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THE MULTI-STATE HARD CORE MODEL ON A

REGULAR TREE

DAVID GALVIN, FABIO MARTINELLI, KAVITA RAMANAN,
AND PRASAD TETALI

Abstract. The classical hard core model from statistical physics, with
activity λ > 0 and capacity C = 1, on a graph G, concerns a probability
measure on the set I(G) of independent sets of G, with the measure

of each independent set I ∈ I(G) being proportional to λ|I|. Ramanan
et al. proposed a generalization of the hard core model as an idealized
model of multicasting in communication networks. In this generaliza-
tion, the multi-state hard core model, the capacity C is allowed to be
a positive integer, and a configuration in the model is an assignment of
states from {0, . . . , C} to V (G) (the set of nodes of G) subject to the
constraint that the states of adjacent nodes may not sum to more than
C. The activity associated to state i is λi, so that the probability of a

configuration σ : V (G) → {0, . . . , C} is proportional to λ
∑

v∈V (G) σ(v).
In this work, we consider this generalization when G is an infinite

rooted b-ary tree and prove rigorously some of the conjectures made by
Ramanan et al. In particular, we show that the C = 2 model exhibits a
(first-order) phase transition at a larger value of λ than the C = 1 model
exhibits its (second-order) phase transition. In addition, for large b we
identify a short interval of values for λ above which the model exhibits
phase co-existence and below which there is phase uniqueness. For odd
C, this transition occurs in the region of λ = (e/b)1/⌈C/2⌉, while for even

C, it occurs around λ = (log b/b(C + 2))2/(C+2). In the latter case, the
transition is first-order.
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tion, loss networks
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1. Introduction

1.1. The Multi-State Hard Core Model. Let G = (V,E) be a finite or
countably infinite graph without loops, and let S be a finite set. We refer to
the elements of S as states. Many stochastic processes on SV that arise in
applications are subject to “hard constraints” that prohibit certain values of
S from being adjacent to one another in the graph G. Such processes only
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attain configurations that lie in a certain feasible subset of SV . A generic
example is the hard core model, which has state space S = {0, 1} and im-
poses the constraint that no two adjacent vertices in the graph can both have
the state 1. In other words, the set of feasible configurations for the hard
core model on a graph G is {σ ∈ {0, 1}V : σx + σy ≤ 1 for every xy ∈ E},
or, equivalently, the collection of independent sets of the graph G. Pro-
cesses with such hard constraints arise in fields as diverse as combinatorics,
statistical mechanics and telecommunications. In particular, the hard core
model arises in the study of random independent sets of a graph [5, 7], the
study of gas molecules on a lattice [2], and in the analysis of multicasting in
telecommunication networks [9, 11, 15].

In this work, we consider a generalization of the hard core model, which
we refer to as the multi-state hard core model, in which the state space is

SC = {0, 1, 2, . . . , C} ,

for some integer C ≥ 1, and the set of allowable configurations is given by

ΩG = {σ ∈ SV
C : σx + σy ≤ C for every xy ∈ E}.

When G is the d-dimensional lattice Z
d, this model was introduced and

studied by Mazel and Suhov in [14], motivated by applications in statistical
physics. In our work, we focus on the case where G is an infinite rooted
b-ary tree (i.e., an infinite graph without cycles in which each vertex has
exactly b+ 1 edges incident to it, except for one distinguished vertex called
the root which has b edges incident to it), which we denote by T

b.
On the tree, this model was studied by Ramanan et al. in [15] as an ideal-

ized example of multicasting on a regular tree network, each of whose edges
has the same capacity C. In communications, multicasting arises when, in-
stead of having a simple end-to-end connection, a transmission is made from
a single site to a group of individuals [1]. An important performance mea-
sure of interest is the probability of packet loss for a given routing protocol
[17]. As in [15], here we consider an idealized model in which the routing is
simple in the sense that nodes multicast only to their nearest neighbors, and
study the impact of the connectivity of the network (i.e., the value of b) and
the arrival rate on the blocking (or packet loss) probabilities. The state σv
of any node or vertex v ∈ V represents the number of active multicast calls
present at that node. Multicast calls are assumed to arrive at each node
as a Poisson process with rate λ and require one unit of capacity on each
of the b + 1 edges emanating from that node. If this capacity is available,
then the call is accepted and the number of active multicast calls at that
node increases by one, while if the required capacity is not available, then
the state of the node remains unchanged and the call is said to be blocked
or lost. Calls that are accepted require a random amount of service and
then depart the system. Service requirements of calls are assumed to be in-
dependent and identically distributed (without loss of generality with mean
1), and independent of the arrival process. This model is a special case of
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a loss network (see [9] for a general survey of loss networks and [12, 15] for
connections with this particular model).

For a finite graph G and arrival rate λ, it is well-known that the associated
stochastic process has a unique stationary distribution µG,λ on ΩG that is
given explicitly by

(1) µG,λ
.
=

1

ZG,λ

∏

v∈V

λσv for σ ∈ ΩG,

where ZG,λ is the corresponding normalizing constant (partition function)
ZG,λ

.
=
∑

σ∈ΩG

∏

v∈V λσv , where the form of λi depends on how the multicast
calls are served. If the calls are assumed to be served in a first-come first-
served manner at each node (see [9]), then we have

λi
.
=

λi

i!
, i = 0, . . . , C,

If they are served using the processor sharing scheduling discipline at each
node (see [10]), then we have

(2) λi
.
= λi, i = 0, . . . , C.

Here we adopt the usual convention that 0! = 1, so that λ0 = 1 in both
models, and we will sometimes refer to the arrival rate λ as the activity. In
this paper (as in [14]) our λi’s will always be as defined in (2). Thus, our
exclusive focus will be the study of the multi-state hard core model on a
b-ary tree T

b with activities given by (2).

1.2. Gibbs Measures and Phase Transitions. Although there is an ex-
plicit expression (1) for the stationary distribution on a finite graph, the
computational complexity of calculating the normalization constant for large
graphs limits the applicability of this formula. Thus, in order to gain insight
into the behavior of these measures on large graphs, it is often useful to con-
sider the associated Gibbs measure on an infinite graph. Roughly speaking,
a Gibbs measure on an infinite graph G associated with an activity λ is char-
acterized by the property that the distribution of the configuration on any
finite subset U of V , conditioned on the complement, is equal to the regular
conditional probability of the measure µG[Ū ],λ on the restriction G[Ū ] of the

graph G to the closure Ū = U ∪ ∂U of U , given the configuration on the
boundary ∂U of U (see Definition 2.1 below for a more precise formulation).
It is not hard to show that such a Gibbs measure always exists (in a far
more general context, see for example [8]).

