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A GENERAL SPECTRAL APPROACH TO THE TIME-DOMAINEVOLUTION OF LINEAR WATER WAVES IMPACTING ON AVERTICAL ELASTIC PLATE∗MALTE A. PETER† AND MICHAEL H. MEYLAN‡Abstract. We present a solution in the time-domain to the two-dimensional linear water-waveproblem, in which a semi-in�nite �uid region is bounded on one side by a vertical elastic plate. Theproblem is solved using a generalized eigenfunction expansion from the solutions for single frequen-cies and we begin with a novel solution of the single-frequency problem. By formulating the problemusing the acceleration potential, we �nd an inner-product space, in which the evolution operator withcontinuous spectrum is self-adjoint. This inner-product space is required for the generalized eigen-function solution, which allows to prescribe arbitrary initial water surface and plate displacementsand velocities. Furthermore, using the generalized eigenfunction expansion, the solution is approx-imated by deforming the contour of integration and using the contributions from the singularitiesof the analytic continuation. Numerical experiments show that the long-time behavior in certainsituations can be well approximated by this method.Key words. Water waves, Spectral theory, Generalized eigenfunction expansion, Scattering,Complex scattering frequency.AMS subject classi�cations. 76B15, 76M22, 74F10, 35P25, 47A40.1. Introduction. Hydroelasticity is the study of the interaction of �uids andelastic bodies. The present paper concerns a particular hydroelastic problem, in whicha semi-in�nite �uid interacts with a vertical elastic plate. The problem is motivatedby both trying to understand the ways, in which waves interact with the vertical plate,and how the vibration of the vertical plate is a�ected by the presence of the �uid. Theformer problem is motivated by wave-impact problems, which occur in tanks of �uid,and the latter problem is concerned with the understanding of tank-wall vibration. Itturns out that the two problems are closely connected mathematically and we solveboth problems in a uni�ed approach in what follows.The linear problem of a vertical elastic plate, which forms the right-hand bound-ary of a semi-in�nite two-dimensional �uid domain, has not been well studied andwe present here a novel method even to solve for the single-frequency solutions. Thecorresponding problem of a �oating elastic plate has received enormous research con-sideration on the other hand, mainly motivated by the study of ocean-wave interactionwith sea ice [24, 23] or so-called Very Large Floating Structures [26]. It is worth point-ing out that violent wave impact (i.e. very steep or breaking waves) on walls has beenstudied substantially, both theoretically and experimentally, cf. [11, 20, 12, 2] for ex-ample. In this context, other e�ects become important such as nonlinearity of thewaves and air entrapment, which are not accounted for within the linearized theoryemployed here. However, an elastic plate, which is displaced by a violent impact, mayvery well oscillate and decay according to the linear theory we present here.We solve the problem using a generalized eigenfunction expansion, which is a gen-eralization of the standard eigenfunction method on bounded domains to domains in
∗A PRELIMINARY SHORT SUMMARY OF THE RESULTS HAS APPEARED IN [21].
†Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, NewZealand. Current address: Institute of Mathematics, University of Augsburg, 86135 Augsburg,Germany and Augsburg Centre for Innovative Technologies, University of Augsburg, Germany(malte.peter@math.uni-augsburg.de).
‡Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, NewZealand (meylan@math.auckland.ac.nz). 1



2 M. A. PETER AND M. H. MEYLANwhich energy can radiate to in�nity. The existence of an in�nite boundary compli-cates the standard problem in two ways. Firstly, the spectrum becomes continuousso that the normalization of the eigenfunctions becomes non-trivial and, secondly, theexistence of a boundary at in�nity also makes the boundary conditions, which mustbe imposed, non-trivial. However, the eigenfunctions associated with the continuousspectrum are exactly the single-frequency solutions, which are the object of principleinterest and for which many methods of solution have been developed. The general-ized eigenfunction method began with the work of [22, 10] for Schrödinger's equationsand was extended for water waves by [4, 1, 6, 7]. All of these solutions were theoreticaland the use of this method for numerical calculations does not seem to have been wellinvestigated. Numerical methods were only recently developed for the case of �oatingplates by [9], for rigid bottom-mounted cylinders in three dimensions in [18] and forgeneral �xed bodies in two dimensions by [17].Besides supplying an easily computable solution for the water-wave scattering byan elastic wall, the other main aim of the paper is to further develop the generalized-eigenfunction-expansion method. It is to be expected that the method could be ex-tended to almost any scattering problem, which involves a domain with boundaries atin�nity. However, each time a new scattering term appears, a very careful treatmentis required. In the present work, this novel complication arises from the semi-in�nitedomain with vertical boundary given by a plate and by the plate extending beyondthe �uid. Furthermore, the current new presentation of the method is clearer than inprevious works and, in particular, does not involve positive and negative frequencies,which avoids many of the technicalities.It is well known that, in certain situations, systems display resonance behavior.In our case, this is associated with a plate of much greater density than the �uidand which is therefore only lightly damped. In this case, while there is no point inthe discrete spectrum, there is a singularity in the analytic extension of the solution(resolvent) close to the real axis, a so-called complex scattering frequency. The ap-proximation of the solution using this singularity via the Laplace transform is knownas the singularity-expansion method. This method may be viewed as a generalizationof Lax�Phillips scattering [13] to problems, in which the incoming and outgoing sub-spaces are not orthogonal (as is the case for the present problem under study). Theapproach we take here is somewhat di�erent, and we use the generalized eigenfunctionsolution rather than the Laplace-transform solution as our starting point. It shouldbe noted that, because we can determine the single-frequency solutions so easily, thegeneralized eigenfunction solution is much simpler than the equivalent solution usinga Laplace-transform method such as the singularity-expansion method [5, 8] (or anyother related methods such as the memory-e�ect method [16]).Our aim here is to solve the time-domain problem of a vertical elastic plate formingthe right-hand boundary of a two-dimensional semi-in�nite �uid domain. We expandthe solution in terms of the single-frequency solutions using a generalized eigenfunc-tion expansion. The generalized eigenfunction expansion allows us to express thesolution in the time-domain for initial conditions for both the �uid surface and theplate. We then consider an approximation method based on singularities of the ana-lytic extension combined with contour integration of the Fourier-type integrals, whichappear in the generalized eigenfunction expansion. From this approximation method,modes are calculated, which may be thought of as corresponding to the modes ofvibration of a plate vibrating against a semi-in�nite �uid. Care has to be taken inthe interpretation of these modes, because the mathematical structure of the problem



