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FREQUENCY DOMAIN ESTIMATION OF INTEGRATED
VOLATILITY FOR ITÔ PROCESSES IN THE PRESENCE OF

MARKET-MICROSTRUCTURE NOISE∗
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Abstract. This paper proposes a novel multiscale estimator for the integrated volatility of an Itô
process in the presence of market microstructure noise (observation error). The multiscale structure
of the observed process is represented frequency by frequency, and the concept of the multiscale
ratio is introduced to quantify the bias in the realized integrated volatility due to the observation
error. The multiscale ratio is estimated from a single sample path, and a frequency-by-frequency bias
correction procedure is proposed, which simultaneously reduces variance. We extend the method to
include correlated observation errors and provide the implied time-domain form of the estimation
procedure. The new method is implemented to estimate the integrated volatility for the Heston and
other models, and the improved performance of our method over existing methods is illustrated by
simulation studies.
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1. Introduction. Diffusion (Itô) processes are being used as models in many
applications such as physics, biology, finance, and atmosphere/ocean science [4, 15, 18,
24, 31, 33]. Some examples include the stochastic modeling of epidemics, the theory
of derivative pricing, and stochastic modeling in oceanography. Most of the stochastic
models that are used in applications involve unknown parameters which can be, in
principle, estimated from observations of the Itô process, using maximum likelihood
or another choice of estimation procedure. The theory of statistical inference for
diffusion processes is very well developed [38, 28, 7].

In many cases the observations of a diffusion process are contaminated by high-
frequency observation error. Examples include data in econometrics [44] and ocean-
ography [18]. It is important to develop accurate and efficient statistical inference
procedures that take into account this contamination of the observed high-frequency
data, to ensure well-behaved procedures even in the limit of the sampling period tend-
ing to zero. The goal of this paper is to address this issue by developing statistical
inference methodologies in the frequency domain.

The problem that we shall study in this paper can be stated as follows: Let Xt

be the solution of a scalar stochastic differential equation (SDE)

(1.1) dXt = μtdt+ σtdBt, X0 = x0,

where Bt denotes a standard one-dimensional Brownian motion and μt, σ
2
t are sto-

chastic processes, corresponding to the drift and the volatility of the SDE. μt, σt,
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and the Brownian motion Bt are (in general) correlated, and μt as well as σt may
be functions of Xt. It has long been recognized that constant volatility models (i.e.,
models for which σ2

t = σ2 for all t) cannot explain many of the empirical features of
the time series behavior of stock and option prices. Richer classes of models, such as
stochastic volatility models, i.e., models where {σ2

t } is itself a stochastic process like
the one that was introduced by Heston [22], have been used for many years to model
time series of stock and option prices [42, 16]. As {σ2

t } is a stochastic process, such
models are referred to as “stochastic volatility models.”

Let {Yt}N+1
j=1 be the regularly sampled, noisy observations of the process Xt, or

(1.2) Ytj = Xtj + εtj , j = 1, 2, . . . , N + 1, tj :=
j − 1

N
T = (j − 1)Δt,

with εtj the observational error. We assume the data is sampled at regularly spaced
time points with a sampling period of Δt. The length of the path T = NΔt is
assumed fixed. The observation noise {εtj}N+1

j=1 is assumed to be a white noise process

with variance σ2
ε , and is assumed to be independent of the noise that drives the Itô

process Xt.
Our main objective is to estimate the integrated stochastic volatility

(1.3) 〈X,X〉T =

∫ T

0

σ2
t dt

of the Itô process {Xt} from the set of observations
{
Ytj

}N+1

j=1
. The integrated sto-

chastic volatility is a nonparametric measure of volatility for an asset return, which
simply summarizes the natural variability of the process over an interval of time. The
problem of estimating the integrated stochastic volatility has attracted considerable
attention in recent years; see, for example, [2] and the references therein. In this paper
we will use the terminology that is common in econometrics and apply our estimator
to a stochastic volatility model. We emphasize also that similar problems arise in
many other areas where the process of interest is modeled using an SDE, such as,
for example, oceanography [18, 1]. In such cases one is interested in estimating the
eddy diffusivity from noisy Lagrangian observations. This problem was, for example,
studied recently in [11].

We let the realized integrated volatility of Xt be written as

[X,X ]T =

N∑
j=1

(
Xtj+1 −Xtj

)2
.

It is well known [25] that

(1.4) lim
Δt→0

[X,X ]T ≡ lim
Δt→0

N∑
j=1

(
Xtj+1 −Xtj

)2
= 〈X,X〉T ,

where we keep NΔt = T fixed, and where the limit is in probability. Consequently, in
the absence of market microstructure noise (i.e., when Ytj = Xtj , j = 1, . . . , N+1) the
integrated volatility can be estimated from the realized integrated volatility of Yt [44]

of [Y, Y ]T ≡ ∑N
j=1

(
Ytj+1 − Ytj

)2
. In the presence of market microstructure noise,

limΔt→0 [Y, Y ]T �= 〈X,X〉T ; see, for example, the discussion in [48]. In fact, the
realized integrated volatility is in this case dominated by the energy of the observation
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error, and it becomes an estimate of the variance of the noise process σ2
ε , rather than

an estimate of the integrated volatility. To make this observation from a more intuitive
perspective, consider the case where there is no drift in (1.1), i.e., when μ = 0 for
all t ∈ [0, T ] (see also the numerical results reported in section 3.2). In this case the
increment of the observed process Yt can directly be written as

(1.5) ΔYtj = Ytj+1 − Ytj ≈ σtj+1

√
Δtζj + σε

√
2ξj ,

where ζj and ξj are two independent Gaussian white noise processes. From (1.5) one
may note that taking first differences of Yti at decreasing Δt will not be sufficient
to distinguish between the observation noise and the true noise driving the process
Xt, and furthermore, as Δt decreases, the dominant contribution to the difference
will be σε

√
2ξj rather than σtj+1

√
Δtζj , as the former term does not decrease with

decreasing Δt.
A different estimation procedure is therefore necessary when estimating the inte-

grated volatility of Xt from {Ytj}, such as increasing Δt to make the first contribution
in (1.5) competitive in magnitude (i.e., subsampling the data). This fact was used
in [3, 48], where accurate and efficient methods for estimating the integrated volatil-
ity for noisy observations were developed. In these papers a method for estimating
the integrated volatility which consisted of subsampling at an optimal sampling rate
combined with averaging and an appropriate debiasing step was proposed. Various
other estimators were suggested in [48, 44, 13, 17, 21] for processes contaminated by
high-frequency nuisance structure.

In order to estimate the variances of Xt and εt, we need to look at differences over
different time scales, since Xt and εt have different characteristic time scales. Another
natural way to do so at all scales is by using the Fourier transform of the discrete
increments of the observed process ΔYtj , as will be further discussed. In addition
most of the time-domain methods can be put in a unified framework as linear filtering
techniques, i.e., as a convolution with a linear kernel, of some time-domain quadratic
function of the data. The understanding of these methods is enhanced by studying
them directly in the frequency domain, as convolutions in time are multiplications in
frequency. Fourier domain estimators of the integrated volatility have been proposed
for observations devoid of microstructure features; see [20, 5, 29]. Fourier domain
estimators have also been used for estimating noisy Itô processes (i.e., processes of
the form (1.2); see [30, 39, 40]), based on smoothing the time-domain quantities by
using only a limited number of frequencies in the reconstruction.

The bias in using the realized integrated volatility of the observed process Ytj to
estimate the integrated volatility of Xt due to the observation noise εtj can also be
understood directly in the frequency domain, since the energy or variance associated
with each frequency is contaminated by the microstructure noise process. This bias
is particularly damaging at high frequencies, as we shall demonstrate. In this article
we propose a frequency-by-frequency debiasing procedure to improve the accuracy
of the estimation of the integrated volatility. The proposed estimation method can
also be viewed in the time domain as smoothing the empirical autocovariance of the
increments of the process, but where the implied time-domain smoothing kernel is
itself estimated from the observed process.

The proposed estimator can be described roughly as follows. Let {J (X)
k } denote

the discrete Fourier transform of the differenced sampled Xt process (i.e., the discrete
derivative of Xt) or of ΔXtj = Xtj+1 − Xtj , and similarly for Ytj and εtj . The
integrated volatility can be written in terms of the inverse discrete Fourier transform
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of the variance of J
(X)
k . We calculate the bias in the variance of J

(Y )
k when using its

sample estimator to estimate the variance of J
(X)
k . The high-frequency coefficients are

heavily contaminated by the microstructure noise. With a formula for the bias it is
possible to debias the estimated variance of the Fourier transform at every frequency,
with the unknown parameters of the bias estimated using the Whittle likelihood [46,
47]. This produces a debiased estimator of the integrated volatility via an aggregation
of the estimated variance, and we show also that the variance of the proposed estimator
is reduced by the debiasing.

Our estimator shows highly competitive mean square error performance; it also
has several advantages over existing estimators. First, it is robust with respect to the
signal-to-noise ratio; furthermore, it is easy to formulate and to implement; in addi-
tion, it readily generalizes to the case of correlated observation errors (in time). Fi-
nally, the properties of our estimator are transparent using frequency domain analysis.

The rest of the paper is organized as follows. In section 2 we introduce our
estimator and present some of its properties, stated in Theorems 2.3 and 2.4. We also
discuss the time-domain understanding of the proposed method and the extension of
the method to the case where the observation noise is correlated. In section 3 we
present the results of Monte Carlo simulations for our estimator. Section 4 is reserved
for conclusions. Various technical results are included in the appendices.

2. Estimation methods. Let
{
Ytj

}
be given by (1.2), where the zero-mean

noise
{
εtj
}
is independent of

{
Xtj

}
and its variance at any time is equal to σ2

ε . The
simplest estimator of the integrated volatility of Xt would ignore the high-frequency
component of the data and use the realized integrated volatility of the observed pro-
cess. The realized integrated volatility is growing in magnitude with increasing sample
sizes, and we note that this biased and naive estimator has order

(2.1) 〈̂X,X〉(b)T = [Y, Y ]T = O
(

1

Δt

)
.

This estimator is both inconsistent and biased; see [21]. An estimator is consistent
if, as N → ∞ (or equivalently as Δt = T/N → 0), it converges in probability to the
parameter it is used to estimate. It is highly unsatisfactory to obtain an inconsistent
estimator, and we shall in this paper seek to remedy the problem of inconsistency when

using 〈̂X,X〉(b)T . For comparative purposes, we define also the unbiased estimator of
the realized integrated volatility of the sampled process {Xtj} as a “gold standard”
estimator of integrated volatility:

(2.2) 〈̂X,X〉(u)T = [X,X ]T = O (NΔt) = O (1) .

This cannot be used in practice, as Xtj is not directly observed. Both 〈̂X,X〉(u)T and

〈̂X,X〉(b)T are estimators of the integrated volatility (quadratic variation) of X .