However, unlike stationary distributions on finite graphs, the associated
Gibbs measures on infinite graphs may not be unique. If there are multiple
Gibbs measures associated with a given arrival rate or activity λ, we say
that there is phase coexistence at that λ. Let Tn denote the finite sub-tree
of Tb with root r and depth n, which contains all vertices in T

b that are at
a distance of at most n from the root r. As is well known (see, for example,
Chapter 4 of [8]), for a fixed activity λ > 0, one way to obtain a Gibbs
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measure on the tree T
b rooted at r is as the suitable limit of a sequence of

measures, where the nth measure in the sequence is the stationary measure
µTn∪∂Tn,λ on Tn ∪ ∂Tn (as defined in (1)), conditioned on the boundary ∂Tn

being empty (i.e., conditioned on all vertices in the boundary having state
0). We shall refer to this Gibbs measure as the empty boundary condition
(b.c.) Gibbs measure (corresponding to the activity λ). In a similar fashion,
we define the full b.c. Gibbs measure to be the limit of a sequence of con-
ditioned measures on Tn, but now conditioned on the boundary ∂Tn being
full (i.e., conditioned on all vertices in the boundary having state C). Let δλ
denote the total variation distance of the marginal distributions at the root
r under the empty b.c. and full b.c. Gibbs measures corresponding to the
activity λ. When λ lies in the region of uniqueness, clearly the empty b.c.
Gibbs measure coincides with the full b.c. Gibbs measure, and so δλ = 0.
On the other hand, when λ is in a region of phase coexistence, then δλ > 0
and it can be shown (due to a certain monotonicity property of our model
established in Lemma 2.2 and Proposition 2.3) that the empty b.c. and full
b.c. Gibbs measures must necessarily differ. If there exists λcr = λcr(C) for
which there is uniqueness for each λ < λcr and phase coexistence for every
λ > λcr, then we say that a phase transition occurs at λcr. Moreover, if
δλ, as a function of λ, is continuous at λcr, then we say that a second-order
phase transition occurs, while if δλ is discontinuous at λcr, then we say that
a first-order phase transition occurs.

When C = 1, the phase transition point λcr(1) on the tree is explicitly
computable and is easily seen to be a second-order phase transition (see
[9, 18, 19] and also Section 2.2). The behavior is more complicated for
higher C. The multi-state hard core model on the d-dimensional lattice
Z
d was studied in [14], where it was shown that when C is odd, there is

phase coexistence for all sufficiently large λ, while when C is even, there is a
unique Gibbs measure for each sufficiently large λ. If phase coexistence were
known to be monotone in the activity (this remains an open problem on Z

d

even when d = 2), then the result of Mazel and Suhov would imply that
there is no phase transition on Z

d for even C. On the other hand, numerical
experiments for the multi-state hard core model on the regular tree (see
Section 3.5 and Figure 5 of [15]) suggest that there is a phase transition on
the tree for every C, but that the order of the phase transition depends on
the parity of C (being first-order for even C and second-order for odd C).
This is particularly interesting as it shows that the parity of the capacity has
an effect on the regular tree as well, although the effect is not as pronounced
as on the d-dimensional lattice.

The study of phase transitions of models with hard constraints on trees
has been the subject of much recent research (see [4, 5, 13]). In [4], the
focus is on classifying types of hard constraints (as encoded in a so-called
constraint graph) on the basis of whether or not there exists a unique sim-
ple invariant Gibbs measure for all activity vectors (λi, i ∈ S). For C > 1,
the model that we present here allows for two 1’s to be adjacent, but never
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allows a 1 to be adjacent to C which, in the language of [4], implies that
the associated constraint graph is fertile. From Theorem 8.1 of [4] it follows
that there exist some activity vectors for which there exist multiple simple
invariant Gibbs measures. However, the emphasis of our work is quite dif-
ferent, as our aim is to identify regions where multiple Gibbs measures (not
necessarily simple and invariant) exist for the particular choice of activity
vector given in (2). Another related work, again motivated by telecommu-
nication networks, is [13], which studies Gibbs measures associated with a
three-state generalization of the hard core model. However, the hard con-
straints considered in [13] are somewhat different from the C = 2 case in
our model.

1.3. Main Results and Outline. The main contribution of this paper is
to make rigorous some of the conjectures made in [15], leading to a bet-
ter understanding of the multi-state hard core model. Our results may be
broadly summarized as follows.

(1) For C = 2 and every b ∈ N, b ≥ 2, we show that the Gibbs measure
is unique for larger values of λ than in the usual C = 1 hard core
model (see Corollary 3.2) and we also show that the phase transition
is first-order (see Theorem 3.3). Recall that, in contrast, for C = 1,
the phase transition is second-order.

(2) For large values of b, we identify a rather narrow range of values for
λ, above which there is phase co-existence and below which there is
uniqueness. Although we do not establish the existence of a unique
critical value λcr(C) at which phase transition occurs, we establish a
fairly precise estimate of λcr(C) if (as we strongly believe) it exists:
when C is odd,

λcr(C) ≈
(e

b

) 1
⌈C/2⌉

(see Theorem 4.1), while for C even,

λcr(C) ≈

(

1

C + 2

log b

b

) 2
C+2

(see Theorem 4.5).
(3) For all even C and all sufficiently large b (depending on C), the model

always exhibits a first-order phase transition (see Section 4.3).

The outline of the paper is as follows. First, in Section 2 we establish a
connection between phase coexistence and multiplicity of the fixed points of
an associated recursion. This is based on the construction of Gibbs measures
as limits of conditional measures on finite trees with boundary conditions, as
mentioned above. In Section 3 we provide a detailed analysis of the recursion
in the special case C = 2. In Section 4 we study the recursion when b is
large and identify the phase transition window. Finally, in Section 4.3 we
study the asymptotics for large b when C is even and provide evidence of
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a first-order phase transition. An interesting open problem is to rigorously
establish that the phase transition is second-order for all odd C.

2. Gibbs Measures and Recursions

2.1. Gibbs Measures on Trees. Consider any graph G = (V,E) with

vertex set V and edge set E ⊆ V (2) (the set of unordered pairs from V ). For
any U ⊂ V , the boundary of U is ∂U

.
= {x ∈ V \U : xz ∈ E for some z ∈ U}

and the closure of U is U
.
= U ∪ ∂U . Let G[U ] denote the restriction of the

graph to the vertex set U . For σ ∈ SV
C , let σU = (σv, v ∈ U) represent the

projection of the configuration σ onto the vertex set U . With some abuse
of notation, for conciseness, we will write just σv for σ{v} and refer to it as
the state or, inspired by models in statistical mechanics, the spin value at
v. For U ⊆ V , let F(U) be the σ-field in SU

C generated by sets of the form
{σv = i} for some v ∈ U and i ∈ SC . We now provide a rigorous definition
of the Gibbs measure.

Definition 2.1. A Gibbs measure for the multi-state hard core model as-
sociated with the activity λ is a probability measure µ on (SV

C ,F(V )) that

satisfies for all U ⊂ V and µ-a.a. τ ∈ SV
C ,

µ(σU = τU |σV \U = τV \U ) = µG[Ū ],λ(σU = τU |σ∂U = τ∂U ),

where µG[Ū ],λ is as defined in (1), with λi given as in (2).

We now specialize to the case when G is a regular, b-ary, rooted tree T
b

with root r. A child of a vertex x in T
b is a neighboring vertex that is further

from r than x; the vertices (other than x) that lie along the path from x to r
are the ancestors of x. We will be concerned with (complete) finite sub-trees
T of Tb rooted at r; such a tree T is determined by a depth n, and consists of
all those vertices at distance at most n from r. It has |T | = (bn+1−1)/(b−1)
vertices, and its boundary ∂T consists of the children (in T

b) of its leaves
(so that |∂T | = bn+1). The tree consisting of all vertices at distance at most
n from the root r will be denoted by Tn.

Given a finite sub-tree T and τ ∈ ΩTb , we let Ωτ
T denote the (finite)

set of spin configurations σ ∈ ΩT∪∂T that agree with τ on ∂T ; thus τ
specifies a boundary condition on T . For a function f : ΩT∪∂T → R we
denote by µτ

T,λ(f) =
∑

σ∈Ωτ
T
µτ
T,λ(σ)f(σ) the expectation of f with respect

to the distribution µτ
T,λ(σ) ∝

∏

v∈T λσv . On the configuration space ΩTb ,
we define the partial order σ ≺ η if and only if σv ≤ ηv for all v with even
distance d(v, r) from the root and σv ≥ ηv for all v with odd distance from
the root. Given two probability measures on ΩTb , we then say that µ ≺ ν
if µ(f) ≤ ν(f) for any (bounded) function f that is non-decreasing with
respect to the above partial order.