Time-dependent water waves impacting on a plate 3
Fig. 2.1. Sketch of the problem setting.is di�erent from the traditional vibrational problems for a self-adjoint problem. Forexample, these modes are valid only close to the plate.The paper is organized as follows: We begin with the precise formulation of theproblem (�2) and the solution of the single-frequency problem (�3). Section 4 isconcerned with the solution of the time-domain problem using the generalized eigen-function expansion method. The approximation method using complex scatteringfrequencies is developed in �5. Numerical experiments are presented in �6 and a sum-mary and discussion of the results are given in �7. The paper has three appendicesdiscussing the roots of the dispersion relation for complex frequencies (�A), somedetails about the eigenfunctions of the plate (�B) as well as some properties of theevolution operator A (�C).2. Statement of the problem and mathematical formulation. The prob-lem consists of a semi-in�nite �uid domain Ω = {(x, z) ∈ R

2 | − ∞ < x < 0, −h <
z < 0}, where z = 0 represents the free water surface and where there is a verticalelastic plate at x = 0, the boundaries of which may extend beyond the domain. Inparticular, the height of the plate extends from −h to H with H ≥ 0. A sketch of thesetting can be found in �gure 2.1. We assume the �uid �ow is irrotational and that itcan be described using linear inviscid theory. The plate is governed by the Bernoulli�Euler plate equation. In all of what follows, we work with standard dimensionlesscoordinates, where the spatial variables have been scaled by a length parameter Land the time variable by √

L/g, where g is the gravitational acceleration.2.1. Governing equations. The mathematical description of the problem is asfollows. We use the acceleration potential Ψ to describe the �uid motion, rather thanthe velocity potential as is standard. This makes the equations in the time-domainsimpler and was used in [9] for the generalized eigenfunction solution for a �oatingplate. For all times t > 0, the potential Ψ(x, z, t) satis�es
−∆Ψ = 0, (x, z) ∈ Ω, (2.1a)
∂nΨ = 0, −∞ < x < 0, z = −h, (2.1b)where ∂n is the outward normal derivative. The kinematic condition at the free-surfaceis
∂2

tZ = ∂nΨ, −∞ < x < 0, z = 0, (2.1c)where Z(x, t) is the displacement of the water surface. The dynamic condition is
Z + Ψ = 0, −∞ < x < 0, z = 0, (2.1d)(note that this condition would read gZ+Ψ = 0 in standard dimensional coordinates.)



4 M. A. PETER AND M. H. MEYLANThe plate is governed by the Bernoulli�Euler plate equation. There is a force onthe wetted surface of the plate from the water (given by p = −ρΨ, where ρ is thewater density) while there is no force above the free water surface. The dimensionlessgoverning equation for the plate displacement W (z, t) thus reads
γ∂2

tW + β∂4
zW =

{

0, 0 ≤ z < H,

−Ψ, −h < z < 0,
(2.2)subject to edge conditions, where the positive parameters β and γ are related tothe mass and the sti�ness of the plate, resp. In what follows, we consider the plateclamped at the bottom, i.e.

