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Higher Order Positive Semidefinite Diffusion Tensor Imaging∗

Liqun Qi†, Gaohang Yu‡, and Ed X. Wu§

Abstract. Due to the well-known limitations of diffusion tensor imaging, high angular resolution diffusion
imaging (HARDI) is used to characterize non-Gaussian diffusion processes. One approach to ana-
lyzing HARDI data is to model the apparent diffusion coefficient (ADC) with higher order diffusion
tensors. The diffusivity function is positive semidefinite. In the literature, some methods have been
proposed to preserve positive semidefiniteness of second order and fourth order diffusion tensors.
None of them can work for arbitrarily high order diffusion tensors. In this paper, we propose a
comprehensive model to approximate the ADC profile by a positive semidefinite diffusion tensor of
either second or higher order. We call this the positive semidefinite diffusion tensor (PSDT) model.
PSDT is a convex optimization problem with a convex quadratic objective function constrained by
the nonnegativity requirement on the smallest Z-eigenvalue of the diffusivity function. The smallest
Z-eigenvalue is a computable measure of the extent of positive definiteness of the diffusivity function.
We also propose some other invariants for the ADC profile analysis. Experiment results show that
higher order tensors could improve the estimation of anisotropic diffusion and that the PSDT model
can depict the characterization of diffusion anisotropy which is consistent with known neuroanatomy.

Key words. positive semidefinite diffusion tensor, apparent diffusion coefficient, Z-eigenvalue, convex optimiza-
tion problem, invariants
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1. Introduction. The diffusion tensor imaging (DTI) model was proposed in 1994 by
Basser, Mattiello, and LeBihan [6, 7], and is now widely used in biological and clinical research
[5]. However, DTI is known to have a limited capability in resolving multiple fiber orientations
within one voxel. This is mainly because the probability density function for random spin
displacement is non-Gaussian in complex fiber configuration, such as when fiber bundles cross
or diverge within the same voxel. Thus, the modeling of self-diffusion by a second order tensor
breaks down in such cases.

In order to describe the non-Gaussian diffusion process, high angular resolution diffusion
imaging (HARDI) has been proposed by Tuch et al. [34]. The idea of HARDI is to sample
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the sphere in N discrete gradient directions and compute the apparent diffusion coefficient
(ADC) profile along each direction, without an a priori assumption about the nature of the
diffusion process within the voxel. A number of approaches have been put forth to analyze
HARDI data [1, 11, 12, 14, 19, 33]. One natural generalization is to model the ADC profile
with higher order diffusion tensors (HODT) [23]. This model does not assume any a priori
knowledge about the diffusivity profile and has the potential to describe the non-Gaussian
diffusion. Also, there are some other models, such as the continuous mixture of Gaussian
models [18], which could also deal with complex local geometries.

An intrinsic property of the diffusivity profile is positive semidefiniteness [3, 4, 9, 15, 35].
Hence, the diffusion tensor, either second or higher order, must be positive semidefinite. For
the second order diffusion tensor, one may diagonalize it and project it to the symmetric
positive semidefinite cone by setting the negative eigenvalues to zero [11]. Recently, the
authors in [4] proposed a ternary quartics approach to preserve positive semidefiniteness for
a fourth order diffusion tensor. In [15], by mapping a fourth order three-dimensional tensor
to a second order six-dimensional tensor which is a 6 × 6 matrix, the authors extended the
Riemannian framework from second order tensors [2, 20, 25] to the space of fourth order
tensors. Furthermore, they proceeded to use the Riemannian framework for S+ in the space
S+(6) to guarantee a positive diffusion function. However, none of them is comprehensive
enough to work for arbitrarily high order diffusion tensors.

In the next section, we propose approximating the ADC profile by a positive semidefinite
diffusion tensor of either second or higher order. We show that this model is a convex opti-
mization problem with a convex quadratic objective function. In a certain sense, this model
is the least squares problem under the positive semidefiniteness constraint. Under a full rank
assumption on the sample gradient directions, we show that this model has a unique global
minimizer. If the least squares solution is in the positive semidefinite region, then it is the
global minimizer of this model. Otherwise, we show that the global minimizer of this model
is on the boundary of the positive semidefiniteness region.

The constraint of the model discussed in section 2 is not explicit. On the other hand,
the smallest Z-eigenvalue of the diffusivity function is a computable measure for the extent of
positive definiteness of the diffusivity function. In the appendix (section 7), we explain the
definition of the smallest Z-eigenvalue and present a computational method for calculating it.