Let T be a complete finite tree rooted at r, and let µ0
T,λ and µC

T,λ, respec-

tively, be the empty b.c. and full b.c. measures (corresponding to the two
boundary conditions identically equal to 0 and C, respectively, on ∂T ). The
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following monotonicity result is well known (see, for example, Theorem 4.1
of [19]). However, for completeness, we provide an independent proof of this
result, which involves a Markov chain argument that constructs a simul-
taneous coupling of (µ0

T,λ, µ
τ
T,λ, µ

C
T,λ) such that the required monotonicity

conditions are satisfied with probability one.

Lemma 2.2. For any τ ∈ ΩTb,

µ0
T,λ ≺ µτ

T,λ ≺ µC
T,λ if d(∂T, r) is even,

µC
T,λ ≺ µτ

T,λ ≺ µ0
T,λ if d(∂T, r) is odd.

Moreover, if d(∂T, r) is even (respectively, odd) there is a coupling πT =
(σ0, στ , σC) of (µ0

T,λ, µ
τ
T,λ, µ

C
T,λ) such that σ0 ≺ στ ≺ σC (respectively, σC ≺

στ ≺ σ0) with probability one.

Proof. We consider only the case when d(∂T, r) is even, since the other case
can be established in an exactly analogous fashion. On Ω0

T × Ωτ
T × ΩC

T we

construct an ergodic Markov chain {σ0(t), στ (t), σC(t)}t∈Z+ such that at any

time t ∈ Z+ the required ordering relation σ0(t) ≺ στ (t) ≺ σC(t) is satisfied,
and moreover each replica is itself an ergodic chain that is reversible with
respect to the measure µ·

T,λ with the corresponding boundary condition.
The stationary distribution πT of the global chain will then represent the
sought coupling of the three measures.

The chain, a standard Heat Bath sampler, is defined as follows. Assume
that the three current configurations corresponding to 0, τ and C boundary
conditions are equal to (α, β, γ) respectively and that they satisfy the order-
ing relation. Pick uniformly at random v ∈ T and let (a, b, c) be the maxi-
mum spin values in v compatible with the values of (α, β, γ) on the neighbors
of v respectively. Due to the ordering assumption either c ≤ b ≤ a or the op-
posite inequalities hold. Then the current three values at v are replaced by
new ones, (α′

v , β
′
v, γ

′
v), sampled from a coupling of the three distributions on

{0, 1, . . . , a}, {0, 1, . . . , b}, {0, 1, . . . , c} which assign a weight proportional
to λi to the value i. It is clear that such a coupling can be constructed in
such a way that (α′

v, β
′
v , γ

′
v) satisfy the opposite ordering of (a, b, c) and thus

the global ordering is preserved. �

Consider now the sequence {T2n}n∈N with d(∂T2n, r) = 2n. Then, thanks
to monotonicity, limn→∞ µC

T2n,λ
= µC

λ exists (weakly) and it defines the

maximal Gibbs measure. Similarly limn→∞ µ0
T2n,λ

= µ0
λ defines the minimal

Gibbs measure [8]. Notice that, by construction, limn→∞ µC
T2n+1,λ

= µ0
λ

while limn→∞ µ0
T2n+1,λ

= µC
λ . Finally, for any other Gibbs measure µ, it

holds that µ0
λ ≺ µλ ≺ µC

λ .

The main problem is therefore that of deciding when µC
λ = µ0

λ. In what
follows we establish the following criterion, which is in fact an equivalent
criterion, since the other implication is obviously true (see [18, 19]; see also
[3, 16] for a similar discussion in the special case of C = 1). Let Pτ

n,λ be the
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marginal of µτ
Tn,λ

on σr given boundary condition τ , and let PC
λ and P

0
λ be

the corresponding marginals for µC
λ and µ0

λ, respectively.

Proposition 2.3. For every λ > 0, if PC
λ = P

0
λ then µC

λ = µ0
λ .

Proof. Assume P
C
λ = P

0
λ. Then, by monotonicity,

(3) lim
n→∞

‖PC
n,λ − P

0
n,λ‖TV = 0,

where ‖ · ‖TV denotes total variation distance. Let A be a local event
(i.e., depending only on finitely many spins) and let m be sufficiently large
so that A does not depend on the spin configuration outside Tm. Fix n > m,
and let π2n = (σ0, στ , σC) be the monotone coupling of (µ0

T2n,λ
, µτ

T2n,λ
, µC

T2n,λ
)

described in Lemma 2.2. Then

‖µC
T2n,λ(A)− µ0

T2n,λ(A)‖ ≤ π2n(σ
C
v 6= σ0

v for some v ∈ Tm)

≤
∑

v∈Tm
d(v,r) even

C
∑

k=0

π2n(σ
C
v ≥ k > σ0

v)

+
∑

v∈Tm
d(v,r) odd

C
∑

k=0

π2n(σ
0
v ≥ k > σC

v )

=
∑

v∈Tm
d(v,r) even

C
∑

k=0

[

µC
T2n,λ(σv ≥ k)− µ0

T2n,λ(σv ≥ k)
]

+
∑

v∈Tm
d(v,r) odd

C
∑

k=0

[

µ0
T2n,λ(σv ≥ k)− µC

T2n,λ(σv ≥ k)
]

.

For simplicity, let us examine an even term µC
T2n,λ

(σv ≥ k)− µ0
T2n,λ

(σv ≥ k)
and show that it tends to zero as n → ∞. Let w be the immediate ancestor
of v. By conditioning on the spin value at w we can write

µC
T2n,λ(σv = i)− µ0

T2n,λ(σv = i)

=

C−i
∑

j=0

µC
T2n,λ(σw = j)

[

µC
T2n,λ(σv = i |σw = j)− µ0

T2n,λ(σv = i |σw = j)
]

+

C−i
∑

j=0

[

µC
T2n,λ(σw = j)− µ0

T2n,λ(σw = j)
]

µ0
T2n,λ(σv = i |σw = j) .

By iterating upwards until we reach the root, and using (3), we see that it
is enough to show that

lim
n→∞

max
v∈Tm

max
i≤C

max
j≤C−i

∣

∣µC
T2n,λ(σv = i |σw = j)− µ0

T2n,λ(σv = i |σw = j)
∣

∣ = 0.
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Now, let

(4) Zτ
k (i) := λi

∑

σ∈Ωτ
Tk\{r}

∏

v∈Tk\{r}

λσv

denote the partition function (or normalizing constant) on the complete
finite tree Tk with boundary conditions τ and σr = i. It is clear that

P
τ
k,λ(i)

P
τ
k,λ(0)

=
Zτ
k (i)

Zτ
k (0)

.

Therefore,

µ0
T2n,λ(σv = i |σw = j) =

Z0
2n−nv

(i)
∑

k≤C−j Z
0
2n−nv

(k)
=

P
0
2n−nv

(i)

P0
2n−nv

(σr ≤ C − j)
,

where nv denotes the level of v (the distance from the root). A similar
relation holds for the full boundary condition.

The proof is concluded once we observe that nv ≤ m and that

P
0
2n−nv,λ(σr ≤ C − j) ≥ P

0
1,λ(0) > 0.

