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A GENERAL SPECTRAL APPROACH TO THE TIME-DOMAIN
EVOLUTION OF LINEAR WATER WAVES IMPACTING ON A
VERTICAL ELASTIC PLATE*

MALTE A. PETER' AND MICHAEL H. MEYLAN¥

Abstract. We present a solution in the time-domain to the two-dimensional linear water-wave
problem, in which a semi-infinite fluid region is bounded on one side by a vertical elastic plate. The
problem is solved using a generalized eigenfunction expansion from the solutions for single frequen-
cies and we begin with a novel solution of the single-frequency problem. By formulating the problem
using the acceleration potential, we find an inner-product space, in which the evolution operator with
continuous spectrum is self-adjoint. This inner-product space is required for the generalized eigen-
function solution, which allows to prescribe arbitrary initial water surface and plate displacements
and velocities. Furthermore, using the generalized eigenfunction expansion, the solution is approx-
imated by deforming the contour of integration and using the contributions from the singularities
of the analytic continuation. Numerical experiments show that the long-time behavior in certain
situations can be well approximated by this method.

Key words. Water waves, Spectral theory, Generalized eigenfunction expansion, Scattering,
Complex scattering frequency.

AMS subject classifications. 76B15, 76M22, 74F10, 35P25, 47A40.

1. Introduction. Hydroelasticity is the study of the interaction of fluids and
elastic bodies. The present paper concerns a particular hydroelastic problem, in which
a semi-infinite fluid interacts with a vertical elastic plate. The problem is motivated
by both trying to understand the ways, in which waves interact with the vertical plate,
and how the vibration of the vertical plate is affected by the presence of the fluid. The
former problem is motivated by wave-impact problems, which occur in tanks of fluid,
and the latter problem is concerned with the understanding of tank-wall vibration. It
turns out that the two problems are closely connected mathematically and we solve
both problems in a unified approach in what follows.

The linear problem of a vertical elastic plate, which forms the right-hand bound-
ary of a semi-infinite two-dimensional fluid domain, has not been well studied and
we present here a novel method even to solve for the single-frequency solutions. The
corresponding problem of a floating elastic plate has received enormous research con-
sideration on the other hand, mainly motivated by the study of ocean-wave interaction
with sea ice [24, 23] or so-called Very Large Floating Structures [26]. It is worth point-
ing out that violent wave impact (i.e. very steep or breaking waves) on walls has been
studied substantially, both theoretically and experimentally, cf. [11, 20, 12, 2] for ex-
ample. In this context, other effects become important such as nonlinearity of the
waves and air entrapment, which are not accounted for within the linearized theory
employed here. However, an elastic plate, which is displaced by a violent impact, may
very well oscillate and decay according to the linear theory we present here.

We solve the problem using a generalized eigenfunction expansion, which is a gen-
eralization of the standard eigenfunction method on bounded domains to domains in

*A PRELIMINARY SHORT SUMMARY OF THE RESULTS HAS APPEARED IN [21].
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which energy can radiate to infinity. The existence of an infinite boundary compli-
cates the standard problem in two ways. Firstly, the spectrum becomes continuous
so that the normalization of the eigenfunctions becomes non-trivial and, secondly, the
existence of a boundary at infinity also makes the boundary conditions, which must
be imposed, non-trivial. However, the eigenfunctions associated with the continuous
spectrum are exactly the single-frequency solutions, which are the object of principle
interest and for which many methods of solution have been developed. The general-
ized eigenfunction method began with the work of [22, 10] for Schrédinger’s equations
and was extended for water waves by [4, 1, 6, 7]. All of these solutions were theoretical
and the use of this method for numerical calculations does not seem to have been well
investigated. Numerical methods were only recently developed for the case of floating
plates by [9], for rigid bottom-mounted cylinders in three dimensions in [18] and for
general fixed bodies in two dimensions by [17].

Besides supplying an easily computable solution for the water-wave scattering by
an elastic wall, the other main aim of the paper is to further develop the generalized-
eigenfunction-expansion method. It is to be expected that the method could be ex-
tended to almost any scattering problem, which involves a domain with boundaries at
infinity. However, each time a new scattering term appears, a very careful treatment
is required. In the present work, this novel complication arises from the semi-infinite
domain with vertical boundary given by a plate and by the plate extending beyond
the fluid. Furthermore, the current new presentation of the method is clearer than in
previous works and, in particular, does not involve positive and negative frequencies,
which avoids many of the technicalities.

It is well known that, in certain situations, systems display resonance behavior.
In our case, this is associated with a plate of much greater density than the fluid
and which is therefore only lightly damped. In this case, while there is no point in
the discrete spectrum, there is a singularity in the analytic extension of the solution
(resolvent) close to the real axis, a so-called complex scattering frequency. The ap-
proximation of the solution using this singularity via the Laplace transform is known
as the singularity-expansion method. This method may be viewed as a generalization
of Lax—Phillips scattering [13] to problems, in which the incoming and outgoing sub-
spaces are not orthogonal (as is the case for the present problem under study). The
approach we take here is somewhat different, and we use the generalized eigenfunction
solution rather than the Laplace-transform solution as our starting point. It should
be noted that, because we can determine the single-frequency solutions so easily, the
generalized eigenfunction solution is much simpler than the equivalent solution using
a Laplace-transform method such as the singularity-expansion method [5, 8] (or any
other related methods such as the memory-effect method [16]).