In section 3 we propose a comprehensive model for approximating the ADC profile. We
call this the positive semidefinite diffusion tensor (PSDT) model. In essence, PSDT is the
model in section 2, with an explicit constraint; i.e., the smallest Z-eigenvalue of the diffusivity
function is nonnegative. We show that the smallest Z-eigenvalue is a concave function of the
diffusivity function. We also give an optimality condition for PSDT and the expression of the
subdifferential of the smallest Z-eigenvalue function.

In the DTI model, there are several characteristic quantities for the ADC profile. These
include the three eigenvalues of the second order diffusion tensor, the mean diffusivity, and
the fractional anisotropy. In [24], Özarslan, Vemuri, and Mareci proposed some rotationally
invariant parameters for HODT. In section 4, we propose several characteristic quantities for
PSDT.

Performance of PSDT is depicted in section 5 on synthetic data as well as on MRI data.
Experiment results show that higher order tensors could improve the estimation of anisotropic
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diffusion and that the PSDT model can depict the characterization of diffusion anisotropy
which is consistent with known neuroanatomy. Section 6 is the conclusion.

2. Positive semidefinite diffusion tensor. We use g = (g1, g2, g3)
T to denote the magnetic

field gradient direction [4]. Assume that we use an mth order diffusion tensor. Then the
diffusivity function can be expressed as

(2.1) d(g) =
m∑
i=0

m−i∑
j=0

dijg
i
1g

j
2g

m−i−j
3 .

A diffusivity function d can be regarded as an mth order symmetric tensor [8, 11, 12, 23, 26].
Clearly, there are

n =

m+1∑
i=1

i =
1

2
(m+ 1)(m+ 2)

terms [23, 11] in (2.1). Hence, each diffusivity function can also be regarded as a vector in
�n.

We may think that any vector in �n is indexed by ij, where j = 0, . . . ,m− i, i = 0, . . . ,m.
In this way, we may regard ĝ as a vector in �n, whose ijth component is gi1g

j
2g

m−i−j
3 . Then

we may rewrite (2.1) as
d(g) = d�ĝ;

i.e., we may regard d(g) as the scalar product of vectors d and ĝ. This point of view will be
useful later.

We say that d is positive semidefinite if for all g ∈ �3, d(g) ≥ 0. Since we may regard d
as a vector in �n, we say that d is a positive semidefinite vector in �n in this case. Clearly,
m should be even such that there are nonzero positive semidefinite vectors. Denote the set of
all positive semidefinite vectors as Sm, or simply S when m is fixed.

Theorem 2.1. S is a closed convex cone in �n.
Proof. Let d(1), d(2) ∈ S and a, b ≥ 0. Let d = ad(1) + bd(2). For any g ∈ �3,

d(g) =

m∑
i=0

m−i∑
j=0

dijg
i
1g

j
2g

m−i−j
3 =

m∑
i=0

m−i∑
j=0

(
ad

(1)
ij + bd

(2)
ij

)
gi1g

j
2g

m−i−j
3

= ad(1)(g) + bd(2)(g) ≥ 0.

Hence d ∈ S. This proves that S is a convex cone. Let {d(k)} ⊂ S and limk→∞ d(k) = d. For
any g ∈ �3,

d(g) = lim
k→∞

d(k)(g) ≥ 0.

This shows that S is closed. The proof is complete.
Suppose that we sample the ADC values in N gradient directions {g(l) : l = 1, . . . , N},

N ≥ n, and that the corresponding ADC values on these N gradients are {bl : l = 1, . . . , N}.
Then {ĝ(l) : l = 1, . . . , N} are N vectors in �n. We assume that {ĝ(l) : l = 1, . . . , N} spans
�n, i.e., there are n vectors among these N vectors which are linearly independent, or we say
that {ĝ(l) : l = 1, . . . , N} has rank n. We call this assumption the full rank assumption. This
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assumption is necessary so that the N gradient directions {g(l) : l = 1, . . . , N} can reflect
the ADC profile sufficiently. When N is relatively big, this assumption would be satisfied in
general. Let A be an n×N matrix whose column vectors are ĝ(l), l = 1, . . . , N . Let B = AA�.
Then B is an n× n positive semidefinite symmetric matrix. Under the full rank assumption,
B is a positive definite symmetric matrix. We also let b be a vector in �N , with components
{bl : l = 1, . . . , N}.

The least squares problem for finding a diffusivity function to reflect the ADC profile is
to find d̄ ∈ �n such that

(2.2) L(d̄) = min
d∈�n

L(d),

where

L(d) =

N∑
l=1

(
d(g(l))− bl

)2
=

N∑
l=1

((
ĝ(l)

)�
d− bl

)2
.

