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SOME NEW WELL-POSEDNESS RESULTS FOR CONTINUITY AND

TRANSPORT EQUATIONS, AND APPLICATIONS TO THE

CHROMATOGRAPHY SYSTEM

LUIGI AMBROSIO, GIANLUCA CRIPPA, ALESSIO FIGALLI, AND LAURA V. SPINOLO

Abstract. We obtain various new well-posedness results for continuity and transport equa-
tions, among them an existence and uniqueness theorem (in the class of strongly continuous
solutions) in the case of nearly incompressible vector fields, possibly having a blow-up of the
BV norm at the initial time. We apply these results (valid in any space dimension) to the
k × k chromatography system of conservation laws and to the k × k Keyfitz and Kranzer
system, both in one space dimension.

1. Introduction

1.1. Continuity and transport equations. In the last few years some progress has been
made on the well-posedness of the continuity and transport equations ∂tρ + div (bρ) = 0,
∂tw + b · ∇w = 0, for weakly differentiable (in the space variables) velocity fields b. The
first seminal paper by DiPerna and Lions [22] considered Sobolev vector fields with spatial
divergence div b in L1([0, T ];L∞), and more recently in [1] Ambrosio extended the result to
BV vector fields, assuming absolute continuity of the divergence and L1([0, T ];L∞) regularity
of its negative part (see also the lecture notes by Ambrosio and Crippa [4]). This bound
is the simplest way, as it can be easily seen with the method of characteristics, to prevent
blow-up in finite time of the solutions; on the other hand, it was already clear from the
application made in [3, 5] to the Keyfitz and Kranzer system [26], that this assumption is
not very natural. The Keyfitz and Kranzer system has the peculiar form

∂tu+ div
(

uf(|u|)
)

= 0

and (at least formally) it decouples in a scalar conservation law for ρ := |u|, namely

∂tρ+ div (ρf(ρ)) = 0 ,

and a transport equation for the “angular” part θ, related to u by u = ρθ:

∂tθ + f(ρ) · ∇θ = 0 .

If we take ρ as the entropy admissible solution of the scalar conservation law, it turns out that
the velocity field b = f(ρ) in the transport equation belongs to BV if the initial condition
ρ̄ is in BV , but its distributional divergence needs not be absolutely continuous; the only
(weaker) information available is that there is a bounded function, namely ρ, transported
by b. This leads to the concept of nearly incompressible vector fields (namely those b for
which a bounded transported density ρ exists), and well-posedness results in this class of
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vector fields have been investigated in [6, 18, 20], also in connection with a compactness
conjecture made by Bressan [13]. See also [17] for a counterexample to the applicability of
these techniques to general multidimensional systems of conservation laws.

In this paper we obtain a well-posedness result for this class of vector fields, see The-
orem 2.5 for a precise statement. However, the main result is an improvement of the
L1([0, T ];BVloc) condition considered in all previous papers: going back to the case of the
Keyfitz and Kranzer system, it is clear that we cannot expect this regularity for ρ (and then
for b = f(ρ)), unless ρ̄ ∈ BV . More precisely, in the one-dimensional case and imposing
suitable conditions on the flux function f , if ρ̄ ∈ L∞ we gain indeed a regularizing effect
(see Olĕınik [29]). However, this provides only L1

loc(]0, T ];BVloc) regularity, and also (using
the equation satisfied by ρ) BVloc(]0, T ]×Rd) regularity. This last assumption on the vector
field is critical in view of a non-uniqueness example provided by Depauw [21], where the
vector field has precisely this regularity. Our main result, given in Theorem 2.7, is that for
this class of vector fields (adding bounds on the divergence in the same spirit of the nearly
incompressibility condition, see Definition 2.6) existence and uniqueness can be restored,
provided one works with strongly continuous in time solutions. Here, of course, the main
difficulty is in the existence part, since standard approximation schemes in general do not
provide this strong continuity property.

The main application of our results concerns the so-called chromatography system. As
discussed in Section 1.2, we obtain new well-posedness theorems for this equation. As a
byproduct of our analysis, we also have applications to the one-dimensional Keyfitz and
Kranzer system, obtaining in particular a well-posedness theorem for bounded initial data
(results in this flavor were already known: see for example Freistühler [23] and Panov [30]).

1.2. Chromatography. Although all our discussion and results can be easily extended to
the k × k chromatography system (see Remark 4.10), for simplicity of exposition we will
always consider only the case k = 2. The chromatography equation























∂tu1 + ∂x

(

u1
1 + u1 + u2

)

= 0

∂tu2 + ∂x

(

u2
1 + u1 + u2

)

= 0

(1.1)

is a system of conservation laws belonging to the so-called Temple class. Consider first a
general system of conservation laws

∂tU + ∂xF (U) = 0 , where (t, x) ∈ [0,+∞[×R and U ∈ Rk.

The associated Cauchy problem is well-posed under the assumption that the total variation
of the initial datum Ū is sufficiently small (see e.g. [12] and the references therein). If the
total variation of Ū is bounded but large, then the solution may experience blow up in finite
time, as shown for instance by Jenssen [25].
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Temple systems were introduced in [33] and they are defined by special properties imposed
on the structure of the eigenvector fields of the Jacobian matrix DF (U). Thanks to these
features, well-posedness results for Temple systems are available for a much larger class
of initial data compared to general systems of conservation laws. In particular, Serre [31]
obtained global existence of weak solutions for 2 × 2 Temple systems with no smallness
assumptions on the total variation of the initial datum. By relying on wave front-tracking
techniques, in [8] Baiti and Bressan constructed a Lipschitz continuous semigroup defined on
initial data with large but bounded total variation. The extension of the semigroup to L∞

initial data was first achieved by Bressan and Goatin [14] under a nonlinearity assumption on
the structure of the eigenvector fields of the Jacobian matrix DF (U), and then extended by
Bianchini in [9] to general Temple class systems, by removing any nonlinearity assumption.
One of the main difficulties faced in [9] is that if the nonlinearity assumption fails, one
cannot hope for a Lipschitz dependence of the semigroup on the initial data. This is shown
by the example discussed in [14], which involves precisely a family of Cauchy problems for
the chromatography system.

The main result in [9] is the existence of a semigroup St of weak solutions defined on L∞

initial data and satisfying the following conditions:

(1) (t, Ū) 7→ StŪ is continuous with respect to R× L1
loc topology, with values in L1

loc;
(2) If Ū is piecewise constant, then for t sufficiently small StŪ coincides with the function

obtained by gluing together the “standard” solutions constructed as in Lax [28].

The proof exploits the so called wave front-tracking algorithm, which relies on the approx-
imation of the initial datum with piecewise constant functions. In [9] uniqueness is also
obtained: namely, it is shown that there exists a unique semigroup of weak solutions satis-
fying conditions (1) and (2) above. In addition, the weak solutions provided by the maps
t 7→ StŪ are automatically entropy admissible.

The results in [9] apply to general systems in the Temple class, while in the present work
we restrict to the chromatography system. The main novelties here are the following.

First, our approach is completely different from the one in [9]. Namely, by introducing a
change of variables in analogy to Ambrosio and De Lellis [5] and to Bressan and Shen [15],
we split the chromatography system in the coupling between a scalar conservation law and
a transport equation, and then we heavily exploit transport equation techniques.

The second point concerns uniqueness: we manage to get it in the classes of functions
defined in Section 4 without requiring any stability with respect to perturbations in the initial
data. Conversely, the approach in [9] is in the spirit of the Standard Riemann Semigroup (see
Bressan [11]): one shows that there exists a unique semigroup of weak solutions satisfying
(1) and (2) above, thus one needs to prove stability and the “right” behavior on piecewise
constant data to get uniqueness. This does not correspond, a priori, to requiring uniqueness
of weak entropy admissible solutions. Finally, we point out in passing that we manage to
relax the hypothesis of strict hyperbolicity made in [9], which fails when the initial data ū1
and ū2 vanish in some region (see Definition 4.3). However, the price we have to pay in this
case is the requirement ū1 + ū2 ∈ BVloc(R).



4 LUIGI AMBROSIO, GIANLUCA CRIPPA, ALESSIO FIGALLI, AND LAURA V. SPINOLO

The idea of attacking the chromatography system via a change of variables which splits
the system into a coupling between a scalar conservation law and a transport equation
came from Bressan and Shen [15] (see also Panov [30, Remark 4]). In [15] the authors are
mainly concerned with the study of ODEs with discontinuous vector fields: they formulate
conditions under which uniqueness holds, and they show that the vector field obtained from
the chromatography system after their change of variables satisfies these conditions, provided
the initial data take value in a particular range. In our proof we perform a different change
of variables, which has the advantage of being linear, and hence behaves well under weak
convergences. In particular, we can come back to the original system, obtaining distributional
solutions which are admissible in the sense described in the Appendix. Also, we manage to
handle a larger class of initial data.

Acknowledgement. We thank Fabio Ancona and an anonymous referee for pointing out
to us the extension of our results to k × k systems, as illustrated in Remark 4.10.

1.3. Content of the paper. In Section 2 we prove the basic well-posedness results for the
continuity equation, first in a class of bounded nearly incompressible vector fields having
BVloc([0, T ] × Rd) regularity, and then under additional assumptions on the transported
density ρ (see Definition 2.6) for bounded vector fields having BVloc(]0, T ]× Rd) regularity.
In Section 3 we discuss Depauw’s example [21] and its relation with our well-posedness
results. In Section 4 we present an application of these results to the chromathography
system. First we classify in Lemma 4.1 the entropy-entropy flux pairs for this system, and
then we prove two basic existence and uniqueness results: the first one, Theorem 4.4, provides
existence and uniqueness in L∞ under the assumption that the sum ū1 + ū2 of the initial
conditions is in BVloc; the second one, Theorem 4.8, replaces this regularity condition with
infK ū1 + ū2 > 0 for any K ⊂ R compact. The applications to the Keyfitz and Kranzer
system are discussed in Section 5: in Theorem 5.2 we show existence and uniqueness of
strongly continuous renormalized entropy solutions, when the initial datum ū is bounded
and satisfies infK |ū| > 0 for any K ⊂ R compact. In the Appendix we list a few basic facts
on scalar conservation laws needed in the paper.

