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Abstract

Random instances of Constraint Satisfaction Problems (CSP’s) appear to be hard for all known algorithms,
when the number of constraints per variable lies in a certain interval. Contributing to the general understanding
of the structure of the solution space of a CSP in the satisfiable regime, we formulate a set of natural technical
conditions on a large family of (random) CSP’s, and prove bounds on three most interesting thresholds for the
density of such an ensemble: namely, the satisfiability threshold, the threshold for clustering of the solution space,
and the threshold for an appropriate reconstruction problem on the CSP’s. The bounds become asymptoticlally
tight as the number of degrees of freedom in each clause diverges. The families are general enough to include
commonly studied problems such as, random instances of Not-All-Equal-SAT, k-XOR formulae, hypergraph 2-
coloring, and graph k-coloring. An important new ingredient is a condition involving the Fourier expansion of
clauses, which characterizes the class of problems with a similar threshold structure.
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1 Introduction

Given a set of n variables taking values in a finite alphabet, and a collection of m constraints, each restricting a
subset of variables, a Constraint Satisfaction Problem (CSP) requires finding an assignment to the variables that
satisfies the given constraints. Important examples include k-SAT, Not All Equal SAT, graph (vertex) coloring
with k colors etc. Understanding the threshold of satisfiability/unsatisfiability for random instances of CSPs, as the
number of constraintsm = m(n) varies, has been a challenging task for the past couple of decades, with some notable
successes (see e.g., [ANP05]). On the algorithmic side, the challenge of finding solutions of a random CSP close to
the threshold of satisfiability (in the regime where solutions are known to exist) remains widely open. All provably
polynomial-time algorithms fail well before the SAT to UNSAT threshold.

The attempt to understand this universal failure led to studying the geometry of the set of solutions of ran-
dom CSPs [MPZ02, AC08], as well as the emergence of long range correlations among variables in random satisfying
assignments [KM+07]. These research directions are motivated by two heuristic explanations of the failure of polyno-
mial algorithms: (1) The space of solutions becomes increasingly complicated as the number of constraints increases
and is not captured correctly by simple algorithms; (2) Typical solutions become increasingly correlated and local
algorithms cannot unveil such correlations.

By analyzing a large class of random CSP ensembles, this paper provides strong support to the belief that the
above phenomena are generic, that they are characterized by sharp thresholds, and that the thresholds for clustering
and reconstruction do coincide.

1.1 Related work

Building on a fascinating conjecture on the geometry of the set of solutions, statistical physicists have developed
surprisingly efficient message passing algorithms to solve random CSPs. For instance, survey propagation [MPZ02,
MZ02] has been shown empirically to find solutions of random 3-SAT extremely close to the SAT-UNSAT transition.
In order to understand the success of these heuristics, it has become important to study the thresholds for the
emergence of so-called clustering of solutions – the emergence of an exponential number of sets (or clusters) of
solutions, where solutions within a cluster are closer (in the Hamming sense, say), compared to the intra-cluster
distance [MMZ05, AR06, AC08]. Moreover, the fact that solutions within a cluster impose long-range correlations
among assignments of variables, motivates one to study the so-called reconstruction problem in the context of random
CSP’s. Indeed, non-rigorous statistical mechanics calculations imply that the clustering and reconstruction thresholds
coincide [MM06, KM+07].

Finally, understanding the threshold for (non)reconstruction is also becoming relevant (if not crucial) to under-
standing the limit of the Glauber dynamics to sample from the set of solutions of a CSP. Indeed non-reconstuctibility
was proved in [BK+05] to be a necessary condition for fast mixing, and is expected to be sufficient for a large class
of ‘sufficiently random’ problems [GM07].

In a recent paper, Gerschenfeld and the first author [GM07], considered the reconstruction problem for graphical
models, which included the case of proper colorings of the vertices of a random graph. This amounts to understanding
the correlation (as measured e.g. through mutual information) between the color of a vertex v, and the colors of
vertices at distance ≥ t from v. In particular, the problem is said to be ‘unsolvable’ if such a correlation decays to 0
with t. We refer to Section 3 for a precise definition of the reconstruction problem. For a class of models, including
the so-called Ising spin glass, the antiferromagnetic Potts model, and proper q-colorings of a graph, [GM07] derived
a general sufficient condition, under which reconstruction for (sparse) random graphs G(n,m) with m = cn edges is
possible if and only if it is possible for a Galton-Watson tree with independent Poisson(2c) degrees for each vertex.
Moreover, they also verified that the condition holds for the Ising spin glass and the antiferromagnetic Potts at
non-zero temperature, leaving open the case of proper colorings of graphs.

1.2 Summary of contributions

It is against this backdrop that we consider certain general families of CSP’s – the first dealing with constraints
consisting of k-tuples of binary variables (as in k-uniform hypergraph 2-coloring or Not-All-Equal (NAE) k-sat),
while the second dealing with q-colorings of vertices of graphs (which may be seen as an instance of a CSP with q-ary
variables) – and study three important threshold phenomena. Our chief contribution is as follows.
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(a)We formulate a fairly natural set of assumptions under which a general class of constraint satisfaction problems
(including the models mentioned above) can be understood rather precisely in terms of the thresholds for satisfiability,
clustering and (non)reconstruction phenomena. In particular we verify that the last two thresholds coincide within
the precision of our bounds.

(b) We consider tree ensembles (families of random CSP’s whose variable-constraint dependency structure takes
the form of a tree), and prove optimal bounds on the threshold for reconstruction on trees. These CSP’s consist of
binary variables, and the constraints are k-ary, and the bounds are optimal to first order, as k goes to infinity.

(c) We verify the sufficient condition of [GM07] for proper colorings of graphs, thus extending the reconstruction
result for colorings on trees to the same on (sparse) random graphs.

(d) By way of techniques, we make crucial use of the Fourier expansion of the (binary k-CSP) constraints, after
introducing an assumption on the Fourier expansion, as part of the random ensemble under consideration; this is
key to being able to characterize the thresholds precisely.

(e) Finally, as illustrative examples, we mention the specific bounds (on various thresholds) that follow for some
standard models, such as the NAE k-SAT, k-XOR formulae etc.

The organization of the paper is as follows. In Section 2, we give the formal definitions and assumptions of
our models. We state our main results in Section 3. In Section 4, we state and prove the optimal bounds for the
tree reconstruction problem. In Section 5, we verify the sufficient condition (from [GM07]) for the specific problem
of graph proper q-coloring, thus proving one of our main results – optimal bounds on the (sparse) random graph
reconstruction problem for colorings. In Appendix A, we derive a certain technical second moment bound that is
needed for our work.

2 Definitions

In this section we define a family of random CSP ensembles: problems with constraints involving k-tuples of binary
variables and q-ary ensembles as a natural extension. We also introduce some analytic definitions that we will need
in order to present our results.

Binary k-CSP ensemble. Given an integer n, α ∈ R+, and a distribution p = {p(ϕ)} over Boolean functions
ϕ : {+1,−1}k → {0, 1}, CSP(n, α, p) is the ensemble of random CSP’s over n Boolean variables x = (x1, . . . , xn)
defined as follows. For each a ∈ {1, . . . ,m = nα}, draw k indices ia(1), . . . , ia(k) independently and uniformly
at random in [n], and a function ϕa with distribution p(ϕ). An assignment x satisfies the resulting instance if
ϕa(xia(1), . . . , xia(k)) = 1 for each a ∈ [m]. A CSP instance can be naturally described by a bipartite graph G (often
referred to in the literature as a ‘factor graph’) including a node for each clause a ∈ [m] and for each variable i ∈ [n],
and an edge (i, a) whenever variable xi appears in the a-th clause.

q-ary ensembles. A q-ary ensemble is the natural generalization of a binary ensemble to the case in which
variables take q values. For the sake of simplicity, we restrict our discussion here to the case of pairwise constraints
(i.e. k = 2 in the language of the previous section).

Given an integer n, α ∈ R+, and a distribution p = {p(ϕ)} over Boolean functions ϕ : [q] × [q] → {0, 1},
CSPq(n, α, p) is the collection of random CSP’s over q-ary variables xi, for i = 1, 2, . . . , n, defined as follows. For
each a ∈ {1, . . . ,m = nα}, draw 2 indices ia, ja independently and uniformly at random in [n], and a function ϕa

with distribution p(ϕ). An assignment x = (x1, . . . , xn) satisfies the resulting instance, if ϕa(xia , xja) = 1 for each
a ∈ [m].

In this paper, by way of illustrating how the results for binary ensembles could be (purportedly) extended to
q-ary ensembles, we will exclusively study the q-coloring model which consists of ensembles with the single clause
ϕ (x, y) = I (x 6= y). This model corresponds to proper colorings with q colors of a random sparse graph with an
edge-to-vertex density of α > 0.

In the rest of this section, we briefly review some well known definitions in discrete Fourier analysis that are
useful for stating our results.
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Functional analysis of clauses. We denote by vθ, the measure defined over {−1,+1}k such that vθ (x) =
k∏

i=1

(
1+xiθ

2

)
for every x ∈ {−1,+1}k. This is just the measure induced by choosing k independent copies of a

random variable that takes values ±1 and has expectation θ. Notice that when θ = 0, vθ corresponds to the uniform
measure over {−1,+1}k.