2.1. Fourier domain properties. We shall start by deriving an alternative
representation of (2.1) to motivate further development. First we define the increment
process of a sample from a generic time series Utj , j = 1, . . . , N + 1, as ΔUtj =

Utj+1 −Utj , j = 1, . . . , N . The discrete Fourier transform of ΔUtj is denoted by J
(U)
k

and takes the form [36, p. 206]

(2.3) J
(U)
k =

√
1

N

N∑
j=1

ΔUtje
−2πitjfk , fk =

k

T
, U = X, Y, ε.
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Note the square root normalization; this is not standard in the definition of the discrete
Fourier transform, but is a standard normalization in statistics. The reason for this is
that unitary transforms have convenient second order properties such as transforming
a unit variance vector to another unit variance vector. Our proposed estimator will be

based on examining the second order properties of {J (Y )
k }. |J (Y )

k |2 is the periodogram

[9] defined for a time series and is an inconsistent estimator of var{J (Y )
k } = S

(X)
k,k .

This variance (when based on an infinite length sample) is generally referred to as
the spectral density of the process. Inconsistent estimators do not have decreasing

variances with increasing sample sizes, and |J (Y )
k |2 will not converge in probability

to its expectation, namely, the true spectral density of the first difference of Ytj . We

examine the properties of {J (X)
k }. We have, with μj =

1
Δt

∫ jΔt

(j−1)Δt
μs ds denoting the

local average of μt,

ΔXtj =

∫ jΔt

(j−1)Δt

[μsds+ σsdWs] = μjΔt+

∫ jΔt

(j−1)Δt

σsdWs,

J
(X)
k =

√
1

N

N∑
j=1

ΔXtj e
−2iπ kj

N =

√
1

N

N∑
j=1

[
Δtμj +

∫ jΔt

(j−1)Δt

σsdWs

]
e−2iπ kj

N

= O
(
Δt1/2

T

k

)
+

√
1

N

N∑
j=1

∫ jΔt

(j−1)Δt

σsdWse
−2iπ kj

N .(2.4)

We define

J̃
(X)
k =

√
1

N

N∑
j=1

∫ jΔt

(j−1)Δt

σsdWse
−2iπ kj

N ,

and this to leading order approximates J
(X)
k as Δt → 0 for all but a few frequencies,

namely, k very small, as indicated by the order terms in (2.4). This follows, as μs is
an Itô process and has almost surely continuous paths, which implies that

Δt2
N−1∑
k=0

∣∣∣∣∣∣
√

1

N

N∑
j=1

μje
−2iπ kj

N

∣∣∣∣∣∣
2

∼
∑
k

∣∣∣∣ 1√
N

ΔtN/k

∣∣∣∣2 = O (Δt) ,(2.5)

Δt

N−1∑
k=0

∣∣∣∣∣∣
√

1

N

N∑
j=1

μje
−2iπ kj

N

∣∣∣∣∣∣ ∼
∑
k

∣∣∣∣ 1√
N

ΔtN/k

∣∣∣∣ = O
(
log(Δt)

√
Δt
)
,(2.6)

as Δt
∑

j μje
−2iπ kj

N = O (
T
k

)
. So we only need calculate, to leading order,

∑N−1
k=0 |J̃ (X)

k |2
= O(1) when calculating the properties of

∑N−1
k=0 |J (X)

k |2 from (2.5) and (2.6). More
formally we note that

N−1∑
k=0

∣∣∣J (X)
k

∣∣∣2 =
N−1∑
k=0

∣∣∣J̃ (X)
k

∣∣∣2 +O
(
log(Δt)

√
Δt
)
.

We need to determine the first and second order structures of {J̃ (X)
k }k. In general

{J̃ (X)
k }k is a complex-valued random vector, which may not be a sample from a mul-

tivariate Gaussian distribution. The covariance matrix of a complex random vector Z
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is given by cov {Z,Z} = E
{
ZZH

}− E {Z}E {Z}H [32, 37]. We have

E
{
J̃
(X)
k

}
= 0, k = 1, . . . , N − 1.

Furthermore, with S̃
(X)
k1,k2

= E
{
J̃
(X)
k1

J̃
(X)∗
k2

}
,

S̃
(X)
k1,k2

=
1

N
E

{
N∑

n=1

∫ nΔt

(n−1)Δt

N∑
l=1

∫ lΔt

(l−1)Δt

σsdWsσtdWte
−2iπ( k1n

N − k2l
N )

}

=
1

N

N∑
n=1

∫ nΔt

(n−1)Δt

N∑
l=1

∫ lΔt

(l−1)Δt

E {σsdWsσtdWt} e−2iπ( k1n
N − k2l

N )

=
1

N

N∑
n=1

∫ nΔt

(n−1)Δt

N∑
l=1

∫ lΔt

(l−1)Δt

E {σsσt} δnlδ(t− s)e−2iπ( k1n
N − k2l

N )dsdt.

In particular we have that

S̃
(X)
k,k =

1

N

∫ T

0

E
{
σ2
s

}
ds+O (

Δt2
)
:= σ2

X +O (
Δt2

)
=

〈X,X〉T
N

+O (
Δt2

)
,(2.7)

where the error terms are due to the Riemann approximation to an integral, and thus
it follows that

(2.8)

N−1∑
k=0

S̃
(X)
k,k =

∫ T

0

E
{
σ2
s

}
ds+O(Δt).

σ2
X does not depend on the value of k. Malliavin and Mancino [29], in contrast, under

very light assumptions show how the Fourier coefficients of {σ2
t } can be calculated

from the Fourier coefficients of dXt, using a Parseval–Rayleigh relationship; see also
[40, 30]. We can from (2.7) make a stronger link from the Fourier transform to the
integrated volatility than that of the Parseval–Rayleigh relationship, and shall use
this “uniformity of energy” to estimate the microstructure bias.

We note that the covariance between different frequencies is given by

S̃
(X)
k1,k2

=
1

N

N∑
n=1

∫ nΔt

(n−1)Δt

E
{
σ2
t

}
dte−2iπn( k1

N − k2
N )

=
1

N

∫ T

0

E
{
σ2
t

}
dte−2iπt( k1

T − k2
T ) +O (

Δt2
)
.

Let Ξ(f) :=
∫ T

0
E
{
σ2
t

}
e−2iπft dt. We can bound the size of Ξ(k1

T − k2

T ) as |k1 − k2|
increases. As E

{
σ2
t

}
is smooth in t, the modulus of the covariance can be bounded

for increasing |k1 − k2|, as the Fourier transform Ξ(k1

T − k2

T ) decays proportionally
to |k1 − k2|−α−1, where α is the number of smooth derivatives of E

{
σ2
t

}
. We can

also directly note that the variance of the discrete Fourier transform of the noise is
precisely (this is not a large sample result)

(2.9) S
(ε)
k1,k2

= σ2
ε |2 sin (πfk1Δt)|2 δk1,k2
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by virtue of being the first difference of white noise (see also [8]). The naive estimator

can therefore be rewritten, with S
(Y )
k1,k2

= cov{J (Y )
k1

, J
(Y )
k2

}, as

〈̂X,X〉(b)T =
N∑
j=1

ΔY 2
tj =

N−1∑
k=0

∣∣∣J (Y )
k

∣∣∣2 ,(2.10a)

Ŝ
(Y )
k,k =

∣∣∣J (Y )
k

∣∣∣2 ,(2.10b)

E

{
〈̂X,X〉(u)T

}
=

N−1∑
k=0

S̃
(X)
k,k +O

(
log(Δt)

√
Δt
)
+O (Δt)(2.10c)

≡
N−1∑
k=0

S
(X)
k,k .(2.10d)

Recall that 〈̂X,X〉(b)T is the biased estimator constructed by treating Yt as if it wereXt,

and 〈̂X,X〉(u)T is the unbiased estimator constructed from the unobserved Xt; cf. (2.1)
and (2.2). The Parseval–Rayleigh relationship in (2.10a) is discussed in [30] and is
used in [29]. We shall now develop a frequency domain specification of the bias of the
naive estimator.

Lemma 2.1 (frequency domain bias of the naive estimator). Let Xt be an Itô

process and assume that the covariance of J
(X)
k1

and J
(X)
k2

is S
(X)
k1,k2

with the chosen
sampling. Then the naive estimator of the integrated volatility given by (2.10) has an
expectation given by

E

{
〈̂X,X〉(b)T

}
=

N−1∑
k=0

(
S̃

(X)
k,k + σ2

ε |2 sin(πfkΔt)|2
)
+O

(
log(Δt)

√
Δt
)
.

Thus

E

{
〈̂X,X〉(b)T

}
= E

{
〈̂X,X〉(u)T

}
+

N−1∑
k=0

σ2
ε |2 sin(πfkΔt)|2 +O

(
log(Δt)

√
Δt
)(2.11)

= O(1) +O(Δt−1) +O
(
log(Δt)

√
Δt
)
.

We note the order of the three terms directly to clarify their behavior when
estimating the integrated volatility with decreasing Δt.

Proof. This result follows from the independence of {εt} and {Xt}, combined
with (2.8) and (2.9).

We notice directly from (2.11) that the relative frequency contribution of ΔXt

and εt, i.e., S
(X)
k,k compared to the noise contribution σ2

ε |2 sin(πfkΔt)|2, determines

the inherent bias of 〈̂X,X〉(b)T . Estimator (2.10) is inconsistent and biased since it is
equivalent to estimator (2.1), and such a procedure would give an unbiased estimator
of the integrated volatility only when σ2

ε = 0. When the estimator is expressed in the
time domain, the microstructure cannot be disentangled from the Itô process. On the
other hand, in the frequency domain, from the very nature of a multiscale process,

the contributions to Ŝ
(Y )
k,k can be disentangled.
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2.2. Multiscale modelling. To correct the biased estimator we need to correct

the usage of the biased estimator of S
(X)
k,k , Ŝ

(Y )
k,k , at each frequency. We therefore

define a new shrinkage1 estimator [45, p. 155] of S
(X)
k,k for 0 ≤ Lk ≤ 1 by

(2.12) Ŝ
(X)
k,k (Lk) = LkŜ

(Y )
k,k .

Lk is referred to as the multiscale ratio, and its optimal form for perfect bias correction
is for an arbitrary Itô process given by

(2.13) Lk =
S

(X)
k,k

S
(X)
k,k + σ2

ε |2 sin(πfkΔt)|2
.

This quantity cannot be calculated without explicit knowledge of S
(X)
k,k and σ2

ε . The

estimator in (2.12) with Lk as in (2.13) therefore yields an oracle estimator of S
(X)
k,k ;

see also [45, p. 172]. We can use (2.7) to simplify (2.13) to obtain

(2.14) Lk =
σ2
X

σ2
X + σ2

ε |2 sin(πfkΔt)|2 .