1.4. Main notation and conventions. Finally, we specify some (standard) convention
about spaces of time-dependent functions: if J ⊂ R is an interval and X is a separable
Banach space, by Lp(J ;X) (resp. Lp

loc(J ;X)) we mean all measurable functions u : J → X
such that ‖u‖X ∈ Lp(J) (resp. Lp(I) for all I ⊂ J compact). In the particular cases of
non-separable spaces X , in this paper X = L∞ or X = BV , the definition is the same, but
measurability is understood in a weak sense, using the embedding of these spaces in L1

loc.
We shall often consider locally bounded (in space and time) distributional solutions to

the continuity equation ∂tρ + div (bρ) = 0, with b locally integrable. In this case it is well
known (see for example Lemma 1.3.3 in [19]) that the map t 7→ ρ(t, ·) has a unique locally
weakly-∗ continuous representative (i.e. t 7→

∫

ρ(t, x)φ(x) dx is continuous for any φ ∈ L∞

with compact support) and we shall always work with this representative, improving in some
cases the continuity from weak to strong. We shall use the notation L∞ −w∗, L1 − s for the
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weak-∗ and strong topologies, and L∞

loc − w∗, L1
loc − s for their local counterparts. Finally,

we will often consider the set of functions which are continuous in time with values either in
L∞(Rd)−w∗ or in L1(Rd)− s (or in their local counterparts). These spaces are denoted by
C0
(

[0,+∞[;L∞(Rd)− w∗
)

and C0
(

[0,+∞[;L1(Rd)− s
)

, respectively.

2. Well-posedness results for continuity equations

In this section we study the well-posedness of the continuity equation
{

∂tu(t, x) + div
(

b(t, x)u(t, x)
)

= 0

u(0, x) = ū(x) .
(2.1)

Our main results are presented in Theorems 2.5 and 2.7.

2.1. A preliminary renormalization lemma. We first prove a technical lemma of stan-
dard flavour, regarding renormalization and strong continuity for solutions u of equation
(2.2) with a BV nearly incompressible vector field, see De Lellis [20] for a systematic treat-
ment of this topic. The main difference is that, for our subsequent discussion, we need to
consider functions q which are possibly not bounded away from zero, or even equal to zero
on a non-negligible set.

Lemma 2.1. Let b ∈ BVloc
(

[0,+∞[×Rd;Rd
)

be a bounded vector field. Assume that there
exists a nonnegative locally bounded function

q ∈ BVloc
(

[0,+∞[×Rd
)

∩ C0
(

[0,+∞[;L∞

loc(R
d)− w∗

)

satisfying |Dq(t, ·)|(BR) ∈ L∞

loc

(

[0,+∞[
)

for all R > 0 and

∂tq + div (bq) = 0

in the sense of distributions in ]0,+∞[×Rd. Let u ∈ L∞

loc

(

[0,+∞[×Rd) be a distributional
solution of

∂t(qu) + div
(

bqu
)

= 0. (2.2)

such that the map t 7→ qu(t, ·) is weakly-∗ continuous in L∞

loc(R
d). Then:

(i) u is a renormalized solution, in the sense that the map

t 7→ q(t, ·)β
(

u(t, ·)
)

provides a distributional solution of

∂t
(

qβ(u)
)

+ div
(

bqβ(u)
)

= 0 (2.3)

on ]0,+∞[×Rd, for any function β ∈ Liploc(R).
(ii) If in addition the map

t 7→ q(t, ·)

is strongly continuous from [0,+∞[ with values in L1
loc(R

d), then also the map

t 7→ qu(t, ·)

is strongly continuous from [0,+∞[ with values in L1
loc(R

d).
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(iii) Assume that u1 and u2 ∈ L∞

loc

(

[0,+∞[×Rd) are solutions of (2.2) such that there
exists τ ≥ 0 satisfying

q(τ, x)u1(τ, x) = q(τ, x)u2(τ, x) for a.e. x ∈ Rd.

Then for all t ∈ [0,+∞[ we have

q(t, x)u1(t, x) = q(t, x)u2(t, x) for a.e. x ∈ Rd.

Proof. Let us define B(t, x) := (q(t, x), b(t, x)q(t, x)). Then B ∈ BVloc
(

[0,+∞[×Rd;R×Rd
)

and is divergence free in space-time. We introduce an artificial “time variable” s ∈ [0,+∞[
and observe that the function

v(s, t, x) := u(t, x)

is a distributional solution of

∂sv + divt,x (Bv) = 0 on ]0,+∞[s×]0,+∞[t×Rd
x.

Since B(t, x) is an autonomous (i.e. independent of s) divergence free vector field belonging
to L∞

(

[0,+∞[s;BVloc([0,+∞[t×Rd
x;R×Rd)

)

, thanks to Ambrosio’s renormalization theorem
(see [1], or [2, Section 5]) the function β(v(s, t, x)) solves

∂sβ(v) + divt,x (Bβ(v)) = 0 on ]0,+∞[×]0,+∞[×Rd,

or equivalently

∂t(qβ(u)) + div (bqβ(u)) = 0 on ]0,+∞[×Rd.

This proves (i).

We now show (ii). Applying the result in (i) with β(u) = u2, we have that q(t, ·)
(

u(t, ·)
)2

provides a distributional solution of (2.3). Hence, there exists z ∈ C0
(

[0,+∞[;L∞

loc(R
d)−w∗

)

such that

z(t, ·) = q(t, ·)
(

u(t, ·)
)2

a.e. in Rd,

but only for almost every t ≥ 0. Since t 7→ q(t, ·) is strongly continuous with values in
L1
loc(R

d), it follows that

q(t, ·)z(t, ·) ∈ C0
(

[0,+∞[;L∞

loc(R
d)− w∗

)

.

Notice that the difficulty in the proof of the strong continuity of t 7→ q(t, ·)u(t, ·) comes from
the fact that it is not a priori obvious that the equality

q(t, ·)z(t, ·) =
(

q(t, ·)u(t, ·)
)2
,

which is true for almost every t ≥ 0, in fact holds for every t ≥ 0. This will be shown by
truncating the equation at an arbitrary time.

Let us fix t0 ∈ [0,+∞[: our goal is showing that t 7→ qu(t, ·) is strongly continuous in
L1
loc(R

d) at t0. Let us define the functions

bt0(t, x) :=

{

0 if t ∈]−∞, t0]
b(t, x) if t ∈]t0,+∞[ ,
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qt0(t, x) :=

{

q(t0, x) if t ∈]−∞, t0]
q(t, x) if t ∈]t0,+∞[ ,

ut0(t, x) :=

{

u(t0, x) if t ∈]−∞, t0]
u(t, x) if t ∈]t0,+∞[

and notice that q(t0, x) ∈ BVloc(R
d) by the weak continuity of t 7→ q(t, ·) and the uniform in

time and local in space bound on |Dq(t, ·)|. Thanks to the weak continuity of q and qu we
get

∂tqt0 + div
(

bt0qt0
)

= 0 and ∂t
(

qt0ut0
)

+ div
(

bt0qt0ut0
)

= 0

in the sense of distributions on R×Rd. By applying the same strategy as in the proof of (i)
with the vector field Bt0 := (qt0 , bt0qt0), we deduce that

∂t
(

qt0u
2
t0

)

+ div
(

bt0qt0u
2
t0

)

= 0 on R× Rd

in the sense of distributions. Combining this with the fact that the map t 7→ qt0(t, ·)u
2
t0
(t, ·)

is constant and equal to
(

qu2
)

(t0, ·) for t ≤ t0, we easily deduce that

qu2(t, ·)
∗

⇀ qu2(t0, ·)

weakly-∗ in L∞

loc(R
d) as t→ t+0 , and thanks to the strong continuity of t 7→ q(t, ·) this implies

q2u2(t, ·)
∗

⇀ q2u2(t0, ·) (2.4)

weakly-∗ in L∞

loc(R
d) as t→ t+0 .

From (2.4) combined with the weak-∗ continuity in L∞

loc(R
d) of the map t 7→ qu(t, ·), we

deduce that

qu(t, ·) → qu(t0, ·)

strongly in L1
loc(R

d) as t → t+0 . This proves the right continuity at t0. The proof of the left
continuity is analogous.

Finally, to show (iii), we observe that v1(s, t, x) := u1(t, x) and v2(s, t, x) := u2(t, x) are
both solutions of

∂sv + divt,x (Bv) = 0 on ]0,+∞[s×]0,+∞[t×Rd
x.

Hence, by Ambrosio’s renormalization theorem, |v1 − v2| solves

∂s
(

|v1 − v2|
)

+ divt,x
(

B|v1 − v2|
)

= 0 on [0,+∞[s×[0,∞[t×Rd
x,

or equivalently

∂t
(

q|u1 − u2|
)

+ div
(

bq|u1 − u2|
)

= 0. (2.5)

Moreover, by considering the functions bt0 , qt0 and (u2 − u1)t0 as in the proof of (ii), we can
apply as above the renormalization with β(u) = |u| to obtain

∂t
(

qt0 |(u1 − u2)t0 |
)

+ div
(

bt0qt0 |(u1 − u2)t0 |
)

= 0,

which as above implies that the map

t 7→ q(t, ·)|u1(t, ·)− u2(t, ·)| ∈ L∞

loc(R
d) (2.6)
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is weakly-∗ continuous. Hence, arguing as in [20, Lemma 3.17], (2.5) and (2.6) imply
∫

BR(0)

q(t, x)|u1(t, x)− u2(t, x)| dx ≤

∫

BR+|t−s|‖b‖∞(0)

q(s, x)|u1(s, x)− u2(s, x)| dx

for all t, s > 0. In particular, by setting s = τ , we obtain the desired result. �

Remark 2.2. Assume that in Lemma 2.1 we replace the hypothesis of strong continuity of
t 7→ q(t, ·) with the condition that for every t

1

C
≤ q(t, x) ≤ C a.e. x ∈ Rd

for some constant C > 0. Then the map t 7→ u(t, ·) is strongly continuous in L1
loc. This is

shown in De Lellis [20, Corollary 3.14].

2.2. Well-posedness of weakly continuous solutions. In this section we prove a well-
posedness result for (2.1) in a function space adapted to the vector field b: this space depends
on an auxiliary function p linked to b by (2.7).

Definition 2.3. Let Ω be an open set in an Euclidean space and let p ∈ L∞

loc

(

Ω) be non-
negative. We denote by L∞(p) the set consisting of the measurable functions w defined on
Ω such that there exists a constant C satisfying

|w(y)| ≤ Cp(y) for a.e. y ∈ Ω.