The inner product induced by this measure, on the space of real functions defined on {−1,+1}k is denoted by
(·, ·)θ, and the correponding norm by ‖·‖θ. If θ = 0, we drop the subindex and just use (·, ·) and ‖·‖, respectively.
Thus, if f, g : {−1,+1}k → R, then

(f, g)θ =
∑

x∈{−1,+1}k

f (x) g (x) vθ (x) , ‖f‖2θ =
∑

x∈{−1,+1}k

f2 (x) vθ (x) ,

(f, g) = 2−k
∑

x∈{−1,+1}k

f (x) g (x) , ‖f‖2 = 2−k
∑

x∈{−1,+1}k

f2 (x) .

We denote the Hilbert space of functions {−1,+1}k → R under the inner product (·, ·) by Jk.

Fourier transform of clauses. For any Q ⊆ [k] ≡ {1, . . . , k}, let γQ(x) def
=
∏

i∈Q xi. Under the scalar product
defined above (with θ = 0), the functions {γS}S⊆[k] form an orthonormal basis for Jk. Moreover, they are exactly the

algebraic characters of {−1, 1}k with the group operation of pointwise multiplication. Thus, we define the Fourier
transform of a function f ∈ Jk, by letting for any Q ⊆ [k],

fQ
def
= (γQ, f) = 2−k

∑

x∈{−1,+1}k

f(x)γQ(x).

Noise operator. Given θ ∈ [−1, 1], we define the Bonami - Beckner operator Tθ : Jk → Jk, by

(Tθ f) (x)
def
=

∑

y∈{−1,1}k
f (xy) vθ (y) .

Notice that (Tθ f) (x) corresponds to the expected value of f(xθ), where xθ is obtained from x by flipping each
coordinate independently with probability (1− θ)/2. Notice that T1 is just the identity operator and T0 sends f to
the constant function (f, γ∅).

The Bonami-Beckner operator diagonalizes with respect to the Fourier basis, in the sense that (Tθ γQ) (x) =
θ|Q|γQ (x) for any Q ⊆ [k].

More generally, given h ∈ [−1, 1]
k
, we define (Th f) (x)

def
= E[f(xh)], where xh is obtained from x by flipping the

ith coordinate independently and with probability 1−hi

2 . Since Th also diagonalizes with respect to the Fourier basis,
one gets (Th γS) (x) = γS (h) γS (x) .

Discrete derivative and influence. Given a function f ∈ Jk−1, we define its discrete derivative f (1) ∈ Jk−1 as
f (1) (x) = 1

2 [f (1, x)− f (−1, x)]. We define analogously f (i) for any other variable index. Finally, the influence of
the ith variable on f is defined using the norm of the derivative

Ii (f)
def
=
∥∥∥f (i)

∥∥∥
2

.

For any Q ⊆ [k], f
(i)
Q = fQ∪{i}.

3 Main results

3.1 Binary k-CSP ensembles

We assume the following conditions on the ensemble.
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1. Permutation symmetry. If ϕπ is the Boolean function obtained from ϕ by permuting its arguments, we require
p(ϕπ) = p(ϕ).

2. Balance. The distribution p is supported on Boolean functions such that ϕ(x1, . . . , xk) = ϕ(−x1, . . . ,−xk).
This condition implies that the odd Fourier coefficients of ϕ are zero.

3. Feasibility. For each Boolean function ϕ in the support of p, every partial assignment (x1, . . . , xk−1) can be

extended to a satisfying assignment (x0, x1, . . . , xk−1) of ϕ. This condition implies that ‖ϕ‖2 ≥ 1/2, and together

with the balance condition, implies that all the variables of ϕ have the same influence, namely, Ii (ϕ) =
1−||ϕ||2

2 .

4. Dominance of balanced assignments. For every θ ∈ [−1, 1],

Eϕ log ‖ϕ‖θ ≤ Eϕ log ‖ϕ‖ .

This condition implies that, in a typical random instance, most solutions are balanced in the sense that they have
almost as many +1’s as −1’s.

While our ultimate goal is to exhibit results as k → ∞, the probability distribution p over the functions
ϕ : {−1, 1}k → {0, 1} must be defined for every k, and some agreement should exist between such probability
distributions for different k’s. In our work this agreement is given by two conditions concerning the derivative of the
clauses in the support of p:

(a) l1 norm of the Fourier transform grows at most polynomially in k. That is, for every ϕ ∈ supp(p),

∑

Q

∣∣∣ϕ(i)
Q

∣∣∣ ≤ ka , (1)

for some constant a not depending on k.

(b) ‘Small weight’ Fourier coefficients are small. There is a constant C > 0 (not depending on k) such that for
every ϕ ∈ supp (p), ∥∥∥Tθ ϕ

(i)
∥∥∥
2

≤ e−Ck (1−θ)
∥∥∥ϕ(i)

∥∥∥
2

, θ ∈ [0, 1] . (2)

The above implies in particular, that for any fixed ℓ, there exists Aℓ > 0 (independent of k), such that
∑

1≤|Q|≤ℓ

|ϕQ|2 ≤ Aℓe
−Ck/2

∑

|Q|≥1

|ϕQ|2. (3)

An equivalent formulation of Eq. (2) (with a possibly different constant C) is

(
Tθ ϕ

(i), ϕ(i)
)
≤ e−Ck (1−θ)

∥∥∥ϕ(i)
∥∥∥
2

, θ ∈ [0, 1] . (4)

Results. An ensemble of binary k-CSP’s will be characterized by the following quantities.

1

Ωk

def
= Eϕ

2 I1 (ϕ)

‖ϕ‖2
,

1

Ω̂k

def
= −Eϕ log

(
‖ϕ‖2

)
.

Notice that Ωk ≤ Ω̂k and Ωk ≈ Ω̂k, whenever the influence is relatively small, or equivalently, when the norm is close
to 1.

Proposition 3.1 A random binary constraint satisfaction instance from the CSP(n, α, p) ensemble is satisfiable,
with high probability, if α < αs(k), where

Ωk log 2 {1 + o(1)} ≤ αs(k) ≤ Ω̂k log 2 {1 + o(1)} .

Vice versa, if α > αs(k)(1 + o(1)), then with high probability, a CSP(n, α, p) instance is unsatisfiable.
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Given an instance of CSP(n, α, p), a cluster of solutions is any equivalence class of solutions under the (closure
of the) relation x ≃ x′ if dHamming(x, x

′) ≤ dmax for some dmax = o(n). The set of solutions is clustered if it is
partitioned into exponentially many clusters.

Theorem 3.2 The set of solutions of an instance from the CSP(n, α, p) ensemble is clustered, with high probability,
if α > αd(k), where

αd(k) =
Ωk

k
{log k + o(log k)} .

Given a measure µ(x) over variable assignments in {+1,−1}V , the reconstruction problem is said to be unsolvable
if correlations with respect to µ decay rapidly with the distance r on G. More precisely, if µi,∼r denotes the joint
distribution of xi and {xj : dG(i, j) ≥ r}, then limr→∞ lim supn→∞ E‖µi,∼r − µiµ∼r‖TV = 0.

Theorem 3.3 Let µ(x) be the uniform measure over solutions of an instance from the CSP(n, α, p) ensemble. The
reconstruction problem is solvable for µ if α > αr(k), where

αr(k) =
Ωk

k
{log k + o(log k)} .

Vice versa, the reconstruction problem is unsolvable if α < αr(k).

Thus, a key result of the present paper is that αd(k) and αr(k) do coincide for a large family of ensembles (up
to the slackness, in the second order terms, of our bounds).

Example: 2-coloring hypergraphs. Let us consider the ensemble of CSP’s consisting of clauses of the type
ϕ, where ϕ (x1, . . . , xk) = I (

∑
xi /∈ {−k, k}). The CSP(n, α, p) in this case, corresponds to the distribution of 2-

colorings of a random hypergraph on n vertices and αn edges, with edge size k, and each edge chosen independently
and uniformly at random.

The conditions 1-3 clearly hold for this model and the dominance of balance assignments follows after checking that

‖ϕ‖θ = 1−
(
1+θ
2

)k−
(
1−θ
2

)k
maximizes at θ = 0. To establish the conditions (1), notice that ϕ

(i)
Q = − 1

2k [1− (−1)
|Q|

],

which clearly implies that the l1 norm of the fourier transform is bounded. To check (2), notice that
(Tθ ϕ(i),ϕ(i))
‖ϕ(i)‖2 =

(
1+θ
2

)k−1 −
(
1−θ
2

)k−1 ≤ e−k(1−θ)/2 for all θ ∈ [0, 1].