Our aim here is to solve the time-domain problem of a vertical elastic plate forming
the right-hand boundary of a two-dimensional semi-infinite fluid domain. We expand
the solution in terms of the single-frequency solutions using a generalized eigenfunc-
tion expansion. The generalized eigenfunction expansion allows us to express the
solution in the time-domain for initial conditions for both the fluid surface and the
plate. We then consider an approximation method based on singularities of the ana-
lytic extension combined with contour integration of the Fourier-type integrals, which
appear in the generalized eigenfunction expansion. From this approximation method,
modes are calculated, which may be thought of as corresponding to the modes of
vibration of a plate vibrating against a semi-infinite fluid. Care has to be taken in
the interpretation of these modes, because the mathematical structure of the problem
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Fia. 2.1. Sketch of the problem setting.

is different from the traditional vibrational problems for a self-adjoint problem. For
example, these modes are valid only close to the plate.

The paper is organized as follows: We begin with the precise formulation of the
problem (§2) and the solution of the single-frequency problem (§3). Section 4 is
concerned with the solution of the time-domain problem using the generalized eigen-
function expansion method. The approximation method using complex scattering
frequencies is developed in §5. Numerical experiments are presented in §6 and a sum-
mary and discussion of the results are given in §7. The paper has three appendices
discussing the roots of the dispersion relation for complex frequencies (§A), some
details about the eigenfunctions of the plate (§B) as well as some properties of the
evolution operator A (§C).

2. Statement of the problem and mathematical formulation. The prob-
lem consists of a semi-infinite fluid domain Q = {(z,2) € R?| —co < 2 < 0, —h <
z < 0}, where z = 0 represents the free water surface and where there is a vertical
elastic plate at z = 0, the boundaries of which may extend beyond the domain. In
particular, the height of the plate extends from —h to H with H > 0. A sketch of the
setting can be found in figure 2.1. We assume the fluid flow is irrotational and that it
can be described using linear inviscid theory. The plate is governed by the Bernoulli-
Euler plate equation. In all of what follows, we work with standard dimensionless
coordinates, where the spatial variables have been scaled by a length parameter L
and the time variable by y/L/g, where g is the gravitational acceleration.

2.1. Governing equations. The mathematical description of the problem is as
follows. We use the acceleration potential W to describe the fluid motion, rather than
the velocity potential as is standard. This makes the equations in the time-domain
simpler and was used in [9] for the generalized eigenfunction solution for a floating
plate. For all times ¢ > 0, the potential ¥(z, z,t) satisfies

—AV = 0, (Z‘, Z) € Q, (213‘)
¥ =0, —oo<z<0, z=—h, (2.1b)

where 0,, is the outward normal derivative. The kinematic condition at the free-surface
is

0?7 = 0,9, —oco<z<0, z=0, (2.1c)
where Z(x,t) is the displacement of the water surface. The dynamic condition is

Z+¥ =0, —co<xr<0, z=0, (2.1d)

(note that this condition would read ¢Z+ % = 0 in standard dimensional coordinates.)
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The plate is governed by the Bernoulli-Euler plate equation. There is a force on
the wetted surface of the plate from the water (given by p = —pW¥, where p is the
water density) while there is no force above the free water surface. The dimensionless
governing equation for the plate displacement W(z,t) thus reads

0, 0<z<H,

(2.2)
~U, —h<z<0,

VOEW + BOTW = {
subject to edge conditions, where the positive parameters [ and « are related to
the mass and the stiffness of the plate, resp. In what follows, we consider the plate
clamped at the bottom, i.e.

W =0, 0,/W =0, z = —h. (2.3)
At the top, the plate is either clamped, i.e.
W =0, 0,W =0, z=H, (2.4)
or free to move, i.e.
W =0, 93W =0, z=H. (2.5)

Other boundary conditions could be considered within the framework of this work.
For convenience, we write x for the characteristic function of the wetted plate surface,
ie. x(z) =1for z <0 and x(z) =0 for z > 0.

The system of equations is completed by initial conditions for the water surface
and plate displacements and their velocities:

Z(x,0) = Zy(x), 0 Z(x,0) = Z1(x), —oo < x <0, (2.6)
W(z,0) = Wy(z), 0:.W(z,0) = Wi(2), —h<z<H. (2.7)

2.2. Formulations in terms of plate modes. We assume we have an infinite
set of orthonormal modes w,(2), n = 0,1,..., which satisfy the equation 0%w, =
Atw,, as well as the appropriate boundary conditions at the ends of the plates (which
may extend beyond the boundary of the fluid domain). The discussion of these modes
is given in Appendix B. This allows us to express the displacement of the plate as

W(z,t) =Y on(thwn(2). (2.8)
n=0
At x = 0, the plate displacement and the acceleration potential are related

through the kinematic and dynamic conditions. The equations coupling the water
acceleration potential and the plate displacement are therefore

XU =7 ) Fanw, + 8 Nyanw, (2.9)
n=0 n=0
and, along the wetted surface of the plate,
> Fanw, =0,V (2.10)
n=0

For z < 0, combining the last two equations gives

-V —~0,¥ =0 Z )\ianwn. (2.11)

n=0
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3. Single-frequency solution. In this section, the problem is solved under the
assumption that the acceleration potential and the surface displacement are time
harmonic with given radian frequency w, i.e.

