h(€]) ol €D e,

where we denote A(|¢|) = h(£) with the same convention for f and g and define

il = [, #0ele = Ol = ryav.

It is sufficient to show that dypJy < 0. We find
o= [ ~6- - VE(€lo - Cg(leli — )i,
gd—1
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with 6+ = (—sinf, cos6,0,...,0). We decompose the sphere as ¢ = (1 - 0, 1;) and find,
for some positive weight w(u) that

oy = [ dtw- D=1l = chutw-) [ 6 Dalelo =i,

We now observe that
[, Dgticto - rya
= /éw 0(91-?/3)(9(||§|(9A-¢é+?/~))—TI)—g(llﬁl(é-@bé—@)—fl))d@ < 0,

as ||§|(9AA @D@i%— ) — 7| < ||€)(0 - b — EE) — 7| by construction. Indeed, we find that
161(0- 0 £0) — 72 = [§]2 = 71>+ 2|7[|€]0 0 - 7 = £2| ||| - T = £2|7[|€]0~ - T Whereas
0+ -7 = —sinf|7| < 0 by construction. This shows that [£|( - Y0 + ) is closer to T
than |[£](@ - ¢0 — 1) is, and since g(r) is decreasing, that ds.Jy < 0. This concludes the
proof of the first claim.

If 3 =0o0r7=0, weset b =0 below. Otherwise, we may assume without loss of
generality that 7 = —b( for some b > 1. We still define ¢ = |¢ |é We now define the
integral I, = I,cpc, 0 < a <1, and compute

Ol = [ ~C- V(= aQ)glé +BOMOE = [ ~C-TFE)a(E + (b= a)Oh(E +al)de,

Define [(&,() = g(§+ (b—a)()h(€ +a(). Then because f is radially symmetric, we have

(‘Ma:/ m(l€])lgl* dlel, m(l&l)z—f’(lfl)/ 0- P UE, ).
0 S

d—1

We recast

m([¢]) = —f’(l&l)/ (8- ) (1€, Q) = U=I€l, O))dw < 0,

0->0

since HSW + 7(‘ > ‘ — €]y + 7(" by construction for all v > 0 and thus for v = a and
v = b — a. This shows that 0,1, < 0 and concludes the proof of the second claim. 0O
3 Homogenized limit and Gaussian fluctuations

In this section, we conclude the proof of theorems [I] and 2.

3.1 Homogenization theory for u.

We come back to the analysis of U, 4(¢,&) defined in (47)). Since only the simple graph
is retained in the definition of mean field solution U, ,(¢,&), the equation it satisfies
may be obtained from that for u. by simply assuming the mean field approximation
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E{G.g-t.} ~ E{G-q- }E{u.} since the Duhamel expansions then agree. As a consequence,
we find that U, ; is the solution to the following integral equation

es t é- _e—tf“‘A (5
/ / s / 20 Re(€) — ENUA(t — 5 — 51, €)dErdsdsy

" 10 (€) // €™ (v=s1) €T 51 d 2a/ R(e(§1 — §))Uss(t — v, §)d&dsydv
_g‘“(v eMs1) —f?sl/ﬁ{(gl —€£)d£1d5’1U€,s(t_U7£)dv

— e—tfm N ( _'_ 611’1 2«

= e‘tf uo(f) + A Ue s(tag())

c\

(54)
The last integral results from the change of variables ¢, — & and s;6™™ — s1. It
remains to analyze the convergence properties of the solution to the latter integral
equation. Note that & acts as a parameter in that equation. Let us decompose

U(t.€) = p. /0 et — v, E)do + BU(1€), (55)

with p. = fRd R(& 29 d&; when d > m and p. = cdR(5§ ) when d = m. Then we have

Lemma 3.1 Let£ € R? and f(r) as in lemmalZ2. Then the operator E. defined above
in (B3 is bounded in the Banach space of continuous functions on (0,T"). Moreover, we
have

1Bl oy S €™ (56)

Proof. We start with the case d > m so that and e™2* = 1. Note that n in lemma
is defined such that d > m — n as well. With B. = A, — E. in (B3], we find that

B.U. ,(t,&) = /0 =&Y /0 / e~ T R(E — e€)dEds U, 4(t — v, €)dv.

