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ESCAPE RATES IN A STOCHASTIC ENVIRONMENT WITH
MULTIPLE SCALES

ERIC FORGOSTON∗ AND IRA B. SCHWARTZ†

Abstract. We consider a stochastic environment with two time scales and outline a general
theory that compares two methods to reduce the dimension of the original system. The first method
involves the computation of the underlying deterministic center manifold followed by a “näıve”
replacement of the stochastic term. The second method allows one to more accurately describe the
stochastic effects and involves the derivation of a normal form coordinate transform that is used
to find the stochastic center manifold. The results of both methods are used along with the path
integral formalism of large fluctuation theory to predict the escape rate from one basin of attraction
to another. The general theory is applied to the example of a surface flow described by a generic,
singularly perturbed, damped, nonlinear oscillator with additive, Gaussian noise. We show how both
nonlinear reduction methods compare in escape rate scaling. Additionally, the center manifolds are
shown to predict high pre-history probability regions of escape. The theoretical results are confirmed
using numerical computation of the mean escape time and escape prehistory, and we briefly discuss
the extension of the theory to stochastic control.

Key words. Stochastic dynamical systems, Center manifold reduction, Large fluctuation theory,
Multiscale analysis
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1. Introduction. It has long been known that noise can have a significant effect
on deterministic dynamical systems. For example, given an initial state starting in
some basin of attraction (defined as the set of initial conditions from which the system
approaches a corresponding locally stable attractor as time evolves to infinity), noise
can cause the initial state to cross the basin boundary and move into another, distinct
basin of attraction [12, 14, 39, 36, 35].

There are several points of view one might consider when investigating the effect
of noise on a dynamical system, including stochastic resonance [24] and finite noise
effects [5]. In this article, we consider yet another point of view, namely the effect of
arbitrarily small noise on the escape of a particle from a potential well. In this case,
one can apply large fluctuation theory [20, 12, 14, 36].

Many of the underlying deterministic systems found in [12, 14, 39, 36, 35] have
parameter regimes in which multiple attractors give rise to noise-induced escape from
one attractor to another. Such systems may be analyzed globally by considering the
Hamiltonian theory of large fluctuations or by considering escape from attracting
potential wells along most probable exit paths [23, 26, 37, 28].

Through the use of a path integral coupled with variational methods, it is possible
to compute the probability densities of the trajectories of the system. In particular,
for sufficiently small noise, one can find the trajectories which escape from a basin
of attraction due to stochastic effects. The most probable escape trajectory is the
optimal escape path of a state residing in a basin of attraction.

Many researchers have investigated how noise affects physical and biological phe-
nomena, including lasers [8, 32, 27], epidemics and control [4, 17, 33, 16], and neu-
rons [30]. Yet another important application in many fields is that of sensing in
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stochastic environments. Improved environmental sensing and prediction can be
achieved through the incorporation of continuous monitoring of the region of interest.
For example, one could monitor the stochastic ocean using autonomous underwater
gliders [48, 47, 19]. However, to do this, one must understand both the dynamics and
control of the gliders.

Extending the lifetime (energy optimization problem) of sensing devices (e.g.
gliders) in stochastic environments such as the ocean requires an understanding of the
effect of the environmental forces on both the devices and the region being monitored.
The ocean dynamics are high-dimensional and stochastic. Therefore, as a first step
towards using the underlying ocean structure to optimize a sensor’s energy usage,
we will outline a general theory that provides two methods to obtain a reduction in
the dimension of the stochastic system. The manifold equations that are found using
these methods can then be used to determine the optimal escape path and escape
rate.

Our formulation uses large fluctuation theory [20] to determine the first passage
times in a multi-scale environment. For a vector field that has relaxation times on the
same scale, it is clear how to use the theory to generate an optimal path of escape, and
this theory has been applied to a variety of Hamiltonian and Lagrangian variational
problems [49, 31, 15].

However, technical issues may arise when one wishes to determine the projection
of noise that is needed to perturb the dynamics restricted to the lower-dimensional
manifold. To address this, several approaches have been developed to understand
dimension reduction in systems that have well separated time scales. For a system with
certain spectral requirements, the existence of a stochastic center manifold was proven
in [6]. Non-rigorous stochastic normal form analysis (which leads to the stochastic
center manifold) was performed in [34, 9, 40, 41]. Rigorous theoretical analysis of
normal form coordinate transformations for stochastic center manifold reduction was
developed in [2, 1]. Later, an alternative method of stochastic normal form reduction
was developed [42], in which any anticipatory convolutions (integrals into the future of
the noise processes) that appeared in the slow modes were removed. Since this latter
analysis makes the construction of the stochastic normal form coordinate transform
more transparent, we use this method to derive the reduced stochastic center manifold
equation.

The layout of the paper is as follows. The general theory of deterministic and
stochastic center manifold reduction is described in Sec. 2. The first method used
to reduce the dimension of the system involves the derivation of the center manifold
equation [7] of the associated deterministic system followed by the “näıve” replacement
of the stochastic term. The second method, which allows one to more accurately
describe the effect of the noise, involves the derivation of a normal form coordinate
transform [42] that is used to find the stochastic center manifold equation. Section 2
also describes how the two center manifolds resulting from the two methods can be
used along with the theory of large fluctuations to analytically find the optimal escape
path of the particle along with its escape rate. The general theory of Sec. 2 is applied
to a specific example given by a singularly perturbed, damped, Duffing oscillator with
additive, Gaussian noise in Sec. 3. This section contains analytical results and their
comparison with numerical computation. The conclusions are contained in Sec. 4.

2. General Theory. We consider the following general (m + n)-dimensional
system of stochastic differential equations with two well-separated time scales:
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(2.1a) ẋ = Ax+ F (x,y,Φ) ,

(2.1b) ǫ ẏ = By +G (x,y,Ψ) ,

where ǫ is a small parameter, x(t) ∈ R
m, y(t) ∈ R

n, Φ(t) and Ψ(t) describe stochastic
forces with adjustable intensity, A and B are constant matrices, and F and G are
stochastic, nonlinear functions.

2.1. Deterministic Center Manifold. To begin, we remove the stochastic
terms from Eqs. (2.1a) and (2.1b) so that F = F(x,y) and G = G(x,y). Let t = ǫτ .
Denoting ˙ as d/dt and ′ as d/dτ , then the deterministic form of Eqs. (2.1a) and (2.1b)
is transformed to the following system of equations:

(2.2a) x′ = ǫ [Ax+ F(x,y)] ,

(2.2b) y′ = By +G(x,y),

(2.2c) ǫ′ = 0.

To recast the problem in a more general framework, we treat ǫ as a state variable,
let Ā = ǫA and F̄ = ǫF, and write Eqs. (2.2a)-(2.2c) as

(2.3a) x′ = Āx+ F̄(x,y, ǫ),

(2.3b) y′ = By +G(x,y),

(2.3c) ǫ′ = 0.

If Ā and B are constant matrices such that all of the eigenvalues of Ā have zero real
parts, while all of the eigenvalues of B have negative real parts, then the system will
rapidly collapse onto a lower-dimensional manifold given by center manifold theory [7].
Furthermore, we will consider examples where the solution decays throughout the
transient and then stays close to the lower-dimensional manifold.

If the center manifold is given by

(2.4) y = h(x, ǫ),

then substitution of Eq. (2.4) into Eq. (2.3b) leads to the following center manifold
condition:

(2.5) hx

[

Āx+ F̄(x,h(x, ǫ), ǫ)
]

= Bh(x, ǫ) +G(x,h(x, ǫ)),

where hx denotes the partial derivative of h with respect to x. Although it is generally
not possible to solve Eq. (2.5) for h, one can approximate the center manifold by
expanding h in the following way:

(2.6) h(x, ǫ) = h0(x) + ǫh1(x) + ǫ2h2(x) +O(ǫ3).

Typically, this approximation of h(x, ǫ) is found by substituting Eq. (2.6) into the
center manifold condition [Eq. (2.5)] and matching coefficients.
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2.2. Optimal Escape Path and Escape Rate. Starting with the center man-
ifold equation given by Eq. (2.6) to a particular order, the dynamics on the center
manifold can be found by substitution of Eq. (2.6) into Eq. (2.2a) [using the relation
given by Eq. (2.4)]. Therefore, the dynamics are determined by

(2.7) x′ = ǫ [Ax+ F(x,h(x, ǫ))] = ǫH(x, ǫ),

and use of the relation between t and τ leads to the following:

(2.8) ẋ = Ax+ F(x,h(x, ǫ)) = H(x, ǫ).