An easy computation shows that Ωk = 2k−1 − 1 and 1
bΩk

= − log(1− 2−k+1), therefore we have:

Reconstruction - Clustering Lower bound satisfiability Upper bound satisfiability

2-coloring 2k−1

k [log k + o(log k)] 2k−1 log 2 [1 + o(1)] 2k−1 log 2 [1 + o(1)]

Example: Not All Equal k−SAT. Let us consider now an ensemble of CSP’s consisting of clauses of type
{ϕs}s∈{+1,−1}k , where ϕs (x1, . . . , xk) = I (

∑
xisi /∈ {−k, k}) and p (ϕs) = 2−k for each s ∈ {+1,−1}k. In this case,

the CSP (n, α, p) model corresponds to the distribution of NAE k−SAT instances for a random formula in n variables,
consisting of αn random clauses, each with k literals.

For this model, the conditions 1-3 are easily verified. The dominance of balance assignments follows from

Es log ‖ϕ‖θ ≤ logEs ‖ϕ‖θ = logEs

(
1−∏k

i=1

1 + siθ

2
−∏k

i=1

1− siθ

2

)
= Es log ‖ϕ‖ .

On the other hand, the Fourier expansion of ϕs is given by ϕs,Q = −2−k[γQ(s) + γQ(−s)]. In particular |ϕs,Q|2 =

2−k[1 + (−1)
|Q|

], so that both Eqs. (1) and (2) hold along the same lines as the previous example. Indeed, in this

case we get the same values for Ωk and Ω̂k, so that, we have:

Reconstruction - Clustering Lower bound satisfiability Upper bound satisfiability

NAE-SAT 2k−1

k [log k + o(log k)] 2k−1 log 2 [1 + o(1)] 2k−1 log 2 [1 + o(1)]
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Example: k-XOR formulas. For an even integer k, the k-XOR ensemble (k even) consists of clauses of type
{ϕǫ}ǫ=1,−1, where ϕǫ (x1, . . . , xk) =

1
2

(
γ∅ + ǫγ[k]

)
. In this case, the CSP (n, α, p) model corresponds to a system of

αn random linear equations in Z2, in which every equation involves k randomly chosen variables (with replacement)
from a total of n possible variables.

Conditions 1-3 hold for k even, and the dominance of balanced assignments condition follows from the fact that

Eϕ log ‖ϕ‖θ = 1
2 log

(
1−θ2k

4

)
, which is clearly maximized at θ = 0. The condition on Fourier expansion of clauses for

this model is straightforward: The Fourier expansion of ϕǫ is concentrated at ∅ and [k], so that the Eq. (1) holds
with a = 0 and the Eq. (1) holds with C = 1.

In this case, we have that Ωk = 1, while Ω̂k = 1/ log 2. Therefore, we have:

Reconstruction - Clustering Lower bound satisfiability Upper bound satisfiability
XOR-SAT 1

k [log k + o(log k)] log 2 + o(1) 1 + o(1)

We remark here that, in the case of XOR-SAT, the clustering and satisfiability thresholds can be determined
exactly by exploiting the underlying group structure [MRZ03, CD+03] (see [MM09] for a discussion of the recon-
struction problem in XOR-SAT).

3.2 q-ary ensembles: graph coloring

The following result concerning the colorability and clustering of proper colorings were proved by Achlioptas and
Naor [AN05] and Achlioptas and Coja-Oghlan [AC08].

Theorem 3.4 (Graph q-colorability [AN05]) A random graph with n vertices and nα edges is satisfiable with high
probability if α < αs(q), where

αs(q) = q [log q + oq(1)] .

Vice versa, if α > αs(q)(1 + oq(1)), such a graph is with high probability uncolorable.

Theorem 3.5 (Clustering of q-colorings [AC08]) The set of proper q-colorings of random graph with n vertices and
nα edges is clustered with high probability if α > αd(q), where

αd(q) =
q

2
[log q + o(log q)] .

One of our main results is to prove a corresponding reconstruction theorem for this model as follows.

Theorem 3.6 (Graph q-coloring reconstruction) Let µ(x) be the uniform measure over of proper q-colorings of
random graph with n vertices and nα edges. For q large enough, the reconstruction problem is solvable for µ if
α > αr(q), where

αr(k) =
q

2
[log q + log log q +O (1)] .

Vice versa, the reconstruction problem is unsolvable, with high probability, if α < αr(q).

3.3 General strategy

The results described in the previous section are of three types: bounds on the satisfiability thresholds, cf. Proposition
3.1 and Theorem 3.4; on the clustering threshold, cf. Theorems 3.2 and 3.5; on the reconstruction threshold, cf.
Theorems 3.3 and 3.6. The proof strategy is as follows.

The satisfiability threshold can be upper bounded using the first moment of the number of solutions, and lower
bounded using the second moment method. This technique is by now discussed in detail in [AM02, AN05, ANP05];
we describe its application to the general CSP(n, α, p) ensemble is done in Appendix A.

The clustering threshold can be upper bounded through an analysis of the recursive ‘whitening’ process that associates
to each cluster a single configuration in an extended space [AR06]. The improved bounds in Theorems 3.2 and 3.5
can be obtained by approximating the CSP ensemble with an appropriate ‘planted’ ensemble [AC08]. Since this
approach is explained in detail in [AC08], we will only present the various technical steps.

The reconstruction threshold is characterized via a three-step procedure:

6



(1) Bound the reconstruction threshold for an appropriate ensemble of (infinite) tree instances, i.e. CSP instances
for which the associated factor graph is an infinite Galton-Watson tree. In the case of proper q-colorings, a sharp
characterization was obtained independently by two groups in the past year [BVV07, Sly08]. In Section 4 we prove
sharp bounds on tree reconstruction for binary CSPs. The proof amounts to deriving an exact distributional recursion
for the so-called belief process, and carefully bounding its asymptotic behavior.
(2) Given two ‘balanced’ solutions x(1), x(2) (a solution is balanced if each possible variable value is taken on the

same number of vertices), define their joint type ν(x, y) as the matrix such that the fraction of vertices i with x
(1)
i = x

and x
(2)
i = y is equal to ν(x, y). Consider the number Zb(ν) of balanced solution pairs x1, x2 with joint type ν. One

has to show that EZb(ν) is exponentially dominated by its value at the uniform type ν(x, y) = 1/q2 (with q = 2 for
binary CSPs). More precisely EZb(ν)

.
= exp{nΦ(ν)} with Φ achieving its unique maximum at ν.

This is also a crucial step in the second moment method. It was accomplished in [AN05] for proper q-colorings
of random graphs. In the case of binary CSPs, we prove this estimate in Section A.
(3) Prove that the above imply that the set of solutions of a random instance is, with high probability, roughly
spherical. By this we mean that the joint type ν12 of two uniformly random solutions x(1), x(2) satisfies ||ν12−ν||TV ≤ δ
with high probability for all δ > 0. Notice that this implication requires bounding the expected ratio of Zb(ν) to the
total number of solution pairs. We prove that the implication nevertheless holds in Section 5 for q-colorings. The
argument for binary CSP’s is completely analogous, and we omit it.

Finally, it was proved in [GM07] that, under such a sphericity condition, graph reconstruction and tree recon-
struction are equivalent, which finishes the proof of Theorems 3.3 and 3.6.

Notice that the techniques used for the clustering and reconstruction thresholds are very different. Thus it is a
surprising (and arguably deep) phenomenon that they do coincide as far as the present techniques can tell.

4 Tree ensembles and tree reconstruction for binary k-CSP ensembles

In this section we define tree ensembles and prove estimates about the corresponding tree reconstruction thresholds.

4.1 The tCSP(α, p) ensemble

The ensemble tCSP(α, p) is defined by α ∈ R+ and a distribution p over Boolean functions ϕ : {−1,+1}k → {0, 1}.
We assume the conditions on the distribution p introduced in Section 3.1. An (infinite) instance from this ensemble

is generated starting by a root variable node ø, drawing an integer η
D
= Poisson(kα) and connecting ø to η function

nodes {1, . . . , η}. Each function node has degree k, and each of its k − 1 descendants is the root of an independent
infinite tree. Finally, each function node a is associated independently, with a random clause ϕ drawn according to
p.

A uniform solution for such an instance is sampled by drawing the root value xø ∈ {−1,+1} uniformly at random.
The values of descendants of each variable node i are then drawn recursively. If the function node a connects i to
i1, . . . , ik−1, then the values xi1 , . . . ,xik are sampled uniformly from those that satisfy the clause in a, that is, such
that the quantity ϕ

(
xi, xi1 , . . . , xik−1

)
is equal to 1.

By the balance condition, this procedure can be shown to be equivalent to sampling a solution according to the
‘free boundary Gibbs measure.’ The latter is a distribution over solutions of the entire (infinite) tCSP formula defined
by considering the unifom distribution over solutions of the first ℓ generations of the tree, and then letting ℓ→ ∞.

4.2 Reconstruction

Given any fixed tree ensemble T , let x be a random satisfying assignment for T according to the distribution described
previously. We denote by xℓ the value of x at the variables at generation ℓ, and in the case that the root degree is
1, we denote by x0,1, . . . ,x0,k−1, the value at the variable nodes connected to the unique child of the root. Also, we
use η0 for the root degree of T . If the tree ensemble T has root degree η0 = d, we denote by Ti, i = 1, . . . , d, the
subtree generated by the root, its ith children and its descendents. If η0 = 1, we denote by T ′

i , i = 1, . . . , k − 1, the
subtree generated by the ith child of the root’s child and its descendents.