The remainder E. is then given by
Ues(t,€) / / / (e ) e T R(E) — e€)déyds UL o(t — v, €)dv

// / e T R(E — e€)dErds Uns(t — 0, €)dv.

The continuity of E.U. (t,€) in time is clear when U, 4(t,&) is continuous in time.
Without loss of generality, we assume that U, 4(-,§) is bounded by 1 in the uniform
norm. We decompose the integral in the sl variable in the first term of the definition of
E into two integrals on 0 < 51 < 5% and 5% < 51 < . Because e (e 1) < 1,
the second integral is estimated as

/ /E_m/ =" v( eMEMsy 1)6—5*1“31]%(51 —€§)d£1dsldv

261’11

/ /—6_81“ 2:"‘ R 51 — 65 d&dv < /f — /\t (51 — €£)d£1 5 85_"pf,
1



thanks to lemma The above bound is uniform in £. The last integral defining E. on

the interval s; > 67 is treated in the exact same way and also provides a contribution
of order O(e#™™).
The final contribution involves the integration over the interval 0 < s; <

e (e — 1) < emems e~ 5 on that interval, it is bounded by

Iy = / / /R EMEMsie S R(e, — e€)derdsydv

v

e - USing

2e™ m 2o
< EX / / e STR(E) — 2€)déds,
& Rd
. . . v t .
by switching the variables 0 < s < &% < 5. Using lemma 2.3 we may replace

f?(fl —e€) by f?(fl) in the above expression. This shows that

I3 < 25"‘/ /25 sie” s R(€)dEy.
R2 J0O

We observe that . )
/ spe 1 dg, S == A 72
0 &
so that
t

[<m oo d—1 —2m/\ 2d - V1.
3N5/0 f(r)r (T T)T7 T 9em

The integral over (1,00) is bounded by £™p;. Using the assumption that f(r) < r™,
we obtain that the integral over (0,1) is bounded by a constant times

J
when d —n —2m # 0 and |In7| when d = n + 2m. Since 7 is bounded by a constant

times ™™, this shows that I3 is bounded by £4~™ ™ when d —n — 2m # 0 and £%| In¢|
when d = n 4+ 2m. This concludes the proof when d > m — n.

A

1
1 —1-n— _d=n
rtt “dr+/ TN S PP VL
T m

We now consider the proof when d = m with n = 0. Then, e™2® = |T1€‘ The
leading term is given by U. s, which solves the integral equation:

estg —etgmA 5

/ / —s —gmsy / 1 R(g(gl — g))Ue,s(t — S — Sl,g)dgldefSl

—tgm

€) + Ty [T eI (e — )i — v,
0
= e 0o (&) + AU 8( §), A.=B.+E.

=€

(57)
Here we have defined

Ut &) = p€/0 e‘gm”U(t —s5,8)ds, p.= ch%(gg),
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and E. is the remainder. As in the case d > m, a contribution to |lne|E. comes from
t Eim m mem m 2~
[ [ e - ne e hie - cdadsUut - v,
0o Jo
We again decompose the integral in s; into 0 < 51 < 5% and 3% < 51 < . We have
/ / E / (NS ) e S R (€ — e€)dédsydv

/_<§_‘“ /\t) R(& —€€)dé < py,

according to lemma 2.2 Also,

t 26% m mem T » i
/ / /6_5 V(e N — e T R(E — e€)déydsydv < Em(zg—m V1)
0 JO

according to the calculations performed above on I3, which is uniformly bounded, and
thus provides a | Ine|™" contribution to E..
We are thus left with the analysis of

m

5171
—emy 1—6 sT
Ult,€) >—>/ ¢ |ln€|/ R(& — e€)dé, — ) (t —v,8)dv

as an operator in £(C(0,T)) for ¢ fixed. Define R.(&) = R(&; — €). The integral in &

may be recast as
0] e .
/0 — ( /S Ra(re)du(e))dr.