W = 0, ∂zW = 0, z = −h. (2.3)At the top, the plate is either clamped, i.e.
W = 0, ∂zW = 0, z = H, (2.4)or free to move, i.e.
∂2

zW = 0, ∂3
zW = 0, z = H. (2.5)Other boundary conditions could be considered within the framework of this work.For convenience, we write χ for the characteristic function of the wetted plate surface,i.e. χ(z) = 1 for z < 0 and χ(z) = 0 for z ≥ 0.The system of equations is completed by initial conditions for the water surfaceand plate displacements and their velocities:

Z(x, 0) = Z0(x), ∂tZ(x, 0) = Z1(x), −∞ < x < 0, (2.6)
W (z, 0) = W0(z), ∂tW (z, 0) = W1(z), − h < z < H. (2.7)2.2. Formulations in terms of plate modes. We assume we have an in�niteset of orthonormal modes wn(z), n = 0, 1, . . . , which satisfy the equation ∂4

zwn =
λ4

nwn as well as the appropriate boundary conditions at the ends of the plates (whichmay extend beyond the boundary of the �uid domain). The discussion of these modesis given in Appendix B. This allows us to express the displacement of the plate as
W (z, t) =

∞
∑

n=0

αn(t)wn(z). (2.8)At x = 0, the plate displacement and the acceleration potential are relatedthrough the kinematic and dynamic conditions. The equations coupling the wateracceleration potential and the plate displacement are therefore
−χΨ = γ

∞
∑

n=0

∂2
t αnwn + β

∞
∑

n=0

λ4
nαnwn (2.9)and, along the wetted surface of the plate,

∞
∑

n=0

∂2
t αnwn = ∂nΨ. (2.10)For z < 0, combining the last two equations gives

−Ψ − γ∂nΨ = β

∞
∑

n=0

λ4
nαnwn. (2.11)



Time-dependent water waves impacting on a plate 53. Single-frequency solution. In this section, the problem is solved under theassumption that the acceleration potential and the surface displacement are timeharmonic with given radian frequency ω, i.e.
Ψ(x, z, t) = Re {ψ(x, z)e−iωt}, Z(x, t) = Re {ζ(x)e−iωt} (3.1)with a complex potential ψ and complex displacement ζ.At the free surface, condition (2.1c) simpli�es to

−ω2ζ = ∂nψ, z = 0. (3.2)This can be combined with equation (2.1d) to give the single free-surface condition
αψ = ∂zψ, z = 0, (3.3)where α = ω2 (in dimensional coordinates, this would read ω2/g). The positivewavenumber k is related to α by the dispersion relation
α = k tanh kh. (3.4)See [14] e.g., the acceleration potential takes the form

ψ(x, z) = AIf0(z)e
−k0x +

∞
∑

m=0

cmfm(z)ekmx, (3.5)where the �rst term is due to the ambient incident potential of amplitude AI and thecoe�cients cm are of the scattered wave�eld only. The functions
fm(z) =

cos km(z + h)

cos kmh
(3.6)are the vertical eigenfunctions. The numbers km, m ≥ 1, are given as positive realroots of the dispersion relation

α+ km tan kmh = 0 (3.7)and k0 = −ik. Note that k0 is a (purely imaginary) root of (3.7). Moreover, we have
∫ 0

−h

fm(z)fn(z) dz = δmnNm, (3.8)where Nm is given by
Nm =

1

2

cos kmh sinkmh+ kmh

km cos2 kmh
. (3.9)Using (3.5) at x = 0 in (2.9) gives

χ(z)(−AIf0(z) −
∞
∑

m=0

cmfm(z)) =
∞
∑

n=0

(−γω2 + βλ4
n)αnwn(z). (3.10)Multiplying by wk and integrating from −h to H with respect to the vertical variable,we obtain

−AI

∫ 0

−h

wk(z)f0(z) dz −
∞
∑

m=0

cm

∫ 0

−h

wk(z)fm(z) dz = (−γω2 + βλ4
k)αk. (3.11)



6 M. A. PETER AND M. H. MEYLANThe second equation can be obtained from (2.10). For time harmonic motion, it reads
−ω2

∞
∑

n=0

αnwn(z) = −k0A
If0(z) +

∞
∑

m=0

kmcmfm(z). (3.12)Multiplying by fl and integrating as before gives
−ω2

∞
∑

n=0

αn

∫ 0

−h

wn(z)fl(z) dz = −k0N0A
Iδl0 + klNlcl. (3.13)We have thus derived a system of equations for the unknown coe�cients αn and cm:

αn +
1

βλ4
n − γω2

∞
∑

m=0

cm

∫ 0

−h

wn(z)fm(z) dz = − AI

βλ4
n − γω2

∫ 0

−h

wn(z)f0(z) dz, n ∈ N,(3.14a)
ω2

kmNm

∞
∑

n=0

αn

∫ 0

−h

wn(z)fm(z) dz + cm = AIδm0, m ∈ N.(3.14b)For future reference, we note that this system can be written in the form
(I +A(k))c(k) = b(k), (3.15)where c(k) = (αn(k), cm(k)) and I is the identity operator, and where we have ex-plicitly expressed the dependence on the wavenumber k, which is given a priori in thesingle-frequency case (as it is uniquely determined from (3.4) for given ω).The system (3.14) can be solved very e�ciently numerically by truncation. Thefunctions wn and fm are given in closed form (also see Appendix B) and the integralsin (3.14) can be calculated analytically. Moreover, we note that the dimension of thelinear system of equations (3.14) can be reduced by eliminating the coe�cients cm or