The smallest constant C will be denoted by ‖w‖L∞(p).

Remark 2.4. Notice that, for any w ∈ L∞(p), we necessarily have w = 0 a.e. on {p = 0}.

Hence, by adopting the convention that w(y)
p(y)

= 0 if p(y) = 0, the quotient

w(y)

p(y)

is well-defined on Ω and is a bounded measurable function satisfying (w/p) · p = w a.e.

Theorem 2.5. Let b ∈ BVloc
(

[0,+∞[×Rd;Rd
)

be a bounded vector field. Assume that there

exists a nonnegative locally bounded function p ∈ BVloc
(

[0,+∞[×Rd
)

satisfying |Dp(t, ·)|(BR) ∈

L∞

loc

(

[0,+∞[
)

for all R > 0 and

∂tp + div (bp) = 0 (2.7)

in the sense of distributions. Then:

(i) For any initial datum ū ∈ L∞(p(0, ·)) there exists a solution u ∈ C0
(

[0,+∞[;L∞(Rd)−

w∗
)

∩ L∞(p) to the Cauchy problem (2.1).

(ii) The solution u to (2.1) is unique in the class C0
(

[0,+∞[;L∞(Rd)− w∗
)

∩ L∞(p).
(iii) ‖u(t, ·)‖L∞(p(t,·)) ≤ ‖ū‖L∞(p(0,·)) for all t ≥ 0.
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Proof. Properties (i), (ii) and (iii) are trivially satisfied when p is identically zero. Hence
in the following, without any loss of generality, we assume that p is not identically zero.
Existence. Let us define l0 := ū/p(0, ·) (see Remark 2.4). Roughly speaking, the strategy
to construct a solution is to solve

{

∂tl + b · ∇l = 0
l(0, ·) = l0 ,

and to define u = lp. Since b is not smooth, we need a regularization argument.
We first remark that the assumption that p is nonnegative and not identically zero implies

that p(t, ·) is not identically zero for any t > 0. Indeed, assume by contradiction that

p(τ, x) = 0 for a.e. x ∈ Rd

for some τ ≥ 0. Then by applying Lemma 2.1(iii) with q = p, u1 ≡ 1 and u2 ≡ 0 we obtain
that for every t ≥ 0

p(t, x) = 0 for a.e. x ∈ Rd,

against our assumption.
We now consider a sequence ηε of convolution kernels supported on the whole Rd (Gaussian

kernels, for instance), and we define

pε := p ∗ ηε , bε :=
(bp) ∗ ηε
p ∗ ηε

.

Then pε is smooth and strictly positive everywhere, so that bε is smooth and bounded. We
now solve for every ε > 0 the Cauchy problem











∂tlε + bε · ∇lε = 0

lε(0, ·) =
ū ∗ ηε

p(0, ·) ∗ ηε
.

Then, using the identity ∂tpε + div (bεpε) = 0, one can easily check that
{

∂t(lεpε) + div (bεlεpε) = 0
lεpε(0, ·) = ū ∗ ηε .

Since

‖lε(t, ·)‖L∞(Rd) ≤ ‖lε(0, ·)‖L∞(Rd) ≤ ‖ū‖L∞(p(0,·)) for every t ∈ [0,+∞[, (2.8)

the functions lε are uniformly bounded in L∞
(

[0,+∞[×Rd
)

. Hence, up to subsequences, lε
converges weakly-∗ in L∞

(

[0,+∞[×Rd
)

to a function l ∈ L∞
(

[0,+∞[×Rd
)

. Observing that

pε → p in L1
loc

(

[0,+∞[×Rd
)

, we get that

lεpε
∗

⇀ lp := u weakly-∗ in L∞

loc

(

[0,+∞[×Rd
)

,
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and u solves (2.1). Moreover, thanks to (2.8), (iii) holds. Finally, the fact that lεpε are
uniformly continuous in time with respect to the weak-∗ topology of L∞

loc(R
d) (see for in-

stance [7, Lemma 8.1.2]) implies that u belongs to C0
(

[0,+∞[;L∞(Rd)−w∗
)

and u(0, ·) = ū.
This proves (i).

Uniqueness. Let u1, u2 ∈ L∞(p) be two solutions of (2.1). We apply Lemma 2.1(iii)
with q = p and τ = 0 to the functions u1/p and u2/p (remember Remark 2.4), obtaining
that, for all t ∈ [0,+∞[,

p(t, x)
u1(t, x)

p(t, x)
= p(t, x)

u2(t, x)

p(t, x)
for a.e. x ∈ Rd.

Recalling again Remark 2.4, this gives that for all t ∈ [0,+∞[ the equality u1(t, x) = u2(t, x)
holds for a.e. x ∈ Rd, proving (ii). �

2.3. Well-posedness of strongly continuous solutions. In this section we weaken the
assumption b ∈ BVloc

(

[0,+∞[×Rd;Rd
)

replacing it by b ∈ BVloc
(

]0,+∞[×Rd;Rd
)

and,
by adding some conditions on the density ρ transported by b as in (2.7), we can still get
well-posedness of (2.1) in the class of strongly continuous solutions.

Definition 2.6. Let b : [0,+∞[×Rd → Rd be a bounded vector field. We say that b is locally
strongly nearly incompressible if there exists a function ρ : [0,+∞[×Rd → R such that the
following properties are satisfied:

(1) t 7→ ρ(t, ·) is strongly continuous with values in L1
loc(R

d);
(2) For every R > 0 and T > 0 there exists a constant CR,T > 0 such that

1

CR,T

≤ ρ(t, x) ≤ CR,T for a.e. (t, x) ∈ [0, T ]× BR(0); (2.9)

(3) The equation

∂tρ(t, x) + div
(

b(t, x)ρ(t, x)
)

= 0 (2.10)

holds in the sense of distributions on ]0,+∞[×Rd.

Theorem 2.7. Let b ∈ BVloc
(

]0,+∞[×Rd;Rd
)

satisfy the assumptions of Definition 2.6, for

some function ρ which in addition belongs to BVloc
(

]0,+∞[×Rd
)

and satisfies |Dρ(t, ·)|(BR) ∈

L∞

loc

(

]0,+∞[
)

for all R > 0. Then there exists a locally bounded solution u ∈ C0
(

[0,+∞[;L1
loc(R

d)−

s
)

to the Cauchy problem (2.1). Furthermore the solution is unique in this class.

Proof. Uniqueness. Let u1, u2 ∈ C0
(

[0,+∞[;L1
loc(R

d)− s
)

be locally bounded solutions of
(2.1). We first observe that, from the strong continuity, it follows that

∫

BS(0)

|u1(ε, x)− u2(ε, x)| dx→ 0 as ε → 0+ (2.11)

for every S > 0.
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We now apply Lemma 2.1(i) with β(z) = |z| and q = ρ to the function u = (u1 − u2)/ρ,
on the time interval [τ,+∞[, for an arbitrary τ > 0, to deduce that

∂t
(

|u1 − u2|
)

+ div
(

b|u1 − u2|
)

= 0 (2.12)

in the sense of distributions in ]0,+∞[×Rd. Arguing as in [20, Lemma 3.17], by (2.12) we
easily obtain that for any 0 < ε < t ≤ T <∞ and for any R > 0, there holds

∫

BR(0)

|u1(t, x)− u2(t, x)| dx ≤

∫

BR+T‖b‖∞ (0)

|u1(ε, x)− u2(ε, x)| dx . (2.13)

By letting ε→ 0+ and recalling (2.11), thanks to (2.13) we get that, for any t ∈ [0,+∞[,

u1(t, x) = u2(t, x) for a.e. x ∈ BR(0).

Since R is arbitrary, we conclude that u1 = u2.
Existence. The proof is organized in three steps.
Step 1. We describe the issues we have to address and we sketch how we will proceed in

the remaining two steps.
Under the assumptions of the theorem, we can apply Lemma 2.1(ii) to the solution u/ρ on

the domain [τ,+∞[×Rd for any τ > 0 and deduce that, for every locally bounded solution
u of (2.1), the map

t 7→ u(t, ·)

is strongly continuous from ]0,+∞[ with values in L1
loc(R

d). Thus the only issue is construct-
ing a solution which is also strongly continuous at t = 0.

The strategy is first approximating in L1
loc our vector field b with smooth strongly nearly

incompressible vector fields bε with corresponding smooth densities ρε. Then we observe
that, if zε is a solution to the continuity equation

{

∂tzε + div (bεzε) = 0
zε(0, ·) = ū ∗ ηε ,

then λε := zε/ρε is a solution to the transport equation






∂tlε + bε · ∇λε = 0

λε(0, ·) :=
ū ∗ ηε
ρε(0, ·)

.

Noticing that ρε(t, ·) is strongly continuous by assumption, we only need to prove the conti-
nuity at 0 of t 7→ lε(t, ·). This can be directly shown by using the representation formula for
the solution and exploiting the local strongly nearly incompressibility (see Definition 2.6).
Finally, we exploit the weak-∗ compactness of zε, we let ε→ 0, and we prove that any limit
point of zε provides a strongly continuous solution.

Another issue we need to address is that the vector field b is only locally nearly incom-
pressible, meaning that the bounds (2.9) are not necessarily global. We thus introduce a
localization argument, by first restricting to initial data with compact support: because of
the finite propagation speed, the solution we construct has then compact support for every
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t ≥ 0. We finally obtain the solution for general initial data by gluing together compactly
supported solutions: everything works because what we end up with is a locally finite sum.

Step 2. Here, we describe in detail the localization argument.
We introduce a disjoint covering

⋃+∞

i=1 Qi of almost all of Rd, where {Qi} are open d-

dimensional cubes with unit edge length. Let ū as in (2.1), then ū =
∑+∞

i=1 ūi, where
ūi = ūχQi

and χQi
denotes the characteristic function of the set Qi. In Step 3 we construct

a solution of the Cauchy problem
{

∂tui(t, x) + div
(

b(t, x)ui(t, x)
)

= 0

ui(0, x) = ūi(x)
(2.14)

satisfying ui ∈ C0
(

[0, +∞[;L1(Rd)− s
)

and

supp ui ⊆ [0, T ]×Qi +BLT (0), (2.15)

where L = ‖b‖L∞ . We set

u(t, ·) :=
+∞
∑

i=1

ui(t, ·).