It is well known that under the full rank assumption the solution of the least squares
problem (2.2) is

(2.3) d̄ = B−1Ab.

As d̄ may not be positive semidefinite, we formulate a new model as

(2.4) L(d∗) = min
d∈S

L(d).

In a certain sense, (2.4) is the least squares problem under the positive semidefiniteness con-
straint.

The function L is a convex quadratic function. Actually, by (2.3), for any d ∈ �n, we have

(2.5) L(d) = (d− d̄)�B(d− d̄).

The constraint of (2.4) is not in an explicit function form. However, we may use PSDT
to get some important theoretical properties of the solution. In particular, we will show that
if d̄ �∈ S, then d∗ is on the boundary of S. This property is useful for calculating d∗ in this
case. We now have the following theorem.

Theorem 2.2. Problem (2.4) is a convex optimization problem with a convex quadratic ob-
jective function. If d̄ ∈ S, then d∗ = d̄ is a global minimizer of (2.4).

Furthermore, assume that the full rank assumption holds. Then (2.4) has a unique solution
d∗. In this case, if d̄ �∈ S, then d∗ is on ∂S, the boundary of S.

Proof. The first two conclusions follow directly from Theorem 2.1, (2.4), and (2.5).
We now assume that the full rank assumption holds. Clearly, d = 0 is in S, and hence is

a feasible solution of (2.4). Therefore, we may add an additional constraint

L(d) ≤ L(0),

i.e.,

(d− d̄)�B(d− d̄) ≤ d̄�Bd̄,
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to (2.4). As the full rank assumption holds, B is positive definite. Then, the additional
constraint makes the feasible region compact. Thus, (2.4) has a global minimizer d∗ in this
case. According to convex analysis [31], the optimality condition of (2.4) is

(2.6) −∇L(d∗) ∈ NS(d∗),

where NS(d∗) is the normal cone of S at d∗. By (2.5), ∇L(d∗) = 2B(d∗− d̄). By the definition
of the normal cone [31], (2.6) implies that for any d ∈ S, we have

(d̄− d∗)�B(d− d∗) ≤ 0.

Suppose that d∗∗ is also a global minimizer of (2.4). Then the above inequality implies that

(d̄− d∗)�B(d∗∗ − d∗) ≤ 0

and

(d̄− d∗∗)�B(d∗ − d∗∗) ≤ 0.

Summing up these two inequalities, we have

(d∗∗ − d∗)�B(d∗∗ − d∗) ≤ 0.

Since B is positive definite, this implies that d∗∗ = d∗; i.e., d∗ is the unique global minimizer
of (2.4).

Under the full rank assumption, if d̄ �∈ S, then d∗ �= d̄ as d∗ ∈ S. Consider the segment

[d∗, d̄] ≡ {d∗ + t(d̄− d∗) : 0 ≤ t ≤ 1}.

As S is a closed convex set, d̄ �∈ S, and d∗ ∈ S, there is t0 ∈ [0, 1) such that d∗ + t0(d̄− d∗) is
on ∂S, the boundary of S. As d∗ is the unique global minimizer of (2.4), we have

L(d∗) ≤ L(d∗ + t0(d̄− d∗)),

i.e.,

(d∗ − d̄)�B(d∗ − d̄) ≤ (
d∗ + t0(d̄− d∗)− d̄

)�
B
(
d∗ + t0(d̄− d∗)− d̄

)
= (1− t0)

2(d∗ − d̄)�B(d∗ − d̄).

As (d∗ − d̄)�B(d∗− d̄) > 0, this implies that t0 = 0; i.e., d∗ is on ∂S, the boundary of S. This
completes the proof.

How, then, to identify d̄ ∈ S? In the appendix, we will show that d ∈ S if and only if
λmin(d), the smallest Z-eigenvalue of d, is nonnegative. We will also provide a computational
method for calculating λmin(d).
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3. The PSDT model. With the discussion in section 2, we are in a position to formulate
an explicit constraint for (2.4). We call this the PSDT (positive semidefinite diffusion tensor)
model. It is as follows:

(3.1) L(d∗) = min{L(d) : λmin(d) ≥ 0}.