αn. This can be achieved easily by solving (3.13) for cl and substituting into (3.11)or by using (3.11) in (3.13), respectively.4. Time-dependent problem. We want to use the time-harmonic solutionsfor �xed frequencies to construct the solution for arbitrary initial conditions. Fromthe nature of the governing equations, four functions need to be prescribed: theinitial displacement Z0(x) and velocity Z1(x) of the water surface and the initialdisplacement W0(z) and velocity W1(z) of the plate.From the linearity of the problem, it is clear that a superposition of the single-frequency solutions will be a solution of the time-dependent problem. However, itis also true that any solution in time domain can be written as a linear combina-tion of single-frequency solutions with certain frequency- (or wavenumber-) dependentweights. It is not clear, however, how these weighting functions must be chosen inorder to meet the initial conditions. The remainder of this section is devoted to thethis problem, which we solve using the generalized eigenfunction method based on aspectral formulation.4.1. Spectral Formulation and general solution. We want to rewrite thegoverning equations in the form of an abstract wave equation. This can be done interms of the surface and plate displacements in the two-component system
∂2

t

(

Z
W

)

+

(

A11 A12

A21 A22

) (

Z
W

)

= 0. (4.1)



Time-dependent water waves impacting on a plate 7The operators Aij are Dirichlet-to-Neumann-type operators mapping in the followingway: A11 : Z 7→ −Ψn|Γf , A12 : W 7→ −Ψn|Γf , A21 : Z 7→ −∂2
tW |Γp and A22 : W 7→

−∂2
tW |Γp In all cases, Ψ is the solution of the boundary-value problem

−∆Ψ = 0, − h < z < 0, (4.2a)
∂zΨ = 0, z = −h, (4.2b)and the remaining boundary conditions are given by:free surface wetted plate
Aj1 Ψ = −Z Ψ = −γΨn

Aj2 Ψ = 0 Ψ = −γΨn − β∂4
zWFor A2j , the potential at the wetted plate further needs to be mapped to theacceleration of the full plate. For A21, we have to use

γ∂2
tW = −χΨ,while for A22, we require

γ∂2
tW = −β∂4

zw − χΨ,each subject to the edge conditions prescribed for the plate.The operator
A =

(

A11 A12

A21 A22

) (4.3)is self-adjoint in the domain of A equipped with the inner product
〈(

Z
W

)

,

(

Z ′

W ′

)〉

A

= 〈Z,Z ′〉Γf + β〈∂2
zW,∂

2
zW

′〉Γp , (4.4)where 〈 · , · 〉Γ denotes the standard inner product of L2(Γ), cf. Appendix C.1 for thesymmetry of A. It has a continuous spectrum: [0,∞). The corresponding general-ized eigenfunctions are precisely the single-frequency solutions for a unit-amplitudeincident wave, (

ζ̂(x, k), ŵ(z, k)
).Thus, any solution of (4.1) can be written in the form

(

Z(x, t)
W (z, t)

)

=

√

2

π

∫ ∞

0

f1(k)

(

ζ̂(x, k)
ŵ(z, k)

)

cosω(k)t

+ f2(k)

(

ζ̂(x, k)
ŵ(z, k)

)

sinω(k)t

ω(k)
dk, (4.5)with wavenumber-dependent weighting functions f1(k) and f2(k). From AppendixC.2, we have

〈(

ζ̂( · , k)
ŵ( · , k)

)

,

(

ζ̂( · , κ)
ŵ( · , κ)

)〉

A

= 2πδ(k − κ). (4.6)Thus, for the initial displacement of the free surface Z0 and of the plate W0, weobtain
(

Z0(x)
W0(z)

)

=

√

2

π

∫ ∞

0

f1(k)

(

ζ̂(x, k)
ŵ(z, k)

)

dk (4.7)



8 M. A. PETER AND M. H. MEYLANand we �nd that
〈Z0, ζ̂( · , κ)〉Γf + β〈∂2

zW0, ∂
2
z ŵ( · , κ)〉Γp

=

〈(

Z0

W0

)

,

(

ζ̂( · , κ)
ŵ( ·, κ)

)〉

A

= 2
√

2πf1(κ). (4.8)Hence,
∫

Γf

Z0(x)
¯̂
ζ(x, κ) dx + β

∫

Γp

∂2
zW0(z)∂

2
z

¯̂w(z, κ) dz = 2
√

2πf1(κ), (4.9a)where the overbar denotes complex conjugation, and, similarly,
∫

Γf

Z1(x)
¯̂
ζ(x, κ) dx + β

∫

Γp

∂2
zW1(z)∂

2
z

¯̂w(z, κ) dz = 2
√

2πf2(κ) (4.9b)are obtained, which determine the functions f1 and f2 in the representation (4.5).In what follows, we consider in detail problems with vanishing initial velocities.In such cases, f2 = 0 and (4.5) simpli�es to
(

Z(x, t)
W (z, t)

)

=

√

2

π

∫ ∞

0

f1(k)

(

ζ̂(x, k)
ŵ(z, k)

)

cosω(k)t dk. (4.10)As the product of f1 and the single-frequency solution must be real (in particular, Zand W are real and so is cosωt), this can be rewritten equivalently as
(

Z(x, t)
W (z, t)

)

=
2√
2π

Re

[
∫ ∞

0

f1(k)

(

ζ̂(x, k)
ŵ(z, k)

)

e−iω(k)t dk

]