For a fixed 0 ≤ Lk ≤ 1

E
{
Ŝ

(X)
k,k (Lk)

}
= Lk E

{∣∣∣J (Y )
k

∣∣∣2}
= σ2

X +O
(
Δt3/2

k

)
,

where the order terms follow from the continuity of μs. We can define a new estimator
for the true Lk via

(2.15) 〈̂X,X〉(m3)

T =

N−1∑
k=0

Ŝ
(X)
k,k (Lk),

where

E

{
〈̂X,X〉(m3)

T

}
= 〈X,X〉T +O

(
log(Δt)

√
Δt
)
.

Recall that 〈X,X〉T = O(T ) = O(1). Consequently, to leading order we can remove
the bias from the naive estimator if we know the multiscale ratio, Lk. We shall now
develop a multiscale understanding of the process under observation and use this to
construct an estimator for the multiscale ratio.

2.3. Estimation of the multiscale ratio. We have a two-parameter descrip-
tion on how the energy should be adjusted at each frequency. We only need to
determine estimators of σ =

(
σ2
X , σ2

ε

)
to make this adjustment. We propose imple-

menting the estimation using the Whittle likelihood methods (see [6] or [12, 46, 47]).

1A shrinkage estimator reduces the variance of an empirical estimator by shrinking the magnitude
of the empirical estimator to achieve a smaller mean square error in estimation. The optimal shrinkage
rule, i.e., Lk, is parameter dependent and can only be provided by an oracle. Usually the aim in
estimation is to achieve “nearly” the same risk as using the oracle shrinkage rule, without knowledge
of the true values of the parameters in the estimation problem.
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For a time-domain sample ΔY = (ΔYt1 , . . . ,ΔYtN ) that is stationary,2 if suitable
additional conditions are satisfied, then maximizing the Whittle likelihood produces
estimators that asymptotically are equivalent to maximum likelihood estimators ob-
tained from maximizing the exact time-domain likelihood of the data; see [19, p. 398]
or [12]. For processes that are not stationary, such conditions are in general not met,
and so the Whittle likelihood function can only be used as an objective function to
construct estimators, but not as a true likelihood.

The Whittle log-likelihood is defined [46, 47] by

l(S ) ≡ log

⎡⎢⎣N/2−1∏
k=1

1

S
(Y )
k,k

e
−

Ŝ
(Y )
k,k

S
(Y )
k,k

⎤⎥⎦
(2.16)

= −
N/2−1∑
k=1

log
(
S

(X)
k,k + σ2

ε |2 sin(πfkΔt)|2
)
−

N/2−1∑
k=1

Ŝ
(Y )
k,k

S
(X)
k,k + σ2

ε |2 sin(πfkΔt)|2
.

In our problem, to be able to use the Whittle likelihood, we will need to show for
a sample from an SDE of the form (1.1) that the variance of the discrete Fourier
transform takes a specified form, and that the covariance at two different frequencies
is negligible, which is a combination of (2.7) and Appendix A’s (A.4). Even with such
results holding, the Whittle likelihood need not produce asymptotically efficient3 esti-
mators, but can (at worst) be viewed as similar to using least squares estimation even
if the data is not Gaussian. We shall show that optimizing (2.16) will asymptotically
(in Δt−1) produce unbiased estimators.

Definition 2.2 (multiscale energy likelihood). The multiscale energy log-likeli-
hood is then defined using (2.7) as

l(σ) = −
N/2−1∑
k=1

log
(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)
−

N/2−1∑
k=1

Ŝ
(Y )
k,k

σ2
X + σ2

ε |2 sin(πfkΔt)|2 .

(2.17)

We stress that, strictly speaking, this may not be a (log-)likelihood, but merely a
device for determining the multiscale ratio. We maximize this function in σ to obtain
a set of estimators σ̂.

Theorem 2.3 (estimated multiscale ratio). The estimated multiscale ratio is
given by

(2.18) L̂k =
σ̂2
X

σ̂2
X + σ̂2

ε |2 sin(πfkΔt)|2 ,

where σ̂2
X and σ̂2

ε maximize 	(σ) given in (2.17). L̂k satisfies

(2.19)
L̂k

Lk
= 1 +O

(
Δt1/4

)
.

2By stationary we here mean second order stationary, i.e., E{ΔYtk} is a finite constant and
cov{ΔYtk ,ΔYtk−l} is finite and does not depend on k.

3An asymptotically efficient estimator has variance smaller than or equal to that of all other
estimators that are asymptotically unbiased.
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Proof. See Appendix A.
Combining (2.12) with (2.18) the proposed estimator of the spectral density of

{ΔXt} is

(2.20) Ŝ
(X)
k,k (L̂k) = L̂kŜ

(Y )
k,k ,

where L̂k is given by (2.18).
Theorem 2.4 (multiscale estimator of the integrated volatility). Assume that

ΔXtj satisfies the conditions of Lemma 2.1 and Theorem 2.3. The multiscale estima-
tor of the integrated volatility defined by

(2.21) 〈̂X,X〉(m1)

T =
N−1∑
k=0

Ŝ
(X)
k,k (L̂k),

where Ŝ
(X)
k,k (L̂k) is defined by (2.20), has a mean and variance given by

E

{
〈̂X,X〉(m1)

T

}
=

N−1∑
k=0

S
(X)
k,k +O

(
log(Δt)

√
Δt
)
+O

(
Δt1/4

)
=

∫ T

0

E
{
σ2
t

}
+O

(
log(Δt)

√
Δt
)
+O

(
Δt1/4

)
and

var

{
〈̂X,X〉(m1)

T

}
=

N−1∑
k=0

L2
k

∣∣∣S (Y )
k,k

∣∣∣2 +O(Δt1/2) = O(Δt1/2).

Proof. See Appendix B.
We also note that

var

{
〈̂X,X〉(m1)

T

}
=

N−1∑
k=0

L2
k

∣∣∣S (Y )
k,k

∣∣∣2 +O(Δt1/2)

< O
(

1

Δt

)
= var

{
〈̂X,X〉(b)T

}
,(2.22)

unless σε = 0. We note that the multiscale estimator has lower variance than the

naive method of moments estimator 〈̂X,X〉(b)T due to the fact that 0 ≤ Lk ≤ 1. We
have thus removed bias and simultaneously decreased the variance, the latter effect
usually being the main purpose of shrinkage estimators. Note that if we knew the true

multiscale ratio Lk and used it rather than our estimate L̂k (i.e., used 〈̂X,X〉(m3)

T ),
then we would expect an estimator from this quantity to recover the same variance
as the estimator based on the noise-free observations, with a variance of O (Δt). This

loss of efficiency, i.e., between 〈̂X,X〉(m1)

T and 〈̂X,X〉(m3)

T , is inevitable as we have
to estimate Lk. Finally we can also construct a Whittle estimator for the integrated
volatility by starting from (2.7) and taking

(2.23) 〈̂X,X〉(w)

T = Nσ̂2
X .
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The sampling properties of 〈̂X,X〉(w)

T are found in Appendix A, and σ̂2
X is asymptot-

ically unbiased. The results in Appendix A imply that

(2.24) var

{
〈̂X,X〉(w)

T

}
= T

σε

τ
1/2
X

16τ2X
√
Δt.

We see that the variance depends on the length of the time course, the inverse of the
signal-to-noise ratio, the square root of the sampling period, and the fourth power of
the “average standard deviation” of the Xt process. We may compare the variance

of (2.22) with the variance of (2.24) to determine which estimator of 〈̂X,X〉(w)

T and

〈̂X,X〉(m1)

T is preferable. We shall return to this question of relative performance in

the examples section, but intuitively argue that 〈̂X,X〉(w)

T and 〈̂X,X〉(m1)

T are more
or less the same estimator, with the former estimator demanding more intuition to
explain.

Of interest is comparing the order of magnitude of the standard deviation of

〈̂X,X〉(m1)

T and 〈̂X,X〉(w)

T (O(Δt1/4)) to that of other estimators. For example, the
best estimator of Zhang, Mykland, and Ait-Sahalia [48, eq. 9] achieves an O(Δt1/6)
order of magnitude, which is not asymptotically efficient compared to our O(Δt1/4).
In our numerical examples the Zhang et al. estimator roughly achieves the same
performance as ours, even if it is asymptotically worse performing. If there is no drift,
and the discrete Fourier transform has a Gaussian distribution at every frequency, then

we may note that the Whittle estimator 〈X,X〉(w)
T arises as a maximum likelihood

estimator of the integrated volatility, and so, due to general results for maximum
likelihood estimators, is asymptotically efficient; see, for example, Severini [41]. For
a process with Gaussian Fourier coefficients the effects of the nonzero drift can be
bounded, and this will not affect the asymptotic efficiency of the Whittle estimator.
The final outstanding question is then for non-Gaussian Fourier coefficients, and we
note here that in this case the optimal rate is not (as far as we know) known. However,
it seems unlikely that non-Gaussian coefficients would produce a smaller variance than
that of Gaussian coefficients, and so we hypothesize that O(Δt1/4) is efficient.

2.4. Time-domain representation of the method. We may write the fre-
quency domain estimator of the spectral density of ΔXt in the time domain to clarify
some of its properties. We define

ŝ (X)
τ =

1

N

N−1∑
k=0

Ŝ
(X)
k,k e2iπ

kτ
N , τ ∈ N,

which when ΔXt is a stationary process corresponds to the estimated autocovariance
sequence of ΔXt using the method of moments estimator [9, Ch. 5]. We then have

(2.25) Ŝ
(X)
k,k = LkŜ

(Y )
k,k , ŝ (X)

τ =
∑
u

	τ−uŝ
(Y )
u ,

and so the estimated autocovariance of the ΔXt process, namely, ŝ
(X)
τ , is a smoothed

version of ŝ
(Y )
τ . We can therefore view Ŝ

(X)
k,k as the Fourier transform of a smoothed

version of the autocovariance sequence of ΔYt. We let

(2.26) L(f) =
σ2
X

σ2
X + σ2

ε |2 sin(πfΔt)|2 ,
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Fig. 2.1. �τ as well as rτ and qτ for a chosen value of the signal-to-noise ratio (left). The
approximate weighting functions perfectly mirror the exact calculation. We overlay a Gaussian
kernel with the same spread for comparison. �τ estimated for the MA(6) case (right).

be the continuous analogue of Lk. To find the smoothing kernel we are using, we need
to calculate

	τ =
1

N

N−1∑
k=0

Lke
2iπ kτ

N

=

∫ 1
2

− 1
2

σ2
X

σ2
X + 4σ2

ε sin
2(πf)

e2iπfτ df +O (Δt) .(2.27)

Thus utilizing integration in the complex plane (see Appendix C), we obtain that

(2.28) 	τ =

⎧⎪⎪⎨⎪⎪⎩
(

σ2
ε

σ2
X

)τ
+O

((
σε

σX

)2τ+2
)

if σ2
ε < σ2

X ,

σX

2σε

(
1− σX

σε

)τ
+O

(
σ2
X

2σ2
ε

(
1− σX

σε

)τ)
if σ2

ε > σ2
X .