The function value of λmin(d) is computable with the method provided in the appendix.
Theorem 3.1. λmin(d) is a continuous concave function. Hence, PSDT (3.1) is a convex

optimization problem.
Furthermore, suppose that the full rank assumption holds and d̄ �∈ S. Then d∗ is the unique

global minimizer of PSDT (3.1) if and only if there is a positive number μ such that

(3.2)

{
B(d∗ − d̄) = μĝ∗,
λmin(d

∗) = 0,

where ĝ∗ is a subgradient [31] of the concave function λmin at d∗. By (3.2), we have

(3.3)

{
(d∗)�B(d∗ − d̄) = 0,

(ĝ∗)�d∗ = 0.

Proof. Let d(1), d(2) ∈ �n, 0 ≤ t ≤ 1, and d = td(1) + (1 − t)d(2). Suppose g∗ is a global
minimizer of (7.1). Then (g∗1)

2 + (g∗2)
2 + (g∗3)

2 = 1, and

λmin(d) = d(g∗) = td(1)(g∗) + (1− t)d(2)(g∗) ≥ tλmin(d
(1)) + (1− t)λmin(d

(2)).

This shows that λmin(d) is a concave function. Since λmin is a concave function defined in the
whole space �n, according to convex analysis [31], it is a continuous function. Since L is a
convex quadratic function, PSDT is also a convex optimization problem.

Furthermore, suppose that the full rank assumption holds and d̄ �∈ S. By Theorem 2.2
and (2.4), PSDT (3.1) has a unique global minimizer d∗, and d∗ is on the boundary of S.
Since λmin(d) is continuous, we have λmin(d

∗) = 0. Since d̄ �∈ S, we know that d∗ �= d̄
and ∇L(d∗) �= 0. Now, (3.2) follows from (2.5) and the optimality condition of the convex
optimization problem PSDT (3.1). By (7.3), we have

λmin(d
∗) = (ĝ∗)�d∗.

From this and the second equation of (3.2), we have the second equation of (3.3). Let the
two sides of the first equation of (3.2) take inner product with d∗. Combining this with the
second equation of (3.3), we have the first equation of (3.3).

Suppose that g is a global minimizer of (7.1). By (7.3), we have

(3.4) λmin(d) = ĝ�d.

When m is even, if g is a global minimizer of (7.1), then h = −g is also a global minimizer
of (7.1). However, we have ĝ = ĥ in this case. Therefore, such a ĝ in (3.4), generated by
a global minimizer g, may still be unique even if the global minimizers are not unique. By
convex analysis, we know that if such a ĝ in (3.4) is unique, then λmin(d) is differentiable at
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d and its gradient is ĝ. If such a ĝ is not unique, then any such ĝ is a subgradient of λmin(d)
at d and the subdifferential of λmin(d) at d is the convex hull of all such ĝ’s.

Based on these, we may solve PSDT (3.1) by a standard convex programming method
[17]. Under the full rank assumption, we may use (2.3) to calculate d̄. If λmin(d̄) ≥ 0, then
d∗ = d̄ and the task is completed. If λmin(d̄) < 0, by Theorem 3.1, λmin(d

∗) = 0. Hence, in
this case, we need only solve the model

(3.5) L(d∗) = min{L(d) : λmin(d) = 0},
which has only an equality constraint. However, it is not a convex optimization problem. On
the other hand, (3.2) is still its optimality condition. If we use the subgradient of λmin(d) as
a substitute for its gradient, according to numerical optimization [22], we may use a gradient
descent method to solve (3.5).

We may also apply the analytical center cutting plane method in [16] to solve the nondiffer-
entiable convex optimization problem (3.1). Then problem (3.1) is theoretically polynomial-
time solvable by [16]. In section 5, where the gradient descent method is used, we may also
see that this problem is practically solvable.

4. Characteristic quantities of PSDT. In the DTI model, there are some characteristic
quantities which play important roles in the ADC profile analysis of DTI. These characteristic
quantities are rotationally invariant, independent from the choice of the laboratory coordinate
system. They include the three eigenvalues λ1 ≥ λ2 ≥ λ3 of the second order diffusion tensor
D, the mean diffusivity (MD), and the fractional anisotropy (FA). The largest eigenvalue λ1

describes the diffusion coefficient in the direction parallel to the fibers in the human tissue.
The other two eigenvalues describe the diffusion coefficient in the direction perpendicular to
the fibers in the human tissue. The mean diffusivity is

MD =
λ1 + λ2 + λ3

3
,

while the FA is

FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

,

where 0 ≤ FA ≤ 1. If FA = 0, the diffusion is isotropic. If FA = 1, the diffusion is
anisotropic.