U(z,2,t) = Re{d(z,2)e™"},  Z(x,t) = Re{((x)e ™™} (3.1)

with a complex potential v and complex displacement (.
At the free surface, condition (2.1c) simplifies to

—w? = 0Optp, 2=0. (3.2)
This can be combined with equation (2.1d) to give the single free-surface condition

ay =09, z=0, (33)

where a = w? (in dimensional coordinates, this would read w?/g). The positive

wavenumber k is related to a by the dispersion relation
o = ktanh kh. (3.4)

See [14] e.g., the acceleration potential takes the form

Ui, 2) = Alfo(2)e™™" + 3 e frn(2)e"7, (3.5)

m=0

where the first term is due to the ambient incident potential of amplitude A! and the
coefficients ¢, are of the scattered wavefield only. The functions

cos k(2 + h)
cos kb

fm(2) = (3.6)

are the vertical eigenfunctions. The numbers k,,, m > 1, are given as positive real
roots of the dispersion relation

o+ ky,tank,,h =0 (3.7)

and ko = —ik. Note that ko is a (purely imaginary) root of (3.7). Moreover, we have

0
/ Fn(2) fa(2) dz = By N, (3.8)
—h
where N,, is given by
1 cosk,,hsink,,h + k,h
Nm = 2 ko, coS2 kb ' (3.9)
Using (3.5) at x = 0 in (2.9) gives
X(2)(=Afo(2) = D emfm(2)) = Y _(—7w® + BAL)anwy (2). (3.10)
m=0 n=0

Multiplying by wy, and integrating from —h to H with respect to the vertical variable,
we obtain

0 o0

0
_AI/_hwk(Z)fO(Z)dz—mz_:Ocm /_hwk(z)fm(Z)dz: (—7w? + fADag.  (3.11)
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The second equation can be obtained from (2.10). For time harmonic motion, it reads

—w? Y " anwn(z) = —koA fo(2) + D kmem fm(2)- (3.12)
n=0 m=0
Multiplying by f; and integrating as before gives
o0 0
—w? Z ay, / wy (2) fi(z)dz = —koNo A1 + k1N, (3.13)
n=0 —h

We have thus derived a system of equations for the unknown coefficients «,, and ¢,,:

1 > 0 Al 0
n V) m n m dz = ———F—— n d s ]N7
o +ﬁ/\;ﬁ—7w2;6 lhw (2) fm(2)dz g lhw (2)fo(2)dz, ne
(3.14a)
w? o0 0 ;
kmnga lhw (2)fm(2)dz +c 0 m e
(3.14D)

For future reference, we note that this system can be written in the form
(I + A(k))e(k) = b(k), (3.15)

where ¢(k) = (an(k),cm(k)) and I is the identity operator, and where we have ex-
plicitly expressed the dependence on the wavenumber £, which is given a priori in the
single-frequency case (as it is uniquely determined from (3.4) for given w).

The system (3.14) can be solved very efficiently numerically by truncation. The
functions w,, and f,, are given in closed form (also see Appendix B) and the integrals
in (3.14) can be calculated analytically. Moreover, we note that the dimension of the
linear system of equations (3.14) can be reduced by eliminating the coefficients ¢, or
ap,. This can be achieved easily by solving (3.13) for ¢; and substituting into (3.11)
or by using (3.11) in (3.13), respectively.

4. Time-dependent problem. We want to use the time-harmonic solutions
for fixed frequencies to construct the solution for arbitrary initial conditions. From
the nature of the governing equations, four functions need to be prescribed: the
initial displacement Zy(z) and velocity Zi(x) of the water surface and the initial
displacement Wp(2) and velocity Wi (z) of the plate.

From the linearity of the problem, it is clear that a superposition of the single-
frequency solutions will be a solution of the time-dependent problem. However, it
is also true that any solution in time domain can be written as a linear combina-
tion of single-frequency solutions with certain frequency- (or wavenumber-) dependent
weights. It is not clear, however, how these weighting functions must be chosen in
order to meet the initial conditions. The remainder of this section is devoted to the
this problem, which we solve using the generalized eigenfunction method based on a
spectral formulation.