Finally, because the tree ensemble T could be random (for instance we denote by T a random tCSP (α, p)), we
will use E for expectation respect to T, and 〈·〉T for expectation respect to x (given T) and E for expectation respect
to any other independent random variable (adding, if not in context, a subindex to indicate such random variable).
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Reconstruction: For a fixed tree ensemble T , let µ
∅,ℓ

be the joint distribution of (x0,xℓ) and let µ
∅
, µ

ℓ
be

the marginal distribution of x0 and xℓ respectively. The reconstruction rate for T is defined as the quantity∥∥µ∅,ℓ (·, ·)− µ∅ (·)µℓ (·)
∥∥
TV

. We say that the reconstruction problem for T is tree-solvable if

lim inf
ℓ→∞

∥∥µ∅,ℓ (·, ·)− µ∅ (·)µℓ (·)
∥∥
TV

> 0.

Analogously, if T is a random tCSP (α, p), we define the reconstruction rate of T as E
∥∥µ∅,ℓ (·, ·)− µ∅ (·)µℓ (·)

∥∥
TV

,
and we say that the reconstruction problem for T is tree-solvable

lim inf
ℓ→∞

E
∥∥µ∅,ℓ (·, ·)− µ∅ (·)µℓ (·)

∥∥
TV

> 0.

Bias, compatibility: Given a satisfying assignment xℓ for the variables at generation ℓ, define the ‘bias’ of the
root, restricted to the value of the variables at level ℓ, as

hT (xℓ)
def
= 〈x0 |xℓ = xℓ 〉T .

Throughout the next proofs we will study hT (xℓ), for xl random and subject to different kind of distributions. Notice
that under the balance condition

∥∥µ∅,ℓ (·, ·)− µ∅ (·)µℓ (·)
∥∥
TV

= 〈|hT (xℓ)|〉T .
Now, let DT (xℓ)

def
= {x} if hT (xℓ) = x, DT (xℓ)

def
= {−1, 1} if |hT (xℓ)| < 1. Observe that DT (xℓ) consists of the

values of the root that are compatible with the assignment xℓ for the variables at generation l.
Domain of clauses: Given a binary function ϕ (x0, . . . , xk−1), define the partial solution sets

S+ (ϕ)
def
= {(x1, , xk−1) : ϕ (1, x1, . . . , xk−1) = 1} ,

S− (ϕ)
def
= {(x1, , xk−1) : ϕ (−1, x1, . . . , xk−1) = 1} ,

Λ+ (ϕ)
def
= S+ (ϕ) \S− (ϕ) , Λ− (ϕ)

def
= S− (ϕ) \S+ (ϕ)

If the clause ϕ is balanced and feasible, we have that |S+ (ϕ)| = |S− (ϕ)| = 2k−1 ‖ϕ‖2 and |Λ+ (ϕ)| = |Λ− (ϕ)| =
2k I1 (ϕ).

Theorem 4.1 The reconstruction problem for the ensemble tCSP(α, p) is tree-solvable if and only if α > αtree(k)
where

αtree(k) =
Ωk

k
{log k + o(log k)} .

Proof. Upper bound:
Given a tree ensemble T , the rate of ‘naive reconstruction’ for T is defined as

zℓ (T )
def
= 〈I [hT (xℓ) = 1]〉T ( = 〈I [hT (xℓ) = −1]〉T by the balance condition),

which indicates the probability that a random assignment for the variables at generation ℓ, distributed as xℓ, fixes the
root to be equal to 1 (or −1). It is easy to see that 〈|hT (xℓ)|〉T ≥ zℓ (T ). Observe also, that for any x, y ∈ {−1, 1},

〈I [hT (xℓ) = x] |x0 = y 〉T = 2zℓ (T ) δx,y. (5)

Thus, our objective is to show that in an appropiate regime of the parameter α, the quantity E [zℓ (T)] remains
bounded away from zero as ℓ → ∞, implying tree-solvability of the reconstruction problem in such regime. Indeed,
this implies tree-solvability by ‘naive reconstruction’, i.e. by the procedure that assigns to the root any value
compatible with the values at generation ℓ. By notational convenience, define

zℓ (α) = 2E [zℓ (T)] and ẑℓ (α) = 2E [zℓ (T) |η0 = 1] .
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Now, notice that for a tree ensemble T with root degree η0 = d, and any assignment xℓ for the variables at generation
ℓ, hT (xℓ) = 1 iff hT (xℓ ↾ Ti) = 1 for some i = 1, . . . , d, so that

2zℓ (T ) =

〈
1−

d∏

i=1

(1− I [hTi (xℓ ↾ Ti) = 1]) |x0 = 1

〉

T

= 1−
d∏

i=1

〈
(1− I [hTi (xℓ) = 1])

∣∣∣x0 = 1
〉
Ti

(By the tree Markov property)

= 1−
d∏

i=1

(1− 2zℓ (Ti)) .

Therefore, averaging over T , we get

zℓ (α) = Eη

[
1−

η∏

i=1

(1− ẑℓ (α))

]
, η ∼ Poisson (kα)

= 1− exp (−kαẑℓ (α)) .

On the other hand, given a tree ensemble T with root degree η0 = 1 and with the clause ϕ assigned to the root’s
child, we have that for any satisfying assignment xℓ for the variables at generation ℓ, hT (xℓ) = 1 iff

k−1∏

i=1

DT ′
i

(
x
(i)
ℓ−1

)
⊆ Λ+ (ϕ) , (6)

where x
(i)
ℓ−1 is the assignment xℓ ↾ T ′

i for the variables at generation ℓ − 1 in the subtree T ′
i . Observe that (6)

holds, in particular, if for some a = (a1, . . . , ak−1) ∈ Λ+ (ϕ), hT ′
i

(
x
(i)
ℓ−1

)
= ai for i = 1, . . . , k − 1. Therefore, if

y = (y1, . . . ,yk−1) denotes a random uniform vector from S+ (ϕ), we have

zℓ (T ) ≥
1

2

∑

a∈Λ+(ϕ)

〈
k−1∏

i=1

I

[
hT ′

i

(
x
(i)
ℓ−1

)
= ai

]
|x0 = 1

〉

T

=
1

2

∑

a∈Λ+(ϕ)

Ey

k−1∏

i=1

〈
I
[
hT ′

i
(xℓ−1) = ai

]
|x0 = yi

〉
T ′
i

(By the tree Markov property)

=
|Λ+ (ϕ)|
|S+ (ϕ)|

k−1∏

i=1

2zℓ−1 (T
′
i ) (By Eq. (5)),

which implies, after averaging over T , that

ẑℓ (α) ≥ Eϕ

[
2 I1 (ϕ)

‖ϕ‖2

]
(zℓ−1 (α))

k−1
=

(zℓ−1 (α))
k−1

Ωk
,

which leads to the recursion zℓ (α) ≥ 1 − exp
(
−kα (zℓ−1 (α))

k−1
/Ωk

)
. Now, it is standard to verify that this

recursion implies that zℓ (α) is, for all ℓ, greater or equal than the maximum of the fixed points of the function
g (z) = 1 − exp

(
−kαzk−1/Ωk

)
in the interval [0, 1]. The minimum value of α for which such fixed point is positive

is given by

α∗ =
Ωk

(
1 + u

(
1 + 1

u

)k−2
)

k (k − 1)
,

where u is the unique solution of the equation u = (k − 1) log (1 + u). In particular, asymptotically in k, we have
that α∗ = Ωk

k (log k + o (log k)), which implies the upper bound for αtree.
Lower bound :

9



The matching lower bound on αtree(k) requires a more elaborate proof; we first prove three lemmas, before
returning to complete the lower bound proof. �

Given a tree ensemble T , let x+
ℓ

D
= (xℓ |x0 = 1) and x−

ℓ
D
= (xℓ |x0 = −1). When the tree ensemble is not clear in

the definition of x+
ℓ (or x−

ℓ ), we add a subindex indicating the tree ensemble from where it is defined. Notice that,
if µ+ and µ− are the distributions of x+

ℓ and x−
ℓ respectively, then

dµ−

dµ+
=

1− hT (xl)

1 + hT (xl)
. (7)

By the balance condition, it’s clear that

hT
(
x+
ℓ

) D
= −hT

(
x−
ℓ

)
. (8)

Also, it is easy to show that
〈
hT
(
x+
ℓ

)〉
T
=
〈
[hT (xℓ)]

2
〉
T
(and therefore [Rl (T )]

2 ≤
〈
hT
(
x+
ℓ

)〉
T
≤ Rl (T )), so that

non-reconstructibility for T is equivalent to the condition lim
ℓ→∞

〈
hT
(
x+
ℓ

)〉
T

= 0 (see [MP03]). Similarly, if T is a

random tCSP (α, p) ensemble, non-reconstructibility for T, is equivalent to the condition lim
ℓ→∞

E
[〈
hT
(
x+
ℓ

)〉
T

]
= 0.