In [24], Özarslan, Vemuri, and Mareci generalized the well-known FA measure for HARDI
data fitting with higher order tensors. They proposed a generalized anisotropy (GA) measure
which is based on the generalization of the trace and the variance of the normalized diffusivity
dN (g) � d(g)

gentr(d(g)) . Let the unit hemisphere be denoted by Ω; then the generalized trace

gentr(d(g)) is defined as

gentr(d(g)) =
3

2π

∫
Ω
d(g)dg.

The generalized variance of normalized diffusivity is given by

V =
1

3

(
gentr(dN (g)2)− 1

3

)
.
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And the final GA measure is defined as

GA = 1− 1

1 + (250V )ε(V )
, where ε(V ) = 1 +

1

1 + 5000V
.

Just as FA in the DTI case, GA also possesses the property of being scaled between 0 and 1.
Furthermore, GA does not assume any specified approximation order.

According to [26, 27], the Z-eigenvalues are also rotationally invariant. Hence, we may
use them and their functions as characteristic quantities of PSDT. In [8], Z-eigenvalues have
already been proposed for HODT.

After finding the global minimizer d∗ of PSDT, we may use the method in the appendix to
calculate λmin = λmin(d

∗) and the other Z-eigenvalues of d∗ as λ1 ≥ λ2 ≥ · · · ≥ λν ≥ 0. Then
λ1 = λmax and λν = λmin. By [21], we may conclude that in the regular case, the number ν
of Z-eigenvalues of d∗ satisfies ν ≤ m2 −m+ 1.

As we discussed before, λmin is a measure of the extent of positive definiteness of d∗.
On the other hand, if (gmax, λmax) is a solution of (7.2), then gmax is the principal ADC
direction, as discussed in [8]. Along this principal direction gmax, the ADC value of d∗ attains
its maximum.

We define the PSDT mean value as

MPSDT =
1

ν

ν∑
i=1

λi,

and define the PSDT fractional anisotropy similarly to [32, 30] as

FAPSDT =

√
ν

ν − 1

√∑ν
i=1(λi −MPSDT )2∑ν

i=1 λ
2
i

.

Then we have 0 ≤ FAPSDT ≤ 1. If FAPSDT = 0, the diffusion is isotropic. If FAPSDT = 1,
the diffusion is anisotropic.

5. Numerical examples. Here we present some numerical examples to explain our exper-
iments and their motivations. First, we report some computational results of the synthetic
data experiment. We generated the synthetic diffusion weighted images using the following
multitensor model [1]:

(5.1) S(gi) =

f∑
k=1

pke
−bgiDkgi + noise,

where f ∈ {0, 1, 2, 3} is the number of fibers, pk is the proportion of tissue in the voxel that

corresponds to the kth fiber (
∑f

k=1 pk = 1), b is the b-value, gi is the ith gradient direction
for i ∈ {1, . . . , 81}, and Dk is the diffusion tensor of the kth fiber. The noise was typically
generated by Rician noise (complex Gaussian noise) with standard deviation of 1/σ, producing
a signal to noise ratio (SNR) of σ. In our experiments, the b-value is equal to 3000 sec/mm2

and the diffusion tensors were selected, such as Dk = diag(1700, 100, 100) × 10−6 mm2/sec
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Figure 1. Comparison of our method with the least squares (LS) method for a one-fiber test, fitting with a
fourth order tensor.

for k = 1, 2, 3. We generated Rician-corrupted data S as done in [13, 36]. For each noise-free
data x, we computed S as

S =

√(
x√
2
+ nr

)2

+

(
x√
2
+ ni

)2

,

where nr and ni ∼ N (0, σ2). The value S is the realization of a random variable with a
Rician probability density function of parameters x and σ.

In order to compare the robustness of our method in the presence of noise, we generated
the signals by (5.1) at 10 different SNRs ranging from 5 to 50 and repeated the experiments
10 times. Then, as done in [11], we computed the mean of the pointwise squared difference
between the estimated ADC points and points on the ground truth ADC profiles (noise-free
in (5.1)); i.e., Ei = (S(gi) − Strue(gi))

2. The results are plotted in Figures 1 and 2, which
correspond to ADC functions fitting with a fourth order diffusion tensor and a sixth order
tensor, respectively. The CPU time of Z-eigenvalue calculation at each iteration is about 0.06
sec when the ADC function is fitted with a fourth order tensor, or 0.2 sec when it is fitted
with a sixth order tensor. As would be expected, the mean of the squared errors decreases
as the SNR increases. The PSDT method compares favorably to the LS method. As can be
seen from Figures 1 and 2, the mean of the squared errors will also decrease when the ADC
function is fitted with a higher order tensor. In Figure 1, when the SNR is greater than 15,
the mean squared errors generated by the PSDT method are below 0.0026 and the errors
generated by the LS method are about 0.0018. In Figure 2, the PSDT method and the LS
method generated a similar mean squared error. We can see from Figure 2 that even at a low
SNR of 10, the mean squared error generated by the PSDT method is about 0.01, while at an
SNR of 25 it drops to 0.0007.