4.1. Spectral Formulation and general solution. We want to rewrite the
governing equations in the form of an abstract wave equation. This can be done in
terms of the surface and plate displacements in the two-component system

() (A an) (e )=e (1
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The operators A;; are Dirichlet-to-Neumann-type operators mapping in the following
way: A11: Z — =, |pe, Aig: W= =W, |pe, Aoi: Z +— —02Wlre and Agg: W —
—02W|r» In all cases, ¥ is the solution of the boundary-value problem

—AV =0, —h<z<0, (4.2a)
0.V =0, z = —h, (4.2b)

and the remaining boundary conditions are given by:
free surface wetted plate
Ajn ¥ =-7 U =—7,
Ajp ¥ =0 U =¥, — BOIW
For Aj;, the potential at the wetted plate further needs to be mapped to the
acceleration of the full plate. For As1, we have to use

VORW = —x ¥,
while for Ass, we require
VOEW = —B0tw — X7,

each subject to the edge conditions prescribed for the plate.
The operator

_( An A
A—< o A22> (4.3)

is self-adjoint in the domain of A equipped with the inner product

<< w ) < If//’ )>A =2, 2" )pe + BOZW, 02W ), (4.4)

where (-, -)r denotes the standard inner product of L?(T'), cf. Appendix C.1 for the
symmetry of A. It has a continuous spectrum: [0,00). The corresponding general-
ized eigenfunctions are precisely the single-frequency solutions for a unit-amplitude
incident wave, (C(z,k),w(z,k)).

Thus, any solution of (4.1) can be written in the form

< gf((z’,?) ) - \/%/OOO fu (k) < f;,((i’,]/?) )Cosw(k)t
+fz(k)< fu((”;’,?) ) Sin%li];)tdk, (4.5)

with wavenumber-dependent weighting functions f; (k) and f2(k). From Appendix

C.2, we have
<< fv((llcc)) ) ’ ( iﬁ% >>A = 2m6(k — K). (4.6)

Thus, for the initial displacement of the free surface Zy and of the plate Wy, we

obtain
() =2 [T o (G o ur



8 M. A. PETER AND M. H. MEYLAN
and we find that

(Z0,(+, 1)) + B(OZW, D2+, ) ) A
() (8, e s

Hence,

/F o)) et B [ W =)0z, ) dz = 233 (), (4.92)

rp

where the overbar denotes complex conjugation, and, similarly,
/ Zl(x)g(x, k)de + B [ 02W1(2)020(z, k) dz = 2V 27fa(k) (4.9b)
Tt e

are obtained, which determine the functions f; and f3 in the representation (4.5).
In what follows, we consider in detail problems with vanishing initial velocities.
In such cases, fo = 0 and (4.5) simplifies to

Z(a,1) \/5 /°° C(a. k)

k =1/— ’ 3 . 4.1
< W(zt) ) = s f1(k) bz k) cosw(k)tdk (4.10)
As the product of f; and the single-frequency solution must be real (in particular, Z
and W are real and so is coswt), this can be rewritten equivalently as

Z(x,t) \ _ 2 - Cla k) gmiwhe
(200Y 2 e [T (L8 )evoral .
We use this form in the derivation of the approximation method in §5 as it is more
convenient for the manipulations carried out there. An expression analogous to (4.11)
can be derived for vanishing initial displacements, i.e. f; = 0.

It is worth noting that it is generally equivalent to work with complex exponentials
asin (4.11) and (4.16) or with trigonometric functions as in (4.5). See [3] e.g., writing
u(t) = (Z(t),W(t))T, the solution of problem (4.1) can be expressed in the two
equivalent forms

u(t) = A~ ¥ Re e A (A ug + fuy)] (4.12)
= cos(AZt)ug + A2 sin(A"2t)u;. (4.13)

Both formulations have advantages and disadvantages. In particular, while the trigono-
metric approach leads to simpler formulas for the solution of the initial-boundary
value problem (cf. (4.9)), the complex exponential is more convenient in the deriva-
tion of the approximation theory presented in §5.

4.2. Canonical initial conditions. We discuss in detail the cases where there is
either only a non-zero initial water surface displacement or only a non-zero initial plate
displacement. Similar expressions are derived if only one of the initial velocities is non-
zero. For vanishing initial velocities, the water surface and plate displacements are
given by (4.10) or (4.11). We also derive a very simple expression for a pulse initially
travelling toward the plate from far away, which is an important initial condition for
numerical experiments in engineering applications.
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4.2.1. Initial surface displacement. If we have non-zero initial surface dis-
placement Z, while Z1, Wy, W7 = 0, o vanishes and (4.9a) simplifies to

1 =
K) = —— Zo(x)((x, k) dx 4.14
k) =5 7= . o(z)¢(z, k) (4.14)
A simplification can be made if the initial surface displacement vanishes near

the plate. In this case, the evanescent waves in f have already decayed virtually
completely at the location of the pulse. Thus,

f1(Kk) = x) (e 4 &y (k)e™ ™) da. (4.15)

1
—_— Z
2V 21 /rf

It can be shown further that (4.10) with (4.15) reduces to

( 5/((3; ?) ) mﬂe [ /O S ( i((il/?) )cosw(k)tdk] (4.16)

in this case, where

f(k) = z)e F dg. (4.17)

1
— Z
V2T /pf
4.2.2. Initial plate displacement. If we have non-zero initial plate displace-
ment Wy while Zy, Z1, W7 = 0, (4.9a) simplifies to