Equation (2.8) is a deterministic equation. However, now that we have reduced
the dimension of the problem, we return to considering a stochastic problem by
“näıvely” adding a noise vector to the right-hand side of Eq. (2.8) so that one has

(2.9) ẋ = H(x, ǫ) +
√
2DΦ(t),

where D is the noise intensity. Each of the noise components, φi, of Φ in Eq. (2.9)
describes a stochastic white force that is characterized by the following correlation
functions:

(2.10a) 〈φi(t)〉 = 0,

(2.10b) 〈φi(t)φj(t
′)〉 = δ(t− t′)δij .

The following analysis to determine the optimal escape path may be performed
using Eqs. (2.9)-(2.10b), a system with an arbitrary number of degrees of freedom [18].
However, since we ultimately are interested in applying this general theory to a
two-dimensional (2D) surface flow that reduces via the center manifold to a one-
dimensional (1D) equation, for simplicity we consider the 1D version of Eq. (2.9)
given as

(2.11) ẋ = H(x, ǫ) +
√
2Dφ(t),

where φ(t) is characterized by the correlation functions given by Eqs. (2.10a) and
(2.10b).

We assume that H(x, ǫ) is associated with a potential function U(x, ǫ),
[H(x, ǫ) = −dU(x, ǫ)/dx] with stable states (attractors) located at x = xa and an
unstable state (saddle) located at x = xs. Then Eq. (2.11) corresponds to a Langevin
equation of a particle in an over-damped potential well.

In the absence of noise, a particle located in the potential well will approach the
stable, attracting state. However, the noise may organize as an effective force which
acts on the particle and “pushes” the particle from the attractor to the saddle located
at the top of the potential well barrier. The path along which the particle leaves the
basin of attraction due to such an effective noise force is an escape path.

Given that φ(t) is uncorrelated Gaussian noise, the probability of optimal escape
is

(2.12) P [xesc] = C exp



− 1

2D

∞
∫

−∞

φ2
opt dt



 = C exp (−R/D),
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where

(2.13) R =
1

2

∞
∫

−∞

φ2
opt dt =

1

2

∞
∫

−∞

L(x, ẋ; t) dt,

and φopt denotes the stochastic fluctuations corresponding to the trajectory that
moves along the optimal escape path. In Eq. (2.12), C is a pre-factor that depends on
the noise intensity. In order to maximize the probability of escape, one must minimize
the exponent given by Eq. (2.13). Using the Euler-Lagrange equation of motion, it is
now possible to solve for the optimal escape path.

It also is possible to derive an expression for the escape rate from an attractor to
the saddle, which is located at the top of the potential well barrier. In general, if the
stochastic trajectory of a particle is given by

(2.14) ẋ = −dU(x, ǫ)

dx
+
√
2Dφ(t),

with U(x, ǫ) some potential (as we have assumed), then for Gaussian noise, the escape
rate from the attractor (located at x = xa) to the unstable saddle (located at x = xs

at the top of the barrier) is given by

(2.15) W (D) =

√

|Q(xs, ǫ)|Q(xa, ǫ)

2π
exp (−∆U/D),

where Q(x, ǫ) = d2U(x, ǫ)/dx2 and ∆U is the activation energy of escape (depth of
the potential well) [25].

If W (D) is the escape rate, then 1/W (D) gives the mean escape time, and the
natural log of the mean escape time is therefore

(2.16) log

(

1

W (D)

)

= log

(

2π
√

|Q(xs, ǫ)|Q(xa, ǫ)

)

+
∆U

D
.

It should be noted that to ensure the particle escapes from the potential well,
one could compute the escape rate (and the mean escape time) from the attractor
to a point located somewhere in the second potential well (i.e. the particle escapes
from the first basin of attraction if it climbs out of the potential well to the saddle
located at the top of the potential well barrier and then continues past the saddle to
some point located in the second basin of attraction). However, this movement of the
point at which one claims the particle has escaped from the potential well will create
a change in the pre-factor of Eq. (2.15) along with a corresponding change in the first
term on the right-hand side of Eq. (2.16) [25].

As we have previously noted, we consider systems whose solution decays exponen-
tially throughout the transient and then stays close to the lower-dimensional center
manifold. There are no secular terms in the asymptotic expansion since we are not
looking at periodic orbits, and the result is valid for all time. Moreover, any noise drift
on the center manifold will result in bounded solutions due to sufficient dissipation
transverse to the manifold. This behavior is in direct contrast to the finite-time solu-
tions on manifolds of relaxation-type oscillators whereby the time scale of escape must
be shorter than the lifetime of the trajectories on the manifold [10, 22]. This lifetime
issue does not pertain to the systems we consider since there will be no oscillations.
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2.3. Stochastic Center Manifold and the Normal Form Coordinate
Transform. In a manner similar to that shown in Sec. 2.1, the stochastic system
given by Eqs. (2.1a) and (2.1b) can be transformed [3] to the form given by Eqs. (2.3a)-
(2.3c), where now F̄ = F̄(x,y, ǫ,Φ) and G = G(x,y,Ψ). If Ā and B satisfy the same
spectral conditions as for the deterministic system, and if the stochastic time depen-
dence found in F̄ and G is due to independent white noise processes, then there exists
a stochastic center manifold for the original stochastic system [6].

One method for computing the stochastic center manifold for systems with both
fast and slow dynamics uses the construction of a normal form coordinate transform
that not only reduces the dimension of the dynamics, but also separates all of the fast
processes from all of the slow processes [42]. While this type of normal form coordi-
nate transform may be used to find deterministic center manifolds, the application of
this transform to stochastic systems is particularly interesting since white noise has
fluctuations on all scales.

There are many publications, such as [34, 9, 40, 41] which deal with the simplifica-
tion of a stochastic dynamical system using a stochastic normal form transformation.
In these articles, the noise term is multiplied by a small parameter, and therefore,
the resulting stochastic normal form is a perturbation of the deterministic normal
form. Furthermore, one can find in [9, 41] normal form transformations that involve
anticipative noise processes. However, these integrals of the noise process into the
future were not dealt with rigorously in [9, 41].

Rigorous, theoretical analysis to support normal form coordinate transforms (and
center manifold reduction) was developed in [2, 1]. In this work, the technical prob-
lem of the anticipative noise integrals also was dealt with rigorously. Later, another
stochastic normal form transformation was developed [42]. This new method is such
that “anticipation can ... always [be] removed from the slow modes with the result
that no anticipation is required after the fast transients decay”(Ref. [42], pp. 13). An
advantage of removing anticipation is the simplification of the normal form. Nonethe-
less, this simpler normal form retains its accuracy with the original stochastic system.
Furthermore, when modeling the macroscopic behavior of microscopic, stochastic sys-
tems, it is desirable to avoid anticipation in the normal form [42].

It is important to note that the normal form is valid for all time since it is just a
coordinate transform. Furthermore, the dynamics also are valid for all time as long
as the truncation error is small enough for the problem of interest.

In the example of Sec. 3, we shall use the method of [42] to simplify our stochas-
tic dynamical system to one that emulates the long-term dynamics of the original,
multiple-time-scale system. The method involves five principles, which we recapitulate
here for the purpose of clarity. The principles are as follows:

1. Avoid unbounded, secular terms in both the transformation and the evolution
equations to ensure a uniform asymptotic approximation.

2. Decouple all of the slow processes from the fast processes to ensure a valid
long-term model.

3. Insist that the stochastic slow manifold is precisely the transformed fast pro-
cesses coordinate being equal to zero.

4. To simplify matters, eliminate as many as possible of the terms in the evo-
lution equations.

5. Try to remove all fast processes from the slow processes by avoiding as much
as possible the fast time memory integrals in the evolution equations.