The LS method is a simple approach to estimating the coefficients of an ADC function,
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Figure 2. Comparison of our method with the LS method for a one-fiber test, fitting with a sixth order
tensor.

Table 1
Z-eigenvalues and eigenvectors of ADCLS.

g1 g2 g3 λ

1 -0.0114 -0.9312 0.3644 0.6774
2 0.828 0.4958 0.2619 -0.0297
3 -0.0091 0.8683 0.4959 0.6988
4 -0.844 -0.4156 0.3389 -0.0178
5 -0.8376 0.2439 0.4888 -0.0349
6 -0.0112 -0.5166 0.8561 0.6854
7 0.8313 -0.1746 0.5276 -0.0087
8 -0.0063 0.1465 0.9892 0.6761
9 0.9997 -0.0012 0.0234 0.112

which is fast but does not guarantee positive diffusivity. For example, in the single tensor
model, the ADC function (without noise) estimated by the LS method, fitting with a fourth
order tensor, is ADC(g) = dTLS ĝ, where dLS is a vector of dimension 15 with dLS(1) =
0.1115, dLS(2) = 0.6848, dLS(3) = 0.6771, dLS(4) = −0.0005, dLS(5) = 0.0408, dLS(6) =
0.0096, dLS(7) = 0.0363, dLS(8) = −0.0245, dLS(9) = −0.0142, dLS(10) = −0.68, dLS(11) =
−0.6507, dLS(12) = 1.3911, dLS(13) = −0.0739, dLS(14) = −0.114, dLS(15) = 0.0049. In
our experiment, ĝ is ordered as ĝ(1) = g41 , ĝ(2) = g42 , ĝ(3) = g43 , ĝ(4) = g31g2, ĝ(5) = g31g3,
ĝ(6) = g1g

3
2 , ĝ(7) = g32g3, ĝ(8) = g1g

3
3 , ĝ(9) = g2g

3
3 , ĝ(10) = g21g

2
2 , ĝ(11) = g21g

2
3 , ĝ(12) = g22g

2
3 ,

ĝ(13) = g21g2g3, ĝ(14) = g1g
2
2g3, ĝ(15) = g1g2g

2
3 . Using the method provided in the appendix,

we can compute all the Z-eigenvalues and the associated eigenvectors, which are listed in
Table 1. From Table 1, we can see that there are four negative eigenvalues and the smallest
Z-eigenvalue is −0.0349, attained at (−0.8376, 0.2439, 0.4888).

But the PSDT method can guarantee positive diffusivity. In the same case, the ADC
function estimated by the PSDT method is ADC(g) = dTPSDT ĝ, with dPSDT (1) = 0.1287,
dPSDT (2) = 0.7023, dPSDT (3) = 0.6931, dPSDT (4) = 0.0, dPSDT (5) = 0.0409, dPSDT (6) =
0.0101, dPSDT (7) = 0.0363, dPSDT (8) = −0.0246, dPSDT (9) = −0.014, dPSDT (10) = −0.5627,
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Table 2
Z-eigenvalues and eigenvectors of ADCPSDT .

g1 g2 g3 λ

1 -0.0070 -0.9877 0.1560 0.6995
2 0.8369 0.5072 0.2056 0.0065
3 -0.0104 0.7920 0.6105 0.7340
4 -0.8539 -0.4006 0.3322 0.0178
5 -0.0134 -0.6540 0.7564 0.7213
6 0.8399 -0.2026 0.5035 0.0267
7 -0.8454 0.1949 0.4974 0.0003
8 -0.0064 0.0556 0.9984 0.6928
9 0.9997 -0.0012 0.0259 0.1292

dPSDT (11) = −0.5331, dPSDT (12) = 1.5083, dPSDT (13) = −0.0739, dPSDT (14) = −0.1141,
dPSDT (15) = 0.0049. We compute all Z-eigenvalues and the associated eigenvectors, and
list them in Table 2. We can see that the smallest Z-eigenvalue is 0.0003, attained at
(−0.8454, 0.1949, 0.4974).