. (4.11)We use this form in the derivation of the approximation method in �5 as it is moreconvenient for the manipulations carried out there. An expression analogous to (4.11)can be derived for vanishing initial displacements, i.e. f1 = 0.It is worth noting that it is generally equivalent to work with complex exponentialsas in (4.11) and (4.16) or with trigonometric functions as in (4.5). See [3] e.g., writing
u(t) = (Z(t),W (t))T , the solution of problem (4.1) can be expressed in the twoequivalent forms

u(t) = A− 1
2Re [e−iA

1
2 t(A 1

2u0 + iu1)] (4.12)
= cos(A 1

2 t)u0 + A−
1
2 sin(A−

1
2 t)u1. (4.13)Both formulations have advantages and disadvantages. In particular, while the trigono-metric approach leads to simpler formulas for the solution of the initial�boundaryvalue problem (cf. (4.9)), the complex exponential is more convenient in the deriva-tion of the approximation theory presented in �5.4.2. Canonical initial conditions. We discuss in detail the cases where there iseither only a non-zero initial water surface displacement or only a non-zero initial platedisplacement. Similar expressions are derived if only one of the initial velocities is non-zero. For vanishing initial velocities, the water surface and plate displacements aregiven by (4.10) or (4.11). We also derive a very simple expression for a pulse initiallytravelling toward the plate from far away, which is an important initial condition fornumerical experiments in engineering applications.



Time-dependent water waves impacting on a plate 94.2.1. Initial surface displacement. If we have non-zero initial surface dis-placement Z0 while Z1,W0,W1 = 0, f2 vanishes and (4.9a) simpli�es to
f1(κ) =

1

2
√

2π

∫

Γf

Z0(x)
¯̂
ζ(x, κ) dx. (4.14)A simpli�cation can be made if the initial surface displacement vanishes nearthe plate. In this case, the evanescent waves in ¯̂
ζ have already decayed virtuallycompletely at the location of the pulse. Thus,

f1(κ) =
1

2
√

2π

∫

Γf

Z0(x)(e
−iκx + c̄0(κ)eiκx) dx. (4.15)It can be shown further that (4.10) with (4.15) reduces to

(

Z(x, t)
W (z, t)

)

=
2√
2π

Re

[
∫ ∞

0

f(k)

(

ζ̂(x, k)
ŵ(z, k)

)

cosω(k)t dk

] (4.16)in this case, where
f(k) =

1√
2π

∫

Γf

Z0(x)e
−ikx dx. (4.17)4.2.2. Initial plate displacement. If we have non-zero initial plate displace-ment W0 while Z0, Z1,W1 = 0, (4.9a) simpli�es to

f1(κ) =
β

2
√

2π

∫

Γp

∂2
zW0(z)∂

2
z

¯̂w(z, κ) dz, (4.18)and f2 = 0. Representing W0 in terms of the plate eigenfunctions, W0 =
∑∞

n=0 α
0
nwnsay, this further simpli�es to

f1(κ) =
β

2
√

2π

∞
∑

n=0

α0
nλ

4
n
¯̂αn(κ). (4.19)4.2.3. Incident pulse from far away. The case of an incident pulse hittingthe plate can be treated as follows. If the plate is at rest at t = 0 and the initialwater-surface displacement vanishes near the plate, (4.14) reduces to (4.15). In thesame way, (4.9b) simpli�es to

f2(κ) =
1

2
√

2π

∫ 0

−∞

Z1(x)(e
−iκx + c̄0(κ)eiκx) dx. (4.20)It is not obvious from this representation what Z1 is in order for the pulse to travel tothe right. This can be achieved easily, however, noting that taking a time derivativeis equivalent to multiplying with ±iω in the Fourier domain. Choosing the sign suchthat the pulse travels to the right (i.e. toward the plate) gives

f2(κ) =
iω

2
√

2π

∫ 0

−∞

Z0(x)(−e−iκx + c̄0(κ)eiκx) dx. (4.21)Similarly to (4.16), (4.10) reduces to
(

Z(x, t)
W (z, t)

)

=
2√
2π

Re

[
∫ ∞

0

f(k)

(

ζ̂(x, k)
ŵ(z, k)

)

e−iω(k)t dk

] (4.22)in this case, where f is given by (4.17).



10 M. A. PETER AND M. H. MEYLAN5. Approximation of near-resonant behavior. Near-resonant behavior oc-curs when a complex scattering frequency is close to the real axis. Thus, the complexscattering frequencies are discussed �rst. For the situation of a complex scatteringfrequency occurring near the real axis, an approximation of the solution for largetimes is given.5.1. Complex scattering frequencies. The system of equations (3.14) can bewritten in the form (3.15), i.e.
(I +A(k))c(k) = b(k). (5.1)Note that we have explicitly expressed the dependence on the parameter k. Thisequation is typical of scattering problems, in that we have an operator plus the iden-tity. This is because the scattering process is a perturbation of the incident wave, andin the absence of scattering we have simply the identity. Exactly such an equationappears in [5]. The explicit solution to the scattering problem is of course given by