Lemma 4.2 (a) Given a tree ensemble T with root degree η0 = d, we have

[
1− hT

(
x+
ℓ

)

1 + hT
(
x+
ℓ

)
]

D
=

d∏

i=1

[
1− hl,i
1 + hl,i

]
, (9)

where (hl,i)
d
i=1 are independent random variables such that hl,i

D
= hTi

(
x+
ℓ

)
.

(b) Given a tree ensemble T with root degree η0 = 1 and with the clause ϕ assigned to the unique child of the
root, we have that [

1− hT
(
x+
ℓ+1

)

1 + hT
(
x+
ℓ+1

)
]

D
=

Thl
ϕ(−1, s)

Thl
ϕ(1, s)

, (10)

where s ∼Unif (S+ (ϕ)) and hl = (hl,i)
k−1
i=1 are independent random variables such that hl,i

D
= hT ′

i

(
x+
l

)
.

Proof. This recursion follows straightforwardly from the recursive definition of tree formulae. The balance condition
on clauses implies

1− hT
(
x+
l

)

1 + hT
(
x+
l

) =

〈
I
[
xl = x+

l

]
|x0 = −1

〉
T〈

I
[
xl = x+

l

]
|x0 = 1

〉
T

.

Therefore, if the root degree of T is η0 = d, we have by the tree Markov property that

1− hT
(
x+
l

)

1 + hT
(
x+
l

) =
d∏

i=1

〈
I
[
xl = x+

l ↾ Ti
]
|x0 = −1

〉
Ti〈

I
[
xl = x+

l ↾ Ti
]
|x0 = 1

〉
Ti

,

and the last expression has the same distribution as

d∏

i=1

1−ul,i

1+ul,i
, due to the fact that

(
x+
l ↾ Ti

)d
i=1

are independent

random assignments for the variables at generation l of Ti, such that x+
l ↾ Ti

D
= x+

l,Ti
. This proves Eq. (9). Now, if

the root degree of T is η0 = 1, define
(
x̃+
l,i

)k−1

i=1
to be independent random assignments for the variables at generation

l of the subtrees T ′
i , such that x̃+

l,i
D
= x+

l,T ′
i
. By the tree Markov property, we have that

(
x+
l+1 ↾ T ′

i

)k−1

i=1

D
=
(
six̃

+
l,i

)k−1

i=1

10



where s ∼ Unif S+ (ϕ). Using once more the tree Markov property, we get

[
1− hT

(
x+
ℓ+1

)

1 + hT
(
x+
ℓ+1

)
]
=

∑

y

ϕ (−1, y)

k−1∏

i=1

〈
I

[
xl = six̃

+
l,i

]
|x0 = yi

〉
T ′
i

∑

y

ϕ (−1, y)

k−1∏

i=1

〈
I

[
xl = six̃

+
l,i

]
|x0 = yi

〉
T ′
i

=
Thl

ϕ (−1, s)

Thl
ϕ (1, s)

,

which is precisely Eq. (10). �

The first step of the above recursion can be analyzed exactly.

Lemma 4.3 If T is a random tCSP (α, p) ensemble, then the random variable hT
(
x+
1

)
takes values in {0, 1} and,

if α < (1− δ)(Ωk log k)/k, we have EhT
(
x+
1

)
≤ 1− k−1+δ.

Proof. If T is a tree ensemble with root degree η0 = 1 and clause ϕ assigned to the root’s child, from the part b of

lemma 4.2, we have that
1−hT (x+

1 )
1+hT (x+

1 )
D
= ϕ (−1, s) where s ∼ Unif (S+ (ϕ)) (notice that h0,i ≡ 1). Therefore, it follows

that hT
(
x+
1

)
= 1 w.p.

|Λ+(ϕ)|
|S+(ϕ)| = 1/Ωk and hT

(
x+
1

)
= 0 otherwise. Therefore, if T is a tree ensemble with root

degree η0 = d, it follows from the part a of lemma 4.2 that hT
(
x+
1

)
= 1 w.p. 1 − (1− 1/Ωk)

d and hT
(
x+
1

)
= 0

otherwise. This implies then that hT
(
x+
1

)
is supported at {0, 1} and EhT

(
x+
1

)
= 1 − exp (−kα (1− 1/Ωk)). The

conclusion follows straightforwardly.
�

For subsequent steps we track the averages, haveℓ

def
= E

〈
hT
(
x+
l

)〉
T

and ĥaveℓ

def
= E

[〈
hT
(
x+
l

)〉
T
|η0 = 1

]
, using

the following bounds.

Lemma 4.4 For any ℓ ≥ 0 we have

haveℓ ≤ 1− e−2kαbhave
ℓ , ĥaveℓ+1 ≤ 1

2
Fk(h

ave
ℓ ) +

1

2
Rk(

√
haveℓ ) , (11)

Fk(θ)
def
= 2Eϕ

[
(ϕ(1),Tθ ϕ

(1))

‖ϕ‖2

]
, Rk(θ)

def
= 2Eϕi


2 I1 (ϕ)

‖ϕ‖2
∑

Q⊆[k−1]

|
(
ϕ(1), γQ

)
| θmax(|Q|,2)


 , (12)

Finally, if hℓ is supported on non-negative values, then

ĥaveℓ ≤ Fk(h
ave
ℓ ) . (13)

Proof. We will say that a random variable X ∈ [−1,+1] is ‘consistent,’ if E f(−X) = E

[(
1−X
1+X

)
f(X)

]
for every

function f such that the expectation values exist. A useful preliminary remark [MM06] is that the random variable
hT
(
x+
l

)
is consistent (no matter the tree ensemble). In fact, this follows directly from the Eqs. (7) and (8) above. A

number of properties of consistent random variables can be found in [RU08]. Let us now consider the first inequality.
If T is a tree ensemble with root degree η0 = d, it is immediate to from Eq. (9), that

〈(
1− hT

(
x+
l

)

1 + hT
(
x+
l

)
)1/2〉

T

=

d∏

i=1

〈(
1− hTi

(
x+
l

)

1 + hTi

(
x+
l

)
)1/2〉

Ti

.

It is possible to show that consistency implies EX = EX2 and E
(

1−X
1+X

)1/2
= E

√
1−X2 (through the test functions

f (x) = x (1 + x) and f (x) = x (1 + x)1/2 (1− x)−1/2), we thus have

√
1−

〈
hT
(
x+
l

)〉
T
≥
〈√

1−
[
hT
(
x+
l

)]2
〉

T

=

d∏

i=1

〈√
1−

[
hTi

(
x+
l

)]2
〉

Ti

≥
d∏

i=1

(
1−

〈
hTi

(
x+
l

)〉
Ti

)
.
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This implies in particular, if T is a random tCSP (α, p),

√
1−E

〈
hT
(
x+
l

)〉
T
≥ Eη

[
η∏

i=1

(
1−E

[〈
hT
(
x+
l

)〉
T
|η0 = 1

])
]
, η ∼ Poisson(kα) ,

from where the first inequality follows.
Now, from the recursion Eq. (10), we have for a tree ensemble T with root degree η0 = 1, and random clause ϕ

assigned to the child of the root,

hT
(
x+
l+1

)
=

2Thl
ϕ(1) (s)

1 + Thl
ψ (s)

, ψ (s)
def
= ϕ (1, s)ϕ (−1, s)

or alternatively,

hT
(
x+
l+1

)
= Thl

ϕ(1) (s) +
(
Thl

ϕ(1) (s)
)
Gk (hl, s) , Gk (hl, s)

def
=

[
1− Thl

ψ (s)

1 + Thl
ψ (s)

]
,

where s ∼Unif S+ (ϕ). Notice that for any antisymmetric function f (s), we have that Esf (s) =
(ϕ(1),f)
‖ϕ‖2 . Therefore,

due to the fact that Thl
ϕ(1) (s) is antisymmetric and Gk (hl, s) is symmetric (both in s and hl, actually), we have

the formulas
〈
hT
(
x+
l+1

)〉
T
=

2

‖ϕ‖2
〈(

ϕ(1),
Thl

ϕ(1) (s)

1 + Thl
ψ (s)

)〉

T

(14)

and
〈
hT
(
x+
l+1

)〉
T
=

〈(
ϕ(1),Thl

ϕ(1)
)

‖ϕ‖2

〉

T

+

〈(
ϕ(1),

(
Thl

ϕ(1)
)
Gk (hl, ·)

)

‖ϕ‖2

〉

T

. (15)

In the last expression, the first term is equal to

“
ϕ(1),T〈hl〉T ϕ(1)

”

‖ϕ‖2 , while the second term can be writen, using Fourier

expansion, as
1

‖ϕ‖2
∑

Q⊆[k−1]
|Q| odd

(
ϕ(1), γQEhl

[γQ (hl)Gk (hl, ·)]
)(

ϕ(1), γQ

)
.