By noticing that the transport equation is linear and that the previous sum is locally finite
by (2.15), we get that u ∈ C0([0,+∞[;L1

loc(R
d)− s) is a solution of (2.1).

Step 3. We fix T > 0 and we construct a strongly continuous solution ui of (2.14) defined
for t ∈ [0, T ] and satisfying (2.15). To simplify the notation, we write u, ū and Q instead of
ui, ūi and Qi.

We first approximate ρ and b by ρε := ρ ∗ ηε and bε := (bρ) ∗ ηε/ρε respectively. Here ηε is
a sequence of smooth convolution kernels: the function ρε is always strictly positive by (2.9)
and hence bε is well defined. By using the notation L = ‖b‖L∞ , we get that all vector fields
bε are bounded by L. Also, we can assume that the support of ū ∗ ηε is strictly contained in
Q+Bε(0). Because of (2.9), there exists a constant M satisfying

1

M
≤ ρε(t, y) ≤M for every (t, y) such that t ∈ [0, T ] and x ∈ Q +B1+3LT (0). (2.16)

Let Yε denote the flow generated by bε and let Zε denote the inverse of Yε, i.e. we have
Zε(t, Yε(t, y)) = y and Yε(t, Zε(t, x)) = x. Then

|Yε(t, y)− y| ≤ ‖bε‖L∞t ≤ Lt for every (t, y) ∈ [0, T ]× Rd

and analogously

|Zε(t, x)− x| ≤ Lt for every (t, x) ∈ [0, T ]× Rd.

Let JYε(t, x) denote the Jacobian of Yε(t, x): since ρε(t, Yε(t, y))JYε(t, y) = ρε(0, y), by
relying on (2.16) we deduce the bound

1

M2
≤ JYε(t, y) ≤M2 for every t ∈ [0, T ], y ∈ Q+B1+2LT (0). (2.17)
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Since x ∈ Q+B1+LT (0) implies Zε(t, x) ∈ Q +B1+2LT (0) we obtain

1

M2
≤ JZε(t, x) ≤ M2, for every t ∈ [0, T ], x ∈ Q +B1+LT (0). (2.18)

We now define l̄ε(·) := ū ∗ ηε/ρε(0, ·). Then, by setting lε(t, x) := l̄ε(Zε(t, x)), we get a
solution of the transport equation

{

∂tlε + bε · ∇lε = 0
lε(0, ·) = l̄ε(·) .

Since ‖λε‖L∞ ≤ ‖λ̄ε‖L∞ ≤ M‖ū‖L∞ , {λε} is weakly-∗ compact in L∞. Moreover, observing
that ρε(t, ·) → ρ(t, ·) strongly in L1

loc(R
d) for every t ≥ 0, up to subsequences (not explicitly

labelled for simplicity of notation) we get

λερε
∗

⇀ u weakly-∗ in L∞
(

[0, T ]× Rd
)

for some bounded function u whose support is contained in [0, T ]×
(

Q+BLT (0)
)

. First we
point out that, since λερε solves

∂t
(

λερε
)

+ div
(

bελερε
)

= 0 ,

then u solves

∂tu+ div(bu) = 0

in the sense of distributions. Moreover, by extracting a further subsequence we can assume
that

λερε(t, ·)
∗

⇀ u(t, ·) weakly-∗ in L∞
(

Rd
)

for every t ∈ [0, T ] ∩Q . (2.19)

Since λερε(t, ·) is weakly-∗ continuous, uniformly in ε (see for instance [7, Lemma 8.1.2]),
(2.19) ensures that

λερε(t, ·)
∗

⇀ u(t, ·) weakly-∗ in L∞
(

Rd
)

for every t ∈ [0, T ] .

Thus, the only issue we are left to address is that u(t, ·) converges strongly in L1
loc(R

d) to
u(0, ·) = ū when t → 0+. By the lower semicontinuity of the L1 norm with respect to the
weak-∗ convergence in L∞,

∫

Rd

|u(t, x)− ū(x)| dx ≤ lim inf
ε→0

∫

Rd

|λερε(t, x)− λ̄ε(x)ρε(0, x)| dx. (2.20)

Now, for any given ε ≤ 1, we exploit the decomposition
∫

Rd

|λερε(t, x)− λ̄ε(x)ρε(0, x)| dx ≤

∫

Rd

ρε(t, x)|lε(t, x)− λ̄ε(x)| dx

+

∫

Rd

|λ̄ε(x)| |ρε(t, x)− ρε(0, x)| dx.

(2.21)
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We first focus on the first term in (2.21): for any ψ ∈ C∞

c (Rd) we have
∫

Rd

|lε(t, x)− λ̄ε(x)| dx =

∫

Q+B1+Lt(0)

|λ̄ε(Zε(t, x))− λ̄ε(x)| dx

≤

∫

Q+B1+Lt(0)

|λ̄ε(Zε(t, x))− ψ(Zε(t, x))| dx

+

∫

Q+B1+Lt(0)

|ψ(Zε(t, x))− ψ(x)| dx+

∫

Q+B1+Lt(0)

|ψ(x)− λ̄ε(x)| dx

≤

∫

Q+B1+Lt(0)

|λ̄ε(Zε(t, x))− ψ(Zε(t, x))| dx+ Lip(ψ)L d
(

Q +B1+Lt(0)
)

L t

+ ‖ψ − λ̄ε‖L1(Rd).

(2.22)

By exploiting the bound (2.18) on JZε we then get
∫

Q+B1+Lt(0)

|λ̄ε(Zε(t, x))− ψ(Zε(t, x))| dx ≤ M2‖ψ − λ̄ε‖L1(Rd). (2.23)

Hence, by combining (2.16), (2.22), (2.23) and taking into account the strong convergence
of λ̄ε to ū/ρ(0, ·) as ε → 0, we eventually obtain

lim sup
ε→0

∫

Rd

ρε(t, x)|lε(t, x)− λ̄ε(x)| dx

≤M(1 +M2)

∥

∥

∥

∥

ψ −
ū

ρ(0, ·)

∥

∥

∥

∥

L1(Rd)

+MLip(ψ)L d
(

Q +B1+Lt(0)
)

L t. (2.24)

We now focus on the second term in (2.21): since λ̄ε is bounded by M‖ū‖L∞ , by relying on
the properties of the convolution we have
∫

Rd

|λ̄ε(x)| |ρε(t, x)− ρε(0, x)| dx ≤M‖ū‖L∞

∫

Q+B1(0)

|ρ(t, x)− ρ(0, x)| dx ≤M‖ū‖L∞ω(t).

(2.25)
In the previous expression, ω denotes a modulus of continuity ω : [0,+∞[→ [0,+∞[ for the
map t 7→ ρ(t, ·)χQ+B1(0), which is strongly continuous in L1(Rd).

Finally, we combine (2.20), (2.21), (2.24), (2.25) and we eventually obtain
∫

Rd

|u(t, x)− ū(x)| dx ≤M(1 +M2)‖ψ − ū/ρ(0, ·)‖L1(Rd)

+MLip(ψ)L d
(

Q+B1+Lt(0)
)

L t +M‖ū‖L∞ω(t).

By letting t ↓ 0 and using the arbitrariness of ψ, we deduce that t 7→ u(t, ·) is strongly
continuous at 0 in L1. This concludes the proof of Theorem 2.7. �
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We point out that in the proof of Theorem 2.7, the assumption that b and ρ are both
BVloc in space and time is only needed in the Uniqueness Part to show that distributional
solutions are renormalized on ]0,+∞[×Rd and in the first step of the Existence Part to
apply Lemma 2.1(ii) and get that the map t 7→ u(t, ·) is strongly continuous in L1

loc(R
d) at

any τ > 0. Hence, if we additionally assume that the divergence of b is a locally integrable
function, we can relax the regularity assumption on both b and ρ. More precisely, assume
that b ∈ L1

loc

(

]0,+∞[;BVloc(R
d;Rd)

)

is a bounded, locally strongly nearly incompressible

vector field such that div b ∈ L1
loc

(

]0,+∞[×Rd
)

. Then we can directly apply Ambrosio’s
theorem [1] to deduce that distributional solutions are renormalized. By arguing as in the
proof of Lemma 2.1(ii), we obtain that, if u is a locally bounded solution of (2.1), then
t 7→ u(t, ·) is strongly continuous from ]0,+∞[ in L1

loc(R
d). By combining all the previous

considerations, we get:

Theorem 2.8. Let b ∈ L1
loc

(

]0,+∞[;BVloc(R
d;Rd)

)

be a bounded, locally strongly nearly

incompressible vector field such that div b ∈ L1
loc

(

]0,+∞[×Rd
)

. Then there exists a locally

bounded solution u ∈ C0
(

[0,+∞[;L1
loc(R

d) − s
)

to the Cauchy problem for the continuity
equation (2.1). Furthermore the solution is unique in this class.

3. An example of nonuniqueness

Roughly speaking, the results presented in Section 2.3 allow to weaken the assumptions on
the summability of the BV norm of the vector field, at the price of a restriction of the class
of solutions considered. In the model case of a divergence free vector field (which is trivially
locally strongly nearly incompressible), comparing Theorem 2.8 and Ambrosio’s theorem [1]
we see that we swap summability of the BV norm up to t = 0 for the condition of strong
continuity of the solution.

3.1. Depauw’s vector field. In [21] Depauw constructs an example of nonuniqueness for
the transport equation relative to a bounded time-dependent divergence free vector field in
the plane. More precisely, Depauw exhibits a vector field a(t, x) ∈ L∞

(

[0, 1]×R2;R2
)

, with

div a = 0 and a ∈ L1
loc

(

]0, 1];BVloc(R
2;R2)

)

,

such that the Cauchy problem
{

∂tu+ div (au) = 0

u(0, x) = 0
(3.1)

has a nontrivial solution ũ 6≡ 0. Observe that, being divergence free, the vector field a is
locally strongly nearly incompressible (see Definition 2.6): simply take ρ(t, x) ≡ 1. Thus,
Theorem 2.7 implies that ũ cannot be strongly continuous in time, since the constant 0
trivially provides the unique strongly continuous solution of (3.1).
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We now want to briefly sketch the construction of [21]. Let us first consider a dyadic
subdivision (up to negligible sets) of the time interval, i.e.

[0, 1] =

∞
⋃

k=1

Ik with Ik =

[

1

2k
,

1

2k−1

]

.