We observe that the integral on (1, oo) is bounded by ||RH1 Assuming that R is of class

CO7(R?) for v > 0, we write R.(&;) = R.(0)+ (R-(&) — R.(0)). The second contribution
generates a term proportional to 77 in the integral and thus is bounded independent of
€. It remains to estimate

v m
Tm
~

1] e
caR.(0) / L ™ = cR0) I
0

r 0 r

The latter integral restricted to (0,1) is bounded. On r > 1, ™™ /r is uniformly
integrable so that

T'mU

1 — em ~
cdzfzg(())/ 1+dr = cqR(=€)| Ing| + O(1).
0

This shows that E is of order m = ¢# as an operator on C(0,7) and concludes the
proof of the lemma. 0O

Note that A, may be written as

U(t,€) = /0 oe(5, Ut — s6)ds
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where ©.(s, ) is uniformly bounded in s, £, and € by a constant ¢,,. The equation

([ - A€>U(t7 5) = S(tv 5)7

admits a unique (by Gronwall’s lemma) solution given by the Duhamel expansion and
bounded by
U(t,6)] < [|S]loce™

As in the proof of lemma Bl let us define B. = A, — E.. We verify that (¢, ¢),
the solution to
(I = Bo)the = e ac(€),

is given by
Ue(t,§) = 77Ny 6). (58)
The solution may thus grow exponentially in time for low frequencies. The error

Vo(t, &) = (Uss(t, &) — Uo(2,€)) is a solution to
(I - AE)VE = Eaﬂe(t,f),

so that over bounded intervals in time (with a constant growing exponentially with time
but independent of ), we find that

Va(t, )] S €. (59)
Up to an order O(e°|io(€)]), we have thus obtained that E{a.(t,&)} is given by

e—t(ﬁm—ps(ﬁ))@0(§)7

which in the physical domain gives rise to a possibly non-local equation. It remains to
analyze the limit of the above term, and thus the error p. (&) — p, which depends on the
regularity of R(£). For R(£) of class C*(R?), we find that

‘e—t(i‘"—ﬁs(i)) _ e—t(ﬁm—ﬁ)‘ < t€Cte—§“'t}p€(£) _ p‘ < €Ct€_§mt62t§2.
The reason for the second order accuracy is that R(—€) = R(€) and VR(0) = 0 so

that first-order terms in the Taylor expansion vanish. For R(€) of class C7(R?) with
0 < v < 2, we obtain by interpolation that

}e—t(ﬁm—ps(i)) _ e—t(ﬁ“‘—p)‘ g €Cte—5mt8'yt§“/.

When m > +, the above term is bounded by O(&7) uniformly in £ and uniformly in time
on bounded intervals. When m < ~, the above term is bounded by O(¢™) uniformly in
¢ and uniformly in time on bounded intervals. This concludes the proof of theorem [II
In terms of the propagators defined in ([47)), we may recast the above result as

U8, €) UL Y| S, Ut E =e 01 (60)

where the bound is uniform in time for ¢ € (0, 7)) and uniform in £ € R%.
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3.2 Fluctuation theory for u.

We now address the proof of theorem 2l The first term in the decomposition of i, .
defined in (I6) is its mean E{u, .}, which was analyzed in the preceding section. The
second contribution corresponds to the graphs &., in the analysis of the correlation
function and is constructed as follows. Let n = 2p + 1, p € N. We introduce the
corrector ay, . given by

g, (t,&0) = /H ek Z [HE{@a(fz(r—l) — &or—1)0:(§or—1 — €2r)}i|
k=0 q=0 =1

0620 — o0 | T Bl (1 — £)c(€0r — i)} o(€n) e,

r=q+1

(61)

In other words, all the random terms are averaged as simple pairs except for one term.
There are p + 1 such graphs. We define

st &) =l (t,€). (62)

n>1

We verify that

‘/gfs’m(tv 507 gn—l—m—i—l) = E{ﬁ‘z,g (t7 50)51275(["7 £n+m+1)}

is equal to the sum in V" (t, &y, {ims1) only over the graphs in &.4. Indeed, the above
correlation involves all the graphs composed of simple pairs with a single crossing.
Now let us define the variable

Y. = (. — 4 — B{a.}, M). (63)

Summing over n,m € N the inequality in (46) as we did to obtain (42)), we have
demonstrated that R
E{YZ} < e lao ||| M]3, (64)

for sufficiently small times. The leading term in the random fluctuations of u. is thus
given by u¢. It remains to analyze the convergence properties of