In practice, the original stochastic system of equations (which satisfy the necessary
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spectral requirements) in (x,y) coordinates is transformed to a new (X,Y) coordinate
system using a stochastic coordinate transform as follows:

(2.17a) x = X+ ξ(X,Y, t),

(2.17b) y = Y + η(X,Y, t),

where the specific form of Eqs. (2.17a) and (2.17b) is chosen to simplify the origi-
nal system according to the five principles listed previously. The terms ξ(X,Y, t)
and η(X,Y, t) are found using an iterative procedure that will be demonstrated us-
ing the singularly perturbed, damped, stochastic Duffing oscillator model in Sec. 3.
Theoretical details can be found in [42].

3. Example - Singularly Perturbed Stochastic Duffing Oscillator. We
consider the following singularly perturbed, damped, Duffing oscillator system with
additive noise:

(3.1a) ẋ = y +
√
2Dφ(t),

(3.1b) ǫẏ = (x− x3 − y),

where D is the noise intensity and φ(t) describes a stochastic white force that is
characterized by the correlation functions given in Eqs. (2.10a) and (2.10b).

In this example, the noise is added only to the x equation. Additionally, one
could consider two other scenarios. In the first scenario, noise is added to both the x
and y equations, while in the second scenario, noise is added only to the y equation.
To implement the first scenario, one adds

√
2Dφ1(t) to the right-hand side of the x

equation and
√
2Dφ2(t) to the right-hand side of the y equation [where φ1(t) and φ2(t)

describe stochastic white forces of intensityD that are characterized by the correlation
functions given in Eqs. (2.10a) and (2.10b)]. To implement the second scenario, noise
is added only to the y equation. However, unlike the example [Eqs. (3.1a) and (3.1b)]
and the first scenario, in this case the noise term must be scaled by

√
ǫ and the

potential function must be scaled by ǫ [44]. Although the following results pertain to
Eqs. (3.1a) and (3.1b), we have checked that one obtains similar results for the other
two scenarios.

The system given by Eqs. (3.1a) and (3.1b) is very strongly damped when ǫ ≪ 1.
For the case of an under-damped system, one should consider the dynamics in the
limit of weak damping [17].

3.1. Deterministic Center Manifold. Following the general theory of Sec.
2.1, we consider the deterministic form of Eqs. (3.1a) and (3.1b) by setting φ(t) = 0.
The slow manifold is found by setting ǫ = 0 in Eq. (3.1b). Solving for y gives the
equation of the slow manifold as y = x− x3[which corresponds to h0(x) in Eq. (2.6)].
Substitution of this into the deterministic form of Eq. (3.1a) gives the dynamics along
the slow manifold as ẋ = x− x3.

If, as in Sec. 2.1, we let t = ǫτ and denote ˙ as d/dt and ′ as d/dτ , then Eqs. (3.1a)
and (3.1b) (with φ(t) = 0) are transformed to the following system:

(3.2a) x′ = ǫy,

(3.2b) y′ = x− x3 − y,
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(3.2c) ǫ′ = 0.

Rearrangement of Eqs. (3.2a)-(3.2c) leads to a system described by constant matrices
Ā and B that satisfy the spectral requirements of Sec. 2.1. Furthermore, since the x
and ǫ variables are associated with the Ā matrix (eigenvalues with zero real parts),
and the y variable is associated with the B matrix (eigenvalues with negative real
parts), we know that the center manifold is given by y = h(x, ǫ).

The center manifold condition is given by Eq. (2.5), and we approximate the
center manifold [Eq. (2.6)] as follows:

h(x, ǫ) = h0(x) + ǫh1(x) + ǫ2h2(x) +O(ǫ3)(3.3a)

= c0 + c01ǫ + c10x+ c02ǫ
2 + c11xǫ+ c20x

2

+ c03ǫ
3 + c12xǫ

2 + c21x
2ǫ+ c30x

3 +O(γ4),(3.3b)

where c0, c01, c10, c02, . . . are unknown coefficients, and γ = |(x, ǫ)| so that γ provides
a count of the number of x and ǫ factors in any one term. The center manifold
condition for this example is given by

(3.4)
∂h(x, ǫ)

∂x
[ǫh(x, ǫ)] = −h(x, ǫ) + x− x3.

By substituting Eq. (3.3b) into Eq. (3.4) and matching the different orders to
find the coefficients, one finds the following center manifold equation (expanded to
sixth-order):

h(x, ǫ) = x− ǫx+ 2ǫ2x− x3 − 5ǫ3x+ 4ǫx3 + 14ǫ4x

− 20ǫ2x3 − 42ǫ5x+ 104ǫ3x3 − 3ǫx5 +O(γ7)(3.5a)

= x− x3 + ǫ(−x+ 4x3 − 3x5) + ǫ2(2x− 20x3)

+ ǫ3(−5x+ 104x3) + ǫ4(14x) + ǫ5(−42x) +O(γ7).(3.5b)

Note that by letting ǫ = 0, one recovers the zero-order approximation, h0(x) (the slow
manifold). In addition, since ǫ is now a state variable, the first nontrivial correction
term to the zero-order approximation is a quadratic term.

3.2. Optimal Escape Path and Escape Rate. Consider the third-order cen-
ter manifold equation given by h(x, ǫ) = x−x3− ǫx+2ǫ2x [see Eq. (3.5a)]. Following
Sec. 2.2, the dynamics on the center manifold are given by x′ = ǫh(x, ǫ) [see Eq. (2.7)].
Use of the relation t = ǫτ leads to the following deterministic equation:

(3.6) ẋ = h(x, ǫ) = x− x3 − ǫx+ 2ǫ2x.

We “näıvely” add the noise term φ(t) to the right-hand side of Eq. (3.6) as in
Eqs. (2.9) and (2.11) so that

(3.7) ẋ = x− x3 − ǫx+ 2ǫ2x+
√
2Dφ(t).

Equation (3.7) corresponds to a Langevin equation of a particle in an over-
damped quartic potential well with stable states (attractors) located at x = xa =
±
√
1− ǫ+ 2ǫ2 and an unstable state (saddle) located at x = xs = 0.
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The probability of optimal escape is given by Eqs. (2.12) and (2.13). Solution of
the Euler-Lagrange equation of motion leads to the following optimal escape path:

(3.8) xesc =

√

A

1 + 3 exp (2At)
,

where A = 1 − ǫ + 2ǫ2. Note that xesc →
√
A as t → −∞ while xesc → 0 as t → ∞.

This path is a heteroclinic orbit from the basin of attraction located at x =
√
A to

the saddle located at x = 0.
Using Eq. (3.8) along with

(3.9) ẋesc = xesc − x3
esc − ǫxesc + 2ǫ2xesc +

√
2Dφopt(t),

we find that the optimal noise is given by the following:

(3.10) φopt(t) =
1√
2D

×
√

A

1 + 3 exp (2At)
×
[−6A exp (2At)

1 + 3 exp (2At)

]

.

Since A is a function of ǫ, the shape of φopt(t) will be affected by the value of ǫ. With
D = 0.05, Fig. 5.1(a) shows φopt(t) for various values of ǫ. To obtain a clearer view,
Fig. 5.1(b) shows a section of Fig. 5.1(a). One can see in Figs. 5.1(a) and 5.1(b) that
ǫ has an effect on both the pulse width and amplitude. Starting with ǫ = 0.02, the
pulse amplitude decreases monotonically and the pulse width increases monotonically
as ǫ increases to ǫ = 0.25 (the value of ǫ for which A is minimized). As ǫ continues to
increase beyond ǫ = 0.25, the pulse amplitude increases monotonically and the pulse
width decreases monotonically.

Using the theory outlined in Sec. 2.2, we now derive an expression for the escape
rate from one of the attractors to the saddle in order to predict the change in escape
rate caused by varying the value of ǫ and D.

Since the stochastic (“näıve”), third-order center manifold dynamical equation
given by Eq. (3.7) has the form of Eq. (2.14), then the escape rate from the attractor
located at x = xa =

√
1− ǫ+ 2ǫ2 to the saddle located at x = xs = 0 can be found

using Eq. (2.15). The escape rate is given as follows:

(3.11a) W (ǫ,D) =

√

| − 1 + ǫ− 2ǫ2|(2 − 2ǫ+ 4ǫ2)

2π
× exp (−∆U/D),

(3.11b) ∆U =

∣

∣

∣

∣

−1 + 2ǫ− 5ǫ2 + 4ǫ3 − 4ǫ4

4

∣

∣

∣

∣

.