�

2.2. Recursions. Our next step, as in many other spin models on trees,
is to set up a recursive scheme to compute the relevant marginals P0

n,λ and

P
C
n,λ. In what follows, for simplicity we count the levels bottom-up and the

boundary conditions are at level 0. Moreover, since the recursive scheme is
independent of the boundary conditions, and since we will never be consid-
ering more than one value of λ at a time, we drop both from our notation.

For i = 0, . . . , C, and n ∈ N, we set

Qn(i) :=
Pn(i)

Pn(0)
, Rn(i) :=

∑C
k=0Qn(k)

∑C−i
k=0 Qn(k)

=
[

1− P
(

σr > C − i
)]−1

.

Thus Rn(0) = 1 and Rn(i) ≤ Rn(i+1). Moreover, let Zn be as defined in (4),

but with τ equal to the empty b.c.Ṫhen we obtain the recursive equations

Zn+1(i) = λi

[

C−i
∑

k=0

Zn(k)

]b

,

Qn+1(i) = λi

[

∑C−i
k=0 Qn(k)

∑C
k=0Qn(k)

]b

=
λi

Rb
n(i)

,

Rn+1(i) =

∑C
k=0

λk

Rb
n(k)

∑C−i
k=0

λk

Rb
n(k)

.(5)
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The case when C = 1 (the usual hard core model) can therefore be studied
by analyzing a one-dimensional recursion governed by the following maps:

(6) J(x) :=
λ

(1 + x)b
, J2(x) := J(J(x)) =

λ

(1 + λ
(1+x)b

)b
.

Indeed, J defines the recursion for the quantity Zn(1)/Zn(0), while J2 defines
the recursion of this quantity between two levels on the tree. We close this
section with a summary of the properties of J and J2 which, when combined
with Proposition 2.3, show that λcr(1) := bb/(b−1)b+1 is the phase transition
point for the standard hard core model (see, for example, [9]), and that the
phase transition for C = 1 is second-order. These properties will turn out to
also be useful for our analysis of the higher-dimensional recursions (i.e.,when
C ≥ 2). We start with the definition of an S-shaped function.

Definition 2.4. A twice continuously differentiable function f : [0,∞) 7→
[0,∞) is said to be S-shaped if it has the following properties:

(1) it is increasing on [0,∞) with f(0) > 0 and supx f(x) < ∞;
(2) there exists x ∈ (0,∞) such that the derivative f ′ is monotone in-

creasing in the interval (0, x) and monotone decreasing in the inter-
val (x,∞); in other words, x satisfies f ′′(x) = 0 and is the unique
inflection point of f .

For future purpose, we observe here that the definition immediately im-
plies that for any θ > 0, and S-shaped function f , θf is also an S-shaped
function. It is also easy to verify that any S-shaped function has at most
three fixed points in [0,∞), i.e., points x ∈ (0,∞) such that f(x) = x. We
now summarize the salient properties of J2 (see e.g. Fig. 1), all of which
may easily be verified with some calculus.

(1) J2 is an S-shaped function with J2(0) = λ/(1+λ)b and supx J2(x) =
λ, and a unique point of inflection x∗ ∈ (0,∞).

(2) J has a unique fixed point, x0, which is also a fixed point of J2.
(3) If λ ≤ λcr(1) then J ′

2(x) ≤ 1 for any x ≥ 0 and x0 is the unique fixed
point of J2.

(4) If λ > λcr(1), then J2 has three fixed points x− < x0 < x+, where
J(x−) = x+ and J(x+) = x−. Moreover J ′

2(x0) > 1, J ′
2(x) < 1

for x ∈ [0, x−] ∪ [x+,+∞) and the three fixed points converge to
x0(λcr(1)) as λ ↓ λcr(1).
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The supercritical function J_2

F(x)
x

Figure 1. Graph of the function J2(x) for b = 2, λ = 7
(λcr = 4)

3. Analysis of the recursions when C = 2

When C = 2 we have Rn(1) =
[

1−Pn

(

σr = 2
)]−1

and (5) can be written
as:

Rn(0) = 1,

Rn+1(2) = 1 +
λ

Rb
n(1)

+
λ2

Rb
n(2)

,(7)

Rn+1(1) =
1 + λ

Rb
n(1)

+ λ2

Rb
n(2)

1 + λ
Rb

n(1)

=
Rn+1(2)

1 + λ
Rb

n(1)

.

On replacing n by n− 1 in the last equation above, we see that

Rn(2) = Rn(1)

(

1 +
λ

Rb
n−1(1)

)

.

Substituting this back into (7), we obtain an exact two-step recursion for
Yn := Rn(1):

Yn+1 = 1 +
λ2

[

1 + λ
Y b
n

]

[

Yn(1 +
λ

Y b
n−1

)

]b
(8)

= 1 +
λ2

[Y b
n + λ]

[

1 + λ
Y b
n−1

]b
.



12 D. GALVIN, F. MARTINELLI, K. RAMANAN AND P. TETALI

It is useful to determine the initial conditions (Y0, Y1) for the recursion given
the boundary conditions at the 0th level.

(Y0, Y1) =

{

(+∞, 1) if the b.c. is full (i.e., identically C)

(1, 1 + λ2

1+λ) if the b.c. is empty (i.e., identically 0) .

Numerical calculations of (8) using Mathematica strongly suggest that the
critical value λcr, below which the recursion settles to a limit independent
of the initial values, takes approximately the following values:

b λcr

2 7.2753875
3 3.58029
10 1.107665
100 0.2817409

and that the transition is always first order (i.e., if lim supn Yn 6= lim infn Yn

then their difference is strictly larger than some positive constant δ). Similar
observations were made in [15] (see Section 3.4 therein). Here, we provide
a rigorous proof of these results.

Let us change variables from Yn to Xn := Yn − 1 in (8). It then follows
that

Xn+1 ≤
λ2

[

minj≥n Y b
j + λ

] [

1 + λ
(1+Xn−1)b

]b
≡ F

(n)
+ (Xn−1),(9)

Xn+1 ≥
λ2

[

maxj≥n Y b
j + λ

] [

1 + λ
(1+Xn−1)b

]b
≡ F

(n)
− (Xn−1).(10)

The maps F
(n)
± defined above can be rewritten in terms of the map J2 defined

in (6) as follows:

F
(n)
− (x) =

λ
(

maxj≥n Y b
j + λ

)J2(x);

F
(n)
+ (x) =

λ
(

minj≥n Y
b
j + λ

)J2(x).

Next, for κ ≥ 0, we define

(11) Fκ(x) :=
λ

κ+ λ
J2(x),

so that F0 = J2. For any κ ≥ 0, Fκ is a strictly positive multiple of J2
and hence is also an S-shaped function (with the same inflection point x∗).

If we denote the fixed points of Fκ by x
(κ)
− ≤ x

(κ)
0 ≤ x

(κ)
+ (with the obvious

meaning) we see that:

(1) if Fκ has a unique fixed point x
(κ)
0 then necessarily x

(κ)
0 < min(x−, x0);
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(2) since F ′
κ(x) =

λ
κ+λJ

′
2(x) necessarily F ′

κ(x) ≤ 1 for x ≤ x
(κ)
− ;

(3) the critical value λc(κ) of λ such that Fκ starts to have three fixed
points is increasing in κ. In particular,

λc(κ) > λc(0) = λcr(1) =
bb

(b− 1)b+1
;

(4) if Fκ has three fixed points then necessarily x
(κ)
− < x− and x0 <

x
(κ)
0 < x

(κ)
+ ;

(5) the smallest fixed point x
(κ)
− is continuously differentiable in κ > 0.