Using the fact that E |X| ≤ (EX)
1/2

for consistent random variables, we can bound the terms with |Q| ≥ 3 by

∣∣(ϕ(1), 1
)∣∣

‖ϕ‖2
∑

Q⊆[k−1]
|Q|≥3 odd

∣∣∣
(
ϕ(1), γQ

)∣∣∣


∏

i∈Q

〈
hTi

(
x+
l

)〉
Ti




1/2

.

Also, using the fact that for any even function f (x) with 0 ≤ f (x) ≤ 1 and a consistent random variable X, we have

|E[Xf(X)]| = |E[2X2f(X)/(1 +X)I{X≥0}]| ≤ |E[2X2/(1 +X)I{X≥0}]| = |E[X]|,

we can bound the terms with |Q| = 1, by

∣∣(ϕ(1), 1
)∣∣

‖ϕ‖2
k−1∑

i=1

(
ϕ(1), γ{i}

) ∣∣∣
〈
hTi

(
x+
l

)〉
Ti

∣∣∣ .

Therefore, for a random tCSP (α, p) with root degree η0 = 1, we obtain after averaging

ĥavel+1 ≤ Eϕ

(
ϕ(1),Thave

l
ϕ(1)

)

‖ϕ‖2
+ Eϕ



2 I1 (ϕ)

‖ϕ‖2
∑

Q⊆[k−1]
|Q|≥3 odd

∣∣∣
(
ϕ(1), γQ

)∣∣∣
(√

havel

)max{|Q|,2}


 ,
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which is precisely the second inequality in the Lemma.
Now, suppose that hl is supported on non-negative values and let As =

{
hl : Thl

ϕ(1) (s) > 0
}
. Notice that the

complement of As is −As (due to the antisymmetry of Thl
ϕ(1) (s) respect to hl). Therefore, using the consistency

of the random variables hl,i, from the Eq. (14) we get

〈
hT
(
x+
l+1

)〉
T
=

2

‖ϕ‖2
〈(

ϕ(1),
Thl

ϕ(1) (s)

1 + Thl
ψ (s)

)
I (hl ∈ As)−

(
ϕ(1),

T−hl
ϕ(1) (s)

1 + T−hl
ψ (s)

)
I (−hl ∈ As)

〉

T

=
2

‖ϕ‖2

〈(
ϕ(1),

Thl
ϕ(1) (s)

1 + Thl
ψ (s)

)
I (hl ∈ As)

[
1−

k−1∏

i=1

1− hl,i
1 + hl,i

]〉

T

≤ 2

‖ϕ‖2

〈(
ϕ(1),Thl

ϕ(1) (s)
)
I (hl ∈ As)

[
1−

k−1∏

i=1

1− hl,i
1 + hl,i

]〉

T

=
2
(
ϕ(1),T〈hl〉T ϕ

(1) (s)
)

‖ϕ‖2
.

Therefore, for a random tCSP (α, p) with root degree η0 = 1, we obtain after averaging, that

ĥavel+1 ≤ 2Eϕ

(
ϕ(1),Thave

l
ϕ(1)

)

‖ϕ‖2
,

which corresponds to the last inequality of the lemma. �

We now return to completing the proof of Theorem 4.1.
Proof of the lower bound in Theorem 4.1. If θ = 1, T1 is the identity operator whence (ϕ(1),T1ϕ

(1)) = I1 (ϕ).
We have therefore Fk(1) = 1/Ωk. Now, expanding in Fourier series we get,

(ϕ(1),Tθ ϕ
(1)) =

∑

Q⊆[k−1]

|
(
ϕ(1), γQ

)
|2 θ|Q| =

∑

Q⊆[k],Q∋{i}
|(ϕ, γQ)|2 θ|Q|−1 .

By the Fourier expansion condition,
Fk(θ) ≤ e−Ck(1−θ)/Ωk. (16)

Now fix α = (1 − δ)(Ωk log k)/k, whence, by Lemma 4.3, have1 ≤ 1 − k−1+δ, and h1 is supported on non-negative

reals. Using Eq. (13), we get ĥav2 ≤ e−Ckδ

/Ωk, and therefore,

hav2 ≤ 1− exp{−2(1− δ)e−Ckδ

log k } ≤ e−Ckδ/2 .

On the other hand, from the Eq. (3), we obtain the following bounds for Fk(θ), Rk (θ):

Fk(θ) ≤ 2Eϕ

[∑k−1
i=1 |

(
ϕ(1), γ{i}

)
|2

‖ϕ‖2

]
θ + 2Eϕ

[
I1 (ϕ)

‖ϕ‖2

]
θ2 ≤

(
Ae−Ck/2θ + θ2

)
/Ωk.

On the other hand,

Rk(θ) ≤ 2Eϕi

[
2 I1 (ϕ)

‖ϕ‖2
k−1∑

i=1

|
(
ϕ(1), γ{i}

)
|2
]
θ2 + 2Eϕ


2 I1 (ϕ)

‖ϕ‖2
∑

Q⊆[k−1]

|
(
ϕ(1), γQ

)
|


 θ3 ≤ (Ae−Ck/2θ2 + kaθ3)/Ωk ,

Therefore, for all ℓ we have

havℓ+1 ≤ 1− e−kα[Fk(h
av
ℓ )+Rk(h

av
ℓ )] ≤ (1− δ) log k(2Ae−Ck/2havℓ + 2ka(havℓ )3/2) .

which implies havℓ → 0 if, for some ℓ > 0, havℓ ≤ k−5a, thus finishing the proof. �
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5 Reconstruction on Trees to Graphs: the case of proper q colorings

In this section we prove that the set of solutions of the proper q-coloring ensemble satisfies the sphericity condition
described in the section 3.3.

Given two assignments x(1), x(2) of the variables x1, . . . , xn, their joint type vx(1),x(2) is the q × q matrix with

vx(1),x(2) (i, j)
def
= 1

n#
{
t ∈ G : x(1) (t) = i and x(2) (t) = j

}
. We consider random assignments x(1), x(2) taken uni-

formly and independently over all the satisfying assignments of a random instance of the q-coloring model with
edge-variable density α. Our purpose is to prove that for all δ > 0, ||vx(1),x(2) − ν||TV ≤ δ w.h.p., where v is the

matrix with all entries equal to 1/q2.
Our argument makes crucial use of the following estimate for the partition function from [AC08].

Lemma 5.1 ([AC08, Lemma 7]) Let Z be the number of satisfying assignments of a random instance of the q-
coloring model with edge-variable density α < q log q, then

EZ ≥ Ω

(
1

n(q−1)/2

)[
q

(
1− 1

q

)α]n
,

and, for some function f(n) of order o(n), we have Prob
(
Z < e−f(n)E [Z]

)
→ 0 as n→ ∞.

Let us introduce some notation. If w is a vector of lenght q and v is a q × q matrix v, let H and E denote their
entropy an their enrgy respectively, where

H(v) = −∑
i,j

v (i, j) log v (i, j) , H(w) = −∑
i

w (i) logw (i)

E(v) = log


1−∑

i

(
∑
j

v (i, j)

)2

−∑
j

(∑
i

v (i, j)

)2

+
∑
i,j

v (i, j)
2


 , E(w) = log

(
1−∑

i

w (i)
2

)

Let Bǫ
q consists of all the q-vectors w with nonegative entries such that

∑
i

w (i) = 1 and ‖w − w‖2 > ǫ. Similarly, let

Bδ,ǫ
q×q be the set of all the q × q matrices with nonegative entries such that ‖(v − v) 1‖2 ≤ δ, ‖1t (v − v)‖2 ≤ δ and

‖v − v‖2 ≥ ǫ.
Our goal in this section is to prove the following theorem.

Theorem 5.2 Let x(1), x(2) be random assignments taken uniformly and independently over all the satisfying as-
signments of a random instance of the q-coloring model with edge-variable density α. If α < (q − 1) log (q − 1), then
for any ǫ > 0,

Prob
(∥∥vx(1),x(2) − v

∥∥2 > ǫ
)

→ 0 as n→ ∞.

We will present several lemmas before returning to the proof of the Theorem. First we introduce estimations
concerning an additive functional depending on the energy and entropy of a vector of lenght q.

Lemma 5.3 If w ∈ Bǫ
q, then H(w) + αE(w) ≤ [H(w) + αE(w)]− αǫ

2(1−1/q) .

Proof. Notice that [H(w) + αE(w)] − [H(w) + αE(w)] = α log
(

1−‖w‖2

1−‖w‖2
)
. This quantity is bounded below by

α log
(
1 + ǫ

1−1/q

)
, and therefore by αǫ

2(1−1/q) . �

Lemma 5.4 Let x be a random assignment of the variables taken uniformly over all the satisfying assignments of a
random instance of the q-coloring model with edge-variable density α < q log q. Then, for any ǫ > 0,

Prob
(∥∥wx − w

∥∥2 > ǫ
)
→ 0 as n→ ∞

where w is the vector with q entries such that wx (i) =
1
n# {v ∈ G : xv = i} and w is the vector with all entries equal

to 1/q.
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Proof. Given a property P , denote by Z(P ), the number of satisfying assignments for shich P holds. Choose ξ such
that ξ < αǫ

2(1−1/q) . We have that

Prob
(∥∥wx − w

∥∥2 > ǫ
)
= E

[
Z
(∥∥wx

∥∥2 > ǫ+ 1/q
)
/Z
]
,

an expression that we can bound by

E
[
Z
(∥∥wx

∥∥2 > ǫ + 1/q
)]

e−nξE [Z]
+ Prob

(
Z < e−nξE [Z]

)
.