c(k) = (I +A(k))−1b(k).The key to understanding this equation is to allow the parameter k to becomecomplex. We then �nd that the operator possesses zero eigenvalues in the lowercomplex plane (which are equivalent to the eigenvalues of the operator A(k) witheigenvalue −1). It is obvious that, where these zeros occur, c(k) is singular, i.e. thesystem has an in�nite response (note that this is not an in�nite response for a realfrequency unless there is a trapped mode). These zeros are called complex scatteringwavenumbers and, more commonly, the corresponding frequencies ω are known ascomplex scattering frequencies. For very special situations for the general water-wave-scattering problem, a purely real zero can occur, which is known as a trapped mode.We do not expect to �nd any trapped modes in the situation under considerationhere and they have never been found. However, as will be seen later on (cf. �6),there are situations of near-trapping or near-resonance, where a scattering frequencyis close to the real axis. The aim of the present work is to examine what happenswhen the scattering frequencies become close to the real axis. This allows us to makepredictions of the response in the time and frequency domains.5.2. Approximation for large times. Suppose there is a scattering frequencyat a complex wavenumber kr. The scattering wavenumber kr is associated with aneigenvector with zero eigenvalue. That is, there is an eigenvector ukr
with the propertythat (I + A(kr))ukr

= 0. Then we know that near the pole the inverse of I + A(kr)can be written as
(I +A(k))−1 ≈ R(kr)

k − kr
, (5.2)where R(kr) is the residue which is connected with a projection onto the eigenspaceassociated with kr. We can derive the expression for R(kr) using a result due to [25]for the case of a simple zero (the eigenspace has dimension one) at kr. It is alsopossible to treat roots of higher multiplicity. Since we do not expect such roots tooccur in this problem we do not follow this direction here. It can be shown that

R(kr) =
〈ukr

, uk̄r
〉

〈A′(kr)ukr
, uk̄r

〉 (5.3)
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is the eigenvector of the adjoint operator with eigenvalue zero and

A′(kr) is the derivative of A at kr given by
A′(kr) =

d

dk
A(k)

∣

∣

k=kr
. (5.4)For future reference, we denote by kr the complex value of k closest to the realaxis, for which (I + A(k)) has an eigenvalue zero, and we write cr = R(kr)b(kr), sothat (I +A(kr))

−1b(kr) ≈ cr

k−kr
. Recalling that cr is made up of the coe�cients of thewater and the plate, we write cr = (crm, αrn).5.2.1. Initial surface displacement. We discuss the case of an initial water-surface displacement. A similar expression for the case of a right-travelling pulse canbe derived from expression (4.22) in the same way.From (4.11), we obtain

(

Z(x, t)
W (z, t)

)

=
2√
2π

Re

[
∫ ∞

0

f1(k)

(

ζ̂(x, k)
ŵ(z, k)

)

e−iω(k)t dk

]

. (5.5)Since the contribution of the incident wave rapidly decreases for large times, we canapproximate
(

Z(x, t)
W (z, t)

)

∼ 2√
2π

Re

[
∫ ∞

0

f1(k)

(

−
∑∞

m=0 ĉm(k)ekm(k)x
∑∞

n=0 α̂nwn(z)

)

e−iω(k)t dk

] (5.6)for large times. We close the contour in the lower half plane, the additional contri-butions of which are negligible for large times (note that this contour is negativelyoriented). Also using the approximation ĉm(k) ≈ crm

k−kr
and α̂n(k) ≈ αrn

k−kr
, the integralcan be calculated using the residue theorem. This gives

(

Z(x, t)
W (z, t)

)

∼ −2
√

2π Re

[

if1(kr)

(

−
∑∞

m=0 crmekm(kr)x
∑∞

n=0 αrnwn(z)

)

e−iω(kr)t

] (5.7)for large t.5.2.2. Initial plate displacement. For arbitrary initial plate displacement, we�rst note that, from (4.19),
f(k) ∼ β

2
√

2π

∞
∑

n=0

α0
nλ

4
n

ᾱrn

k − k̄r
(5.8)near kr. Similarly,

(

ζ̂(x, k)
ŵ(z, k)

)

∼ 1

k − kr

(

−∑∞

m=0 crmekm(k)x
∑∞

n=0 αrnwn(z)

)

, (5.9)where we have neglected the contribution from the incident wave as before.From (4.11), we have
(

Z(x, t)
W (z, t)

)

=
2√
2π

Re

[
∫ ∞

0

f1(k)

(

ζ̂(x, k)
ŵ(z, k)

)

e−iω(k)t dk

]

. (5.10)



12 M. A. PETER AND M. H. MEYLANClosing the contour of integration in the forth quadrant and using the approximations(5.8) and (5.9) gives
(

Z(x, t)
W (z, t)

)

∼ −Re
[ iβ

kr − k̄r

∞
∑

j=0

α0
jλ

4
j ᾱrj

(

−∑∞

m=0 crmekm(kr)x
∑∞

n=0 αrnwn(z)