() = \fﬂ [ o2Wo(:)2i(e. ) dz, (4.18)

and f» = 0. Representing W, in terms of the plate eigenfunctions, Wy = >>7 j a%w,
say, this further simplifies to

f1(k) m Z al (4.19)

4.2.3. Incident pulse from far away. The case of an incident pulse hitting
the plate can be treated as follows. If the plate is at rest at ¢ = 0 and the initial
water-surface displacement vanishes near the plate, (4.14) reduces to (4.15). In the
same way, (4.9b) simplifies to

fo(k) = (e 4 &y (k)e™™) da. (4.20)

=/
2V21 J_ o
It is not obvious from this representation what Z; is in order for the pulse to travel to
the right. This can be achieved easily, however, noting that taking a time derivative
is equivalent to multiplying with +iw in the Fourier domain. Choosing the sign such
that the pulse travels to the right (i.e. toward the plate) gives

iw 0 . .
fo(k) = EWor Zo(x)(—e™" + &o(k)e™™) du. (4.21)
Similarly to (4.16), (4.10) reduces to
Z(t) \_ 2 p [ [T (k) gmiwoe
(W )= vz [[ o (G0 )e=ra] ez

in this case, where f is given by (4.17).
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5. Approximation of near-resonant behavior. Near-resonant behavior oc-
curs when a complex scattering frequency is close to the real axis. Thus, the complex
scattering frequencies are discussed first. For the situation of a complex scattering
frequency occurring near the real axis, an approximation of the solution for large
times is given.

5.1. Complex scattering frequencies. The system of equations (3.14) can be
written in the form (3.15), i.e.

(I + A(k))e(k) = b(k). (5.1)

Note that we have explicitly expressed the dependence on the parameter k. This
equation is typical of scattering problems, in that we have an operator plus the iden-
tity. This is because the scattering process is a perturbation of the incident wave, and
in the absence of scattering we have simply the identity. Exactly such an equation
appears in [5]. The explicit solution to the scattering problem is of course given by
c(k) = (I + A(k))~tb(k).

The key to understanding this equation is to allow the parameter k to become
complex. We then find that the operator possesses zero eigenvalues in the lower
complex plane (which are equivalent to the eigenvalues of the operator A(k) with
eigenvalue —1). It is obvious that, where these zeros occur, c(k) is singular, i.e. the
system has an infinite response (note that this is not an infinite response for a real
frequency unless there is a trapped mode). These zeros are called complex scattering
wavenumbers and, more commonly, the corresponding frequencies w are known as
complex scattering frequencies. For very special situations for the general water-wave-
scattering problem, a purely real zero can occur, which is known as a trapped mode.
We do not expect to find any trapped modes in the situation under consideration
here and they have never been found. However, as will be seen later on (cf. §6),
there are situations of near-trapping or near-resonance, where a scattering frequency
is close to the real axis. The aim of the present work is to examine what happens
when the scattering frequencies become close to the real axis. This allows us to make
predictions of the response in the time and frequency domains.

5.2. Approximation for large times. Suppose there is a scattering frequency
at a complex wavenumber k.. The scattering wavenumber k, is associated with an
eigenvector with zero eigenvalue. That is, there is an eigenvector uy, with the property
that (I + A(k;))ug, = 0. Then we know that near the pole the inverse of I + A(k;)
can be written as

R(k:)

(I+A() ™ ~ 2

(5.2)

where R(k;) is the residue which is connected with a projection onto the eigenspace
associated with k,. We can derive the expression for R(k,) using a result due to [25]
for the case of a simple zero (the eigenspace has dimension one) at k.. It is also
possible to treat roots of higher multiplicity. Since we do not expect such roots to
occur in this problem we do not follow this direction here. It can be shown that

(ug,,ur,)

k) = T ey, )

(5.3)
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[25], where uy,_is the eigenvector of the adjoint operator with eigenvalue zero and
A’(ky) is the derivative of A at k, given by

d

A/(kr) = @A(/{) |k:kr .

(5.4)

For future reference, we denote by k, the complex value of &k closest to the real
axis, for which (I + A(k)) has an eigenvalue zero, and we write ¢, = R(k;)b(k;), so
that (I + A(k,)) (k) ~ 2 o is made up of the coefficients of the
water and the plate, we write ¢, = (Crm, Qun).

5.2.1. Initial surface displacement. We discuss the case of an initial water-
surface displacement. A similar expression for the case of a right-travelling pulse can
be derived from expression (4.22) in the same way.

From (4.11), we obtain

< Vf/((x )) ) :—Re [/ f1(k < ((a : )) )e—iww)tdk] 55)

Since the contribution of the incident wave rapidly decreases for large times, we can
approximate

Z(J? t) 2 |:/DO < _Zoo_ P (k)ekm(k)r ) itk

’ ~ —Re k M0 e W dk| (5.6
( W (2 1) ) ke | R S R ) (5.6)
for large times. We close the contour in the lower half plane, the additional contri-
butions of which are negligible for large times (note that this contour is negatively

oriented). Also using the approximation ¢, (k) ~ ;=% and &, (k) ~ 77, the integral
can be calculated using the residue theorem. This gives

( Vz[/(é,’z;)) )  _9V3r Re {wm( —%%5;:;2? )e—iwwr)t] (5.7)

for large t.