In the next experiment, we are interested in estimating the ADC profiles from a hu-
man brain dataset with a size of 90 × 90 × 60, which was acquired on a 1.5T scanner at
b = 1000 sec/mm2 using 60 encoding directions, with voxel dimensions of 1.875 mm × 1.875
mm × 2 mm. In this experiment we first visualized some characteristic quantities of the PSDT
model by MATLAB 7.4, fitting with a fourth order tensor. In Figure 3, we show all the co-
efficients of the ADC profile d in the row order. As observed in [23], the coefficients of even
degrees (such as ciiii or ciijj, i, j = 1, 2, 3) are greater than the other coefficients. Figure 4
shows the map of MPSDT in which the values are scaled to [0, 1].

Finally, for comparison, we also estimated the GA and FAPSDT at each voxel fitting with
second, fourth, and sixth order tensors, respectively. We found that no negative eigenvalue
happens in our experiments. So, there is no practical difference observed between the LS
method and the PSDT method. When the ADC function is fitted with a second order tensor,
the Z-eigenvalues will reduce to the traditional eigenvalues of a matrix. So, in this case, the
map of FAPSDT is the same as the map of FA which was shown in Figure 5. As we can
see from Figures 5, 6, and 7, the map of GA is sharper than the map of FAPSDT , while the
latter can show more details. Comparing the map of FAPSDT in Figure 7 with that in Figure
6, we can see that higher order tensors could improve the estimation of anisotropic diffusion
as shown in Figure 7. In a word, these results show that the PSDT model can depict the
characterization of diffusion anisotropy which is consistent with known neuroanatomy.

6. Conclusion. This paper proposed a novel model to estimate the ADC profiles by a
positive semidefinite diffusion tensor (PSDT), which could be a second or higher order ten-
sor. Features of this model include minimizing a convex optimization problem with a convex
quadratic objective function constrained by the nonnegativity requirement on the smallest
Z-eigenvalue of the diffusivity function. We also presented some numerical examples to illus-
trate the robustness and effectiveness of the PSDT model in the estimation of ADC profiles
on synthetic data as well as MRI data. Experiment results show that higher order tensors
could improve the estimation of anisotropic diffusion and that the PSDT model can depict
the characterization of diffusion anisotropy which is consistent with known neuroanatomy.
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Figure 3. Maps of coefficients of the ADC profile.
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Figure 5. Comparison of GA and FAPSDT , fitting with a second order tensor.
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Figure 6. Comparison of GA and FAPSDT , fitting with a fourth order tensor.

7. Appendix. The smallest Z-eigenvalue of a diffusivity function. To formulate an
explicit constraint for (2.4), we need to have a measure for the extent of positive definiteness
of a diffusivity function d. As d can be regarded as an mth order symmetric tensor, its smallest
Z-eigenvalue introduced in [26] is a good measure for this purpose. The computational methods
developed in [29] show that this measure is computable. See also [30, 28, 8]. We now describe
such a method. Here we use the expression (2.1) to describe the method but actually use the
Z-eigenvalue theory in [26, 29].

In fact, d is positive semidefinite if and only if the optimal value of the minimization
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Figure 7. Comparison of GA and FAPSDT , fitting with a sixth order tensor.

problem

(7.1) min{d(g) : g21 + g22 + g23 = 1}

is nonnegative. Problem (7.1) is not convex. Hence, we cannot use any local optimization
method to solve it. As it has only three variables, we can find all of its stationary points and
solve it. According to optimization theory, the optimality condition of (7.1) has the form

(7.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

m−i∑
j=0

idijg
i−1
1 gj2g

m−i−j
3 = mλg1,

m∑
i=0

m−i∑
j=1

jdijg
i
1g

j−1
2 gm−i−j

3 = mλg2,

m∑
i=0

m−i−1∑
j=0

(m− i− j)dijg
i
1g

j
2g

m−i−j−1
3 = mλg3,

g21 + g22 + g23 = 1.

The additional “m” on the right-hand side of each of the first three equations makes this
optimality condition the same as the definition of Z-eigenvalues [26, 29, 8] for the symmetric
tensor d. If (g, λ) is a solution of (7.2), then g is a stationary point of (7.1) and

(7.3) λ = d(g)

is a Z-eigenvalue of d. Then, the smallest Z-eigenvalue of d is the optimal value of (7.1).
We may solve (7.2) in the following way.
Case 1. g3 = g2 = 0. By (7.2), this happens only if dm−1,1 = dm−1,0 = 0. In this case,

g1 = ±1, λ = dm,0.
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Case 2. g3 = g1 = 0. By (7.2), this happens only if d1,m−1 = d0,m−1 = 0. In this case,
g2 = ±1, λ = d0,m.