For t ∈ Ik the vector field a(t, ·) does not vary in time, and consists of “vortexes” on a
pattern with scale 1/2k, arranged in such a way that the divergence is zero and, for any
compact set K ⊂ R2,

‖a(t, ·)‖BV (K) ∼ 2k for t ∈ Ik. (3.2)

This allows to construct a solution which undergoes, on each interval Ik, a more and more
refined mixing, as t → 0+. More precisely, going backward in time on each interval Ik, the
solution is rearranged from a function which oscillates between ±1 on a chessboard of size
1/2k−1 into a function which oscillates between ±1 on a chessboard of size 1/2k. This in
particular implies that

ũ(t, ·)
∗

⇀ 0 in L∞(R2)− w∗,

but

ũ(t, ·) 6→ 0 in L1
loc(R

2)− s,

which is coherent with Theorem 2.7.

3.2. Approximability of the solution with smooth maps. The proof of Theorem 2.7
directly shows that any limit of solutions with smooth approximating vector fields is, as a
matter of fact, strongly continuous. Hence we get that the solution ũ constructed in [21]
cannot be constructed by approximation.

It is also worth to mention a connection with the results in [10], regarding the density
of smooth functions in the space of the solutions of the transport equation. Namely, Theo-
rem 2.1 in [10] asserts that the approximability of a solution with smooth functions is equiv-
alent to the uniqueness property for both the forward and the backward Cauchy problems.
We note that, while the vector field of [21] provides a counterexample to forward uniqueness,
the same vector field enjoys uniqueness for the backward Cauchy problem. More comments
and variations on the construction by Depauw are also presented in [10].

3.3. Strong continuity of the vector field does not imply uniqueness. The vector
field described in Section 3.1 provides a counterexample to the uniqueness in the class of
weakly continuous solutions, but

a 6∈ C0
(

[0, 1];L1
loc(R

2;R2)
)

.

Thus, we could wonder whether Theorem 2.7 holds in the larger class of weakly continuous
solutions, provided we impose strong continuity of the vector field, i.e.

b ∈ C0
(

[0,+∞[;L1
loc(R

d;Rd)
)

.

This means that we are led to the following question.
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Question 3.1. Let b ∈ BVloc
(

]0,+∞[×Rd;Rd)
)

be a bounded, locally strongly nearly in-
compressible vector field. Assume that an admissible density ρ in the definition of locally
strongly nearly incompressibility belongs to BVloc

(

]0,+∞[×Rd
)

. Assume moreover that

b ∈ C0
(

[0,+∞[;L1
loc(R

d;Rd)
)

.

Is it true that the Cauchy problem (2.1) has a unique locally bounded solution u in the class
C0
(

[0,+∞[;L∞

loc(R
d)− w∗

)

?

Notice that, if the answer to Question 3.1 were positive, we would be able to prove one
of the results regarding the well-posedness of the chromatography system, the one presented
in Theorem 4.8, in the more general class of solutions

U = (u1, u2) ∈ C0
(

[0,+∞[;L∞

loc(R;R
2)− w∗

)

.

However, we can show the following negative result:

Proposition 3.2. The answer to Question 3.1 is negative. More precisely, there exists a
vector field c(t, x) ∈ L∞

(

[0, T ]× R2;R2
)

satisfying the following properties:

(i) c ∈ BVloc
(

]0, T ]× R2;R2
)

;
(ii) div c = 0 (and thus c is in particular locally strongly nearly incompressible);
(iii) c ∈ C0

(

[0, T ];L∞(R2;R2)− s
)

;
(iv) The Cauchy problem

{

∂tv + div (cv) = 0

v(0, x) = 0
(3.3)

has a bounded solution ṽ 6≡ 0, with ṽ 6∈ C0
(

[0, T ];L1
loc(R

2)− s
)

.

Proof. We briefly illustrate how it is possible to modify the construction in [21] in such a way
that the resulting vector field is strongly continuous. The vector field a is the one described
in Section 3.1.

Step 1. Strong continuity at time t = 0. The vector field a has length between 0
and 1 in all the regions in which it is nonzero. This length is chosen in such a way that the
solution is mixed from a chessboard of size 1/2k−1 into a chessboard of size 1/2k precisely in
time 1/2k.

To construct the vector field c, we decrease the strength of the vector field in each interval
in such a way that the discontinuity at t = 0 is ruled out. First, we substitute each interval
Ik with an interval Jk such that

L
1(Jk) = k2−k .

We notice that
∑

∞

k=1 L 1(Jk) = T < +∞, thus we are again concerned with a finite interval
of time. In each interval Jk we then simply multiply the vector field a relative to the interval
Ik by 1/k. Thus, the solution undergoes the same mixing, but in a time which is k times
larger than the one in Depauw’s example. Notice that we precisely have L 1(Jk) = kL 1(Ik).
In this way, we have the convergence c(t, ·) → 0 strongly in L∞(R2) as t ↓ 0.
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Step 2. Blow up of the BV norm. Let us check that the spatial BV norm of the
vector field c(t, ·) blows up as t ↓ 0. We first notice that for any compact set K ⊂ R2 we
have

‖a(t, ·)‖BV (K) ∼ 2k for t ∈ Ik,

thus ‖a(t, ·)‖BV (K) ∼ 1/t. In our case, we simply have

‖c(t, ·)‖BV (K) ∼
2k

k
for t ∈ Jk.

Noticing that
∞
∑

j=k+1

j

2j
≥ k

∞
∑

j=k+1

1

2j
=

k

2k
,

we have that t ≥ k/2k when t ∈ Jk, and this implies

‖c(t, ·)‖BV (K) &
1

t
.

This shows that c does not belong to L1
(

[0, T ];BVloc(R
2;R2)

)

, which is coherent with the
uniqueness result of [1].

Step 3. Strong continuity at any time t ∈ [0, T ]. Let us notice that in each
interval Jk the vector field c is constant with respect to time. However, at the extrema of
the intervals Jk the vector field c has a jump discontinuity. To rule out this phenomenon,
we choose for every time interval Jk an “activation function” ψk(t), and we substitute the
vector field c(t, x) previously described with c(t, x)ψk(t), for t ∈ Jk. We only need to choose,
on each Jk, the function ψk satisfying

ψk ∈ C0
c (

◦

Jk) , ‖ψk‖∞ ≤ 2 and

∫

Jk

ψk(s) ds = L
1(Jk) .

In this way, the solution undergoes the same mixing as before in each time interval Jk, but
the discontinuities at the extrema of the intervals Jk are ruled out. It is also immediate that
∂tc is a locally finite measure, hence c ∈ BVloc

(

]0, T ]× Rd
)

.

Step 4. Conclusion. In this way, we have constructed a vector field c(t, x) ∈ L∞
(

[0, T ]×

R2;R2
)

satisfying properties (i)-(ii)-(iii). The nontrivial solution ṽ of (3.3) has the same be-
haviour of the nontrivial solution ũ of (3.1) described in Section 3.1: at the Lagrangian level
we have simply reparameterized (with the same function) all trajectories, “stretching” the
original vector field a in such a way that we gain strong continuity of the vector field c with
respect to the time. �

4. Applications to the chromatography system

4.1. The chromatography system and classification of the entropies. In this section
we are concerned with the system (1.1) coupled with the initial conditions

u1(0, x) = ū1(x) , u2(0, x) = ū2(x) . (4.1)
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This system belongs to the Temple class [33] and arises in the study of two component
chromatography. Here u1, u2 : [0,+∞[×R → R are nonnegative functions which express
transformations of the concentrations of two solutes, see [12, page 102]. Here we make some
preliminary considerations by introducing a change of variables and discussing a related clas-
sification of the entropies. Our well-posedness results for (1.1) are discussed in Sections 4.2
and 4.3.

By introducing the change of variables

v = u1 + u2 , w = u1 − u2 , (4.2)

system (1.1) becomes






















∂tv + ∂x

(

v

1 + v

)

= 0

∂tw + ∂x

(

w

1 + v

)

= 0 .

(4.3)

Namely, (1.1) splits in the coupling between a scalar one-dimensional conservation law and a
linear continuity equation. Note that the coefficient of the second equation in (4.3) depends
on the solution of the first equation, but the first equation in (4.3) does not depend on the
solution of the second one.

This decoupling allows for a classification of all the entropies of system (1.1):

Lemma 4.1. Let (η, q) : R2 → R×R be twice continuously differentiable. Then (η, q) is an
entropy-entropy flux pair for system (1.1) (in the sense of Definition A.1) if and only if the
following holds: there exists an entropy-entropy flux pair (η̃, q̃) : R → R× R for

∂tv + ∂x

(

v

1 + v

)

= 0 (4.4)

satisfying

η(u1, u2) = η̃(u1 + u2) + C(u1 − u2) , q(u1, u2) = q̃(u1 + u2) +
C(u1 − u2)

1 + u1 + u2
(4.5)

for some real constant C. Moreover, η is convex if and only if η̃ is convex.

Proof. First, observe that (η, q) is an entropy-entropy flux pair for system (1.1) if and only
if

(η, q)(v, w) = (η, q)

(

v + w

2
,
v − w

2

)

is an entropy-entropy flux pair for system (4.3). Thus, in the following we focus on system
(4.3), having flux given by

G(v, w) =









v

1 + v

w

1 + v









.
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Being η an entropy, we have the compatibility condition

curl
(

∇ η(v, w) ·DG(v, w)
)

= 0 . (4.6)

Since

DG(v, w) =











1

(1 + v)2
0

−w

(1 + v)2
1

1 + v











,

we get from (4.6)

curl

(

∂vη − w∂wη

(1 + v)2
,
∂wη

1 + v

)

= 0 ,

namely
v∂vwη + w∂wwη = 0 .

By setting γ = ∂wη, we obtain

∇γ(v, w) · (v, w) = 0 for any vector (v, w).

Hence, γ is constant along any ray departing from the origin, and since γ is of class C1, it
has to be constant on the whole R2. Thus,

η(v, w) = η̃(v) + Cw

for some real constant C. Being in the scalar case, η̃ is trivially an entropy for (4.4): the
flux is defined by

q̃′(v) = η̃′(v)g′(v) ,

where g(v) = v/(1 + v) is the flux of (4.4). Moreover η is convex in (v, w) if and only if η̃ is
convex in v. Hence, up to constants, the entropy flux q satisfies

q(v, w) = q̃(v) +
Cw

1 + v
.