Indeed, by the implicit function theorem and the fact that F ′
κ(x

(κ)
− ) <

1, it follows that

d

dκ
x
(κ)
− = −

∂
∂κFκ(x

(κ)
− )

∂
∂xFκ(x

(κ)
− )− 1

= −
1

λ+κFκ(x
(κ)
− )

λ
λ+κJ

′
2(x

(κ)
− )− 1

= −
x
(κ)
−

λ(1− J ′
2(x

(κ)
− )) + κ

.

In what follows, let

(12) m := lim inf
n

Xn and M := lim sup
n

Xn.

We are now ready to prove our first result.

Proposition 3.1. Assume that λ > 0 is such that F1 has a unique fixed
point. Then M = m and hence the recursion (8) has a unique fixed point.

Proof. Since Yn ≥ 1, it follows from (9) and (11) that Xn+1 ≤ F1(Xn−1).
Since F1 is S=shaped and is assumed to have a unique fixed point, this

implies that M ≤ x
(1)
0 . Moreover, recalling that m = lim infnXn, we see

that for any ǫ > 0, Xn ≥ m+ ǫ for all n large enough. Hence, (9) and (11)
imply that for all large enough n, Xn+1 ≤ Fκ(Xn−1) with κ = (1 +m+ ǫ)b.
Thus we obtain

(13) M ∈ (0, x
(1+m+ǫ)b

− ).

Indeed, if Fκ has a unique fixed point, then (13) follows immediately. On
the other hand, if Fκ has three fixed points then we immediately have M ∈

(0, xκ−) ∪ (xκ0 , x
κ
+). But M ≤ x

(1)
0 and so M < x0 (by property (1) of the

Fκ’s) and also in this case x0 < x
(κ)
0 (by property (4) of the Fκ’s), giving

(13).

Since ǫ > 0 is arbitrary in (13), we have in fact M ≤ x
(1+m)b

− . Similarly,

using (10) and (11), we see that m ≥ x
(1+M)b

− . We want to conclude that
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necessarily m = M . We write

M −m ≤

∫ M

m
ds

(

−
d

ds
x
((1+s)b)
−

)

,

and the sought statement will follow if, for example,

sup
m≤s≤M

∣

∣

∣

∣

d

ds
x
((1+s)b)
−

∣

∣

∣

∣

< 1 .

By properties (1) and (4) of Fκ it follows that x
(κ)
− < x0, and hence property

(4) of J2 implies J ′
2(x

(κ)
− ) ≤ 1. When combined with the expression for

dx
(κ)
− /dκ given in property (5) of Fκ, this implies that

∣

∣

∣

∣

d

dκ
x
(κ)
−

∣

∣

∣

∣

≤
x
(κ)
−

κ
,

and hence that

sup
m≤s≤M

∣

∣

∣

∣

d

ds
x
((1+s)b)
−

∣

∣

∣

∣

≤ sup
m≤s≤M

b
x
((1+s)b)
−

1 + s
≤ b x

(1)
−

where the last inequality uses the fact that x
(κ)
− < x

(1)
− for any κ > 0.

Thus we have to show that x
(1)
− < 1/b. For this purpose it is enough to

show that F1(1/b) < 1/b. We compute

b F1(1/b) =
λ

(1 + λ)

bλ
(

1 + λ
(1+ 1

b
)b

)b
.(14)

Next, we observe that the map λ 7→ bλ/(1 + λ
(1+ 1

b
)b
)b achieves its maximum

at λmax = (1 + 1/b)b/(b − 1), where it is equal to b
b−1

[

b2−1
b2

]b
. The latter

expression is decreasing in b for b ≥ 2 and for b = 2 it is equal to 18
16 .

Therefore, if λ/(λ + 1) < 16
18 , i.e.,λ < 8, then the r.h.s. of (14) is strictly

less than one. We now examine the case λ ≥ 8. We write

bλ

(1 + λ
(1+ 1

b
)b
)b

≤
λb

(1 + λ
e )

b
≤

b eb

λb−1
≤

b eb

8b−1
< 1, for b ≥ 3 .

Finally the case b = 2 and λ ≥ 8 is handled directly:

2λ

(1 + λ
(1+ 1

2
)2
)2

=
2λ

(1 + 4λ
9 )2

≤
16

(1 + 32
9 )

2
≈ 0.77 .

�
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Notice that in the proof of the inequality x
(1)
− < 1/b we did not use the

hypothesis that F1 has only one fixed point. Moreover, we proved something
slightly stronger, namely

(15) there exists ǫ(b) > 0 such that 1/b− x
(1)
− ≥ ǫ(b) for any λ.

The following monotonicity property is an immediate consequence of
Proposition 3.1. Recall that λcr(1) = bb/(b − 1)b+1 is the phase transition
point for the usual (C = 1) hard core model.

Corollary 3.2. For every λ ≤ λcr(1), the C = 2 multi-state hard core model
has a unique Gibbs measure.

Proof. If J2 has only one fixed point then the same is true of F1. By Propo-
sition 3.1 there is then only one fixed point for the recursion (8). The result
then follows from Lemma 2.2 and Proposition 2.3. �

The next result shows that the phase transition for C = 2 is first order.
Recall the definitions of M and m given in (12) and let ǫ(b) be as in (15).

Theorem 3.3. If m 6= M then M −m > ǫ(b) > 0.

Proof. Suppose m 6= M . From Proposition 3.1, it then follows that F1 (and

a fortiori J2) has three fixed points x
(1)
− < x

(1)
0 < x

(1)
+ , with x

(1)
0 > x0.

We now show that x0 > 1/b. Indeed, since J(x0) = x0 and J is strictly
decreasing, it is enough to check that J(1/b) > 1/b or, equivalently, that

λ/(1 + 1
b )

b > 1/b. But λ > bb

(b−1)b+1 and clearly

bb

(b− 1)b+1(1 + 1
b )

b
=

b2b

(b2 − 1)b (b− 1)
>

1

b
.

Since 1/b− x
(1)
− ≥ ǫ(b) by (15), this implies x

(1)
0 − x

(1)
− > ǫ(b).

Next, since Xn = [1− Pn (σr = 2)]−1 − 1, we infer that Xn is maximized
by the empty b.c. and minimized by the full b.c. if n is odd (and vice versa if
n is even). Thus, using the recursive inequality Xn+1 ≤ F1(Xn−1), we obtain
for any odd n, the inequality Xn ≤ Un, where {Un, n odd} is the sequence
that satisfies the recursion Un+2 = F1(Un), with U1 = 0. In particular,

m ≤ x
(1)
− ≤ 1

b − ǫ(b). If now M ≤ m+ ǫ(b) < x
(1)
0 then necessarily Xn < x

(1)
0

for any n large enough and repeated iterations of Xn+1 ≤ F1(Xn−1) imply

M ≤ x
(1)
− . At this stage we are back in the framework of the proof of

Proposition 3.1 and m = M , resulting in a contradiction. �

4. The Large b Asymptotic Regime

In this section we set up and then analyze the recursion for any value of
C when b is large. In what follows, e = exp(1).
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For any j ≤ C set j∗ = C − j. Also, for λ < 1, set Aλ =
∑∞

i=0 λ
i =

(1− λ)−1. Iterating (5) we obtain

Rn+2(j) = 1 +

C
∑

i=j∗+1

λi

(

i∗
∑

k=0

λk

Rb
n(k)

)b

j∗
∑

i=0

λi

(

i∗
∑

k=0

λk

Rb
n(k)

)b
.