Case 3. g3 = 0, g1 �= 0, and g2 �= 0. Then (7.2) becomes

(7.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

idi,m−ig
i−1
1 gm−i

2 = mλg1,

m−1∑
i=0

(m− i)di,m−ig
i
1g

m−i−1
2 = mλg2,

m−1∑
i=0

di,m−i−1g
i
1g

m−i−1
2 = 0,

g21 + g22 = 1.

We may eliminate λ in (7.4) and have the following equations of g1 and g2:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

idi,m−ig
i−1
1 gm−i+1

2 =

m−1∑
i=0

(m− i)di,m−ig
i+1
1 gm−i−1

2 ,

m−1∑
i=0

di,m−i−1g
i
1g

m−i−1
2 = 0,

g21 + g22 = 1.

Let t = g1/g2. We have

(7.5)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑
i=1

idi,m−it
i−1 =

m−1∑
i=0

(m− i)di,m−it
i+1,

m−1∑
i=0

di,m−i−1t
i = 0.

We may solve the two one-variable equations of (7.5) separately. If they have common solutions
t, then (7.2) has solutions

g1 =
t√

1 + t2
, g2 =

±1√
1 + t2

, g3 = 0, λ = d(g).

Case 4. g3 �= 0. We may eliminate λ in (7.2) and have the following equations of g:

(7.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

m−i∑
j=0

idijg
i−1
1 gj2g

m−i−j+1
3 =

m∑
i=0

m−i−1∑
j=0

(m− i− j)dijg
i+1
1 gj2g

m−i−j−1
3 ,

m∑
i=0

m−i∑
j=1

jdijg
i
1g

j−1
2 gm−i−j+1

3 =

m∑
i=0

m−i−1∑
j=0

(m− i− j)dijg
i
1g

j+1
2 gm−i−j−1

3 ,

g21 + g22 + g23 = 1.
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Let u = g1/g3, v = g2/g3. Then we have

(7.7)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑
i=1

m−i∑
j=0

idiju
i−1vj =

m∑
i=0

m−i−1∑
j=0

(m− i− j)diju
i+1vj ,

m∑
i=0

m−i∑
j=1

jdiju
ivj−1 =

m∑
i=0

m−i−1∑
j=0

(m− i− j)diju
ivj+1.

For solving system (7.7), we first regard it as a system of polynomial equations of variable u
and rewrite it as {

γ0u
m + γ1u

m−1 + · · ·+ γm = 0,
τ0u

m−1 + τ1u
m−2 + · · · + τm−1 = 0,

where γ0, . . . , γm, τ0, . . . , τm−1 are polynomials of v, which can be calculated by (7.7). By the
Sylvester theorem, the above system of polynomial equations in u possesses solutions if and
only if its resultant vanishes [10]. The resultant of this system of polynomial equations is the
determinant of the (2m− 1)× (2m− 1) matrix

V :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 · · · γm−2 γm−1 γm · · · 0 0
0 γ0 · · · γm−3 γm−2 γm−1 · · · 0 0
· · · · · · · · · · · · ·
0 0 · · · γ1 γ2 γ3 · · · γm 0
0 0 · · · γ0 γ1 γ2 · · · γm−1 γm
τ0 τ1 · · · τm−2 τm−1 0 · · · 0 0
0 τ0 · · · τm−3 τm−2 τm−1 · · · 0 0
· · · · · · · · · · · · ·
0 0 · · · τ0 τ1 τ2 · · · τm−1 0
0 0 · · · 0 τ0 τ1 · · · τm−2 τm−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a polynomial equation in variable v. After finding all real roots of this polynomial,
we can substitute them in (7.7) to find all the real solutions of u. Then, using

g1 =
u√

1 + u2 + v2
, g2 =

v√
1 + u2 + v2

, g3 =
±1√

1 + u2 + v2
, λ = d(g),

we may find all the solutions of (7.2) in this case.

Combine all the possible solutions of (7.2) in these four cases, and find λmin(d), the smallest
value of λ of these solutions. Then d ∈ S if and only if λmin(d) ≥ 0. This shows that the
smallest Z-eigenvalue of d, i.e., λmin(d), is computable. By [21], in the regular case, the
number ν of Z-eigenvalues of d satisfies ν ≤ m2 −m+ 1. This implies that the degree of the
one-dimensional polynomial equation in variable v is no more than m2 − m + 1. This also
implies that the complexity of finding λmin(d) is in polynomial time.
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