These are both decreasing sequences in τ . We write rτ = σX

2σε
(1 − σX

σε
)τ . If we can

additionally assume that L(f) decreases sufficiently rapidly to be near zero by f = 1
π ,

then we find that

	τ ≈ qτ =
σX

2σε
e−

σX
σε

|τ |.

In the limit of no observation noise (σX

σε
→ ∞) this sequence then becomes a delta

function centered at τ = 0. Let us plot these functions, i.e., 	τ , rτ , and qτ for a
chosen case of σ2

X/σ2
ε ≈ 0.0331 (the approximate signal-to-noise ratio used in a later

example) in Figure 2.1 (left). We see that theory coincides very well with practice,
with almost perfect agreement between the three functions. 	τ is, however, a strange
choice of kernel, if dictated by the statistical inference problem: it has heavier tails
than the common choice of the Gaussian kernel, and is extremely peaked around zero
(a Gaussian kernel with the same variance has been overlaid in Figure 2.1). This is
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not strange, since we are trying to filter out correlations due to non-Itô behavior, but
counter to our intuition about suitable kernel functions, as the differenced Itô process
exhibits very little covariance at any lag but zero, the sharp peak at zero is necessary.

We could have replaced the estimator in (2.25) by using another smoothing win-
dow estimator with some arbitrary smoothing window {hτ} with discrete Fourier
transform H(σff) or by smoothing as follows:

(2.29) s(X)
τ =

∑
u

ht−uŝ
(Y )
u , S

(X)

k,k = H(σffkΔt)Ŝ
(Y )
k,k .

If we choose to use a Gaussian window in frequency, then

H(σffkΔt) = e−(πσffkΔt)2 , fk =
k

T
,

and our estimator becomes

〈̂X,X〉(m4)

T =

N−1∑
k=0

S
(X)

k,k .

The expectation of this new estimator is (using a periodic extension of the window)

E

{
〈̂X,X〉(m4)

T

}
=

N/2−1∑
k=−N/2

E
{
S

(X)

k,k

}
(2.30)

=

N/2−1∑
k=−N/2

H(σffkΔt)
(
σ2
X + σ2

ε |2 sin (πfkΔt)|2
)
+R

= σ2
XN

∫ 1/2

−1/2

H(σff)

{
1 +

σ2
ε

σ2
X

|2 sin (πf)|2
}
df +R.

R denotes remainder terms due to the drift, which can be bounded as before. From
this expression we note that it is natural to take σf ∝ (σε/σX)α for α > 0. To obtain
an asymptotically unbiased estimator we need to choose

(2.31)

∫ 1/2

−1/2

H(σff)

{
1 +

σ2
ε

σ2
X

|2 sin (πf)|2
}
df = 1.

For the smoothing window that exactly matches the form of the contamination, this
balance is easily made as the integrand in (2.31) is then unity; if, however, we use a
Gaussian window as H(f), then due to the mismatch of the Gaussian and Laplacian
functions one needs to decide how to weight the two terms in (2.31). As the noise
becomes larger, the second term becomes more important and σ2

f will need adjustment
to match the noise, becoming more narrow in frequency. It is impossible to exactly
match the window to the second term in (2.31) at every frequency. Our Whittle
estimator will be required to estimate the smoothing parameter, as this will be a
function of σε and σX , and so nothing is really gained from using this procedure.

We remark that smoothing the autocovariance sequence ŝ
(Y )
τ is very different from

smoothing the estimated variance
(
Ytj+1 − Ytj

)2
. The former of these two objects is

not necessarily a very smooth sequence in time lag τ , while the latter should be a
smooth sequence in tj , the global time index. Conventional smoothing wisdom is
therefore not applicable to this problem.
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2.5. Correlated errors. In many applications we need to consider correlated
observation noise. We assume that despite being dependent the εtj is a stationary time
series. Stationary processes can be conveniently represented in terms of aggregations
of uncorrelated white noise processes, using the Wold decomposition theorem [10,
p. 187]. We may therefore write the zero-mean observation εtj as

(2.32) εtj =

∞∑
k=0

θtkηtj−tk ,

where θt0 ≡ 1,
∑

j θ
2
tj < ∞, and {ηtn} satisfies E {ηtn} = 0 and E {ηtnηtm} = σ2

ηδn,m,

a model also used in [43]. Common practice would involve approximating the variable
by a finite number of elements in the sum, and thus we truncate (2.32) to some q ∈ Z.
We therefore model the noise as a moving average (MA) process specified by

(2.33) εtj = ηtj +

q∑
k=1

θtkηtj−k
,

and the covariance of the discrete Fourier transform of the differenced εtj process
takes the form

(2.34) S
(ε)
k,k = σ2

η

∣∣∣∣∣1 +
q∑

k=1

θke
2iπfk

∣∣∣∣∣
2

|2 sin (πfΔt)|2.

This leads to defining a new multiscale ratio replacing σ2
ε |2 sin (πfΔt)|2 of (2.14) with

σ2
η

∣∣1 +∑q
k=1 θke

2iπfk
∣∣2 |2 sin (πfΔt)|2. We then obtain a new estimator of S

(X)
k,k . In

general the value of q is not known. To simultaneously implement model selection, we
need to penalize the likelihood. We define the corrected Akaike information criterion
(AICC) by [10, p. 303] (refer to (2.17) for l (σ, θ) with σ2

ε |2 sin (πfΔt)|2 replaced by

σ2
η

∣∣1 +∑q
k=1 θke

2iπfk
∣∣2 |2 sin (πfΔt)|2)

(2.35) AICC(θ) = −2l (σ, θ) + 2
(p+ 2)n

n− p− 3
.

By minimizing this function, in σ, θ, and q, we obtain the best fitting model for
the noise accounting for overfitting by using the penalty term. It can be shown
that AICC(θ) is (approximately) an unbiased estimator of the expected value of
the Kullback–Leibler index. For pure autoregressive models, Hurvich and Tsai [23]
have shown that the AICC criterion is asymptotically efficient, and the criterion is
better behaved than several other asymptotically efficient methods of model selection.
Simulation studies argue that AICC behaves well for mixed autoregressive and MA
models also, and Brockwell and Davis [10] advocate its usage in more general settings.

With this method we retrieve a new multiplier that is applied in the Fourier do-
main, which corresponds to a new smoother in the time domain, where the smoothing
window (and its smoothing width) have been automatically chosen by the data. See
an example of such a smoothing window, 	τ , in Figure 2.1 (right). Here Lk has been
estimated from an Itô process immersed in an MA noise process. The spectrum of
the MA has a trough at frequency 0.42. We therefore expect to reinforce oscillations
at period 1/0.42 ≈ 2.5, which is evident from the oscillations of the estimated kernel.
For more details of this process see section 3.5.
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3. Monte Carlo studies. In this section we demonstrate the performance of
the multiscale estimator through Monte Carlo simulations. We first describe the de-
biasing procedure of the estimator for the Heston model using Fourier domain graphs.
We then present bias, variance, and mean square error results of various estimators
(including the multiscale estimator, the naive estimator, and the first-best estimator
developed in [48]) for the Heston model as well as Brownian and Ornstein Uhlenbeck
processes. We then consider the case where the sample path in a Heston model is much
shorter and another case where the microstructure noise is greatly reduced. Finally,
we consider the case of correlated errors and show how a stationary noise process can
be captured using model selection methods, and then the integrated volatility can be
estimated using the adjusted multiscale estimator.

3.1. The Heston model. The Heston model is specified in [22]:

(3.1) dXt = (μ− νt/2) dt+ σtdBt, dνt = κ (α− νt) dt+ γν
1/2
t dWt,

where νt = σ2
t , and Bt and Wt are correlated one-dimensional Brownian motions. We

will use the same parameter values as those used in [48], namely, μ = 0.05, κ = 5,
α = 0.04, γ = 0.5, and the correlation coefficient between the two Brownian motions
B and W is ρ = −0.5. We set X0 = 0 and ν0 = 0.04, which is the long time limit of
the expectation of the process νt.

4

We calculate Ŝ
(X)
k,k and Ŝ

(ε)
k,k directly from simulated data and average across

realizations, producing Figure 3.1, where k is indicated by its frequency fk = k/N ,

and only plotted for k = 0, . . . , N/2 − 1, as the spectrum (or S
(X)
k,k ) is symmetric.

We see directly from these plots that (on average, as we show) Ŝ
(X)
k,k is constant

while Ŝ
(ε)
k,k is strongly increasing with k, completely dwarfing the other spectrum at

large k. Equation (2.8) implies that an equal weighting is given to all frequencies for
the differenced Itô process. The noise process will in contrast have a spectrum that
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Fig. 3.1. ̂S
(X)
k,k (left) and ̂S

(ε)
k,k (right) averaged over 100,000 realizations. Note the different

scaling of the y axis in the two figures.

4limt→+∞ Eνt = α.
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Fig. 3.2. A realization of ̂S
(X)
k,k (top left), a realization of ̂S

(ε)
k,k (top right) with the Whittle

estimates superimposed, and realizations of two biased corrected estimators of S
(X)
k,k , using ˜Lk

̂S
(X)
k,k

(bottom left) and ̂Lk
̂S

(Y )
k,k (bottom right). Notice the different scales in the four figures. Estimated

spectra are plotted on a linear scale for ease of comparison to the effect of applying ̂Lk.

is far from flat, and a suitable bias correction would shrink the estimator of S
(X)
k,k at

higher frequencies.
We also calculate Ŝ

(X)
k,k and Ŝ

(ε)
k,k for one simulated path, displayed in Figure 3.2.

Here we have used the same sample length T and noise intensity σ2
ε as in [48]: T is

one day and σ2
ε = 0.00052. The length of the sample path, one day or 23,400 s with

Δt = 1 s, corresponds to one trading day, since we take one trading day to be 6.5 h
long. We use, however, the units of a trading year, so T = 1/252. Notice the different

shapes of the two periodograms. Ŝ
(Y )
k,k will not be distinguishable from Ŝ

(ε)
k,k at higher

frequencies, despite the moderate to low intensity of the market microstructure noise.
If we observed the two components Xt and εt separately, then the multiscale ratio

Lk could be estimated from Ŝ
(X)
k,k and Ŝ

(ε)
k,k using the method of moments formula.

In this case, we would estimate Lk by the sample Fourier transform variances
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Fig. 3.3. The method of moments estimate ˜Lk from a single realization, with the Whittle
estimate (white line) of Lk superimposed.

(3.2) L̃k =
Ŝ

(X)
k,k

Ŝ
(X)
k,k + Ŝ

(ε)
k,k

.

The corresponding estimator of the integrated volatility becomes

(3.3) 〈̂X,X〉(m2)

T =

N−1∑
k=0

L̃kŜ
(Y )
k,k .

The estimated multiscale ratio L̃k, for the Heston model with the specified parameters,
is plotted in Figure 3.3.