In turn, this implies that

Rn+2(j) ≤ 1 +

Aλλ
j∗+1

(

j−1
∑

k=0

λk

Rb
n(k)

)b





j−1
∑

k=0

λk

Rb
n(k)

+

C
∑

k=j

λk

Rb
n(k)





b

= 1 +
Aλλ

j∗+1



1 +

∑C
k=j

λk

Rb
n(k)

∑j−1
k=0

λk

Rb
n(k)





b

≤ 1 +
Aλλ

j∗+1

(

1 +A−1
λ

λj

Rb
n(j)

)b
.

Therefore, by letting Xn(j) = Rn(j) − 1 we have

(16) Xn+2(j) ≤ A2
λλ

j∗−j+1J
(λj)
2 (Xn) ≡ F

(j)
+ (Xn(j)) ,

where λj := A−1
λ λj , and J (λ) = J and J

(λ)
2 = J2 are the maps defined in

(6), but with the λ dependence now denoted explicitly.
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In a similar fashion, we obtain a lower bound

Rn+2(j) ≥ 1 +

λj∗+1

(

j−1
∑

k=0

λk

Rb
n(k)

)b

Aλ





j−1
∑

k=0

λk

Rb
n(k)

+

C
∑

k=j

λk

Rb
n(k)





= 1 +
A−1

λ λj∗+1



1 +

∑C
k=j

λk

Rb
n(k)

∑j−1
k=0

λk

Rb
n(k)





b

≥ 1 +
A−1

λ λj∗+1

(

1 +Aλ
λj

Rb
n(j)

)b
.

Therefore, we have

(17) Xn+2(j) ≥ A−2
λ λj∗−j+1J

(λ′
j)

2 (Xn) ≡ F
(j)
− (Xn(j)) ,

where λ′
j := Aλλ

j .

4.1. The case of C odd. We start by stating the main result of the section.
Recall that for λ < 1, Aλ = (1− λ)−1.

Theorem 4.1. Let jc = ⌈C2 ⌉, and define λ− := A−1
λ λjc and λ+ := Aλλ

jc.
Then the following two properties hold:

(1) If
(γ
b

)
1
jc ≤ λ < 1 with γ > e , then, for any b large enough depending

on γ, the smallest fixed point of

(18) x 7→ A2
λJ

(λ−)
2 (x)

is strictly smaller than the largest fixed point of

(19) x 7→ A−2
λ J

(λ+)
2 (x) .

In particular, there is phase coexistence.

(2) On the other hand, if λ ≤
(

γ′

b

) 1
jc with γ′ < e then, for every b large

enough, depending on γ′, there is a unique Gibbs measure.

We start by establishing the first assertion of the theorem. Our proof will
make use of the following elementary observation.

Lemma 4.2. For γ > 0 the function Hγ : [0,∞) 7→ [0,∞) defined by

Hγ(z) = γ e−γe−z
, z ∈ [0,∞),

is S-shaped. In addition, the following two properties hold:

(1) if γ ≤ e then Hγ has one fixed point z0 < 1;
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(2) if γ > e then Hγ has three distinct fixed points z− < z0 < z+ that
satisfy

(20) 0 ≤ z− ≤ log(γ)− log(log(γ)) < z0 ≤ log γ < z+ .

Proof. The function Hγ is clearly twice continuously differentiable, satisfies
Hγ(0) = γ > 0 and supxHγ(x) = γe−γ < ∞. That it is S-shaped therefore
follows from the fact that

H ′
γ(z) = γe−zHγ(z) > 0 and H ′′

γ (z) = γe−zHγ(z)
[

γe−z − 1
]

.

Now suppose γ < e. Then supz H
′
γ(z) < 1 and therefore there exists a

unique fixed point z0. The fact that z0 < 1 follows from the observation
that

Hγ(1) = γe−γe−1
< 1 .

On the other hand, if γ = e the value z0 = log γ is the unique fixed point,
and satisfies H ′

γ(z0) = 1. Lastly, for γ > e, we have the inequalities

H ′
γ(log γ) > 1,

Hγ(log γ) > log γ,

Hγ

(

log γ − log(log γ)
)

< log γ − log(log γ),

where the last inequality holds because Hγ

(

log γ − log(log γ)
)

= 1 and
γ 7→ log γ − log(log γ) restricted to the interval [e,∞) is increasing with
log(e) − log(log(e)) = 1. Together with the S-shaped property of H, these
inequalities immediately imply that H has three fixed points that satisfy
(20). �

We are now ready to establish the first statement of Theorem 4.1.

Proof of Theorem 4.1(1). Fix λ ∈ [
(γ
b

) 1
jc , 1) with γ > e , and for notational

conciseness, denote Aλ simply by A. We first show that the asserted inequal-
ity between the fixed points of the two maps implies phase coexistence. This
is a simple consequence of the fact that, for any boundary condition τ , the
sequence {X∗

n} defined by

X∗
n ≡ Xn(jc) = µτ

Tn
(σr ≥ jc)/µ

τ
Tn
(σr ≤ jc), n ∈ N,

obeys the recurrence

A−2J
(λ+)
2 (Xn) ≤ X∗

n+2 ≤ A2J
(λ−)
2 (X∗

n)

where we have made use of (16) and (17), together with the duality property
j∗c +1 = jc. If now ⌊C2 ⌋ boundary conditions are imposed at the zeroth level
then X∗

0 = 0 and X∗
n will always be smaller than the smallest fixed point

of x 7→ A2J
(λ−)
2 (x). On the other hand, under ⌈C2 ⌉ boundary conditions,

X∗
0 = 1 and X∗

n will always be larger than the largest fixed point of x 7→

A−2J
(λ+)
2 (x) because the range of this mapping is contained in [0, 1] for large

b.



THE MULTI-STATE HARD CORE MODEL ON A REGULAR TREE 19

We now prove our statement concerning the fixed points of (18), (19).

First, consider the case λ =
(γ
b

)
1
jc and observe that for any z > 0 ,

(21) lim
b→∞

bA−2J
(λ+)
2 (z/b) = lim

b→∞
bA2J

(λ−)
2 (z/b) = Hγ(z),

uniformly on bounded intervals. Next, we define

x̃− :=
log γ − log(log γ)

b
and x̃+ :=

log γ

b
.

From Lemma 4.2, it follows that Hγ(bx̃−) < bx̃− < bx̃+ < Hγ(bx̃+). To-
gether with (21), this shows that for any b large enough,

A2J
(λ−)
2 (x̃−) < x̃− < x̃+ < A−2J

(λ+)
2 (x̃+) ,

and the first assertion of the lemma follows (for this case) because A−2J
(λ+)
2

and A2J
(λ−)
2 are S-shaped exactly like Hγ .

We now consider the case
(γ
b

)
1
jc ≤ λ < 1 and again we compute

(22) A2J
(λ−)
2 (x̃−) ≤ A2 λ−

(1 + λ−e−bx̃−)
b
= A2 λ−

(

1 + λ−
log γ
γ

)b
.

If λ does not tend to zero as b → ∞, then it is obvious that the r.h.s of (22)
is smaller than x̃− for large enough b. If instead limb→∞ λ = 0 we proceed

as follows. The function fγ(λ) = λ/
(

1 + λ log γ
γ

)b
satisfies

f ′
γ(λ) =

1
(

1 + λ log γ
γ

)2b

(

1−
bλ log γ

γ + λ log γ

)

,

and hence is decreasing in the interval ( γ
(b−1) log γ ,∞). Since γ > e and our

assumption λ → 0 implies A = Aλ ≈ 1 for large b, we have the inequality

λ− > A−1γ/b > γ/((b− 1) log γ).