Z.(t) = —ar (05, N1). (65)

d—2«
£ 2

We thus come back to the analysis of 4¢ and observe that for n = 2p + 1,

q

iy, (1, &) = /f[e_skf’? i [Hgd_zaﬁ)(é‘(&rq —&0))0(&ar — 50)}

r=1

Q60— &) TT =" Rleléar — €036 — &) olé)dsde.

r=q+1
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Using the propagator defined in ([{AT), we verify that

2q+1

(t,80) = Z/ H € S"f’“ Hé‘d **R(e(barm1 — &0))0(62r — &)
q€(§0 gn)uan 2q(t2q+la£n)u0(£n)d5d€
=> / UZI(t — tagr, €)= (o — E)UE ™ (g1, €n)Tio(€n) dt2g 10
0 0

q=
p

/ LRt — 5. €0)ie (0 — E0UD (5, €1 )iol€1) sy

g=0 "0

Upon summing over n, we obtain

Bt ) = / (= 5, )30 (€ — U5, 1o (€1)dsdés (66)

We can use the error on the propagator obtained in (60) to show that the leading order
of 4¢ is not modified by replacing U, by U. In other words, replacing U, by U modifies
Z. in (B3) by a term of order O(2¥") in L2(Q x R%), which thus goes to 0 in law.
Note that uS(t, &) is a mean zero Gaussian random variable. It is therefore sufficient
to analyze the convergence of its variance in order to capture the convergent random
variable for each t and £&. The same is true for the random variable Z.. Up to a
lower-order term, which does not modify the final convergence, we thus have that

e ) / / €)d(€0)Uay (5, € — €1)dsdgdy.

We have defined Uy (t,&) = U(t,§) f(§) for a function f(£). As a consequence, we find
that, still up a vanishing contrlbutlon

B(zP) = [ / / Uyt — 7, O R(=6)8(61 — 1)

X Uuo(55 51) Uao (T, ¢ — C1)d[s7CCLEE].

Here and below, we use the notation d[z;...z,| = dz;...dz,. By the dominated
Lebesgue convergence theorem, we obtain in the limit

{22} = R /// W5, € — E0)déxds| de

Here, 7 is defined as a mean zero Gaussian random variable with the above variance.
Let us define G/ f(x), the solution at time ¢ of ([B]) with f(z) as initial conditions, which
is also the inverse Fourier transform of Us(t,&). We then recognize in [ f(f U

8, &)Uy (8, — &1)dE1ds the Fourier transform of My(x) defined in (§) so that by an
application of the Plancherel identity, we find that

. ¢ 2 .
E{2%} = (27)*R(0) / ( / Gp M ()Gt uo(x)ds) dx = (2x)'R(0) [ ME(w)dr. (67)
rd N Jo Rd
This shows that Z(t) is indeed the Gaussian random variable written on the right hand

side in () by an application of the It6 isometry formula. This concludes the proof of
theorem
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3.3 Long range correlations and correctors

Let us now assume that

R(€) =h(€)S(E),  0<h(A) = |\ (&), (68)

where h(§) is thus a positive function homogeneous of degree —n and S (&) is bounded
on B(0,1). We assume that R(€) is still bounded on R?\B(0,1). We also assume that
m +n < d and that p in () is still defined. We denote by ¢(z) the inverse Fourier
transform of h(§). Then we have the following result.

Theorem 3 Let us assume that h(§) = [£|7" forn > 0 and m+n < d. We also impose
the following regqularity on tg:

/ lio(€ + T)PR(E)dE < C,  for all T € RY. (69)
B(0,1)

Then theorem [ holds with 8 replaced by S — n.
Let us define the random corrector

wft.) = - 1_ (ue — Efu.}) (¢, 2). (70)

Then its spatial moments (uy c(t,x), M(z)) converge in law to centered Gaussian random
variables N'(0, Xy (t)) with variance given by

Su(t) = 2m)*S(0) | My(@)p(x — y)Mi(y)dady. (71)