)

e−iω(kr)t
](5.11)for large t.The formulas above can easily be extended to account for more than one com-plex scattering frequency near the real axis by also including the residues at thesewavenumbers.5.3. Accuracy of the approximation. The approximations derived in theprevious subsection are for large times. A rough idea about how quickly this ap-proximation becomes accurate can be obtained by looking at the double roots of thedispersion relation (3.4) as these double roots imply branch cuts of the integrand.In the derivation of the approximate formulas (5.7) and (5.11), it is an importantstep to close the contour of integration in the forth quadrant of the complex plane sothat it does not encircle any poles or branch cuts of the integrand other than the onespeci�cally accounted for. The contribution from this extra integration path decaysand this happens the quicker the further this path is away from the real axis (asthe exponentials of the form e−iω(k)t decay faster for large t if ω has larger negativeimaginary part). The exact locations of the double roots are discussed in AppendixA. Depending on the parameters of the problem, the roots of the dispersion relation(3.4) lie further away or closer to the real axis. The closer they lie, the longer it takesfor the approximation to become accurate.6. Numerical experiments. We present some results of numerical experi-ments. In all results shown, the plate sti�ness and mass are chosen as β = 0.01and γ = 0.01 and the water depth is h = 1 (this can be thought of as having non-dimensionalised with respect to water depth). All initial values not speci�cally men-tioned in each subsection are assumed to vanish.We begin with presenting results for the initial�boundary value problem withgiven water-surface displacement (�6.1) and with plate displacement (�6.2) for �xedand free plate top. The validity of the approximation for large times is discussedthereafter (�6.3).6.1. Given water-surface displacement. For a plate extending above thewater surface by a third of its length (i.e. H = 0.5) and an initial water-surfacedisplacement given by

Z0(x) = 3
4 (x+ 8)e−(x+8)2/2, (6.1)snapshots of the solution at t = 0, 5, 10, 15, 20, 25, 30, 35, 40 are shown in �gure 6.1 fora �xed plate and in �gure 6.2 for a plate with freely moving top. The initial water-surface displacement results in two waves: one moving to the left and one movingto the right. The one travelling to the right eventually hits the elastic plate. Someenergy is transferred to the plate, some is re�ected as a wave travelling to the left.The energy transferred to the plate results in decaying oscillations of the plate, whichin turn give rise to waves of decreasing amplitude travelling away from the plate. Thequalitative behavior of the solution is similar for �xed and free top.
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Fig. 6.1. Snapshots of the solution with �xed plate top for prescribed non-zero initial water-surface displacement.
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Fig. 6.2. Snapshots of the solution with free plate top for prescribed non-zero initial water-surface displacement.
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Fig. 6.3. Snapshots of the evolution of the solution for prescribed non-zero plate displacementin the �rst mode. The plate top is �xed and H = 0.6.2. Given plate displacement. For H = 0 and �xed plate top, the evolutionof an initial plate displacement in the �rst plate mode,
W0(z) = −0.5w0(z), (6.2)is shown in �gure 6.3. It can be seen that the plate, initially bent to the right, �exesto the left resulting in a long wave travelling away from the plate. Eventually, theplate keeps oscillating with slowly decreasing amplitude at a certain frequency, whichresults in a wave of that frequency travelling to the left.This slowly decaying oscillatory behavior is connected with a complex scatteringfrequency near the real axis. This is investigated in more detail in �6.3. Similarresults would have been obtained for H = 0.5 but the e�ect is more pronounced forthe shorter plate considered here (H = 0).For H = 0.5 and free plate top, snapshots of the evolution of an initial platedisplacement in the second plate mode,
W0(z) = 0.5w1(z), (6.3)are shown in �gure 6.4. Similarly to the previous case, there is an initial wave packettravelling away from the plate and an ongoing slowly decaying oscillation at a certainfrequency.If the plate is excited in the �rst mode (not shown), there are only very littleongoing oscillations.6.3. Approximation for large times. The ongoing oscillations observed inthe previous subsection are related to complex scattering frequencies near the real
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Fig. 6.4. Snapshots of the solution for prescribed non-zero plate displacement in the secondmode. The plate top is free to move.
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Fig. 6.5. Real and imaginary part of f1(k) for �xed plate (left; corresponding to �g. 6.3) andfor free plate (right; corresponding to �g. 6.4).axis. In particular, this can be observed as sharp spikes in the frequency-componentfunction f1(k) (given by (4.19) in these cases), which is shown for both cases in �gure6.5. Using the method of [19], we �nd that there are complex scattering wavenumbersat kr ≈ 11.6116− 0.0130i for the �xed plate (as in �g. 6.3) and kr ≈ 79.5379− 0.0476ifor the free plate (as in �g. 6.4), which precisely coincide with the location of thespikes in �gure 6.5.We want to use the approximation method of �5.2 to estimate the long-timebehavior of the solution of the �xed plate initially bent in the �rst mode (as in �g. 6.3).Using the expression (5.11), the long-time behavior can be easily calculated. Figure6.6 shows the behavior of the full solution (corresponding to �gure 6.3) compared tothe approximation obtained using (5.11). It can be seen that, after a short transient,the approximation quickly becomes accurate.It is noteworthy that it is also possible to excite the mode corresponding to
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Fig. 6.6. Exact and approximate solution of the water-surface displacement at x = −4 andplate displacement at z = −0.5 versus time for �xed plate (corresponding to �g. 6.3).the complex scattering frequency by an incident wave (rather than an initial platedisplacement). Hitting the plate with a wave packet focused on Re kr results inan ongoing oscillation (not shown) similar to that resulting from the initial platedisplacement.7. Summary. A solution to the time-dependent problem of the interaction of asemi-in�nite �uid domain with a free-surface bounded by a vertical elastic plate hasbeen presented. The solution is constructed using a generalized-eigenfunction expan-sion and is valid for both initial �uid and initial plate displacements and velocities.This solution relies on a special inner product, in which the evolution operator isself-adjoint. We have then shown that an approximate solution can be found fromthis generalized-eigenfunction solution by contour integration and by �nding the sin-gularities of the solution extended analytically to complex frequencies.Acknowledgements. This research was supported by Marsden grant UOO308from the New Zealand government.Appendix A. Some remarks on the dispersion relation for complexfrequencies.For real frequencies ω, the parameter α = ω2 in the dispersion relation (3.7),
−km tan kmh = α, (A.1)is real and it is well-known that the equation has two purely imaginary roots ±k0 =