Appendix A contains similar expressions for the escape rate that are found using the
fourth-order and fifth-order stochastic (“näıve”) center manifold dynamical equations.

3.3. Stochastic Center Manifold and the Normal Form Coordinate
Transform. To more accurately describe the stochastic effects, we will derive the
normal form coordinate transform (and thus the stochastic center manifold) for the
singularly perturbed, stochastic Duffing system given by Eqs. (3.1a) and (3.1b). As
demonstrated previously, use of the t = ǫτ transformation leads to the following
system:
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(3.12a) x′ = ǫ(y +
√
2Dφ) = ǫ(y + σφ),

(3.12b) y′ = x− x3 − y,

(3.12c) ǫ′ = 0,

where σ is the standard deviation of the noise intensity D = σ2/2.
The construction of the normal form is quite tedious and complicated. However,

the result allows one to determine if there are any noise terms that cause a signifi-
cant difference between the average stochastic center manifold (the stochastic center
manifold generally fluctuates about an average location) and the deterministic center
manifold.

For this problem, it turns out that the noise terms that could lead to a difference
between the deterministic and average stochastic center manifolds occur at very high
order in the normal form expansion. Therefore, the correction to the deterministic
center manifold is minimal, and we expect that the deterministic results of Sec. 3.1 and
Sec. 3.2 will agree very well with numerical computations using the original stochastic
system [Eqs. (3.1a) and (3.1b)].

We proceed by showing how to use the method of [42] described in Sec. 2.3
to construct a normal form coordinate transform that separates the slow and fast
dynamics of Eqs. (3.12a) and (3.12b). In what follows, we outline the steps involved
in the first iteration, while details regarding the higher iterations are provided in the
appendices.

3.3.1. First Iteration. We begin by letting

(3.13a) x ≈ X,

(3.13b) X ′ ≈ 0,

and by finding a change to the y coordinate (fast process) with the form

(3.14a) y = Y + η(τ,X, Y ) + . . . ,

(3.14b) Y ′ = −Y +G(τ,X, Y ) + . . . ,

where η andG are small corrections to the coordinate transform and the corresponding
evolution equation. Substitution of Eqs. (3.13a)-(3.14b) into Eq. (3.12b) gives the
following equation:

(3.15) Y ′ +
∂η

∂τ
+

∂η

∂X

∂X

∂τ
+

∂η

∂Y

∂Y

∂τ
= −Y − η +X −X3.

Replacing Y ′ = ∂Y/∂τ with −Y + G [Eq. (3.14b)], noting that ∂X/∂τ = 0 [Eq.
(3.13b)], and ignoring the term ∂η/∂Y · G since it is a product of small corrections
leads to the following:

(3.16) G+
∂η

∂τ
− Y

∂η

∂Y
+ η = X −X3.
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Equation (3.16) must now be solved for G and η. In order to keep the evolution
equation [Eq. (3.14b)] as simple as possible (principle (4) of Sec. 2.3), we let G = 0,
which means that the coordinate transform [Eq. (3.14a)] is modified by η = X −X3.
Therefore, the new approximation of the coordinate transform and its dynamics are
given by

(3.17a) y = Y +X −X3 +O(ζ2),

(3.17b) Y ′ = −Y +O(ζ2),

where ζ = |(X,Y, ǫ, σ)| so that ζ provides a count of the number of X , Y , ǫ, and σ
factors in any one term.

3.3.2. Higher Iterations. The construction of the normal form continues by
seeking corrections, ξ and F , to the x coordinate transform and the X evolution using
the updated residual of the x equation [Eq. (3.12a)], and by seeking corrections, η
and G, to the y coordinate transform and the Y evolution equation using the updated
residual of the y equation [Eq. (3.12b)]. Details regarding the second iteration can be
found in Appendix B.

The derivation of ξ and F in the second and fourth iterations along with the
derivation of η and G in the third iteration leads to the following updated approx-
imation of the coordinate transforms and their corresponding evolution equations:

y =Y +X −X3 + ǫ
(

−X + 4X3 − 3X5
)

+ ǫσ
(

−e−τ ∗ φ+ 3X2e−τ ∗ φ
)

+ 3ǫ2XY 2 +O(ζ3),(3.18a)

Y ′ =− Y + ǫ
(

−Y + 3X2Y
)

+O(ζ3),(3.18b)

x =X − ǫY + ǫ2
(

Y − 3X2Y
)

+ ǫ2σ
(

e−τ ∗ φ− 3X2e−τ ∗ φ
)

+O(ζ4),(3.19a)

X ′ =ǫ
(

X −X3
)

+ ǫσφ+ ǫ2
(

−X + 4X3 − 3X5
)

+ ǫ2σ
(

−φ+ 3X2φ
)

+O(ζ4),(3.19b)

where

(3.20) e−τ ∗ φ =

τ
∫

−∞

exp [−(τ − s)]φ(s) ds.

Details regarding the derivation of Eqs. (3.18a) and (3.18b) can be found in Ap-
pendix C, while details of the derivation of Eqs. (3.19a) and (3.19b) can be found in
Appendix D.

One can continue this iterative procedure to obtain higher order terms in the
expansions of the coordinate transform and normal form. For the stochastic Duffing
system under consideration, the fifth and sixth iterations lead to updated approxi-
mations of the x and y coordinate transforms (along with their associated evolution
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equations) that are extremely long and complicated. These approximations can be
found in Appendix E.

In the higher order transform given by Eqs. (E.1a) -(E.1d), one can see the
appearance of quadratic noise terms. For example, one can see terms of the form
e−τ ∗ (e−τ ∗ φ)2 in the coordinate transforms [Eqs. (E.1a) and (E.1c)], and one can
see terms of the form φe−τ ∗ φ in one of the evolution equations [Eq. (E.1d)]. This
quadratic noise is important because it leads to the creation of a deterministic drift
within the slow dynamics [42, 41]. Furthermore, the stochastic center manifold gener-
ally undergoes fluctuations about a mean or average location. This average stochastic
center manifold is usually different from the deterministic center manifold, and it is
the quadratic noise process that generates this difference.

3.3.3. Comparison with Deterministic Center Manifold and Effect of
Quadratic Noise. Letting Y = 0 and σ = 0 in Eqs. (E.1a) and (E.1c) leads to the
following deterministic center manifold equation:

x =X,(3.21a)

y =X −X3 + ǫ(−X + 4x3 − 3X5) + ǫ2(2X − 20X3 + 42X5)

+ ǫ3(−X + 16X3 − 66X5 + 96X7 − 45X9) +O(ǫ3).(3.21b)

Comparison of Eqs. (3.21a) and (3.21b) with Eq. (3.5b) shows agreement through the
O(ǫ2) terms. There appears to be a discrepancy at order O(ǫ3). However, we have
checked that this apparent discrepancy is resolved by expanding the stochastic normal
form coordinate transform to even higher order. For example, the seventh iteration
will yield a −4ǫ3X term in the y coordinate transform. When added to the existing
−ǫ3X term, there is an agreement with the −5ǫ3x term in Eq. (3.5b).

Letting Y = 0 in Eqs. (E.1a) and (E.1c) leads to the stochastic center manifold
equation. If one takes the expectation of this stochastic center manifold equation and
uses the following identities [42]:

(3.22) E[e±τ ∗ φ] = e±τ ∗ E[φ],

(3.23) E[(e±τ ∗ φ)2] = 1

2
,

then one obtains the following:

E[y] =X −X3 + ǫ(−X + 4X3 − 3X5) + ǫ2(2X − 20X3 + 42X5)

+ ǫ3(−X + 16X3 − 66X5 + 96X7 − 45X9)

+ ǫ4σ2(−3X/2 + 9X3 − 27X5/2),(3.24)

where the O(ǫ4σ2) terms are associated with the quadratic noise terms in Eq. (E.1a).