The multiscale ratio cannot be estimated using the method of moments in realis-
tic scenarios, as we only observe the aggregated process Yt and not the two processes
Xt and εt separately. Figure 3.2 displays the estimated multiscale ratio L̃k applied

to Ŝ
(Y )
k,k over one path realization. This plot suggests that the energy over the high

frequencies has been shrunk and that L̃kŜ
(Y )
k,k is a good approximation to Ŝ

(X)
k,k . It

therefore seems not unreasonable that the summation of this function across frequen-
cies should make a good approximation to the integrated volatility.

The parameters (σ̂2
X and σ̂2

ε ) are found separately for each path using the MAT-
LAB function fmincon on (2.17). Figure 3.2 shows σ̂2

X and σ̂2
ε |2 sin(πfkΔt)|2 (in

white) plotted over the periodograms Ŝ
(X)
k,k and Ŝ

(ε)
k,k for one simulated path. The

approximated values of σ2
X and σ2

ε are quite similar to the averaged periodograms of
Figure 3.1; in fact the accuracy of the new estimator depends on how consistently
these parameters are estimated in the presence of limited information from the sam-
pled process Yt. Figure 3.3 shows the corresponding estimated multiscale ratio L̂k

(in white) from this simulated path, as defined in (2.18). The function decays, as ex-
pected, so that it will remove the high-frequency microstructure noise in the spectrum
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Table 3.1

Simulation study comparing the new estimator with the best estimator of [48].

Sample bias Sample variance Sample RMSE Defn.

̂〈X,X〉(b)T 1.17× 10−2 1.80× 10−8 1.17× 10−2 Eqn. (2.1)

̂〈X,X〉(s1)T 6.44× 10−7 2.76× 10−10 1.66× 10−5 From [48]

̂〈X,X〉(m1)

T 2.90× 10−7 2.59× 10−10 1.61× 10−5 Eqn. (2.21)

̂〈X,X〉(w)

T 2.63× 10−7 2.59× 10−10 1.61× 10−5 Eqn. (2.23)

̂〈X,X〉(m2)

T 1.39× 10−8 2.07× 10−10 1.44× 10−5 Eqn. (3.3)

̂〈X,X〉(u)T 1.20× 10−8 2.06× 10−10 1.44× 10−5 Eqn. (2.2)

of Yt; the ratio is also a good approximation of L̃k. Figure 3.2 shows L̂kŜ
(Y )
k,k , which

is again similar to Ŝ
(X)
k,k . It would appear that the new estimator has successfully

removed the microstructure effect from each frequency. It is worth noting that the
ratios Lk and L̂k quantify the effect of the multiscale structure of the process. If σ2

ε

is zero (i.e., there is no microstructure noise), then no correction will be made to the
spectral density function (the ratio will equal 1 at all frequencies). So in the case

of zero microstructure noise, the estimate would recover Ŝ
(X)
k,k , and from (2.10) the

estimate of the integrated volatility would simply be the realized integrated volatility
of the observable process.

We investigate the performance of the multiscale estimator using Monte Carlo
simulations. In this study 50,000 simulated paths are generated. Table 3.1 displays
the results of our simulation, where biases, variances, and errors are calculated using
a Riemann sum approximation of the integral:

(3.4)
T

N

N∑
i=1

σ2
i =

∫ T

0

σ2
t dt.

The two estimators 〈̂X,X〉(u)T and 〈̂X,X〉(m2)

T (see (2.2) and (3.3), respectively) are
both included for comparison, even though these require use of the unobservable Xt

process. The performance of the first-best estimator in [48] (denoted by 〈̂X,X〉(s1)T ) is
also included as a well-performing and tested estimator using only the Yt process, as is

the naive estimator of the realized volatility on Yt at the highest frequency, 〈̂X,X〉(b)T ,
given in (2.1) (the fifth-best estimator in [48]). We also include the performance of

〈̂X,X〉(w)

T , defined in (2.23). Note that once the bias is removed the mean square error
is now mainly due to the variance of the estimator. Given the magnitude of the bias,
achieving this debiasing is vital, as discussed by Zhang, Mykland, and Ait-Sahalia
[48, p. 1397].

Table 3.1 shows that the new estimator, 〈̂X,X〉(m1)

T , is competitive with the

first-best approach in [48], 〈̂X,X〉(s1)T , as an estimator of the integrated volatility for
the Heston model with the stated parameters. For this simulation the new method
performed marginally better. The similar performance of the two estimators is quite
remarkable, given their different approaches; both estimators involve a bias correction,
though [48] performs this globally by weighting different sampling frequencies, while
we correct locally at each frequency. The realized integrated volatility of Yt at the
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Fig. 3.4. The histograms of the observed bias of the proposed estimator (left), and the first-best
estimator (right), over 100,000 sample paths.

highest frequency, 〈̂X,X〉(b)T , produces disastrous results, as expected.

We also note that 〈̂X,X〉(m1)

T performs more or less identically to 〈̂X,X〉(w)

T . These
two estimators can almost be used interchangeably due to the invariance property of
a maximum likelihood estimator. This observation is born out by our simulation

studies, and we henceforth report results only for 〈̂X,X〉(m1)

T . Note that the variance

of 〈̂X,X〉(w)

T can be found from (2.24). To compare theory with simulations we note
that the average estimated standard deviation is 1.6093× 10−5, while the expression
for the variance to leading order gives an expression for the standard deviation of

[var{〈̂X,X〉(w)

T }]1/2 = 1.0246× 10−5, using the parameter values of σ2
X ≈ 6.8× 10−9

and σ2
ε ≈ 2.5× 10−7. Recall that T = 1/252 and N = 23,400.

A histogram of the observed bias of the new estimator is plotted in Figure 3.4 along
with a histogram of the observed bias of the first-best estimator in [48]. The observed
bias of our estimator follows a Gaussian distribution centered at zero, suggesting that
this estimator is unbiased, as our results claim. Comparing our estimator to the first-
best estimator, it can be seen that the new estimator has similar magnitudes of error
also (hence the similar root mean square error (RMSE)).

The new estimator requires calculation of σ̂2
X and σ̂2

ε , which will vary over each
process due to the limited information given from the Yt process. The stability of this
estimation is of great importance if the estimator is to perform well. Figure 3.5 shows
the distribution of the parameters σ̂2

X and σ̂2
ε over the simulated paths. The parameter

estimation is quite consistent, with all values estimated within a narrow range. Figure
3.1 suggests that these estimates are roughly unbiased, as σ2

X ≈ 6.8 × 10−9 and
σ2
ε ≈ 2.5× 10−7 (as σ2

ε |2 sin(πfk)|2 ≈ 1× 10−6, at fk = 0.5).

3.2. Brownian process and Ornstein Uhlenbeck process. We repeated our
simulations for a Brownian process given by

(3.5) dXt =
√
2σ2

t dBt,
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Fig. 3.5. The histograms of the estimated σ2
X (left) and σ2

ε (right).

Table 3.2

Simulation study for the Brownian process.

Sample bias Sample variance Sample RMSE Defn.

̂〈X,X〉(b)T 1.17× 10−2 1.77× 10−8 1.17× 10−2 Eqn. (2.1)

̂〈X,X〉(s1)T 6.52× 10−7 2.68× 10−11 5.22× 10−6 From [48]

̂〈X,X〉(m1)

T 3.02× 10−7 1.98× 10−11 4.46× 10−6 Eqn. (2.21)

̂〈X,X〉(m2)

T 1.96× 10−9 6.93× 10−13 8.32× 10−7 Eqn. (3.3)

̂〈X,X〉(u)T 3.79× 10−9 5.44× 10−13 7.38× 10−7 Eqn. (2.2)

where σ2
t = 0.01. We otherwise keep the same simulation setup as before with 50,000

simulated paths of length 23,400. The results are displayed in Table 3.2. The new

estimator, 〈̂X,X〉(m1)

T , again delivers a marked improvement on the naive estima-

tor, 〈̂X,X〉(b)T , and performs marginally better than the first-best estimator in [48],

〈̂X,X〉(s1)T .

We also performed a Monte Carlo simulation for the Ornstein Uhlenbeck process
given by

(3.6) dXt = −Xtdt+
√
2σtdBt,

where also σ2
t = 0.01. Again we retain the same simulation setup and the re-

sults are displayed in Table 3.3. The results are almost identical to that of the
Brownian process, with the new estimator again outperforming other time-domain
estimators.

3.3. Comparing estimators over shorter sample lengths. This section
compares estimators for a shorter sample length, which will reduce the benefit of
subsampling due to the variance issues of small-length data but will also affect the
variance of the multiscale ratio (cf. Theorem 2.3).
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Table 3.3

Simulation study for the Ornstein Uhlenbeck process.

Sample bias Sample variance Sample RMSE Defn.

̂〈X,X〉(b)T 1.17× 10−2 1.78× 10−8 1.17× 10−2 Eqn. (2.1)

̂〈X,X〉(s1)T 6.69× 10−7 2.66× 10−11 5.20× 10−6 From [48]

̂〈X,X〉(m1)

T 2.95× 10−7 1.97× 10−11 4.44× 10−6 Eqn. (2.21)

̂〈X,X〉(m2)

T 5.09× 10−9 6.76× 10−13 8.22× 10−7 Eqn. (3.3)

̂〈X,X〉(u)T 6.29× 10−9 5.33× 10−13 7.30× 10−7 Eqn. (2.2)

The simulation setup is exactly the same as before (using the Heston model with
the same parameters) except that T , the simulation length, is reduced by a factor
of 10 to 0.1 days or 2340 s. Before the results of the simulation are reported, it
is of interest to see whether the frequency domain methods developed still model
each process accurately. Figure 3.6 shows the calculated σ̂2

X and σ̂2
ε |sin(πΔtfk)|2

(in white) together with the periodograms Ŝ
(X)
k,k and Ŝ

(ε)
k,k for one simulated path.

The estimator still approximates the energy structure of the processes accurately.
Figure 3.6 also shows the corresponding estimate of the multiscale ratio L̂k (in white)

from this simulated path (together with L̃k) and the corresponding plot of L̂kŜ
(Y )
k,k .

The new estimator has removed the microstructure noise effect and has formed a
good approximation of Ŝ

(X)
k,k . The approximation of the periodograms is still accurate

despite the reduction of available data.

Table 3.4 displays the accuracy of the estimators over the 50,000 simulated paths.

The first-best estimator in [48], 〈̂X,X〉(s1)T , and the new estimator, 〈̂X,X〉(m1)

T , are
once again comparable in performance, and both estimates are close to the best at-

tainable RMSE, given by 〈̂X,X〉(u)T , the realized integrated volatility on Xt.

3.4. Comparing estimators with a low-noise process. This section com-
pares estimators for smaller levels of microstructure noise. Reducing the micro-
structure noise will reduce the need to subsample. The first-best estimator in [48],

〈̂X,X〉(s1)T , will have a higher sampling frequency, and the new estimator will reduce
its estimate of σ̂2

ε accordingly. For very small levels of noise, however, the first-best
estimator will become zero, as the optimal number of samples becomes n (the highest
available). This possibility is now examined, using the Heston model as before, with
all parameters unchanged, except that the noise is reduced by a factor of 10, i.e.,
σ2
ε = 0.000052. Note that the path length is kept at its original length of one day.