This concludes the proof of the first implication: any entropy-entropy flux pair (η, q) for
(1.1) satisfies (4.5).

Conversely, a straightforward computation ensures that, for any entropy-entropy flux pair
(η̃, q̃) for (4.4), (4.5) defines an entropy-entropy flux pair (η, q) for (1.1). �

Heuristically, Lemma 4.1 can be interpreted as follows. By introducing the change of
variables (4.2) we select a direction w in the phase space (u1, u2), along which the solution is
simply transported. Consequently, the entropy dissipation in the direction w is zero. Hence,
imposing that (u1, u2) is an entropy admissible solution of (1.1) means imposing that the
entropy dissipates along the orthogonal direction v. This interpretation is coherent with the
ideas underlying the analysis in [9].

By relying on Lemma 4.1, we obtain a one-to-one correspondence between entropy ad-
missible solutions of the system (1.1) and distributional solutions of system (4.3) such that
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the first component v is an entropy admissible solution of the scalar conservation law (4.4).
Indeed the following holds:

Proposition 4.2. Let ū1, ū2 ∈ L∞

loc(R). Then (u1, u2) ∈ L∞

loc

(

[0,+∞[×R;R2
)

is an entropy
admissible solution of (1.1) satisfying the initial condition

(

u1(0, ·), u2(0, ·)
)

= (ū1, ū2) (4.7)

if and only if (v, w) = (u1 + u2, u1 − u2) verifies the following conditions:

(1) v is an entropy admissible solution of the Cauchy problem














∂tv + ∂x

(

v

1 + v

)

= 0

v(0, ·) = ū1 + ū2 ;

(4.8)

(2) w is a solution in the sense of distributions of














∂tw + ∂x

(

w

1 + v

)

= 0

w(0, ·) = ū1 − ū2 .

(4.9)

The initial data in (4.8) and (4.9) are assumed in the same sense (L1
loc − s or L∞

loc −w∗) as
the datum (ū1, ū2) in (4.7).

Proof. By definition (u1, u2) is an entropy admissible solution of (1.1) if and only if

∂tη(u1, u2) + ∂xq(u1, u2) ≤ 0 (4.10)

in the sense of distributions for any entropy-entropy flux (η, q) with η convex. By applying
(4.5), (4.10) becomes

∂t

[

η̃(u1 + u2) + C(u1 − u2)
]

+ ∂x

[

q̃(u1 + u2) +
C(u1 − u2)

1 + u1 + u2

]

≤ 0 . (4.11)

for any entropy-entropy flux pair (η̃, q̃), with η̃ convex. Since (4.10) is assumed to hold for
any entropy-entropy flux (η, q) with η convex, in (4.11) we can take any C ∈ R. Thus,
requiring (4.11) is equivalent to imposing that w = u1 − u2 is a solution in the sense of
distributions of (4.9) and v = u1 + u2 is an entropy admissible solution of (4.8).

Finally, as the change of variables (4.2) is linear, the initial data in (4.8) and (4.9) are
assumed in the same sense as the datum (ū1, ū2) in (4.7). �

4.2. Well-posedness results in the class of weakly continuous functions. We first
apply Theorem 2.5, obtaining a well-posedness result under the following assumptions on
the initial datum Ū = (ū1, ū2): both ū1 and ū2 are nonnegative (which is the physical range),
locally bounded, and the sum ū1+ū2 has locally bounded (but possibly large) total variation.

We introduce the following set:
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Definition 4.3. We denote by F the set of functions U = (u1, u2) : R → R× R such that:

(F1) u1, u2 ∈ L∞

loc(R);
(F2) u1 ≥ 0, u2 ≥ 0 a.e. in R;
(F3) u1 + u2 ∈ BVloc(R).

We are now ready to introduce our result:

Theorem 4.4. Let Ū = (ū1, ū2) ∈ F . Then there exists a unique solution

U = (u1, u2) ∈ C0
(

[0,+∞[;L∞

loc(R;R
2)− w∗

)

in the sense of distributions of the Cauchy problem (1.1)-(4.1), among those with values in
F and satisfying the entropy admissibility condition given by Definition A.1.
In addition, this unique solution U satisfies the regularity property

U ∈ C0
(

[0,+∞[;L1
loc(R;R

2)− s
)

.

Proof. By applying the change of variables (4.2) and by relying on Proposition 4.2, we reduce
the problem to the study of the Cauchy problems (4.8) and (4.9). We then proceed in several
steps.

Step 1. By applying Theorem A.2 and exploiting Remark A.7 we obtain that the first
equation in (4.8) admits a locally bounded entropy admissible solution v ∈ C0

(

[0,+∞[;L∞

loc(R)−

w∗
)

. Moreover, thanks to estimate (A.8), for every t > 0 we have v(t, x) ≥ 0 for a.e. x ∈ R.

Estimate (A.9) ensures that v ∈ L∞

loc

(

[0,+∞[;BVloc(R)
)

. Finally, by relying on (4.8) we get

that v has also bounded variation with respect to the time, thus v ∈ BVloc
(

[0,+∞[×R
)

.
Step 2. We now apply Theorem 2.5 with

b(t, x) =
1

1 + v(t, x)

and p = v, deducing existence and uniqueness for the solution w of (4.9) in the class

C0
(

[0,+∞[;L∞

loc(R)− w∗
)

∩ L∞(v) ,

where L∞(v) is defined as in Definition 2.3. Furthermore Theorem 2.5(iii) implies that
|w(t, x)| ≤ v(t, x) for a.e. x ∈ R, for all t ∈ [0,+∞[.

To show that the solutions u1 and u2 are nonnegative, it suffices to observe that we have
u1 = (v + w)/2 and u2 = (v − w)/2, and we have just shown that |w| ≤ v. This completes
the existence part.

Step 3. We want to show that the solutions v(t, ·) and w(t, ·) constructed above are
strongly continuous with values in L1

loc(R
d). The strong continuity of t 7→ v(t, ·) is a con-

sequence of Theorem A.5 (since v 7→ v/(1 + v) is uniformly concave we can exploit the
considerations in Remark A.6). Concerning w, it suffices to apply again Lemma 2.1(ii) with
q = v (which has just been shown to be strongly continuous) and u = w/v (see Remark 2.4).

Step 4. We finally show uniqueness. By the uniform concavity of the flux function
v 7→ v/(1+v) in (4.8), Theorem A.5 implies that every weakly continuous entropy admissible
solution of (4.8) is in fact strongly continuous at t = 0. Hence the uniqueness of v follows
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from Theorem A.2. Concerning w, it is sufficient to observe that, since condition (F2) gives
u1 and u2 are nonnegative, we have

|w| = |u1 − u2| ≤ u1 + u2 = v .

Thus w ∈ L∞(v), and we get uniqueness from Step 2. �

As an immediate consequence of Theorem 4.4, we obtain:

Corollary 4.5. There exists a unique semigroup

St : [0,+∞[ × F → F

satisfying:

(i) St is continuous with respect to t in L∞

loc(R;R
2) endowed with the weak-∗ topology;

(ii) For every Ū = (ū1, ū2) ∈ F , StŪ provides a distributional solution of the Cauchy
problem (1.1)-(4.1) satisfying the entropy admissibility condition given by Defini-
tion A.1.

Remark 4.6. By relying on the proof of Theorem 4.4, one actually gets a slightly sharper
result than the one given in the statement of the theorem. Namely, for any Ū = (ū1, ū2) ∈ F
there exists a unique

U = (u1, u2) ∈ C0
(

[0,+∞[;L∞

loc(R;R
2)− w∗

)

solution in the sense of distributions of the Cauchy problem (1.1)-(4.1), satisfying the entropy
admissibility condition given by Definition A.1 and such that U(t, ·) =

(

u1(t, ·), u2(t, ·)
)

verifies conditions (F1) and (F2) in Definition 4.3. For such a solution, property (F3) is
automatically satisfied by U(t, ·) =

(

u1(t, ·), u2(t, ·)
)

for every t > 0.

4.3. Well-posedness results in the class of strongly continuous functions. We now
apply Theorem 2.7, obtaining well-posedness results for (1.1)-(4.1) under assumptions on the
initial data (ū1, ū2) different from those considered in Section 4.2, and in a different class of
solutions. Namely, we relax the regularity assumptions imposing only that (ū1, ū2) ∈ L∞

loc(R).
The price we have to pay is requiring that the sum ū1 + ū2 is well-separated from 0 on any
compact set, in the sense of (4.12).

We first introduce the following set:

Definition 4.7. We denote by G the set of functions U = (u1, u2) : R → R× R such that

(G1) u1, u2 ∈ L∞

loc(R);
(G2) u1 ≥ 0, u2 ≥ 0 a.e. in R;
(G3) for every R > 0 there exists δR > 0 such that

u1 + u2 ≥ δR a.e. in ]−R,R[. (4.12)

We are now ready to state our result:
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Theorem 4.8. Let Ū = (ū1, ū2) ∈ G. Then there exists a unique

U = (u1, u2) ∈ C0
(

[0,+∞[;L1
loc(R;R

2)− s
)

∩ L∞

loc

(

[0,+∞[×R;R2
)

solution in the sense of distributions of the Cauchy problem (1.1)-(4.1) and satisfying the
entropy admissibility condition given by Definition A.1. In addition, the unique solution U
takes its values in G.

Proof. As in the proof of Theorem 4.4, we reduce to study the Cauchy problems (4.8)
and (4.9). We then proceed in several steps.

Step 1. By applying Theorem A.2 and exploiting Remark A.7 (with f(z) = z/(1 + z))
we obtain that (4.8) admits a nonnegative entropy admissible solution v ∈ L∞

loc

(

[0,+∞[×R
)

.
Observing that constant functions are entropy admissible solutions of (4.8), thanks to esti-
mate (A.8) and (4.12) we easily obtain that, for every R, t > 0,

v(t, x) ≥ δR+Lt for a.e. x ∈]−R,R[. (4.13)

Proposition A.4 combined with Remark A.6 ensures that

v ∈ L∞

loc

(

]0,+∞[;BVloc(R)
)

,

and using (4.8) we deduce that

v ∈ BVloc
(

]0,+∞[×R
)

.