Now, according to the Lemma 5.1, Prob
(
Z < e−nξE [Z]

)
→ 0, and therefore it is enough to show that the term

E
[
Z
(∥∥wx

∥∥2 > ǫ+ 1/q
)]
/e−nξE [Z] vanishes.

Denote by Gǫ the set of all vectors ℓ, with nonegative integer entries, such that
q∑

i=1

(ℓi/n) = 1 and

q∑
i=1

(ℓi/n)
2 > ǫ + 1/q, and denote by Ωw the set of assignments x such that wx is equal to the vector w. Now,

E
[
Z
(∥∥wx

∥∥2 > ǫ+ 1/q
)]

=
∑
ℓ∈Gǫ

∑
x∈Ωℓ/n

Prob (x is a satisfying assignment) (17)

=
∑
ℓ∈Gǫ

n!
q∏

i=1

ℓi!

([
n

n− 1

] [
1−

q∑
i=1

(ℓi/n)
2

])αn

≤ ∑
ℓ∈Gǫ

3q2q
√
n exp (n [H (ℓ/n) + cnE (ℓ/n)])

≤ 3q2q
√
n |Gǫ| sup

ℓ∈Gǫ

{exp (n [H (ℓ/n) + cnE (ℓ/n)])} .

Here |Gǫ| is the number of elements of Gǫ, which is bounded by nq. Notice also that if ℓ ∈ Gǫ, then ℓ/n ∈ Bǫ
q, so that

by Lemma 5.3,

H (ℓ/n) + αE (ℓ/n) ≤ [H(jq) + αE(jq)]−
αǫ

2 (1− 1/q)
(18)

= log q + α log (1− 1/q)− αǫ

2 (1− 1/q)
.

On the other hand by the Lemma 5.1, there is some constant C such that

e−nξE [Z] ≥ C

n(q−1)/2
e−nξ

[
q

(
1− 1

q

)α]n
. (19)

Combining Eq. (17), (18) and (19), we have that for a polynomial p (n) of degree 3q/2,

E
[
Z
(∥∥wx − w

∥∥2 > ǫ
)]

e−nξE [Z]
≤ p(n) exp

(
n

[
ξ − αǫ

2 (1− 1/q)

])
. (20)

From (20), it is now clear that
E

h
Z

“
‖wx−w‖2

>ǫ
”i

e−nξE[Z] → 0 as n→ ∞, due to the fact that ξ − αǫ
2(1−1/q) < 0. �

Next, our objective is to work with the quantity κδ,ǫq , which we define as the upper limit of the interval (indeed,
easy to see that this is an interval) consisting of the values c such that

sup
v∈Bδ,ǫ

q×q

H(v) + cE(v) ≤ H(v) + αE(v).

To motivate, let us recall that an important part of the second moment argument of Achlioptas and Naor [AN05,
Theorem 7] (in showing that the chromatic number χ [G (n, d/n)] concentrated on two possible values), relied on an
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optimization of the expression H(v) + αE(v) over the Birkoff polytope Bq×q of the q × q doubly stochastic matrices.
In particular, they proved that, as long as α ≤ (q − 1) log(q − 1), one has

sup
v∈Bq×q

H(v) + αE(v) = H(v) + αE(v) . (21)

Since B0,ǫ
q×q ⊆ Bq×q, we have κ0,ǫq ≥ (q − 1) log (q − 1). The next lemma says that sup

v∈Bδ,ǫ
q×q

H(v) + αE(v) is in fact

‘separated’ from H(v) + αE(v), provided that α < κδ,ǫq .

Lemma 5.5 Suppose that v ∈ Bδ,ǫ
q×q where ǫ > 2δ, then, if α < κδ,ǫq , we have that

[H(v) + αE(v)] ≤ [H(v) + αE(v)]−
(
κδ,ǫq − α

)

2 (1− 1/q)2
[ǫ− 2δ] .

Proof. Indeed,

[H(v) + αE(v)]− [H(v) + αE(v)] =
[
H(v) + κδ,ǫq E(v)

]
−
[
H(v) + κδ,ǫq E(v)

]
+
(
κδ,ǫq − α

)
[E(v) − E(v)]

≥
(
κδ,ǫq − α

)
[
log

(
1 +

1

(1− 1/q)2

[
‖v − v‖2 − ‖(v − v) 1‖2 −

∥∥1t (v − v)
∥∥2
])]

≥
(
κδ,ǫq − α

)

2 (1− 1/q)
2 [ǫ− 2δ] .

�

Lemma 5.6 Given ǫ > 0 and α < αq = (q − 1) log (q − 1), there exists δ > 0 such that κδ,ǫq ≥ α.

Proof. Assume the contrary, then there exists a sequence δn ↓ 0 such that κδn,ǫq < α for each n. Due to the

continuity of exp(H(v) + αE(v)) in the compact set Bδ,ǫ
q×q, the supremum of exp(H(v) + αqE(v)) is reached at a

matrix vδn ∈ Bδn,ǫ
q×q ⊆ Pq×q, and due to the compactness of Pq×q, a subsequence

{
vδnk

}
k≥1

of these matrices

converges in Pq×q to a matrix v ∈ B0,ǫ
q×q. Therefore H(v) + αE(v) ≤ H(v) + αE(v)− (αq−α)ǫ

2(1−1/q)2
. On the other hand,

H(v) + αE(v)) ≥ lim inf
k→∞

H(vδnk
) + αE

(
vδnk

)
≥ H(v) + αE (v) ,

obtaining a contradiction. �

Proof of Theorem 5.2. Given a property P , denote by Z(2) (P ), the number of pairs of satisfying assignments for
which P holds. Take α′ such that α < α′ < (q − 1) log (q − 1) and use Lemma 5.6 to choose δ such that κδ,ǫq ≥ α′,

guaranteeing also that 2δ < ǫ. Now, let ξ be a positive real such that 2ξ <
(α′−α)

2(1−1/q)2
[ǫ− 2δ]. We have that

Prob
(∥∥vx(1),x(2) − v

∥∥2 > ǫ
)
= E

[
Z(2)

(∥∥vx(1),x(2) − v
∥∥2 > ǫ

)
/Z2

]
,

which is bounded by the addition of the terms E
[
Z(2)

(
vx(1),x(2)∈ Bδ,ǫ

q×q

)]
/e−2nξE [Z]

2
,

Prob
(
Z < e−nξE [Z]

)
, Prob

(∥∥(vx(1),x(2) − v
)
1
∥∥2 > ǫ

)
and Prob

(∥∥1t
(
vx(1),x(2) − v

)∥∥2 > ǫ
)
. Now, Lemma 5.1 im-

plies that the second term vanishes and lemma 5.4 implies that the last two terms go to zero. Therefore, to show

that Prob
(∥∥vx(1),x(2) − v

∥∥2 > ǫ
)
→ 0 is sufficient to prove that the term E

[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]
/e−2nξE [Z]

2

vanishes.
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Denoting by Gǫ,δ the set of all q × q matrices L, with nonegative integer entries, such that L/n ∈ Bδ,ǫ
q×q, and

denoting by Ωv the set of pairs of colorings x1, x2 such that vx1,x2 is equal to the matrix v, we have

E
[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]
=

∑
L∈Gǫ,δ

∑
x1,x2∈ΩL/n

Prob (x1 and x2 are satisfying assignments)

=
∑

L∈Gǫ

n!∏
i,j

Lij !

[
n

n− 1

]αn

1−∑

i

(
∑
j

Lij/n

)2

−∑
j

(∑
i

Lij/n

)2

+
∑
i,j

(Lij/n)
2




αn

≤ ∑
L∈Gǫ,δ

3q2q
√
n exp (n [H (L/n) + αE (L/n)]) .

And now, because κδ,ǫq ≥ α′ > α and L/n ∈ Bδ,ǫ
q×q where 2δ < ǫ, we can invoke Lemma 5.5 to get that

[H(L/n) + αE(L/n)] ≤ [H(v) + αE(v)]− (α′ − α)

2 (1− 1/q)
2 [ǫ− 2δ] .

Therefore,

E
[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]
≤ 3q2q

√
n |Gǫ,δ| [q (1− 1/q)

α
]
2n

exp

(
−n (α′ − α)

2 (1− 1/q)2
[ǫ− 2δ]

)
,

where |Gǫ,δ| is the number of elements in Gǫ,δ, which is bounded by nq2 . On the other hand by Lemma 5.1, we have
that for some constant C,

e−2nξE [Z]
2 ≥ C

n(q−1)
e−2nξ

[
q

(
1− 1

q

)α]2n
.