Figure 3.7 shows the estimates of σ̂2
X and σ̂2

ε |2 sin(πΔtfk)|2 (in white) along with

the periodograms Ŝ
(Y )
k,k and Ŝ

(ε)
k,k for one simulated path along with the corresponding

estimate of the multiscale ratio L̂k (in white) (plotted over the approximated L̃k)

and the corresponding plot of L̂kŜ
(Y )
k,k . The estimation method works well again;

notice how the magnitude of the microstructure noise has been greatly reduced (the
scale is now of order 10−8 rather than 10−6), causing the multiscale ratio Lk to be
more tempered across the high frequencies than it was before, due to the smaller
microstructure noise. Nonetheless, the new estimator has still detected the smaller
levels of noise in the data.

Table 3.5 reports on the results of 50,000 simulations performed as before. The
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Fig. 3.6. A realization of ̂S
(X)
k,k (top left), a realization of ̂S

(ε)
k,k (top right) with the Whittle

estimates superimposed, the estimate of Lk (bottom left) with the Whittle estimate of Lk superim-

posed, and the biased corrected estimator of S
(X)
k,k using ̂Lk

̂S
(Y )
k,k (bottom right). Notice the different

scales in the four figures.

Table 3.4

Simulation study for shorter sampler length.

Sample bias Sample variance Sample RMSE Defn.

̂〈X,X〉(b)T 1.17× 10−3 2.29× 10−9 1.17× 10−3 Eqn. (2.1)

̂〈X,X〉(s1)T 1.00× 10−6 4.51× 10−10 2.13× 10−5 From [48]

̂〈X,X〉(m1)

T 1.84× 10−7 4.23× 10−10 2.06× 10−5 Eqn. (2.21)

̂〈X,X〉(m2)

T 4.80× 10−8 2.42× 10−10 1.55× 10−5 Eqn. (3.3)

̂〈X,X〉(u)T 5.27× 10−8 2.28× 10−10 1.51× 10−5 Eqn. (2.2)
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Fig. 3.7. A realization of ̂S
(X)
k,k (top left), a realization of ̂S

(ε)
k,k (top right) with the Whittle

estimates superimposed, the estimate of Lk (bottom left) with the Whittle estimate of Lk superim-

posed, and the biased corrected estimator of S
(X)
k,k using ̂Lk

̂S
(Y )
k,k (bottom right). Notice the different

scales in the four figures.

Table 3.5

Simulation study for lower market microstructure noise.

Sample bias Sample variance Sample RMSE Defn.

̂〈X,X〉(b)T 1.17× 10−4 2.11× 10−10 1.18× 10−4 Eqn. (2.1)

̂〈X,X〉(s2)T 3.53× 10−6 1.00× 10−9 3.19× 10−5 From [48]

̂〈X,X〉(m1)

T 7.63× 10−9 2.12× 10−10 1.46× 10−5 Eqn. (2.21)

̂〈X,X〉(m2)

T 7.91× 10−9 2.06× 10−10 1.44× 10−5 Eqn. (3.3)

̂〈X,X〉(u)T 9.83× 10−9 2.05× 10−10 1.43× 10−5 Eqn. (2.2)
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first-best estimator of [48], 〈̂X,X〉(s1)T , categorically failed for this model. This is due
to the fact that the optimal number of samples was always equal to n, the total number
of samples available. Therefore, the first-best estimator was always zero. The second-

best estimator in [48], denoted by 〈̂X,X〉(s2)T , was reasonably effective. This is simply
an estimator that averages estimates calculated from subsampled paths at different

starting points and is therefore asymptotically biased. The new estimator, 〈̂X,X〉(m1)

T ,
was remarkably robust, with RMSE very close to the RMSE of estimators based on the
Xt process. The difference in performance between estimators using Yt and estimators
using Xt is expected to become smaller with less microstructure noise, and this can be
seen by the similar order RMSE errors between all estimators. Nevertheless, the new
estimator was much closer in performance to the realized integrated volatility on Xt

than it was to any other estimator on Yt, a result that demonstrates the precision and
robustness of this new estimator of integrated volatility.

3.5. Correlated noise. In this section we consider microstructure noise that
is correlated. If this process is stationary, the noise process can be modeled as an
MA process (as described in section 2.5), and the corresponding parameters can be
estimated by maximizing the multiscale Whittle likelihood using (2.14) and (2.34).
Figure 3.8 shows the multiscale estimator applied to the Heston model (with the
same parameters as before) with a microstructure noise that follows an MA(6) pro-
cess (parameters given in the caption). The Whittle estimates (in white) form a

good approximation of Ŝ
(X)
k,k and Ŝ

(ε)
k,k despite the more complicated nuisance struc-

ture. The corresponding estimate of the multiscale ratio L̂k (in white) therefore

removes energy from the correct frequencies, and the corresponding plot of L̂kŜ
(Y )
k,k

is a good approximation of Ŝ
(X)
k,k . This is the same noise process and Itô process for

which we calculated the optimal smoothing window in section 2.5, and the trough in
the noise at about f = 0.42 corresponds to the oscillations in the kernel plotted in
Figure 2.1.

If the length of the MA(p) process is unknown, then p can be determined using
(2.35). In Table 3.6 we show an example with p = 4 with parameters θ1 = 0.8,
θ2 = −0.6, θ3 = 0.1, θ4 = 0.4. Clearly p = 4 is identified as the best fitting
model, yielding nearly perfect estimates of the noise parameters. The estimator is
therefore robust at removing the effect of microstructure noise when this process is
correlated (and stationary), even if the length of the MA(p) process is not explicitly
known.

We also tested our estimator using Monte Carlo simulations in [43] for a variety
of MA(1) processes, and the results showed a significant reduction in error compared
with not only the naive estimator but also the estimators based on a white noise
assumption. Furthermore, the adjusted multiscale estimator performed almost iden-
tically to our multiscale estimator when we set θ1 = 0 and recovered a white noise
process, meaning the loss in precision from searching for a parameter unnecessar-
ily was negligible (as to be expected for q � N). Notice also that in Table 3.6
there appears to be little loss in precision from estimating more parameters in the
MA(4) process than is required as θp for p > 4 is always estimated to be very close
to zero. This further demonstrates the robustness and precision of our estimation
technique.
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Fig. 3.8. A realization of ̂S
(X)
k,k (top left), a realization of ̂S

(ε)
k,k (top right) with the Whittle

estimates superimposed, the estimate of Lk (bottom left) with the Whittle estimate of Lk superim-

posed, and the biased corrected estimator of S
(X)
k,k using ̂Lk

̂S
(Y )
k,k (bottom right). In this example

we use an MA(6) with θ1 = 0.5, θ2 = −0.1, θ3 = −0.1, θ4 = 0.2, θ5 = 0, and θ6 = 0.4. Notice the
different scales in the four figures.

Table 3.6

Values of θ found by modeling the noise process as an MA(p) process for p = 1, . . . , 8. Model
selection methods (AICC) are used to select which process to model the noise by; in this case the
AICC is minimized by selecting an MA(4) with the given parameters. The true noise is indeed an
MA(4) process (with parameters θ1 = 0.8, θ2 = −0.6, θ3 = 0.1, θ4 = 0.4).

MA(p) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 AICC

p = 1 0.935 −3.208490 × 105

p = 2 0.624 −0.445 −3.239947 × 105

p = 3 0.658 −0.459 −0.046 −3.240000 × 105

p = 4 0.806 −0.603 −0.101 0.410 −3.262427 × 105

p = 5 0.813 −0.606 −0.101 0.411 −0.008 −3.262416 × 105

p = 6 0.815 −0.604 −0.097 0.420 −0.003 0.000 −3.262409 × 105

p = 7 0.807 −0.613 −0.114 0.413 0.002 −0.002 −0.005 −3.262402 × 105

p = 8 0.817 −0.614 −0.128 0.427 0.005 0.011 −0.009 −0.017 −3.262384 × 105
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4. Conclusions. The problem of estimating the integrated stochastic volatility
of an Itô process from noisy observations was studied in this paper. Unlike most previ-
ous works on this problem (see, e.g., [48, 35]), the method for estimating the integrated
volatility developed in this paper is based on the frequency domain representation of
both the Itô process and the noisy observations. The integrated volatility can be
represented as a summation of variation in the process of interest over all frequencies
(or scales). In our estimator we adjust the raw sample variance at each frequency.
Such an estimator is truly multiscale, as it corrects the estimated energy directly at
every scale. In other words, the estimator is debiased locally at each frequency, rather
than globally.

To estimate the degree of scale separation in the data, we used the Whittle likeli-
hood and quantified the noise contribution by the multiscale ratio. Various properties
of the multiscale estimator were determined; see Theorems 2.3 and 2.4. As was illus-
trated by the set of examples, our estimator performs extremely well on data simulated
from the Heston model, and it is competitive with the methods proposed by [48], un-
der varying signal-to-noise and sampling scenarios. The proposed estimator is truly
multiscale in nature and adapts automatically to the degree of noise contamination of
the data, a clear strength. It is also easily implemented and computationally efficient.

The new estimator for the integrated stochastic volatility can be written as

〈̂X,X〉 =
∑
u

	−u

∑
k

(
Xtk−u

−Xtk−u−1

) (
Xtk −Xtk−1

)
,

where the kernel 	u is given by (2.27). We can compare this estimator with kernel
estimators; see [14]. There the estimated increment square ΔX2

t is locally smoothed
to estimate the diffusion coefficient using a kernel function, K(·). Contrary to this
approach we estimate the integrated volatility by smoothing the estimated autocovari-
ance of ΔXtj . In particular, we use a data-dependent choice of smoothing window.
We show that, from a minimum bias perspective, using a Laplace window to smooth
is optimal. This data-dependent choice of smoothing window becomes more inter-
esting after relaxing the assumptions on the noise process and treating correlated
observation error.

Inference procedures implemented in the frequency domain are still very under-
developed for problems with a multiscale structure. The modern data deluge has
caused an excess of high-frequency observations in a number of application areas,
for example, finance and molecular dynamics. More flexible models could also be
used for the high-frequency nuisance structure. In this paper we have introduced a
new frequency domain–based estimator and applied it to a relatively simple problem,
namely, the estimation of the integrated stochastic volatility, for data contaminated
by high-frequency noise. There are many extensions and potential applications of
the new estimator. Here we list a few which seem interesting to us and which are
currently under investigation.

• Parameter estimation for noisily observed SDEs which are driven by more
general noise processes, for example, Lévy processes.

• Application of the new estimator to the problem of statistical inference for
fast/slow systems of SDEs, of the type studied in [35, 34].

• The combined effects of high-frequency and multiscale structure in the data.
A first step in this direction was taken in [11].