The average stochastic center manifold equation given by Eq. (3.24) can now be
used in conjunction with the theory outlined in Sec. 2.2 to find an analytical expression
for the escape rate. This calculation has been performed, but because the noise effects
occur at such high order [O(ǫ4σ2)], the correction to the stochastic (“näıve”) result
is minimal.
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3.4. Numerical Computation of Escape Time. When σ = 0 (no noise),
the original, singularly perturbed problem given by Eqs. (3.1a) and (3.1b), has three
equilibrium points given by (−1, 0), (0, 0), and (1, 0). At the initial time, t = 0, a
particle is randomly placed near the stable, attracting point (1, 0) within a circle of
radius 0.1 centered at (1, 0).

Equations (3.1a) and (3.1b) are numerically integrated using a stochastic fourth-
order Runge-Kutta scheme [43, 29] with a constant time step size, δt, that depends on
the value of ǫ (δt = 0.01 for ǫ < 0.1, while δt = 0.1 for ǫ ≥ 0.1), and the time needed
for the particle to escape from the basin of attraction is determined. This escape time
is based on either the time it takes the particle to cross the x < −0.2 barrier, which
means the particle has escaped across the unstable saddle, and has entered the second
basin of attraction with stable, attracting point (−1, 0), or when the maximum time
(10, 000, 000 for δt = 0.01 and 100, 000, 000 for δt = 0.1) has been reached.

This computation was performed for 10, 000 particles, and the mean escape time
was determined. In these computations, ǫ ranged from ǫ = 0.02 to ǫ = 1.5, and σ
ranged from σ = 0.26 to σ = 0.5. Figure 5.2 shows a contour plot of the natural log
of the mean escape time plotted for the above range of ǫ and 1/D = 2/σ2 values.

By taking a vertical slice of Fig. 5.2, one can look at a plot of the natural log of
the mean escape time versus 1/D for a fixed value of ǫ. Figure 5.3(a) shows a vertical
slice of Fig. 5.2 taken at ǫ = 0.1 along with a line of best fit through these numerically
computed data points. The slope of the best fit line is m = 0.2505. From Eq. (2.16),
we see that if one plots the natural log of the mean escape time vs. 1/D, then the
theoretical slope of this line is given by ∆U , the depth of the potential well. If ǫ = 0,
the depth of the potential well corresponding to Eqs. (3.1a) and (3.1b) is ∆U = 0.25,
which compares very well with the numerical result for ǫ = 0.1.

Figure 5.3(b) shows several vertical slices of Fig. 5.2 taken at various values of ǫ.
As in Fig. 5.3(a), there is a line of best fit through the data points corresponding to
each choice of ǫ.

Numerical computations have been performed for values of ǫ as small as 0.02.
The slopes of the lines of best fit through the data for these small values of ǫ are very
close to 0.25. The data and their lines of best fit are not shown in Fig. 5.3(b) since
the plots would obscure one another (and they would all be obscured by the ǫ = 0.1
plot).

One can see in Fig. 5.3(b) that as the value of ǫ increases (which means that the
system moves further and further away from the over-damped regime), the slope of the
line of best fit decreases. The slope values are as follows: for ǫ = 0.2, m = 0.2466; for
ǫ = 0.3, m = 0.2398; for ǫ = 0.4, m = 0.2287; for ǫ = 0.5, m = 0.2165; and for ǫ = 1.0,
m = 0.1549. When the system is in an under-damped regime, the slope of the best
fit line no longer agrees with the theoretical value when ǫ = 0 (m = 0.25). However,
there still is a nice scaling behavior. One should note that in general the escape rate
computed using the one-dimensional system found by letting ǫ = 0 may be different
than the escape rate of the associated two-dimensional system with ǫ → 0 [11]. A
specific example may be found in the case of extinction processes [46], where the rate
to extinction has no limit when a singular parameter becomes small.

As shown in Sec. 2.2, Eqs. (3.11a) and (3.11b) can be used to find analytical
values of the natural log of the mean escape time. By varying the value of D and
by fixing the value of ǫ, we can compare the analytical mean escape time found
using Eqs. (3.11a) and (3.11b) [or Eqs. (A.2a)-(A.2d); Eqs. (A.4a)-(A.4d)] with the
numerically computed mean escape time shown in Figs. 5.2 and 5.3.
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With ǫ = 0.02, Fig. 5.4(a) shows a comparison between the numerically computed
mean escape time (Fig. 5.2) and the analytically computed mean escape time found
using the fifth-order center manifold equation [Eqs. (A.4a)-(A.4d)]. Figure 5.4(a) also
contains lines of best fit passing through the data points associated with numerical
and analytical computation.

One can see from Fig. 5.4(a) that there is good agreement between the two meth-
ods. The slope of the line of best fit through the numerical data is mnum = 0.2536,
while the slope of the line of best fit through the analytical data is mana = ∆U =
0.2591. One also can see in Fig. 5.4(a) that there is a slight discrepancy between
the analytical and numerical y-intercept values. This is due to the fact that in the
numerical computation, the escape time was based on the time for the particle to
cross the barrier and descend partially into the second basin of attraction, while the
analytical escape time was based on the time for the particle to reach the top of the
barrier.

The two methods continue to agree well as ǫ is increased to ǫ = 0.1 [Fig. 5.4(b)]
and ǫ = 0.14 [Fig. 5.4(c)]. Beyond ǫ = 0.14, the analytical result begins to diverge
from the numerical result, and this divergence increases as ǫ increases. An example
of this divergence is shown for ǫ = 0.2 in Fig. 5.4(d). The slopes of the lines of
best fit are as follows: for ǫ = 0.1, mnum = 0.2505 and mana = ∆U = 0.2624; for
ǫ = 0.14, mnum = 0.2490 and mana = ∆U = 0.2385; and for ǫ = 0.2, mnum =
0.2466 and mana = ∆U = 0.1859. Note that by linearizing the deterministic form of
Eqs. (3.1a)-(3.1b) about the stable, attracting point (1, 0), one finds that the critical
damping value is ǫcr = 0.125. This value agrees well with the value at which the good
comparison between the analytical result and numerical result begins to break down.

As stated in Sec. 3.3, we have computed the analytical escape rate of the particle
using the stochastic center manifold. Again, the stochastic correction is minimal, and
therefore these analytical mean escape times are very close in value to those found
using the “näıve” approach. We do not show figures comparing this analytical result
with the numerical result since there is no noticeable difference from the plots shown
in Figs. 5.4(a)-5.4(d).

3.5. Numerical Computation of Escape Prehistory. For each of the 10, 000
particles that were initially placed in one of the attracting basins and which later
escaped from this basin, across the saddle, and into the other basin of attraction, we
retain t = 200 worth of the particle’s path prior to escape. By creating a histogram
representing the probability density, ph, of this escape prehistory [14], one can see
which regions of the phase space are associated with a high or low probability of
particle escape.

An example of a histogram of escape path prehistory is shown in Fig. 5.5(a) for
ǫ = 0.1 and σ = 0.3 (so that D = σ2/2 = 0.045). The color-bar values of Fig. 5.5(a)
have been normalized by 105. The threshold 0 value in Fig. 5.5(a) is actually about
9000. Therefore, any histogram box containing less than 9000 events shows up as
white on the histogram. Figure 5.5(b) is the same as Fig. 5.5(a), but with adjusted
color-bar values. Doing this enables one to obtain a clearer view of the escape path
prehistory along the separatrix and near the saddle. Figure 5.5(b) also includes the
escape path prehistory for one particular particle. To avoid clutter, we have overlaid
only t = 50 of path prehistory for this one particle.

Figure 5.6(a) shows Fig. 5.5(a) overlaid with the graph of the slow manifold
equation, y = x − x3. Even though this equation is found by setting ǫ = 0 in
the deterministic version of Eqs. (3.1a) and (3.1b), we see in Fig. 5.6(a) that the slow
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manifold lies very close to the region associated with the highest probability of escape.

Similarly, Fig. 5.6(b) shows Fig. 5.5(a) overlaid with the graphs of the third-order,
fourth-order, and fifth-order center manifold equations. Each of these equations may
be found by including terms of the appropriate order from Eq. (3.5a). As in Fig. 5.5(a),
the color-bar values of Figs. 5.6(a) and 5.6(b) have been normalized by 105.