5.2.2. Initial plate displacement. For arbitrary initial plate displacement, we
first note that, from (4.19),

k

near k,. Similarly,

{(, k) ~ ~ Yoo Cemem () (5.9)
w(z, k) k— ky o o W (2) ’ '
where we have neglected the contribution from the incident wave as before.
From (4.11), we have

()= e[ v o) Yoo o
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Closing the contour of integration in the forth quadrant and using the approximations
(5.8) and (5.9) gives

Z(x,t) B 1B = ovas [ = e e N g
(W) Re [ Sean (TSR )

n=0 QrnWn
(5.11)

for large t.

The formulas above can easily be extended to account for more than one com-
plex scattering frequency near the real axis by also including the residues at these
wavenumbers.

5.3. Accuracy of the approximation. The approximations derived in the
previous subsection are for large times. A rough idea about how quickly this ap-
proximation becomes accurate can be obtained by looking at the double roots of the
dispersion relation (3.4) as these double roots imply branch cuts of the integrand.

In the derivation of the approximate formulas (5.7) and (5.11), it is an important
step to close the contour of integration in the forth quadrant of the complex plane so
that it does not encircle any poles or branch cuts of the integrand other than the one
specifically accounted for. The contribution from this extra integration path decays
and this happens the quicker the further this path is away from the real axis (as
the exponentials of the form e (¥t decay faster for large t if w has larger negative
imaginary part). The exact locations of the double roots are discussed in Appendix
A.

Depending on the parameters of the problem, the roots of the dispersion relation
(3.4) lie further away or closer to the real axis. The closer they lie, the longer it takes
for the approximation to become accurate.

6. Numerical experiments. We present some results of numerical experi-
ments. In all results shown, the plate stiffness and mass are chosen as 7 = 0.01
and v = 0.01 and the water depth is h = 1 (this can be thought of as having non-
dimensionalised with respect to water depth). All initial values not specifically men-
tioned in each subsection are assumed to vanish.

We begin with presenting results for the initial-boundary value problem with
given water-surface displacement (§6.1) and with plate displacement (§6.2) for fixed
and free plate top. The validity of the approximation for large times is discussed
thereafter (§6.3).

6.1. Given water-surface displacement. For a plate extending above the
water surface by a third of its length (i.e. H = 0.5) and an initial water-surface
displacement given by

Zol) = 3(w + 8)e~+9/2, (6.1)

snapshots of the solution at ¢ = 0, 5, 10, 15, 20, 25, 30, 35, 40 are shown in figure 6.1 for
a fixed plate and in figure 6.2 for a plate with freely moving top. The initial water-
surface displacement results in two waves: one moving to the left and one moving
to the right. The one travelling to the right eventually hits the elastic plate. Some
energy is transferred to the plate, some is reflected as a wave travelling to the left.
The energy transferred to the plate results in decaying oscillations of the plate, which
in turn give rise to waves of decreasing amplitude travelling away from the plate. The
qualitative behavior of the solution is similar for fixed and free top.
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Fia. 6.3. Snapshots of the evolution of the solution for prescribed non-zero plate displacement
in the first mode. The plate top is fived and H = 0.

6.2. Given plate displacement. For H = 0 and fixed plate top, the evolution
of an initial plate displacement in the first plate mode,

Wo(z) = —0.5wq(z), (6.2)

is shown in figure 6.3. It can be seen that the plate, initially bent to the right, flexes
to the left resulting in a long wave travelling away from the plate. Eventually, the
plate keeps oscillating with slowly decreasing amplitude at a certain frequency, which
results in a wave of that frequency travelling to the left.

This slowly decaying oscillatory behavior is connected with a complex scattering
frequency near the real axis. This is investigated in more detail in §6.3. Similar
results would have been obtained for H = 0.5 but the effect is more pronounced for
the shorter plate considered here (H = 0).

For H = 0.5 and free plate top, snapshots of the evolution of an initial plate
displacement in the second plate mode,

Wo(z) = 0.5w1(z), (6.3)

are shown in figure 6.4. Similarly to the previous case, there is an initial wave packet
travelling away from the plate and an ongoing slowly decaying oscillation at a certain
frequency.

If the plate is excited in the first mode (not shown), there are only very little
ongoing oscillations.

6.3. Approximation for large times. The ongoing oscillations observed in
the previous subsection are related to complex scattering frequencies near the real
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Fic. 6.4. Snapshots of the solution for prescribed non-zero plate displacement in the second
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Fic. 6.5. Real and imaginary part of f1(k) for fized plate (left; corresponding to fig. 6.3) and
for free plate (right; corresponding to fig. 6.4).

axis. In particular, this can be observed as sharp spikes in the frequency-component
function f1 (k) (given by (4.19) in these cases), which is shown for both cases in figure
6.5. Using the method of [19], we find that there are complex scattering wavenumbers
at ky ~ 11.6116 — 0.0130i for the fixed plate (as in fig. 6.3) and k, ~ 79.5379 — 0.0476i
for the free plate (as in fig. 6.4), which precisely coincide with the location of the
spikes in figure 6.5.