Appendix A. Proof of Theorem 2.3. Let the true value of σ be denoted σ	.
We differentiate the multiscale energy likelihood function (2.17) with respect to σ to
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obtain

	̇X(σ) =
∂	(σ)

∂σ2
X

= −
N/2−1∑
k=1

1

σ2
X + σ2

ε |2 sin(πfkΔt)|2 +

N/2−1∑
k=1

Ŝ
(Y )
k,k(

σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 ,

	̇ε(σ) =
∂	(σ)

∂σ2
ε

= −
N/2−1∑
k=1

|2 sin(πfkΔt)|2
σ2
X + σ2

ε |2 sin(πfkΔt)|2 +

N/2−1∑
k=1

|2 sin(πfkΔt)|2 Ŝ
(Y )
k,k(

σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 .

To remove implicit Δt dependence we let τX = σ2
X/Δt and denote derivatives with

respect to τX by the subscript τ . Then 	̇τ (σ̂) = Δt	̇X(σ̂), and so on. We calculate
the expectation and variance of the score functions evaluated at σ	 and find that
the bias of τ̂X is order O (

Δt1/2 log(Δt)
)
and the bias of σ̂2

ε is order O (
Δt2 log(Δt)

)
.

These contributions become negligible, and are of lesser importance compared to the
variance.

To show large sample properties, we Taylor expand the multiscale likelihood with
σ̂ corresponding to the estimated maximum likelihood, and σ′ is lying between σ̂ and
σ	. Then

	̇τ (σ̂) = 	̇τ (σ
	) + 	̈ττ (σ

′)
[
σ̂2
X − σ	2

X

]
/Δt+ 	̈τε(σ

′)
[
σ̂2
ε − σ	2

ε

]
,

	̇ε(σ̂) = 	̇ε(σ
	) + 	̈ετ (σ

′)
[
σ̂2
X − σ	2

X

]
/Δt+ 	̈εε(σ

′)
[
σ̂2
ε − σ	2

ε

]
.

We note with the observed Fisher information

F =
[
	̈ττ (σ

′) 	̈τε(σ
′); 	̈ετ (σ

′) 	̈εε(σ
′)
]

that

(A.1)

(
(σ̂2

X − σ	2
X )/Δt

σ̂2
ε − σ	2

ε

)
= F−1

(
	̇τ (σ̂)− 	̇τ (σ

	)

	̇ε(σ̂)− 	̇ε(σ
	)

)
.

We henceforth ignore the term J
(μ)
k = J

(X)
k − J̃

(X)
k , as this will not contribute to

leading order, and write J
(X)
k , where formally we would write J̃

(X)
k or J

(X)
k . We can

observe the suitability of this directly from (2.17) and use bounds for J
(μ)
k , where

we could formally apply these to get bounds on each derivative of l(σ) (note that
we cannot differentiate bounds). To avoid needless technicalities, the details of this
approach will not be reported. To leading order

var
(
	̇τ (σ)

)
=

N/2−1∑
l=1

N/2−1∑
k=1

Δt2 cov
(
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

)
(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 (

σ2
X + σ2

ε |2 sin(πflΔt)|2
)2 ,

var
(
	̇ε(σ)

)
=

N/2−1∑
l=1

N/2−1∑
k=1

|2 sin(πfkΔt)|2 |2 sin(πflΔt)|2 cov
(
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

)
(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 (

σ2
X + σ2

ε |2 sin(πflΔt)|2
)2 ,

cov
(
	̇τ (σ), 	̇ε(σ)

)
=

N/2−1∑
l=1

N/2−1∑
k=1

Δt |2 sin(πflΔt)|2 cov
(
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

)
(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 (

σ2
X + σ2

ε |2 sin(πflΔt)|2
)2 .
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We now need to calculate cov
(
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

)
, which is

cov
(
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

)
= E

{
J
(Y )
k [J

(Y )
k ]∗[J (Y )

l ]∗J (Y )
l

}
− E

{
Ŝ

(Y )
k,k

}
E
{

Ŝ
(Y )
l,l

}
= ρ

(Y )
kl S

(Y )
k,k S

(Y )
l,l .(A.2)

Furthermore

E
{
J
(Y )
k [J

(Y )
k ]∗[J (Y )

l ]∗J (Y )
l

}
− E

{
J
(Y )
k [J

(Y )
k ]∗

}
E
{
[J

(Y )
l ]∗J (Y )

l

}
= E

{
(J

(X)
k + J

(ε)
k )[(J

(X)
k + J

(ε)
k )]∗[(J (X)

l + J
(ε)
l )]∗(J (X)

l + J
(ε)
l )

}
− E

{
J
(Y )
k [J

(Y )
k ]∗

}
E
{
[J

(Y )
l ]∗J (Y )

l

}
= cov

{
Ŝ

(X)
k,k , Ŝ

(X)
l,l

}
+ cov

{
Ŝ

(ε)
k,k , Ŝ

(ε)
l,l

}
+ S

(X)
kl S

(ε)∗
k,l + S

(X)∗
k,l S

(ε)
k,l .

We therefore need to calculate the individual terms of this expression. We note

cov
{

Ŝ
(ε)
k,k , Ŝ

(ε)
l,l

}
= δkl[S

(ε)
k,k ]

2, S
(X)
k,l S

(ε)∗
k,l + S

(X)∗
k,l S

(ε)
k,l = 2δklS

(X)
k,k S

(ε)
k,k .

Then it follows that

(A.3) cov
{
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

}
= cov

{
Ŝ

(X)
k,k , Ŝ

(X)
l,l

}
+ δkl[S

(ε)
k,k ]

2 + 2δklS
(X)
k,k S

(ε)
k,k .

We therefore only need to worry about cov
{
Ŝ

(X)
k,k , Ŝ

(X)
l,l

}
. We need

E
{
J
(X)
k [J

(X)
k ]∗[J (X)

l ]∗J (X)
l

}
=

1

N2
E

{
N∑

n=1

∫ nΔt

(n−1)Δt

σsdWse
−2iπ kn

N

×
N∑

p=1

∫ pΔt

(p−1)Δt

σtdWte
2iπ kp

N

N∑
m=1

∫ mΔt

(m−1)Δt

σudWue
−2iπ lm

N

N∑
w=1

∫ wΔt

(w−1)Δt

σvdWve
2iπ lw

N

}

=:
1

N2

N∑
n=1

N∑
p=1

N∑
m=1

N∑
ρ=1

(
ekne

∗
kpe

∗
�me�ρ E

(
MnMpMmMρ

))
,

where Mn :=
∫ nΔt

(n−1)Δt σs dWs and ekn := e−
2iπkn

N . Since Brownian motion has in-

dependent increments, we have that E(MnMpMmMρ) = EM4
n if n = p = m = ρ,

E(MnMkMmMρ) = EM2
nEM

2
k if n = k, m = ρ, and E(MnMpMmMρ) = 0 otherwise.

Consequently,

E
{
J
(X)
k [J

(X)
k ]∗[J (X)

l ]∗J (X)
l

}
=

1

N2

N∑
n=1

EM4
n +

1

N2

(
N∑

n=1

EM2
n

)2

+
1

N2

N∑
n=1

N∑
p=1

ekne
∗
�ne

∗
kpe�p EM2

n EM2
p

+
1

N2

N∑
n=1

N∑
p=1

ekne
∗
�pe

∗
kpe�n EM2

n EM2
p .
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We use standard bounds on moments of stochastic integrals [26] to obtain the bound

1

N2

N∑
n=1

EM4
n ≤ 1

N2

N∑
n=1

36Δt

∫ nΔt

(n−1)Δt

Eσ4
s ds ≤ C(Δt)3,

since, by assumption, Eσ4
s = O(1).5 We have

ρ
(X)
kl S

(X)
k,k S

(X)
l,l = E

{
J
(X)
k [J

(X)
k ]∗[J (X)

l ]∗J (X)
l

}
− E

∣∣∣J (X)
k

∣∣∣2 E ∣∣∣J (X)
l

∣∣∣2
=

1

N2

∫ T

0

∫ T

0

(
cos

(
2π(k + l)

(
s− u

T

))
+ cos

(
2π(k − l)

(
s− u

T

)))
× E

{
σ2
s

}
E
{
σ2
u

}
dsdu +O((Δt)3)

=
1

2N2

∫ T

0

∫ T

0

E
{
σ2
s

}
E
{
σ2
u

}(
e2iπ(k+l)( s−u

T ) + e−2iπ(k+l)( s−u
T )

+ e2iπ(k−l)( s−u
T ) + e−2iπ(k−l)( s−u

T )
)
dsdu+O((Δt)3)

=
1

2N2

(
Ξ

(
−k + l

T

)
Ξ

(
k + l

T

)
+ Ξ

(
k + l

T

)
Ξ

(
−k + l

T

)
+ Ξ

(
−k − l

T

)
Ξ

(
k − l

T

)
+ Ξ

(
k − l

T

)
Ξ

(
−k − l

T

))
+O((Δt)3).

Since Eσ2
t is a smooth function of time we can bound the decay of Ξ(f) ∝ 1

f so that

(A.4) ρ
(X)
kl S

(X)
k,k S

(X)
l,l = Δt2

(
O
(

1

(k + l)2

)
+O

(
1

(k − l)2

))
.

We combine the foregoing calculations with (A.3):

var
{
Ŝ

(Y )
k,k

}
=
(
S

(X)
k,k + S

(ε)
k,k

)2
,

var
(
	̇τ (σ̂)

)
=

N/2−1∑
l=1

N/2−1∑
k=1

Δt2 cov
(
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

)
(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 (

σ2
X + σ2

ε |2 sin(πflΔt)|2
)2 .

(A.5)

We note that

cov
(
Ŝ

(Y )
k,k , Ŝ

(Y )
l,l

)
= ρ

(X)
kl S

(X)
k,k S

(X)
l,l + δkl

[
S

(ε)
l,l

]2
+ 2δklS

(X)
k,k S

(ε)
k,k .

Thus it follows that

var
(
	̇τ (σ̂)

)
=

N/2−1∑
l=1

Δt2(
σ2
X + σ2

ε |2 sin(πflΔt)|2
)2 + C +O(log(Δt)Δt−1/4)(A.6)

= O(Δt−1/2) + C +O(log(Δt)Δt−1/4).

The extra order terms acknowledge potential effects from the drift. We need to
establish the size of C. Using (A.3) we find that

5C in this paper denotes a generic constant, rather than the same constant.
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|C| ≤
N/2−1∑
l �=k

Δt4C2((k + l)−2 + (k − l)−2)(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 (

σ2
X + σ2

ε |2 sin(πflΔt)|2
)2

≤ 2

N/2−1∑
k=1

k∑
τ=1

Δt4C2((2k − τ)−2 + τ−2)(
σ2
X + σ2

ε |2 sin(πfk−τΔt)|2
)2 (

σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2

∼ 2

N/2−1∑
k=1

k∑
τ=1

C2((2k − τ)−2 + τ−2)(
τ2X + σ2

ε |2 sin(πfk−τΔt)|2 /Δt
)2 (

τ2X + σ2
ε |2 sin(πfkΔt)|2 /Δt

)2
= O(log(Δt)).