One can see from Fig. 5.6(b) that the third-order and fourth-order center man-
ifolds essentially bound the entire region of escape path prehistory, while the fifth-
order manifold lies along the region of highest probability of escape. Although it is
not shown, it should be noted that the optimal escape path [Eq. (3.8)] associated with
the third-order center manifold is a heteroclinic orbit from x =

√
1− ǫ+ 2ǫ2 to x = 0

that lies directly on top of a section of the third-order center manifold [solid, green
line in Fig. 5.6(b)]. Similarly, the optimal escape paths associated with higher order
center manifolds lie directly on top of a section of the corresponding center manifold.

Additionally, one could overlay the histogram of escape path prehistory with the
average stochastic center manifold given by Eq. (3.24). However, since the stochas-
tic correction appears at order O(ǫ4σ2), there is no noticeable difference from the
manifolds shown in Figs. 5.6(a) and 5.6(b). Therefore, plots of the average stochastic
manifold are not shown.

4. Conclusions. A general procedure consisting of elements taken from deter-
ministic and stochastic manifold theory and large fluctuation theory is developed and
used to understand the underlying structure of a stochastic dynamical system with
two well-separated time scales.

As a first step towards this goal, we have applied the procedure to a generic
2D, singularly perturbed, damped, Duffing oscillator system with additive, Gaussian
noise. The deterministic center manifold equation is found by neglecting the stochastic
terms. By “näıvely” adding a noise term to the equation that describes the dynamics
on the center manifold, the path integral formalism of large fluctuation theory can
be used to analytically compute the optimal escape path of the particle from one
basin of attraction to another basin of attraction as well as the particle’s escape
rate. Comparison of the analytical result with numerical computations shows excellent
agreement if the system is in the over-damped regime. There is a shift due to the pre-
factor of the distribution, but the exponent is quite accurate. While it is possible to
correctly determine the pre-factor using spectral methods, the technique works only
for 1D problems [38]. When the system enters the under-damped regime, we must
consider the 2D topology rather than the 1D manifold topology that is associated with
the over-damped regime [17]. We are currently performing the analysis associated with
the under-damped regime, and this will be presented elsewhere.

Additionally, we used numerical computation to create a histogram of the escape
path prehistory distribution. The histogram enables one to see regions of the phase
space that are associated with high and low probability of particle escape from the
basin of attraction. By overlaying the histogram with the deterministic slow manifold,
we see that this manifold lies close to the region associated with the highest probability
of escape. By comparing the histogram with deterministic center manifolds of various
orders, we see that the third-order and fourth-order center manifolds essentially bound
the entire region of escape, while the fifth-order center manifold lies very close to
the region associated with the highest probability of escape. Therefore one can use
these manifolds to accurately describe the location of escape regions. The example
considered here is that of a quartic potential which is a generic potential for a pitchfork
bifurcation. Therefore, for systems whose center manifolds yield pitchfork dynamics,
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we expect similar results to hold when additive noise is considered.

Knowledge of the location of the regions of high and low probability of escape
(whether from numerical or analytical results) is extremely useful if one wishes to
optimize the amount of time spent in a particular region of phase space. For example,
one might wish to keep an autonomous glider in some basin of attraction. Instead of
constantly actuating the glider controls to keep the glider stationed at a particular
location, one can station the glider initially in a region of low probability of escape.
Then, if the glider enters a region of high probability of escape, one actuates the
controls to move the glider back to a region with low probability of escape and the
controls are switched off. This is similar to the stochastic control used in [45, 13].

As an example, consider a particle whose dynamics are described by Eqs. (3.1a)
and (3.1b). Figure 5.7(a) shows the location of the particle (x coordinate) as a function
of time t. One can see in Fig. 5.7(a) that the particle moves around the basin of
attraction until eventually the stochastic effects cause the particle to escape from the
basin at t ≈ 1290.

By implementing a simple control that pushes the particle into a region of phase
space that has a low probability of escape whenever the particle enters a region of
high probability of escape, it is possible to keep the particle in the basin of attraction
for a much longer amount of time. Figure 5.7(b) shows the location of the particle
(x coordinate) as a function of time t with the application of control. One can see
in Fig. 5.7(b) that control allows one to keep the particle in the basin of attraction
until t = 10, 000, when the simulation was stopped. Preliminary results show that the
application of control increases the mean time to escape from the basin and decreases
the total number of particles which escape in a given period of time. A complete
analysis of the application of control will appear elsewhere.

Even though we showed that analytical results using a “näıve” approach agree
very well with the numerical results in the over-damped regime, to more accurately
describe the stochastic effects, we derived the normal form coordinate transform.
The normal form enabled us to find the stochastic center manifold. However, the
stochastic effects appeared in the manifold equation at high order, so this correction
has a minimal effect. Therefore, for this problem at least, one can use the simpler
and much less time consuming “näıve” approach.

It should be noted that there are systems where one should not rely on the
“näıve” approach. For example, in a Susceptible-Exposed-Infected-Recovered (SEIR)
epidemiological model, there are terms at low order in the normal form transform
which cause a significant difference between the average stochastic center manifold
and the deterministic manifold [21]. Therefore, when working with the SEIR model,
one must use the stochastic normal form coordinate transform approach to obtain the
correct projection of the noise onto the center manifold.

Figure 5.8(a) compares the fraction of the population that is infected with a
disease, I, computed using the complete, stochastic system of equations of the SEIR
model with the time series of I computed using the reduced system of equations of
the SEIR model that is based on the deterministic center manifold with a “näıve”
replacement of the noise terms. One can see that the solution computed using the
reduced system incorrectly predicts the time and amplitude of the initial outbreak
and quickly becomes out of phase with the solution of the complete system. Although
not shown, the poor agreement, in phase and amplitude, between the two solutions
continues for long periods of time.

On the other hand, Fig. 5.8(b) compares the time series of I computed using
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the complete, stochastic system of equations of the SEIR model with the time series
of I computed using the reduced system of equations of the SEIR model that is
found using the stochastic normal form coordinate transform. There is excellent
agreement between the two solutions. The initial outbreak is successfully captured
by the reduced system, and the reduced system continues to accurately predict the
phase and amplitude of outbreaks over long periods of time.

The previous general analysis has been performed only for the 2D singularly
perturbed Duffing system. Of interest is the application of the theory to more realistic
stochastic dynamical systems. Beyond that, we plan to apply the theory to fully 3D
systems as well as to actual oceanographic data.
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Appendix A. Escape Rate Using Stochastic (“Näıve”) Center Mani-
folds. Using the fourth-order stochastic (“näıve”) center manifold dynamical equa-
tion given by

(A.1) ẋ = x− x3 − ǫx+ 2ǫ2x− 5ǫ3x+ 4ǫx3 +
√
2Dφ(t),

one finds that the escape rate from the attractor located at

x = xa =
√

(1 − ǫ+ 2ǫ2 − 5ǫ3)/(1− 4ǫ)

to the saddle located at x = xs = 0 is given as follows:

(A.2a) W (ǫ,D) =

√

|U ′′(0)|U ′′(xa)

2π
exp (−∆U/D),

where

(A.2b) U ′′(0) = −1 + ǫ− 2ǫ2 + 5ǫ3,

(A.2c) U ′′(xa) = 2− 2ǫ+ 4ǫ2 − 10ǫ3,

∆U = |( −1 + 6ǫ− 13ǫ2 + 34ǫ3 − 70ǫ4 + 76ǫ5

−105ǫ6 + 100ǫ7
)

/
[

4
(

1− 8ǫ+ 16ǫ2
)]∣

∣ .(A.2d)

Using the fifth-order stochastic (“näıve”) center manifold dynamical equation
given by

(A.3) ẋ = x− x3 − ǫx+ 2ǫ2x− 5ǫ3x+ 4ǫx3 + 14ǫ4x− 20ǫ2x3 +
√
2Dφ(t),

one finds that the escape rate from the attractor located at

x = xa =
√

(1− ǫ+ 2ǫ2 − 5ǫ3 + 14ǫ4)/(1− 4ǫ+ 20ǫ2)
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to the saddle located at x = xs = 0 is given as follows:

(A.4a) W (ǫ,D) =

√

|U ′′(0)|U ′′(xa)

2π
exp (−∆U/D),

where

(A.4b) U ′′(0) = −1 + ǫ− 2ǫ2 + 5ǫ3 − 14ǫ4,

(A.4c) U ′′(xa) = 2− 2ǫ+ 4ǫ2 − 10ǫ3 + 42ǫ4,

∆U = |( 1− 2ǫ+ 5ǫ2 − 14ǫ3 + 42ǫ4 − 48ǫ5 +81ǫ6 − 140ǫ7 + 196ǫ8
)

/
[

4
(

−1 + 4ǫ− 20ǫ2
)]∣

∣ .(A.4d)

Appendix B. Second Iteration Details. For this second iteration, we seek
a correction to the x coordinate (slow process) with the form

(B.1a) x = X + ξ(τ,X, Y ) + . . . ,

(B.1b) X ′ = F (τ,X, Y ) + . . . ,

where ξ and F are small corrections. Substitution of Eqs. (3.17a)-(B.1b) into Eq.
(3.12a) leads to

(B.2) X ′ +
∂ξ

∂τ
+

∂ξ

∂X

∂X

∂τ
+

∂ξ

∂Y

∂Y

∂τ
= ǫ(Y +X −X3) + ǫσφ.