The fact that
v ∈ C0

(

[0,+∞[;L1
loc(R)− s

)

(4.14)

is a consequence of Theorem A.5, thanks to the uniform concavity of v 7→ v/(1 + v).
Step 2. Let

b(t, x) =
1

1 + v(t, x)
, (4.15)

where v is the same function as in Step 1. Then b is a bounded vector field belonging to
BVloc

(

]0,+∞[×R
)

. Moreover b is locally strongly nearly incompressible: by taking ρ = v
in (2.9) and (2.10) we get that Definition 2.6 is satisfied, as v solves

∂tv + ∂x(bv) = 0

and verifies (4.13) and (4.14). Then, Theorem 2.7 ensures that the Cauchy problem (4.9)
admits a unique solution w ∈ C0

(

[0,+∞[;L1
loc(R)− s

)

.
Step 3. Let b be the same vector field as in (4.15). Then v and w are the unique solutions

(by Theorem 2.7) of
{

∂tz + ∂x(bz) = 0

z(0, x) = z̄(x) ,
z ∈ C0

(

[0,+∞[;L1
loc(R)− s

)

, (4.16)

with z̄ = v̄ and z̄ = w̄ respectively. We claim that the Cauchy problem (4.16) satisfies the
following comparison principle:

z̄(x) ≥ 0 for a.e. x ∈ R =⇒ for every t ≥ 0, z(t, x) ≥ 0 for a.e. x ∈ R. (4.17)
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This implication is proved in Step 4. To conclude with the existence part, we apply (4.17)
with z = v+w and z = v−w, noticing that at t = 0 we have v+w = 2ū1 and v−w = 2ū2,
which are both positive by condition (G2) in Definition 4.7.

Step 4. We now show implication (4.17). As it comes from the existence part in the
proof of Theorem 2.7, the unique solution of (4.16) is obtained by approximating the vector
field b with smooth vector fields bε → b strongly in L1

loc

(

[0,+∞[×R
)

and considering the
solutions zε of the corresponding problems

{

∂tzε + ∂x(bεzε) = 0

zε(0, x) = z̄ ∗ ηε(x) .

(With the notation of the proof of Theorem 2.7, zε = lερε.) Since z̄ ≥ 0 a.e. in R, for
every t > 0 we have zε(t, x) ≥ 0 for a.e. x ∈ R. Hence, observing that zε converges to z
weakly-∗ in L∞

loc

(

[0,+∞[×R
)

, we conclude that z(t, x) ≥ 0 for a.e. (t, x) ∈ [0,+∞[×R. Since

z ∈ C0
(

[0,+∞[;L1
loc(R)− s

)

, implication (4.17) follows.
Step 5. Uniqueness is a simple issue: since v is by assumption strongly continuous, it is

unique by Theorem A.2, while w is unique thanks to the uniqueness part of Theorem 2.7. �

Theorem 4.8 guarantees, in particular, that the domain G is invariant for admissible solu-
tions of (1.1): if the initial datum (ū1, ū2) belongs to G, then

(

u1(t, ·), u2(t, ·)
)

∈ G for every
t ≥ 0. The following is an immediate consequence of Theorem 4.4:

Corollary 4.9. There exists a unique semigroup

St : [0,+∞[ × G → G

satisfying:

(i) St is continuous with respect to t in L1
loc(R;R

2) endowed with the strong topology;
(ii) For every Ū = (ū1, ū2) ∈ G, StŪ provides a locally bounded distributional solution of

the Cauchy problem (1.1)-(4.1) satisfying the entropy admissibility condition given by
Definition A.1.

Remark 4.10 (Extension to the k × k system). The k × k chromatography system is the
following:

∂tui + ∂x

(

ui
1 + u1 + . . .+ uk

)

= 0, i = 1, . . . , k .

By doing the change of variable v = u1 + . . .+ uk, wi = ui+1 for i = 1, . . . , k− 1, our system
becomes























∂tv + ∂x

(

v

1 + v

)

= 0

∂twi + ∂x

(

wi

1 + v

)

= 0 , i = 1, . . . , k − 1 .

All the results proved in this section, including the classification of the entropies-entropy
fluxes given in Lemma 4.1 readily extend to this case.
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5. Applications to the Keyfitz and Kranzer system

As a byproduct of our analysis, in this section we apply the results discussed in Section 2
to the Keyfitz and Kranzer system



















∂tU +
d

∑

α=1

∂

∂xα

(

fα(|U |)U
)

= 0

U(0, x) = Ū(x) .

(5.1)

The function U takes values in Rk and depends on (t, x) ∈ [0,+∞[×Rd. For each α = 1, . . . , d
the function fα : R → R is smooth. As mentioned in the introduction, to study (5.1) one
can first obtain the modulus of the solution ρ = |U | by solving







∂tρ+ div
(

f(ρ)ρ
)

= 0

ρ(0, x) = |Ū |(x) ,
(5.2)

where f = (f1, . . . , fd). Then, one gets the solution U = (ρθ1, . . . , ρθk) by solving the
continuity equations for the components of the “angular” part

∂t
(

ρθi
)

+ div
(

f(ρ)ρθi
)

= 0 , i = 1, . . . , k . (5.3)

This strategy has been exploited by Ambrosio and De Lellis [5] and by Ambrosio, Bouchut
and De Lellis [3], and was inspired by considerations in Bressan [13]. Before discussing
what we get by combining this strategy with Theorems 2.5 and 2.7, we need to provide the
following definition:

Definition 5.1. Let U be a locally bounded function solving (5.1) in the sense of distribu-
tions. Then U is a renormalized entropy solution if ρ = |U | is an entropy admissible solution
of (5.2) (in the sense of Definition A.1) such that limt→0+ ρ(t, ·) = |Ū | in the strong topology
of L1

loc(R
d).

As pointed out in Ambrosio, Bouchut and De Lellis [3] by relying on a classification of
the entropies for (5.1) due to Frid [24], under quite general assumptions on the function f
any renormalized entropy solution is indeed an entropy admissible solution of (5.1) (see for
example Dafermos [19, Chapter IV] for the definition of entropy admissible solution of a
system of conservation laws in several space dimensions: this notion is the multidimensional
analogue of Definition A.1). A complete proof of this implication can be also found in the
notes by De Lellis [20, Proposition 5.7]. Conversely, an example discussed in Bressan [13,
Section 3] shows that, even in the one-dimensional case, in general there might be entropy
admissible solutions of (5.1) that are not renormalized entropy solutions. The same example
shows that, in general, entropy admissible solutions of (5.1) are not unique.

Existence, uniqueness and stability results for renormalized entropy solutions of (5.1)
were obtained in Ambrosio and De Lellis [5] and Ambrosio, Bouchut and De Lellis [3]. In
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particular, in [3] the Cauchy datum Ū in (5.1) satisfies |Ū | ∈ L∞ ∩BVloc and |Ū | can attain
the value 0.

By applying Theorem 2.7, we manage to relax the assumption |Ū | ∈ L∞ ∩ BVloc by
requiring only |Ū | ∈ L∞. However, the price we have to pay is that we restrict to the one-
dimensional case, we assume that the map ρ 7→ f(ρ)ρ is uniformly convex, and we impose
that the initial datum |Ū | is well separated from 0. Similar results were already known: for
example in Freistühler [23] and Panov [30] well-posedness theorems in one space dimension
for L∞ initial data were obtained under more general assumptions than those we consider
here. However, Theorem 5.2 below quickly follows from Theorem 2.7, so for completeness
we provide the details of the proof.

Theorem 5.2. Assume that the following conditions are satisfied:

(1) there exists c > 0 such that
[

f(ρ)ρ
]

′′

≥ c on R;

(2) Ū ∈ L∞(R;Rk);
(3) For every R > 0, there exists CR > 0 such that

|Ū(x)| ≥
1

CR

> 0 for a.e. x ∈ [−R,R].

Then the Cauchy problem






∂tU + ∂x
[

f(|U |)U
]

= 0

U(0, x) = Ū(x)
(5.4)

admits a unique renormalized entropy solution

U ∈ C0
(

[0,+∞[;L1
loc(R,R

k)− s
)

∩ L∞
(

[0,+∞[×R;Rk
)

.

Proof. Existence. The proof exploits the splitting of (5.1) in the coupling between (5.2)
and (5.3). We proceed in several steps.

Step 1. We first construct the modulus ρ of the solution. Indeed, Theorem A.2 ensures
that there exists a unique locally bounded entropy admissible solution ρ to

∂tρ+ ∂t
(

f(ρ)ρ
)

= 0 (5.5)

which satisfies
lim
t→0+

ρ(t, ·) = |Ū | strongly in L1
loc(R). (5.6)

Step 2. Our goal is now applying Theorem 2.7. Let us check that all the hypotheses are
satisfied. We first show that

b(t, x) =
[

f(ρ)
]

(t, x) (5.7)

is a locally strongly nearly incompressible vector field, in the sense of Definition 2.6. By
combining (A.8) and conditions (2) and (3) in the statement of the theorem we get that for
every R > 0 and T > 0 there exists a constant CR,T > 0 such that

1

CR,T

≤ ρ(t, x) ≤ ‖Ū‖L∞ for a.e. (t, x) ∈ [0, T ]× BR(0). (5.8)
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Also, by Theorem A.5 and by assumption (1), the map t 7→ ρ(t, ·) is strongly continuous
with values in L1

loc(R).
Thanks to Proposition A.4 and assumption (1), we deduce that ρ ∈ L∞

loc

(

]0,+∞[;BVloc(R)
)

.
Moreover, by exploiting the equation satisfied by ρ we also have ρ ∈ BVloc(]0,+∞[×R), and
since f is smooth, the same regularity is inherited by the vector field b defined in (5.7).