We want to use the approximation method of §5.2 to estimate the long-time
behavior of the solution of the fixed plate initially bent in the first mode (as in fig. 6.3).
Using the expression (5.11), the long-time behavior can be easily calculated. Figure
6.6 shows the behavior of the full solution (corresponding to figure 6.3) compared to
the approximation obtained using (5.11). It can be seen that, after a short transient,
the approximation quickly becomes accurate.

It is noteworthy that it is also possible to excite the mode corresponding to
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exact solution approximation
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Fic. 6.6. FEzact and approrimate solution of the water-surface displacement at © = —4 and

plate displacement at z = —0.5 versus time for fized plate (corresponding to fig. 6.3).

the complex scattering frequency by an incident wave (rather than an initial plate
displacement). Hitting the plate with a wave packet focused on Rek, results in
an ongoing oscillation (not shown) similar to that resulting from the initial plate
displacement.

7. Summary. A solution to the time-dependent problem of the interaction of a
semi-infinite fluid domain with a free-surface bounded by a vertical elastic plate has
been presented. The solution is constructed using a generalized-eigenfunction expan-
sion and is valid for both initial fluid and initial plate displacements and velocities.
This solution relies on a special inner product, in which the evolution operator is
self-adjoint. We have then shown that an approximate solution can be found from
this generalized-eigenfunction solution by contour integration and by finding the sin-
gularities of the solution extended analytically to complex frequencies.

Acknowledgements. This research was supported by Marsden grant UO0O308
from the New Zealand government.

Appendix A. Some remarks on the dispersion relation for complex
frequencies.
For real frequencies w, the parameter o = w? in the dispersion relation (3.7),

—kpy tank,,h = «, (A1)

is real and it is well-known that the equation has two purely imaginary roots +ko =
Fik and a countable number of real roots +k;,,, m = 1,...,00 [14]. The occurrence
of the roots in pairs comes from the fact that ktankh is an even function in k.

In the context of this work, it is important to understand the roots of the disper-
sion relation (A.1) for complex frequencies because extensive use is made of deforming
the contour of integration, originally only containing real frequencies, into the forth
quadrant of the complex plane. For the same reason, [5] investigate the solution of the
dispersion relation for complex frequencies in detail. The same problem also arises
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z o
0+ 0i 0+0i
1.1254+2.10621  —1.6506 — 2.06001
1.5516 +5.35631  —2.0578 — 5.3347i1
1.7755 4+ 8.53671  —2.2785 — 8.52261

1.9294 + 11.6992i —2.4311 — 11.6888i
TaBLE A.1
First five values of z, for which (A.3) is satisfied, and corresponding values of &, for which
(A.2) has a double root.

in some water-wave problems involving porous structures and this is the reason why
(A.1) involving complex right-hand sides is considered by [15]. We briefly summarize
the results of these works in our notation as far as they are required here.

We first note that we consider only complex frequencies in the forth quadrant
of the complex plane. Correspondingly, we discuss those roots of (A.1), which lie in
the first quadrant (corresponding to k,,, m = 1,...,00) and in the third quadrant
(corresponding to ko).

One important property of (A.1) is that it may admit double roots for certain
complex frequencies. The number of parameters can be reduced from two to only one
by writing z = k,,h. Then, it is sufficient to look for solutions of

—ztanz = @, (A.2)
where & = ah. Equation (A.2) has a double root at z precisely if
sinh2z +22 =0 (A.3)

is also satisfied. In this case, z is the only double root of (A.2) (in the fourth quadrant).
Finding the roots of (A.3) in the first quadrant and substituting into (A.2) gives the
complex frequency parameter &, for which (A.2) has a double root in the fourth
quadrant. Again, it suffices to restrict to one quadrant of the complex plane. The
first roots of (A.3) (if numbered with increasing real part) and the corresponding
values of & are given in table A.

Appendix B. Eigenfunctions of the plate.

In this section, the eigenfunctions of the plate, i.e. the eigenfunctions of the bi-
harmonic operator subject to the fixed and free boundary conditions as introduced in
§2.2, are briefly discussed.