Thus, we can conclude that the r.h.s of (22) is smaller than the same ex-
pression with λ− replaced by A−1γ/b. After this replacement, the resulting
r.h.s of (22) is indeed smaller than x̃− for all large enough b because of (20)

and (21). In conclusion, we have shown that for any
(γ
b

) 1
jc ≤ λ < 1 the

function A2J
(λ−)
2 has a fixed point smaller than x̃−.

Next, we examine A−2J
(λ+)
2 . If limb→∞ bλ+ = ∞ then it easily follows

that for large b, we have A−2J
(λ+)
2 (A−2λ+/2) > A−2λ+/2 ≫ x̃−. If instead

λ+ ≤ C/b for some finite constant C, we choose xλ = log(bλ+)/b > x− and
write

A−2J
(λ+)
2 (xλ) ≥ A−2λ+e

−bλ+/(1+xλ)
b
.

By construction, limb→∞ e−bλ+/(1+xλ)
b
= e−1. Therefore, for sufficiently

large b,

A−2λ+ e−bλ+/(1+xλ)
b
≥ (1−O(b−1))λ+ e−1 ≥ xλ ,
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because λ+ > γ/b with γ > e. In conclusion A−2J
(λ+)
2 (x) has a fixed point

strictly bigger than x− and the existence of a phase transition follows. �

We now turn to the proof of the second assertion of Theorem 4.1, namely

the absence of a phase transition for λ ≤
(

γ′

b

)
1
jc , with γ′ < e. For this,

we first establish two preliminary results in Lemmas 4.3 and 4.4. For any

vertex y ∈ Tn and i ∈ SC , we define a probability measure µ
(i)
y on the set of

spins at y as follows:

(23) µ(i)
y (σy = j)

.
= P(σy = j |σy ≤ i∗), j ∈ SC ,

with P, as always, depending on λ and a boundary condition on Tn (which
for clarity we have suppressed in the notation). Note that if x is a site in Tn

that is neighbouring to y, then µ
(i)
y represents the marginal on y of the Gibbs

measure (with some boundary condition on the leaves of Tn), conditioned to
have i particles at x. Recall that ‖·‖TV denotes the total variation distance.

Lemma 4.3. For any k < i, we have

‖µ(i)
y − µ(k)

y ‖TV =
µ
(0)
y (σy ∈ [i∗ + 1, k∗])

µ
(0)
y (σy ≤ k∗)

.

Proof. By definition µ
(i)
y (σy = j) = µ

(0)
y (σy = j |σy ≤ i∗). Therefore, also

recalling that k < i implies k∗ > i∗, we have

‖µ(i)
y − µ(k)

y ‖TV =
1

2

i∗
∑

j=0

∥

∥µ(i)
y (σy = j)− µ(k)

y (σy = j)
∥

∥ +
1

2

k∗
∑

j=i∗+1

µ(k)
y (σy = j)

=
1

2

µ
(0)
y (σy ≤ k∗)− µ

(0)
y (σy ≤ i∗)

µ
(0)
y (σy ≤ k∗)

+
1

2

µ
(0)
y (i∗ + 1 ≤ σy ≤ k∗)

µ
(0)
y (σy ≤ k∗)

=
µ
(0)
y (σy ∈ [i∗ + 1, k∗])

µ
(0)
y (σy ≤ k∗)

.

�

Notice that if x is an ancestor of y then µ
(0)
y is nothing but the Gibbs

measure on the tree T
b
y rooted at y with the boundary conditions induced

by those on Tn. If instead y is an ancestor of x then µ
(0)
y becomes a Gibbs

measure on the (non regular) tree Tn \ Tb
x. However, if x, y are sufficiently

below the root of Tn, then Tn \T
b
x will coincide with a regular tree rooted at

y for a large number of levels. That is all that we need to prove uniqueness

below
(

e
b

) 1
jc .

In what follows, given any non negative function b 7→ f(b) of the degree
of the tree T

b, we will write f(b) ≈ 0 if limb→∞ bf(b) = 0.
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Lemma 4.4. Fix γ′ < e and assume λ ≤
(

γ′

b

)
1
jc . Then there exists a < 1

and n0 ∈ N such that for any n ≥ n0 and any boundary condition τ on the
leaves of Tn,

lim sup
b→∞

bµτ (σr ≥ i∗ + 1) ≤

{

0 if i ≤ ⌊C2 ⌋

a if i = jc = ⌈C2 ⌉

Proof. It suffices to bound Xn(i) from above for i ≤ ⌊C2 ⌋ or i = ⌈C2 ⌉. In the

first case, when i ≤ ⌊C2 ⌋, the stated bound follows easily since (16) and the
assumed bound on λ imply that for some finite constant K,

bXn(i) ≤ λi∗+1b ≤ Kb(1−
i∗+1
jc

) ≈ 0 .

In the second case, when i = jc, set a∞ := lim supb→∞ bx̂+(b), where x̂+(b)

is the largest fixed point of the S-shaped function x 7→ AλJ
(λ−)
2 (x). Due to

the assumption λ ≤
(

γ′

b

) 1
jc , it follows that a∞ ≤ γ′. Because of (16) it is

enough to prove that a∞ < 1. Assume the contrary. Then the fixed point

equation, together with λ ≤
(

γ′

b

) 1
jc , readily implies that

a∞ ≤ γe−γe−a∞
,

which in turn implies that a∞ must be smaller than the unique fixed point
z0 of the map H. Since γe−γ/e < 1 if γ < e necessarily z0 < 1 and we get a
contradiction. Note that in the above proof by contradiction, the hypothesis

a∞ ≥ 1 enters as follows. If x > 1−δ, 0 < δ ≪ 1 then J
(λ)
2 (x) is increasing in

λ and so we may safely assume λ =
(

γ′

b

)
1
jc and not just smaller or equal. �

We are now ready to prove uniqueness for λ ≤
(

γ′

b

)
1
jc .

Proof of Theorem 4.1(2). For simplicity we begin with λ =
(

γ′

b

) 1
jc . In this

case, it follows immediately from the basic inequality (16) that for any initial
condition, any n ≥ 2 and any b large enough, there exist constants c1, c2
such that

(24) X⌈C/2⌉
n ≤ c1e

−c2 bα ,

where α = 1/(jc + 1). In another words, recalling the probability measure

µ
(i)
y introduced in (23) and using the obvious fact that for any i ≤ C ,

µ(i)
y ([jc + 1, C]) ≤ X⌈C/2⌉

n ,

we get that the probability of having more than jc particles at y given i
particles at x is exponentially small in b.

Now, recall that Tℓ is the finite-tree of depth ℓ rooted at r, and let τ, τ ′

be two boundary conditions on the leaves of Tℓ that differ at only one vertex
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v0. Let also Γ = {v0, v1, . . . , vℓ} be the unique path joining v0 to the root
r = vℓ. We recursively couple the corresponding measures µτ .