This is negligible in size compared to Δt−1/2. Similar calculations can bound contri-
butions from the off-diagonals in the other two calculations. Also, as σ2

X = τXΔt,

−E
{
	̈ττ(σ)

}
=

N/2−1∑
k=1

Δt2(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 +O(log(Δt)) = O(Δt−1/2),

(A.7)

−E
{
	̈εε(σ)

}
=

N/2−1∑
k=1

|2 sin(πfk)|4(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 +O(log(Δt)) = O(Δt−1),

−E
{
	̈τε(σ)

}
=

N/2−1∑
k=1

Δt |2 sin(πfk)|2(
σ2
X + σ2

ε |2 sin(πfkΔt)|2
)2 +O(log(Δt)) = O(Δt−1/2).

The order terms follow from usual spectral theory on the white noise process, as well

as bounds on J
(μ)
k . By considering the variance of the observed Fisher information,

we can also deduce that renormalized versions of the entries of the observed Fisher
information converge in probability to a constant, or

diag(Δt1/4,Δt1/2)Fdiag(Δt1/4,Δt1/2) −→ F ,

and thus using Slutsky’s theorem we can deduce that

diag(Δt−1/4,Δt−1/2)

[(
σ̂2
X/Δt

σ̂2
ε

)
−
(
σ∗2
X /Δt

σ∗2
ε

)]
diag(Δt−1/4,Δt−1/2)

L−→ N
(
0,F−1

)
,

where the entries of F can be found from (A.7), (A.5), and (A.6), and

diag(Δt−1/4,Δt−1/2) var

{[(
σ̂2
X/Δt

σ̂2
ε

)
−
(
σ∗2
X /Δt

σ∗2
ε

)]}
diag(Δt−1/4,Δt−1/2)

= diag(Δt−1/4,Δt−1/2)F−1FF−1diag(Δt−1/4,Δt−1/2)

= diag(Δt−1/4,Δt−1/2)F−1diag(Δt−1/4,Δt−1/2) −→ F−1.

We have

(A.8) F =

(
T

σε16
1

τ
3/2
X

0

0 2T
σ4
ε

)
=

(Iττ 0
0 Iεε

)
.
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This expression follows by direct calculation. Asymptotic normality of both τ̂x and
σ̂2
ε follows by the usual arguments. We can determine the asymptotic variance of

〈̂X,X〉(w)
via

var

{
〈̂X,X〉(w)

}
= T 2 var {τ̂x}

= T
σε

τ
1/2
X

16τ2X
√
Δt.(A.9)

We see that the variance depends on the length of the time course, the inverse of the
signal-to-noise ratio, the square root of the sampling period, and the fourth power of
the “average standard deviation” of the Xt process.

Appendix B. Proof of Theorem 2.4. We now wish to use these results to
deduce properties of σ̂, first using the well-known invariance of maximum likelihood
estimators to transfer the estimators of σ2

X and σ2
ε to estimators of 〈X,X〉T . We

therefore take

〈̂X,X〉(m1)

T =

N−1∑
k=0

Ŝ
(X)
k,k (L̂k) =

N−1∑
k=0

L̂kŜ
(Y )
k,k .

It therefore follows that with τ̂X = τX + δτX and σ̂2
ε = σ2

ε + δσ2
ε

E

{
〈̂X,X〉(m1)

T

}
=

N−1∑
k=0

E

{(
σ2
X + δσ2

X

σ2
X + δσ2

X + (σ2
ε + δσ2

ε ) |2 sin(πfkΔt)|2
)

Ŝ
(Y )
k,k

}

=

N−1∑
k=0

E

⎧⎪⎨⎪⎩
⎛⎜⎝ σ2

X + δσ2
X

1 +
[δσ2

X+δσ2
ε |2 sin(πfkΔt)|2]

σ2
X+σ2

ε |2 sin(πfkΔt)|2

⎞⎟⎠ Ŝ
(Y )
k,k

σ2
X + σ2

ε |2 sin(πfkΔt)|2

⎫⎪⎬⎪⎭
=

N−1∑
k=0

E

⎧⎨⎩(σ2
X + δσ2

X

)⎛⎝1−
[
δσ2

X + δσ2
ε |2 sin(πfkΔt)|2

]
(σ2

X + σ2
ε |2 sin(πfkΔt)|2)

⎞⎠ Ŝ
(Y )
k,k

σ2
X + σ2

ε |2 sin(πfkΔt)|2

⎫⎬⎭
=

N−1∑
k=0

[
σ2
X +O

(
Δt5/4

)]
+O

(√
Δt log(Δt)

)
= E {〈X,X〉T }+O

(√
Δt log(Δt)

)
+O

(
4
√
Δt
)
.

This implies that the estimator is asymptotically unbiased. We can also note that the
variance of the new estimator is given by

var

{
〈̂X,X〉(m1)

T

}
=
∑
j

∑
k

cov{L̂jŜ
(Y )
j,j , L̂kŜ

(Y )
l,l }

=
∑
j

∑
k

cov

{
L̂j

Lj
LjŜ

(Y )
j,j ,

L̂k

Lk
LkŜ

(Y )
k,k

}

=
∑
j

∑
k

cov

{(
1 +

δτX
τX

− δτXΔt+ δσ2
ε |2 sin(πfjΔt)|2

τXΔt+ σ2
ε |2 sin(πfjΔt)|2

)
LjŜ

(Y )
j,j ,(

1 +
δτX
τX

− δτXΔt+ δσ2
ε |2 sin(πfkΔt)|2

τXΔt+ σ2
ε |2 sin(πfkΔt)|2

)
LkŜ

(Y )
k,k

}
.
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Then

var

{
〈̂X,X〉(m1)

T

}
=
∑
j

∑
k

{
cov{LjŜ

(Y )
j,j , LkŜ

(Y )
k,k }+ cov

{
δτX
τX

LjŜ
(Y )
j,j , LkŜ

(Y )
k,k

}

+ cov

{
LjŜ

(Y )
j,j ,

δτX
τX

LkŜ
(Y )
k,k

}
− cov

{
δτXΔt+ δσ2

ε |2 sin(πfjΔt)|2
τXΔt+ σ2

ε |2 sin(πfjΔt)|2 LjŜ
(Y )
j,j , LkŜ

(Y )
k,k

}

− cov

{
LjŜ

(Y )
j,j ,

δτXΔt+ δσ2
ε |2 sin(πfkΔt)|2

τXΔt+ σ2
ε |2 sin(πfkΔt)|2 LkŜ

(Y )
k,k

}

+ cov

{
δτX
τX

LjŜ
(Y )
j,j ,

δτX
τX

LkŜ
(Y )
k,k

}
+ · · ·

}

=
∑
j

∑
k

{
δjkσ

4
X + LjLk cov

{
δτX
τX

Ŝ
(Y )
j,j , Ŝ

(Y )
k,k

}
+ · · ·

}
.

By looking at the individual terms of this expression, and noting that the estimated
renormalized variance τ̂X = τX + δτX and σ̂2

ε = σε
X + δσ2

ε are linear combinations of

Ŝ
(Y )
k,k , we can deduce the stated order terms by again noting the

√
Δt order of the

important terms. However, to leading order, this estimator will perform identically

to 〈̂X,X〉(w)
in terms of variance.

Appendix C. Proof of time-domain form. The integral can be calculated
from first principles using complex variables with z = e2iπf . Thus dz/df = 2iπz or
df = dz/(2iπz). Equation (2.27) takes the form

(C.1) 	τ =
1

2iπ

∮
|z|=1

σ2
X

σ2
Xz − σ2

ε [z − 1]2
zτ dz.

We need the poles, or

σ2
Xz − σ2

ε [z − 1]2 = 0 ⇐⇒ z = 1 +
σ2
X

2σ2
ε

±
√

σ2
X

σ2
ε

+
σ4
X

4σ4
ε

= z±.

If
∣∣ σ2

ε

σ2
X

∣∣ < 1, we have

z− = 1 +
σ2
X

2σ2
ε

− σ2
X

2σ2
ε

√
1 +

4σ2
ε

σ2
X

= 1 +
σ2
X

2σ2
ε

− σ2
X

2σ2
ε

(
1 +

1

2

4σ2
ε

σ2
X

+
1

4

(−1)

2

[
4σ2

ε

σ2
X

]2
+O

(
σ6
ε

σ6
X

))
,

=
σ2
ε

σ2
X

+O
(
σ4
ε

σ4
X

)
,

z+ =
σ2
X

σ2
ε

+ · · · .
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We then note that

	τ = − 1

2iπ

∮
|z|=1

σ2
X/σ2

ε

−(σ2
X/σ2

ε)z + [z − 1]2
zτ dz = − 1

2iπ

∮
|z|=1

σ2
X/σ2

ε

(z − z−)(z − z+)
zτ dz

=
2iπ

2iπ
σ2
X/σ2

ε

(
σ2
ε

σ2
X

)τ
z+ − σ2

ε

σ2
X
+O

(
σ4
ε

σ4
X

) =

(
σ2
ε

σ2
X

)τ

+O
(
σ2τ+2
ε

σ2τ+2
X

)
.

If on the other hand we consider
∣∣ σ2

ε

σ2
X

∣∣ > 1, which in many scenarios is more realistic,
then we find that

z− = 1 +
σ2
X

2σ2
ε

− σX

σε

√
1 +

σ2
X

4Δtσ2
ε

= 1 +
σ2
X

2σ2
ε

− σX

σε

(
1 +

1

2

σ2
X

4σ2
ε

)
= 1− σX

σε
+O

(
σ2
X

σ2
ε

)
,

z+ = 1 +
σX

σε
+O

(
σ2
X

σ2
ε

)
.

In this case we find that

	τ = σ2
X/(σ2

ε )
[1− σX

σε
]τ

2σX

σε
+O

(
σ2
X

σ2
ε

) =
σX

2σε

(
1− σX

σε

)τ

+O
(
σ2
X

2σ2
ε

(
1− σX

σε

)τ)
.

In both cases the decay of the filter is geometric. We note that in most practical
examples Lk decays very rapidly in k. Therefore, we do not need to integrate between
−1/2 to 1/2, and only need to integrate over −1/π to 1/π. In this range of f we find
that for the smallish remainder term R3 we have sin2(πf) = π2f2 + R3(fπ). Then
we note

	τ =

∫ 1
π

− 1
π

σ2
X

σ2
X + 4σ2

επ
2f2 +R3(fπ)

e2iπfτ df + C

=
σX

2σε

∫ ∞

−∞

⎡⎣2 σX/σε

σ2
X

σ2
ε
+ 4π2f2

+R4(f)

⎤⎦ e2iπfτ df + C

=
σX

2σε
e−

σX |τ|
σε + C.

Thus we are smoothing the autocovariance sequence with a smoothing window that
becomes a delta function as σX/σε → ∞. It is reasonable that this nondimensional
quantity arises as an important factor.
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