The general form of the eigenfunctions of the bi-harmonic operator is given as

wp(2) = C1(cos A\p(z + h) + cosh A, (z 4+ h)) + Ca(cos A\ (2 + h) — cosh A, (2 + h))
+ Cs(sin A (z + h) +sinh A, (z + h)) + Cy(sin A, (2 + h) —sinh A\, (z + h)).  (B.1)
The coeflicients C; and the eigenvalues A, are determined by the boundary conditions

as well as the restriction that w, has unit norm.
We always assume that we have a fixed bottom of the plate, i.e.

wp(—h) =0, w, (=h)=0, (B.2)

n

and consider the case of a fixed top or a free top at z = H. From the two boundary
conditions (B.2), we find that C; =0 and C3 =0, i.e.

wp(2) = Ca(cos Ay (z+h) —cosh Ay (z+h)) + Ca(sin A (z+h) —sinh A, (z+h)). (B.3)
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B.1. Fixed plate top. If the plate is also fixed at z = H, we have

w(H) =0, w(H)=0 (B.4)
in addition to (B.2). This gives
cos A\ (H + h) cosh A, (H+h) =1 (B.5)

and allows us to express Cy in terms of Cy. Substitution of the result into (B.3) gives

wp(z) = Cs ((cos An(z+ h) —cosh A, (2 + h))

sin A\, (H 4+ h) + sinh \,,(H + h)
cos A\, (H + h) — cosh A\, (H + h)

We choose C3 such that w,, has unit norm (this can be done analytically).

(sin A (z + h) — sinh A, (2 + h))) (B.6)

B.2. Free plate top. If the plate is free to move at z = H, we have

w’(H)=0, w"(H)=0 (B.7)
in addition to (B.2). This gives
cos A\ (H + h) cosh A, (H +h) = —1 (B.8)

and

wp(z) = Cs ((cos An(z 4+ h) — cosh A\, (2 + h))
sin A, (H + h) — sinh A\, (H + h)
cos \p,(H + h) + cosh \,,(H + h)

for the free-plate-top case. Again, we choose Cy such that wy has unit norm (this can
be done analytically).

(sin A (2 + h) = sinh An(2 + ) ) (B.9)

Appendix C. Properties related to .A.

C.1. Symmetry of A. We want to show that the operator A defined in (4.3)
is symmetric in the domain of A equipped with the inner product (4.4). We have

<( I?/ >,A( If/’ >> = <Z,A1121+A12W/>Ff+ﬂ<a§VV,83(.AQ1ZI+A22W’)>Fp.
A
(1)

Consider each of the four summands separately. Using Green’s second identity, we
obtain

(Z, A1 Z")pe = (=W, =0} )pe = (W, W)pe — (U, 07 )pwe + (T, W hpwe
= (=W, =) — (=¥, Ty )rwe + (Ui, =T )pwe
= (A1 Z, Z s (C.2)
For the second summand, we can calculate
(Z, AlQW/>1"f = (—\If —W e = — (U, U Y pow + (U, U ) ppw
U, YU Ypow — (U, GOV’ YTow

n)

>pr - )
W, YW ) row = (W0, W )

)

)

I'pw —
U, YV ) row — B(O20F W, OZW ) o
U, YU Vpow + B(02 A1 Z, 0% Z Vo (C.3)

/\/\/\/\

n/IPw —
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Similarly, the third term equates to

B(OZW, 02 A01 Z')ro = —B(OIW, D20; W) ro = —BOZW, ;W )ro
= B(O2W, 1/vx ¥ )ro = —B(OIW, T}, ) pow
= (=¥, — BOIW, U )pow + (YW, U7 ) pow
(W, )rew + (Y80, U7 ) row
(=W, — U bt 4 (U, O pow + (70, U Yo
= (AW, Z')pe + (W, Wrow + (Y80, U7 )row. (C.9)

The calculation for the last term is

B(O2w, 02 Aggw')ro = —B(OIW, 207 W) re = —B(O; W, OF W' )r»
= (YOIW + x W, —B/70:W' —1/7x¥)rs
= =W, 02W o — (X, B/70:W")re — (xT, 1/yx ¥ )re — (97 W, X ¥ )r»
= —B(OZFW, 02W")re + (W, 1/7(¥' + 497, ))row — (¥, 1/78 ) pow — (U, ©') pow
= B(D? Aga W, 0*W' Vo + (U, W Vpow — (T, T ) ppw
= B(O2 AW, O2W e, (C.5)

where the last two terms add up to zero by Green’s second identity (since ¥ = 0 on
I'f) and we have used the edge conditions for the plate twice.
Adding the last four equations leaves

(a0 () (5D, oo

where — (U, W/ )pow + (U, ¥)rpw = 0 follows from Green’s second identity since ¥ = 0
on T'f.

C.2. Normalization. The normalization of the eigenfunctions is achieved by
using the result that the eigenfunctions satisfy the same normalizing condition with
and without the scattering terms. This result, the proof of which is quite technical,
is well-known and has been shown for many different situations. The original proof
was for Schrodinger’s equation and was due to [22, 10]. A proof for the case of the
Helmbholtz equation was given by [27]. Recently the proof was given for water waves
by [6, 7]. In none of these papers were there any calculations made, nor was the
domain semi-infinite.

We assume that the eigenfunctions satisfy the same normalizing condition with
and without the scattering terms. Note that no scattering means that the plate does
not move and hence, the incident wave is fully reflected, i.e. &, = 0 and ¢, = dom
for all m € IN. Thus, noting that ky = —ik and ko = —ik, we obtain

(S0 ) (82)) = o oy e

0
=4/ coskx cos kr dx = 2md(k — k).

— 0o
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