Hence, for a polynomial p (n) of degree q2 + q − 1, we have

E
[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]

e−2nξE [Z]
2 ≤ p(n) exp

{
n

(
2ξ − (α′ − α)

2 (1− 1/q)
2 [ǫ− 2δ]

)}
.

Due to the fact that 2ξ <
(α′−α)

2(1−1/q)2
[ǫ − 2δ], it is now clear that

E
h
Z(2)

“
v
x
(1),x(2)∈Bδ,ǫ

q×q

”i

e−2nξE[Z]2
→ 0 as n→ ∞. �
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A Constrained partition function for binary CSP’s

In this section, we prove Proposition 3.1. Given a random CSP(n, p, α) ensemble {ϕa}αna=1, consider the statistic
Ln (ϕ) =

1
αn# {a : ϕa = ϕ}, and denote by CSP(n, p, α; p̃n) the ensemble {ϕa}αna=1 conditioned on Ln = p̃n.. Also,

denote by CSP(n, p, α) the ensemble {ϕa}αna=1 conditioned on ‖Ln − p‖TV < 1/n1/2−γ, where γ is a fixed positive con-
stant. Because Prob

(
‖Ln − p‖TV ≥ 1/n1/2−γ

)
goes to zero (by the central limit theorem), the probability measures

induced by CSP(n, p, α) and CSP(n, p, α) become equivalent as n→ ∞.
A binary configuration x is said to be balanced if |x · 1| ≤ 1. We will use Z and Zb, to denote the variable that

counts the number of satisfying assignments and balanced satisfying assignments, respectively, of a random CSP

ensemble. Given two binary assignments x(1), x(2), we define their overlap as Q12
def
= x(1) ·x(2)/n =

∑n
i=1 x

(1)
i x

(2)
i /n.

In other words (1−Q12)/2 is the normalized Hamming distance of x(1) and x(2).

The upper bound in Proposition 3.1 follows from a first moment calculation. In fact, for a random CSP(n, p, α),
we have

Prob (Z = 0) ≤ E [Z] =
∑

x∈{−1,1}k

Prob (x is a satisfying assignment) =
∑

x·1
n =θ

∏
ϕ
‖ϕ‖2Ln(ϕ)αn

θ

≤ exp

(
n

{
log 2 + α

∑
ϕ
p (ϕ) log ‖ϕ‖2 +O

(
1/n1/2−γ

)})
,

and the last quantity goes to zero whenever α > (1 + ǫ) Ω̂k log 2.
To establish the corresponding lower bound, we use the second moment method, but first we need two lemmas.

Lemma A.1 Given a random CSP(n, p, α; p̃n) ensemble, let Zb(|Q12| ≥ δ) be the number of balanced solution pairs
x(1), x(2) ∈ {+1,−1}n with overlap larger than δ. Then,

E [Zb(|Q12| ≥ δ)]

[EZb]
2 ≤ n exp

{
n

[
sup
θ≥δ

Φ (θ)

]}
,

where

Φ(θ)
def
= H(θ) + αEϕ∼epn

log

{
(ϕ,Tθ ϕ)

‖ϕ‖4

}
,

and H(θ) ≡ − 1+θ
2 log(1 + θ)− 1−θ

2 log(1 − θ).

Proof. For simplicity take n to be even. Let ϕ be a boolean function, and let π : [k] → [n] be a uniform random
assignation for the variables in ϕ. Now, given two balanced vectors x(1), x(2) ∈ {−1, 1}n, we have

Eπ

[
ϕ
(
x(1)π1

, . . . x(1)πk

)
ϕ
(
x(2)π1

, . . . , x(2)πk

)]
= (ϕ,Tθ ϕ) ,

where θ = Q12. Therefore, for some constant C > 0,

EπaZb(|Q12| ≥ δ) =
∑

θ≥δ

∑

Q12=θ

∏
ϕ
|(ϕ,Tθ ϕ)|Ln(ϕ)αn

<
∑

θ≥δ

C

n3/2
exp

(
n

{
H
(
1 + θ

4
,
1 + θ

4
,
1− θ

4
,
1− θ

4

)
+ α

∑
ϕ
Ln (ϕ) log (ϕ,Tθ ϕ)

})
.

where H (·) is the entropy function. On the other hand, for some positive C′,

Eπa Zb =
∑

x balanced

∏
ϕ
‖ϕ‖2Ln(ϕ)αn

>
C′

n1/2
exp

(
n

{
H
(
1

2
,
1

2

)
+ α

∑
ϕ
Ln (ϕ) log ‖ϕ‖2

})
.
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It is straightforward now to check that

EZb(|Q12| ≥ δ)

E (Zb)
2 <

∑

θ≥δ

C′′

n1/2
exp (n [Φ (θ)]) (22)

and therefore EZb(|Q12|≥δ)

(EZb)
2 < n exp

(
n

[
sup
θ≥δ

Φ (θ)

])
. �

Lemma A.2 Given a random CSP(n, p, α; p̃) ensemble, if α ≤ (1− ε)Ωk,epn
log 2, where 1

Ωk,epn

def
= Eϕ∼epn

2 I1(ϕ)

‖ϕ‖2 , then

for any δ > 0 there exists C(δ, ε) > 0 such that

E [Zb(|Q12| ≥ δ)] ≤ e−n[C(δ,ǫ)] (EZb)
2 .

Moreover, as δ → 0, C(δ, ǫ) = Ω
(
δ2
)
.

Proof. In view of the previous lemma, it is sufficient to prove that the function θ 7→ Φ(θ) achieves its maximum
over the interval [0, 1] uniquely at θ = 0. To establish the second statement, then it will be enough to prove that
−Φ (θ) = Ω

(
θ2
)
as θ → 0.

Fix α ≤ (1 − ε)Ωk log 2 ≤ (1 − ε)Ω̂k log 2. We will prove the thesis claim by considering three different regimes
for θ: 0 < θ ≤ e−ak, e−ak ≤ θ ≤ 1− ε1/2 and 1− ε1/2 ≤ θ ≤ 1, where a is a small constant. In the first two intervals
we will prove that the derivative of Φ(θ) with respect to θ is strictly negative. Recalling that ‖ϕ‖2 ≥ 1/2, we have

dΦ

dθ
≤ −atanh θ + kαEϕ

(ϕ(1),Tθ ϕ
(1))

‖ϕ‖4

≤ −θ + 2kαEϕ

∑k−1
i=1 |ϕ(1)

{i}|2

‖ϕ‖2
θ + 2kαEϕ

||ϕ(1)||2
‖ϕ‖2

θ3

≤ −θ +Ae−Ck α

Ωk
θ + 2k

α

Ωk
θ2 ≤ −1

2
θ + 4kθ2 ,

where we used (from Eq. (2)) the hypothesis on low weight Fourier coefficients. The last expression is strictly negative
if 0 < θ < e−ak for any a > 0 and all k large enough. The previous formula also shows −Φ (θ) = Ω

(
θ2
)
as θ → 0.

Next assume e−ak ≤ θ ≤ 1− ε. Using the hypothesis (ϕ(1),Tθ ϕ
(1)) ≤ e−Ck(1−θ)||ϕ(1)||2, we have

dΦ

dθ
≤ −atanh θ + 4kαEϕ

||ϕ(1)||2
||ϕ||4 e−Ckǫ

≤ −atanh θ + 2k
α

Ωk
e−Ck

√
ǫ ≤ −atanhθ + 2 (log 2) ke−Ckǫ ,

which is strictly negative if θ > e−ak with, say, a = (Cǫ2)/2. Finally, we notice that, for 1− ε2 ≤ θ ≤ 1, any ε small
enough we have H(θ) ≤ − log 2 + ε/10. Further, using the fact that (ϕ,Tθ ϕ) = ||Tθ1/2 ϕ||2 is non-decreasing in θ

Φ(θ) ≤ − log 2 +
ε

10
− αEϕ log ||ϕ||2 = − log 2 +

ε

10
+

α

Ω̂k

≤ −ε log 2
2

,

which finishes the proof. �

Conclusion of Proof of Proposition 3.1. From the previous lemma we have that for any fixed δ > 0,

EZ2
b

(EZb)
2 ≤

E
[
Zb(|Q12| < (δ/n)

1/2
)
]

(EZb)
2 + e−Ω(δ),
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while a calculation analogous to that in Eq. (22) and the fact that −Φ (θ) = Ω
(
θ2
)
, implies that

E
[
Zb(|Q12| < (δ/n)1/2)

]

(EZb)
2 ≤

∑

θ<(δ/n)1/2

C′′

n1/2
exp

(
−nΩ

(
θ2
))

≤
δ∫

−δ

exp
(
−Ω

(
x2
))
dx.

Now, letting δ → 0, it is clear that
EZ2

b

(EZb)
2 tends to 1. This proves, by means of the Paley-Zygmund inequality, that for

α < (1−ε)
(
lim inf
n→∞

Ωk,epn

)
log 2, a CSP(n, p, α; p̃n) ensemble is satisfiable w.h.p. The result extends straightforwardly

for a random CSP(n, p, α), after noticing that Ωk,Ln > (1− ǫ)Ωk,p with high probability. �
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