We can then apply Theorem 2.7 and conclude that, for every Ū = (ū1, . . . , ūk) ∈ L∞(R;Rk)
the Cauchy problems

{

∂tui + ∂x(bui) = 0
ui(0, x) = ūi(x) ,

i = 1, . . . , k , (5.9)

admit a unique locally bounded solution U = (u1, . . . , uk) ∈ C0
(

[0,+∞[;L1
loc(R;R

k)− s
)

.
Step 3. To conclude the proof of the existence part, we need to show that, for every

t ≥ 0,

ρ(t, x) = |U |(t, x) for a.e. x ∈ R. (5.10)

Thanks to (5.8), for every i = 1, . . . , k we can define θi := ui/ρ, and we get

∂t
(

ρθi
)

+ ∂x
(

bρθi
)

= 0 ,

in the sense of distributions on ]0,+∞[×R. Since the functions θi are locally bounded, we
can apply Lemma 2.1(i) on the time interval [τ,+∞[ for an arbitrary τ > 0 to deduce that

∂t
(

ρθ2i
)

+ ∂x
(

bρθ2i
)

= 0 ,

in the sense of distributions on ]0,+∞[×R, or equivalently

∂t

(

u2i
ρ

)

+ ∂x

(

b
u2i
ρ

)

= 0 . (5.11)

Summing over i = 1, . . . , k the equations in (5.11), we obtain

∂t

(

|U |2

ρ

)

+ ∂x

(

b
|U |2

ρ

)

= 0 . (5.12)

Moreover, (5.9) and (5.6) imply that

|U(0, ·)|2

ρ(0, ·)
= |Ū | . (5.13)

Recalling (5.7) and comparing (5.5) and (5.12), we see that ρ and |U |2/ρ are strongly con-
tinuous in time, and solve the same Cauchy problem (the initial data coincide because of
(5.13)). Thus, by applying Theorem 2.7 we obtain that, for every t ≥ 0, ρ(t, x) = |U |(t, x)
for a.e. x ∈ R, as desired.

Uniqueness. Let UA and UB be two bounded strongly continuous renormalized entropy
solutions of (5.4). Then ρA = |UA| and ρB = |UB| are two entropy admissible solutions
of (5.2) for which limt→0+ ρA(t, ·) = limt→0+ ρB(t, ·) = |Ū | strongly in L1

loc(R). By the
uniqueness part in Theorem A.2, we deduce that, for every t ∈ [0,+∞[,

ρA(t, x) = ρB(t, x) for a.e. x ∈ R.



WELL-POSEDNESS OF CONTINUITY EQUATIONS AND APPLICATIONS 29

Let ρ denote the common value of ρA and ρB. We have

∂tUA,i + ∂x
(

f(ρ)UA,i

)

= 0 , ∂tUB,i + ∂x
(

f(ρ)UB,i

)

= 0 for every i = 1, . . . , k

and

UA,i(0, ·) = UB,i(0, ·) a.e. in R, for every i = 1, . . . , k.

Theorem 2.7 thus gives that for every i = 1, . . . , k and all t ∈ [0,+∞[

UA,i(t, x) = UB,i(t, x) for a.e. x ∈ R,

as desired. �

Remark 5.3. In Theorem 5.2 we restrict to the one-dimensional case d = 1 because in the
proof we need to apply Olĕınik’s estimate (A.10) to gain a regularizing effect (this is also
the reason why we impose that the function ρ 7→ f(ρ)ρ is uniformly convex).

Remark 5.4. By exploiting the same arguments as in the proof of Theorem 5.2, but applying
Theorem 2.5 instead of Theorem 2.7, one obtains the existence and uniqueness result proven
by Ambrosio, Bouchut and De Lellis in [3]. Namely, assume that |Ū | ∈ L∞ ∩ BVloc(R

d).
Then (5.1) admits a unique renormalized entropy solution U ∈ C0

(

[0,+∞[;L∞(Rd;Rk)−w∗
)

.

Appendix A. Systems of conservation laws in one space dimension

For completeness, in this short Appendix we go over some results that are used in the
paper. Consider a system of conservation laws in one space dimension:

∂tU + ∂x
[

F (U)
]

= 0 , where (t, x) ∈ [0,+∞[×R and U ∈ Rk, (A.1)

with F : Rk → Rk smooth. For a general introduction to the subject, we refer for example
to the books by Bressan [12], by Dafermos [19] and by Serre [32]. In the following, we focus
on the Cauchy problem, assigning the initial condition

U(0, x) = Ū(x). (A.2)

It is known that, even if the initial datum Ū is very regular, in general there is no classical
solution to (A.1)-(A.2) defined on the whole time interval t ∈ [0, +∞[. Examples of solutions
starting from a datum Ū ∈ C∞ and developing discontinuities in finite time are available even
in the scalar case k = 1. It is thus natural to interpret (A.1) in the sense of distributions,
by requiring that U is a locally bounded measurable function satisfying

∫ +∞

0

∫

R

[

U ∂tΦ + F (U) ∂xΦ
]

dxdt = 0 for any Φ ∈ C1
c

(

]0, +∞[×R;Rk
)

. (A.3)

However, in general a weak solution of the Cauchy problem (A.1)-(A.2) is not unique. To
select a unique solution, various admissibility conditions have been introduced, often moti-
vated by physical considerations (see again Dafermos [19]). Here we focus on the entropy
admissibility condition.
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Definition A.1. Let η : Rk → R and q : Rk → R be twice continuously differentiable
functions. The couple (η, q) is an entropy-entropy flux pair for (A.1) if

∇η(U)DF (U) = ∇q(U) for every U ∈ Rk, (A.4)

where DF denotes the Jacobian matrix of F . Let U : [0, +∞[×R → Rk be a bounded,
measurable function. Then U is an entropy admissible solution of (A.1) if the following
holds: for any entropy-entropy flux pair (η, q) with η convex, and for any φ ∈ C1

c

(

]0, +∞[×R
)

nonnegative, we have
∫ +∞

0

∫

R

η(U) ∂tφ+ q(U) ∂xφ dxdt ≥ 0. (A.5)

Let us now focus on a single conservation law in one space dimension

∂tu+ ∂xf(u) = 0 . (A.6)

Kružkov [27] proved existence and uniqueness results for the Cauchy problem in the class of
entropy admissible solutions (in the sense of Definition A.1) assuming the initial condition
in strong sense:

Theorem A.2 (Kružkov, [27]). Let f be a smooth function and assume that ū ∈ L∞(R).
Then there exists a unique function u ∈ L∞

(

[0,+∞[×R
)

satisfying the following properties:

(1) u is a solution in the sense of distributions of (A.6);
(2) the solution u is entropy admissible;
(3) lim

t→0+
u(t, ·) = ū in the L1

loc(R) topology.

Furthermore, the solution u enjoys the following properties:

Theorem A.3 (Kružkov, [27]). Let f be a smooth function, and for ū, v̄ ∈ L∞(R) let u,
v ∈ L∞

(

[0,+∞[×R
)

be the solutions provided by Theorem A.2 to the Cauchy problems for
(A.6) with initial data ū and v̄, respectively. Define further

L := sup
{

|f ′(z)| : |z| ≤ max{‖ū‖∞, ‖v̄‖∞}
}

. (A.7)

Then, for any R > 0 and for all t > 0 we have
∫ R

−R

[

u(t, x)− v(t, x)
]+
dx ≤

∫ R+Lt

−R−Lt

[

ū(x)− v̄(x)
]+
dx , (A.8)

where [·]+ denotes the positive part. Moreover, if we assume ū ∈ BVloc(R) and denote by
TotVarR{u(t, ·)} the total variation of the function u(t, ·) on the interval ]−R,R[⊂ R, then
for all t ∈ [0,+∞[

TotVarR{u(t, ·)} ≤ TotVarR+Lt{ū} . (A.9)

Under an assumption of uniform convexity on the flux, namely f ′′(u) ≥ c > 0 for any
u ∈ R, the classical Olĕınik’s result [29] asserts that the solution of the Cauchy problem
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provided by Theorem A.2, with initial datum ū ∈ L∞(R), enjoys the following one-sides
estimate: for all t > 0 it holds

u(t, y)− u(t, x) ≤
y − x

ct
for all x < y, x, y ∈ R \Nt, (A.10)

with Nt Lebesgue negligible (possibly depending on t). In particular, (A.10) implies that the
space distributional derivative ∂xu(t, ·) of the solution u satisfies the upper bound

∂xu(t, ·) ≤
1

ct
in D′(R), for all t > 0, (A.11)

and this implies in particular that ∂xu(t, ·) is a measure. The following fact is well known,
but we provide the proof for completeness.

Proposition A.4. Let the flux f be uniformly convex, i.e. f ′′ ≥ c > 0, and for ū ∈
L∞(R) let u ∈ L∞

(

[0,+∞[×R
)

be the solution provided by Theorem A.2. Then u ∈

L∞

loc

(

]0,+∞[;BVloc(R)
)

.

Proof. We decompose the measure ∂xu(t, ·) as

∂xu(t, ·) =
[

∂xu(t, ·)
]+

−
[

∂xu(t, ·)
]

−

.

Then, for every R > 0 we have
∣

∣∂xu(t, ·)
∣

∣([−R,R]) =
[

∂xu(t, ·)
]+

([−R,R]) +
[

∂xu(t, ·)
]

−

([−R,R])

= 2
[

∂xu(t, ·)
]+

([−R,R])−
[

∂xu(t, ·)
]

([−R,R])

≤
4R

ct
+ |u(R+)− u(−R−)| ≤

4R

ct
+ 2‖u‖∞ .

�

The following results regarding the strong continuity of the entropy admissible solution
has been proven by Chen and Rascle [16].

Theorem A.5. Assume that f ′′(u) ≥ c > 0 for any u ∈ R and let ū ∈ L∞(R). Let
u ∈ L∞

(

[0,+∞[×R
)

be a solution in the sense of distributions of (A.6) with u(0, ·) = ū, and

assume that u is entropy admissible. Then, u ∈ C0
(

[0,+∞[;L1
loc(R)− s

)

, and in particular
u is the unique solution provided by Theorem A.2.

Remark A.6. Proposition A.4 and Theorem A.5 can be easily extended to the case of a
uniformly concave flux, that is f ′′ ≤ −c < 0. This can be seen by setting v(t, x) = u(t,−x)
and observing that v is an entropy admissible solution of the equation ∂tv+∂x

[

(−f)(v)
]

= 0,
which has a uniformly convex flux.

Remark A.7. If f ′ is globally bounded, then Theorems A.2 and A.3 and Proposition A.4 can
be extended to the case of a locally bounded initial datum ū ∈ L∞

loc(R), the only difference in
the results obtained being that now the solution u belongs to L∞

loc

(

[0,+∞[×R
)

. Indeed the
constant L in (A.8) and (A.9) actually depends on ‖ū‖L∞ and ‖v̄‖L∞ only through ‖f ′(ū)‖L∞

and ‖f ′(v̄)‖L∞ (see (A.7)). Being these quantities finite, this ensures a global bound on the
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speed of propagation. In addition, observe that the notions of solution in the sense of
distributions and of entropy admissible solution are both local. Hence, by considering a
suitable truncation of the initial datum and exploiting the finite propagation speed, we can
easily complete the argument.
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