Replacing X ′ = ∂X/∂τ with F [Eq. (B.1b)], replacing ∂Y/∂τ with −Y [Eq. (3.17b)],
and ignoring the term ∂ξ/∂X · F since it is a product of small corrections gives the
following equation:

(B.3) F +
∂ξ

∂τ
− Y

∂ξ

∂Y
= ǫ(Y +X −X3) + ǫσφ.

Equation (B.3) must now be solved for F and ξ. As in the first step, we employ
principle (4) and keep the evolution equation [Eq. (B.1b)] as simple as possible. How-
ever, since the terms ǫ(X −X3) located on the right-hand side of Eq. (B.3) do not
contain τ or Y , these terms must be included in F. Therefore, one piece of F will be
F = ǫ(X −X3).

The remaining deterministic term on the right-hand side of Eq. (B.3) contains Y .
This term can therefore be integrated into ξ. The equation to be solved is

(B.4) − Y
∂ξ

∂Y
= ǫY,

whose solution is given as ξ = −ǫY .
To abide by principle (4), we would like to integrate the stochastic piece on the

right-hand side of Eq. (B.3) into ξ, by solving the equation

(B.5) ∂ξ/∂τ = ǫσφ.
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However, the solution of Eq. (B.5) is given by

(B.6) ξ = ǫσ

∫

φdτ,

which has secular growth like a Wiener process. Since this would violate principle (1),
we must let F = ǫσφ.

Putting the three pieces together yields ξ = −ǫY and F = ǫ(X − X3) + ǫσφ.
Therefore, the new approximation of the coordinate transform and its dynamics are
given by

(B.7a) x = X − ǫY +O(ζ3),

(B.7b) X ′ = ǫ(X −X3) + ǫσφ+O(ζ3).

Appendix C. Third Iteration Details. To find the corrections, η and G,
we substitute Eqs. (3.14a) and (3.14b) into Eq. (3.12b), which leads to the following
equation:

(C.1) G+
∂η

∂τ
+

∂η

∂X

∂X

∂τ
− Y

∂η

∂Y
+ η = x− x3.

Substitution of the specific form of x given by Eq. (B.7a), the specific form of X ′ =
∂X/∂τ given by Eq. (B.7b), and substitution of η = X − X3 and G = 0 [see
Eqs. (3.17a) and (3.17b)] into Eq. (C.1) gives one the following evolution equation
driven by the updated residual of Eq. (3.12b):

G+
∂η

∂τ
− Y

∂η

∂Y
+ η =ǫ

(

−X − Y + 4X3 − 3X5 + 3X2Y
)

+ ǫσ
(

−φ+ 3X2φ
)

+ ǫ2
(

−3XY 2
)

+ ǫ3Y 3.(C.2)

We first consider the deterministic terms on the right-hand side of Eq. (C.2).
Principle (4) is employed to keep the evolution equation [Eq. (3.14b)] as simple as
possible, and since the terms −ǫX , 4ǫX3, −3ǫX5 are not functions of τ or Y , we let
η = ǫ(−X +4X3 − 3X5). Consideration of the term −3ǫ2XY 2 leads one to solve the
following equation:

(C.3) η − Y
∂η

∂Y
= −3ǫ2XY 2.

The solution of Eq. (C.3) is η = 3ǫ2XY 2.
The last deterministic terms on the right-hand side of Eq. (C.2) are −ǫY and

3ǫX2Y . Since these two terms can’t be integrated into η, they are included in G. The
higher order term ǫ3Y 3 will be ignored until a later iteration.

We now consider the stochastic terms on the right-hand side of Eq. (C.2). The
equation to be solved is

(C.4)
∂η

∂τ
+ η = −ǫσφ+ 3ǫσX2φ,

whose solution is given by

(C.5) η = −ǫσ

τ
∫

−∞

exp [−(τ − s)]φ(s) ds + 3ǫσX2

τ
∫

−∞

exp [−(τ − s)]φ(s) ds.
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If we define

(C.6)

τ
∫

−∞

exp [−(τ − s)]φ(s) ds = e−τ ∗ φ,

then Eq. (C.5) can be written as follows:

(C.7) η = −ǫσe−τ ∗ φ+ 3ǫσX2e−τ ∗ φ.

Putting all of the η and G pieces from this third iteration together leads to the
updated approximation of the coordinate transform and its evolution equation given
by Eqs. (3.18a) and (3.18b).

Appendix D. Fourth Iteration Details. To find the corrections, ξ and F ,
we substitute Eqs. (B.1a) and (B.1b) into Eq. (3.12a), which leads to the following
equation:

(D.1) F +
∂ξ

∂τ
+

∂ξ

∂X

∂X

∂τ
+

∂ξ

∂Y

∂Y

∂τ
= ǫy + ǫσφ.

Substitution of the specific forms of y [Eq. (3.18a)], Y ′ = ∂Y/∂τ [Eq. (3.18b)], ξ
[Eq. (B.7a)], and F [Eq. (B.7b)] into Eq. (D.1) leads to the following evolution equa-
tion driven by the updated residual of Eq. (3.12a):

F +
∂ξ

∂τ
− Y

∂ξ

∂Y
=ǫ2

(

−X + 4X3 − 3X5 − Y + 3X2Y
)

+ ǫ2σ
(

−e−τ ∗ φ+ 3X2e−τ ∗ φ
)

+ 3ǫ3XY 2.(D.2)

It is straightforward (and similar to what has been done in the previous iterations)
to integrate the deterministic terms on the right-hand side of Eq. (D.2) into F and ξ.

Consideration of the stochastic terms on the right-hand side of Eq. (D.2) means
that we must solve the following equation:

(D.3) F +
∂ξ

∂τ
= ǫ2σ

(

−e−τ ∗ φ+ 3X2e−τ ∗ φ
)

.

As in the second iteration, we can’t integrate φ into ξ, since this would generate
secular growth in violation of principle (1). Employing principle (5) to avoid a fast
time convolution (memory integral) in the slow evolution F leads us to perform an
integration by parts on each of the terms on the right-hand side of Eq. (D.3) so that

(D.4) F +
∂ξ

∂τ
= ǫ2σ

[

−φ+ e−τ ∗ φ′ + 3X2
(

φ− e−τ ∗ φ′
)]

.

It is clear that we now have F = ǫ2σ(−φ+3X2φ) and ξ = ǫ2σ(e−τ ∗φ− 3X2e−τ ∗φ).
Putting all of the ξ and F pieces from this fourth iteration together leads to the

updated approximation of the coordinate transform and its evolution equation given
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by Eqs. (3.19a) and (3.19b).