R2d
Proof. The proof of theorem [l relies on three estimates: those of lemma and
lemma [3.J] and the uniform bound in (37) for R. Lemmas 2.2 and Bl were written to
account for power spectra bounded by [£]™" in the vicinity of the origin. It thus remains

to replace (B7) by
eMR(e(€g — €51)) < €€ — €51) S

when [§o — £5_;| < 1 while we still use ([37) otherwise. We have defined Ss as the

supremum of S(&) in B(0,1). It now remains to show that the integration with respect
to §o in (B8] is still well-defined. Note that either Q = n or {g — £;_; may be written
as &, — ¢ for some ¢ € R? thanks to ([B8). Upon using [39), we thus observe that in all
cases, the integration with respect to &g in (B6) is well-defined and bounded uniformly
provided that (70) is satisfied uniformly in 7. Using the Holder inequality, we verify
that (T0) holds e.g. when dg(- — 7) € L4(B3(0,1)) uniformly in 7 for ¢ > 24 This
concludes the proof of the first part of the theorem.
Let us now define )
Z(t) = = (05, M) = £2 Z.(t).
IS 2

We verify as for the derivation of E{Z?} that

E{72) / / / St — 5, Oy (t — 7, O)S(E)R(ENS(E — )
X Uy (5,6 —&1) uo(TC C1)d[sTCCEE].
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The dominated Lebesgue convergence theorem yields in the limit ¢ — 0

B(2%} = 50) [| / / Uso(5,€ — €0)h3 (&) derds]| de
50 [ wad

*h(€)dE,

where M, is defined in (§). An application of the inverse Fourier transform yields ().
U

Note that (ZI)) generalizes (67), where @(x) = d(x), to functions My(z) € LZ(R?) with
inner product

(f,9) = f(@)g(y)p(r — y)drdy. (72)

R2d

For h(§) = [£]™, we find that p(x) = cu|z|"?, with ¢, = F(%)/(T‘wgf(g)) a nor-
malizing constant. Following e.g. 7], [10], we may then define a stochastic integral with
fractional Brownian
M, (z)dB" (), (73)
R4

where BY is fractional Brownian motion such that

1 n

E{B"()B" ()} = 5 (| + 1y — o —y["),  2H=1+-.

We then verify that E{Z%} = ¥, so that the random variable Z is indeed given by the
above formula ([Z3). When n = 0, we retrieve the value for the Hurst parameter H = §
so that B¥ = W. The above isotropic fractional Brownian motion is often replaced in
the analysis of stochastic equations by a more Cartesian friendly fractional Brownian

motion defined by
d

vp(x) = HHZ(QHZ — 1)|xi|2Hi_2

i=1
The above is then defined as the Fourier transform of

d

d
n;
=[T1&™ > ni= 2H;, = 1+ —.
hH(g) |€Z| Y — nl na (3 + d

1=1

The results of theorem [I and Bl may also be extended to this framework by modifying
the proofs in lemmas 2.2l and B.Il We then obtain that (73)) holds for a multiparameter
anisotropic fractional Brownian motion Bf, H = (H,, ..., H,), with covariance

d
1 _ , .
E{B"(z)B = 5 | | |93i|2H1 + Jyi P = |y — yi|2H2)'

Note that homogenization theory is valid as soon as d > m+n. As in the case n = 0, we
expect that when d < m +n (rather than d < m), the limit for u. will be the solutions
in L2(Q x R?) to a stochastic differential equation of the form (I0) with white noise
replaced by some fractional Brownian motion; see also [8].
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The stochastic representation in (73] is not necessary since ¥, (¢) fully characterizes
the random variable Z. However, the representation emphasizes the following conclu-
sion. Let Zf1 and Z¥ be the limiting random variables corresponding to two moments
with weights M; (z) and Ma(z) and a given Hurst parameter H. When H = 1, we deduce
directly from (73)) that E{Z%ZQ%} = 0 when M;(z)My(z) = 0, i.e., when the supports
of the moments are disjoint. This is not the case when H # % as fractional Brownian
motion does not have independent increments. Rather, we find that E{Z{ Z}} is given
by (M1, M;2),, where the inner product is defined in (72) and M, is defined in (8]
with M replaced by My, k = 1,2. Similar results were obtained in the context of the
one-dimensional homogenization with long-range diffusion coefficients [3].
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