= µτ
Tℓ,λ

and

µτ ′ .
= µτ ′

Tℓ,λ
by repeatedly applying the following step. Assume that, for

any pair (σv1 , σv2) with σv1 6= σ′
v1 we can couple µτ (· |σv1) and µτ ′(· |σ′

v1)

and call ν
σv1 ,σ

′
v1

ℓ−1 the coupled measure. It is understood that ν
σv1 ,σ

′
v1

ℓ−1 is

concentrated along the diagonal if σv1 = σ′
v1 . Let π

τv0 ,τ
′
v0

1 be the coupling of
the marginals on of the two Gibbs measures on v1 that realizes the variation

distance (i.e.,π
τv0 ,τ

′
v0

1 (σv1 6= σ′
v1) = ‖µτ

v1 − µτ ′
v1‖TV ). Then we set

ν
σv1 ,σ

′
v1

ℓ (σ, σ′) = π
τv0 ,τ

′
v0

1 (σv1 , σ
′
v1)ν

σv1 ,σ
′
v1

ℓ−1 (σ
Tb
ℓ\v1

, σ′
Tb
ℓ\v1

) .

If we iterate the above formula we finally get a coupling ντ,τ
′
such that the

probability of seeing a discrepancy at the root can be expressed as

(25)
∑

σv1 6=σ′
v1

ηv2 6=η′v2...

π
τv0 ,τ

′
v0

1 (σv1 , σ
′
v1)π

σv1 ,σ
′
v1

2 (ηv2 , η
′
v2)π

ηv2 ,η
′
v2

3 . . .

with self explanatory notation. If we can show that the above expression
tends to zero as ℓ → ∞ faster than b−ℓ uniformly in τ, τ ′, then uniqueness
will follow by a standard path coupling (or triangle inequality) argument
(see, for example, [6]).

On the state space S := [0, . . . , C]2 consider a non-homogeneous Markov

chain {ξt}
ℓ
t=0 with transition matrix at time t given by Pt(ξ, ξ

′) = πξ
t (ξ

′)
and initial condition ξ0 = (τv0 , τ

′
v0). Let also B = {(i, j) ∈ S : i ≥ jc +

1} ∪ {(i, j) ∈ S2 : j ≥ jc + 1} be the bad set and let D = {(i, i) ∈ S :
i ∈ [0, . . . , C]} be the diagonal. Equation (25) is then nothing but the
probability that the chain does not hit D within time ℓ.

For b large enough (depending only on γ′ < e) the two key properties
of the chain, which immediately follow from Lemmas 4.3 and 4.4 and the
inequality (24), are the following:

sup
t

sup
ξ∈Bc

Pt(ξ,D
c) ≤

a

b
, a < 1(26)

sup
t

sup
ξ

Pt(ξ,B) ≤ c1e
−c2 bα , α > 0 .(27)

Notice that it is not difficult to show that

sup
t

sup
ξ∈B

Pt(ξ,D
c) ≈ λ ≫ 1/b .

In other words, the probability of not entering the diagonal D in one step is
suitably small (i.e., smaller than a/b, a < 1) only if we start from the good
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set Bc. Using (26) and (27), we can immediately conclude that

P(ξt /∈ D for all 0 ≤ t ≤ ℓ) ≤

ℓ
∑

k=0

(

ℓ

k

)

(

c1e
−c2 bα

)k (a

b

)ℓ−2k−1

≤
b

a

(

b

a
c1e

−c2 bα +
a

b

)ℓ

.(28)

The “−1” in the exponent of a/b above takes into account the fact that we
may start at x0 in the bad set B, while the extra “−k” in the exponent
accounts for the fact that for any transition from B to Bc we do not nec-
essarily have a good coupling bound. It is clear that the right hand side of
(28) tends to zero faster than b−ℓ as ℓ → ∞ because a < 1. �

4.2. The case of C even. Throughout this discussion, we assume C even
and we set jc =

C
2 + 1. Notice that jc = (C2 )

∗ + 1.

Theorem 4.5. Assume λ =
(

γ log b
b

) 1
jc with γ > 1/(C + 2). Then, for any

large enough b there is phase coexistence. If instead γ < 1
C+2 , for any large

enough b there is a unique Gibbs measure.

Proof. Fix γ > 1
C+2 and assume λ =

(

γ log b
b

)
1
jc . We will show that the

largest fixed point of F
(C
2
)

− is strictly larger than the smallest fixed point of

F
(C
2
)

+ . By the usual argument that is enough to prove phase coexistence.

Pick α halfway between 1/(C+2) and γ and compute the value F
(C
2
)

− (α log b
b )

for large b. From the definition we get

F
(C
2
)

− (
α log b

b
) ≈

γ log b

b
e−b

1
C+2

−α

≈
γ log b

b
≫

α log b

b
.

Therefore there exists a fixed point of F
(C
2
)

− greater than α log b
b . On the other

hand

(29) F
(C
2
)

+

(

2γ
log b

b
e−b1/(C+2)

)

≈ γ
log b

b
e−bλ

C
2 ≪ 2γ

log b

b
e−b1/(C+2)

,

so that F
(C
2
)

+ has a fixed point smaller than 2γ log b
b e−b1/(C+2)

, and now the
first statement of the theorem follows.

Assume now γ < 1
C+2 . In that case, using (16), we infer that, for any

boundary condition and any large enough b,

µτ
Tn

(

σr ≥
C
2 + 1

)

≤ X(C/2)
n ≤ e−ba , a =

1

C + 2
− γ

The proof of uniqueness follows now exactly the same lines of the odd case
with the difference that now the bad set is B = {C/2 + 1, . . . , C} and (26),
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(27) are changed into

sup
t

sup
ξ∈Bc

Pt(ξ,D
c) ≤ c1e

−c2 bα , α > 0(30)

sup
t

sup
ξ

Pt(ξ,B) ≤ c1e
−c2 bα , α > 0 .(31)

�

4.3. First-order phase transitions for C even and large b. We now
turn to showing that for all even C and large enough b (depending on C),
the phase transition established in Theorem 4.5 is first-order. At the end of
Section 4.2 we showed that as λ varies, for example, in the interval

[

(

log b

b

) 2
C+2

,

(

3 log b

b

) 2
C+2

]

,

the values of

m(λ) := lim sup
n→∞

[

µC
Tn
(σr > C/2)− µ0

Tn
(σr > C/2)

]

vary between 0 and Ω(2 log b
b ) . (Recall that the superscripts C and 0 indicate

full b.c. and empty b.c., respectively.) Notice that, by monotonicity, the
lim supn above is attained over the sequence of even n’s and that µC

T2n
(σr >

C/2) is decreasing in n.
Here, we argue that in the above interval m(λ) cannot be continuous.

The starting point is the observation that, because of (29), for all

λ ∈

[

(

log b

b

)
2

C+2

,

(

3 log b

b

)
2

C+2

]

the smallest fixed point of F
(C
2
)

+ is exponentially small in bα for some α > 0.
Thus, in particular, there exist constants c1 , c2 such that

µ0
Tn
(σr > C/2) ≤ c1e

−c2 bα , ∀n ≥ 1 .

Fix now δ < 1 and assume that for some n0,

µC
T b
2n0

(σr > C/2) ≤
δ

b
.

By monotonicity that implies

sup
n≥2n0

sup
τ

µC
Tn
(σr > C/2) ≤

δ

b
.

Thus we can proceed with the previously described coupling argument with
(30) and (31) replaced by

sup
t≥2n0

sup
ξ∈Bc

Pt(ξ,D
c) ≤

δ

b
,(32)

sup
t≥2n0

sup
ξ

Pt(ξ,B) ≤ c1e
−c2 bα .(33)
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and we may conclude that m(λ) = 0.
In other words we have shown that m(λ) > 0 implies that for all n,

µC
T2n

(σr > C/2) >
δ

b
,

so that

m(λ) ≥
δ

b
− c1e

−c2 bα .

It follows now that the phase transition is first-order.
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