Appendix E. Normal Form Coordinate Transform.

y =Y +X −X3 + ǫ
(

−X + 4X3 − 3X5
)

+ ǫσ
(

−e−τ ∗ φ+ 3X2e−τ ∗ φ
)

+ ǫ2
(

2X − 20X3 + 42X5 + 3XY 2
)

+ ǫ2σ
(

2e−τ ∗ φ+ e−τ ∗ e−τ ∗ φ − 18X2e−τ ∗ φ− 12X2e−τ ∗ e−τ ∗ φ
+ 24X4e−τ ∗ φ +15X4e−τ ∗ e−τ ∗ φ

)

+ ǫ3
(

−X + 16X3 − 66X5 + 96X7 − 45X9 −9XY 2 − Y 3/2 + 33X3Y 2
)

+ ǫ3σ
(

−e−τ ∗ φ+ 18X3Y e−τ ∗ φ − 6XY e−τ ∗ φ+ 15X2e−τ ∗ φ
+ 45X6e−τ ∗ φ− 51X4e−τ ∗ φ+ 18X6e−τ ∗ e−τ ∗ φ
− 24X4e−τ ∗ e−τ ∗ φ+ 6X2e−τ ∗ e−τ ∗ φ +3Y 2e+τ ∗ φ

)

+ ǫ4
(

18X5Y 2 − 6X3Y 2 + 3Y 3/2 −9Y 3X2/2
)

+ ǫ4σ
(

6XY e−τ ∗ φ+ 54X5Y e−τ ∗ φ − 36X3Y e−τ ∗ φ+ 9X2Y 2e+τ ∗ φ
− 3Y 2e+τ ∗ φ+ 3Y 2e+τ ∗ e−τ ∗ φ −9X2Y 2e+τ ∗ e−τ ∗ φ

)

+ ǫ4σ2
(

−3Xe−τ ∗
(

e−τ ∗ φ
)2 − 27X5e−τ ∗

(

e−τ ∗ φ
)2

+18X3e−τ ∗
(

e−τ ∗ φ
)2
)

+O(ζ4),(E.1a)

Y ′ =− Y + ǫ
(

−Y + 3X2Y
)

+ ǫ2
(

Y − 6X2Y + 9X4Y
)

+ ǫ3σ
(

6XY φ− 18X3Y φ
)

+ ǫ4σ
(

−6XY φ− 54X5Y φ +36X3Y φ
)

+O(ζ4),(E.1b)

x =X − ǫY + ǫ2
(

Y − 3X2Y
)

+ ǫ2σ
(

e−τ ∗ φ− 3X2e−τ ∗ φ
)

+ ǫ3
(

6X2Y − 12X4Y − 2Y − 3XY 2/2
)

+ ǫ4
(

−9X6Y + 3X4Y − 3X2Y + Y + Y 3/6 +9XY 2/2− 33X3Y 2/2
)

+ ǫ5
(

−Y 3/2 + 3X3Y 2 + 3X2Y 3/2 −9X5Y 2
)

+ ǫ3σ
(

−3e−τ ∗ φ− 33X4e−τ ∗ φ + 24X2e−τ ∗ φ− 15X4e−τ ∗ e−τ ∗ φ
− 6XY e+τ ∗ φ− e−τ ∗ e−τ ∗ φ −12X2e−τ ∗ e−τ ∗ φ

)

+ ǫ4σ
(

e−τ ∗ φ− 15X2e−τ ∗ φ − 6X2e−τ ∗ e−τ ∗ φ+ 51X4e−τ ∗ φ
− 45X6e−τ ∗ φ+ 24X4e−τ ∗ e−τ ∗ φ− 18X6e−τ ∗ e−τ ∗ φ
+ 3XY e+τ ∗ φ+ 3XY e−τ ∗ φ− 9X3Y e+τ ∗ φ− 9X3Y e−τ ∗ φ
−3Y 2e+2τ ∗ e+τ ∗ φ

)

+ ǫ5σ
(

−54X3Y e+τ ∗ φ+ 9XY e+τ ∗ φ + 81x5Y e+τ ∗ φ− 3XY e−τ ∗ φ
− 27X5Y e−τ ∗ φ+ 18X3Y e−τ ∗ φ− 9X2Y 2e+2τ ∗ e+τ ∗ φ
+ 3

(

Y 2e+2τ ∗ e+τ ∗ φ
)

/2 −3
(

Y 2e+2τ ∗ e−τ ∗ φ
)

/2
)

+ ǫ6σ
(

−6XY e+τ ∗ φ+ 54X3Y e+τ ∗ φ − 162X5Y e+τ ∗ φ +162X7Y e+τ ∗ φ
)
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+ ǫ5σ2
(

3X
(

e−τ ∗ φ
)2

/2− 9X3
(

e−τ ∗ φ
)2

+ 27X5
(

e−τ ∗ φ
)2

/2

+ 3Xe−τ ∗
(

e−τ ∗ φ
)2 − 18X3e−τ ∗

(

e−τ ∗ φ
)2

+27X5e−τ ∗
(

e−τ ∗ φ
)2
)

+O(ζ4),(E.1c)

X ′ =ǫ
(

X −X3
)

+ ǫσφ+ ǫ2
(

−X + 4X3 − 3X5
)

+ ǫ2σ
(

−φ+ 3X2φ
)

+ ǫ3
(

2X − 20X3 + 42X5
)

+ ǫ4
(

−X + 16X3 − 66X5 96X7 − 45X9
)

+ ǫ3σ
(

3φ− 24X2φ+ 33X4φ
)

+ ǫ4σ
(

−φ+ 15X2φ− 51X4φ+ 45X6φ
)

+ ǫ4σ2
(

−6Xφe−τ ∗ φ+ 18X3φe−τ ∗ φ
)

+ ǫ5σ2
(

−9Xφe−τ ∗ φ+ 54X3φe−τ ∗ φ −81X5φe−τ ∗ φ
)

+O(ζ4),(E.1d)

where

(E.2) e+τ ∗ φ =

+∞
∫

τ

exp [(τ − s)]φ(s) ds.
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Fig. 5.1. (a) φopt(t) with D = 0.05 for ǫ = 0.02 (red), ǫ = 0.1 (blue), ǫ = 0.25 (green), ǫ = 0.5
(cyan), ǫ = 1.0 (magenta), and ǫ = 1.5 (black). (b) A close-up view of a section of Fig. 5.1(a).
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Fig. 5.2. Contours of numerically computed mean escape times (plotted as the natural log of
the mean escape time) as a function of ǫ and 1/D for 10, 000 particles.
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Fig. 5.3. (a) Vertical slice of Fig. 5.2 taken at ǫ = 0.1. (b) Vertical slices of Fig. 5.2 taken
at ǫ = 0.1 (black, “circle” markers), ǫ = 0.2 (red, “square” markers), ǫ = 0.3 (blue, “triangle”
markers), ǫ = 0.4 (green, “cross” markers), ǫ = 0.5 (magenta, “diamond” markers), and ǫ = 1.0
(cyan, “asterisk” markers). The data points in both (a) and (b) are overlaid by a line of best fit.
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Fig. 5.4. Comparison of numerical data (“circle” markers) and linear fit (solid line) with
analytical data (“square” markers) and linear fit (dashed line) of the natural log of the mean escape
time as a function of 1/D for (a) ǫ = 0.02, (b) ǫ = 0.1, (c) ǫ = 0.14, and (d) ǫ = 0.2.



ESCAPE RATES IN A STOCHASTIC ENVIRONMENT 29

Fig. 5.5. (a) Histogram of escape path prehistory (for t = 200 of prehistory) of 10, 000 particles
with ǫ = 0.1 and σ = 0.3. The color-bar values have been normalized by 105, and the threshold 0
value is about 9000. (b) Same as Fig. 5.5(a), but with adjusted color-bar values, and including one
particular particle’s escape path prehistory (showing only t = 50 of prehistory).
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Fig. 5.6. Escape path prehistory histogram of Fig. 5.5(a) overlaid with (a) the graph of the slow
manifold equation, and (b) the graphs of the third-order (solid, green line), fourth-order (dashed,
green line), and fifth-order (solid, red line) center manifold equations given by Eq. (3.5a). For both
Figs. 5.6(a) and 5.6(b), the color-bar values have been normalized by 105, and the threshold 0 value
is about 9000.
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Fig. 5.7. Location of a particle (x coordinate) as a function of time t (a) without control, and
(b) with control.
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Fig. 5.8. Time series of the fraction of the population that is infected with a disease, I,
computed using the complete, stochastic system of equations of the SEIR model (red, solid line),
and (a) computed using the reduced system of equations of the SEIR model that is based on the
deterministic center manifold with a “näıve” replacement of the noise terms (blue, dashed line),
and (b) computed using the reduced system of equations of the SEIR model that is found using the
stochastic normal form coordinate transform (blue, dashed line).