∓ik and a countable number of real roots ±km, m = 1, . . . ,∞ [14]. The occurrenceof the roots in pairs comes from the fact that k tankh is an even function in k.In the context of this work, it is important to understand the roots of the disper-sion relation (A.1) for complex frequencies because extensive use is made of deformingthe contour of integration, originally only containing real frequencies, into the forthquadrant of the complex plane. For the same reason, [5] investigate the solution of thedispersion relation for complex frequencies in detail. The same problem also arises
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z α̃

0 + 0i 0 + 0i
1.1254 + 2.1062i −1.6506− 2.0600i
1.5516 + 5.3563i −2.0578− 5.3347i
1.7755 + 8.5367i −2.2785− 8.5226i
1.9294 + 11.6992i −2.4311− 11.6888iTable A.1First �ve values of z, for which (A.3) is satis�ed, and corresponding values of α̃, for which(A.2) has a double root.in some water-wave problems involving porous structures and this is the reason why(A.1) involving complex right-hand sides is considered by [15]. We brie�y summarizethe results of these works in our notation as far as they are required here.We �rst note that we consider only complex frequencies in the forth quadrantof the complex plane. Correspondingly, we discuss those roots of (A.1), which lie inthe �rst quadrant (corresponding to km, m = 1, . . . ,∞) and in the third quadrant(corresponding to k0).One important property of (A.1) is that it may admit double roots for certaincomplex frequencies. The number of parameters can be reduced from two to only oneby writing z = kmh. Then, it is su�cient to look for solutions of

−z tan z = α̃, (A.2)where α̃ = αh. Equation (A.2) has a double root at z precisely if
sinh 2z + 2z = 0 (A.3)is also satis�ed. In this case, z is the only double root of (A.2) (in the fourth quadrant).Finding the roots of (A.3) in the �rst quadrant and substituting into (A.2) gives thecomplex frequency parameter α̃, for which (A.2) has a double root in the fourthquadrant. Again, it su�ces to restrict to one quadrant of the complex plane. The�rst roots of (A.3) (if numbered with increasing real part) and the correspondingvalues of α̃ are given in table A.Appendix B. Eigenfunctions of the plate.In this section, the eigenfunctions of the plate, i.e. the eigenfunctions of the bi-harmonic operator subject to the �xed and free boundary conditions as introduced in�2.2, are brie�y discussed.The general form of the eigenfunctions of the bi-harmonic operator is given as

wn(z) = C1(cosλn(z + h) + coshλn(z + h)) + C2(cosλn(z + h) − coshλn(z + h))

+ C3(sinλn(z + h) + sinhλn(z + h)) + C4(sinλn(z + h) − sinhλn(z + h)). (B.1)The coe�cients Cj and the eigenvalues λn are determined by the boundary conditionsas well as the restriction that wn has unit norm.We always assume that we have a �xed bottom of the plate, i.e.
wn(−h) = 0, w′

n(−h) = 0, (B.2)and consider the case of a �xed top or a free top at z = H . From the two boundaryconditions (B.2), we �nd that C1 = 0 and C3 = 0, i.e.
wn(z) = C2(cosλn(z+h)−coshλn(z+h))+C4(sinλk(z+h)−sinhλn(z+h)). (B.3)



18 M. A. PETER AND M. H. MEYLANB.1. Fixed plate top. If the plate is also �xed at z = H , we have
w(H) = 0, w′(H) = 0 (B.4)in addition to (B.2). This gives

cosλn(H + h) coshλn(H + h) = 1 (B.5)and allows us to express C4 in terms of C2. Substitution of the result into (B.3) gives
wn(z) = C2

(

(cosλn(z + h) − coshλn(z + h))

+
sinλn(H + h) + sinhλn(H + h)

cosλn(H + h) − coshλn(H + h)
(sinλn(z + h) − sinhλn(z + h))

)

. (B.6)We choose C2 such that wn has unit norm (this can be done analytically).B.2. Free plate top. If the plate is free to move at z = H , we have
w′′(H) = 0, w′′′(H) = 0 (B.7)in addition to (B.2). This gives

cosλn(H + h) coshλn(H + h) = −1 (B.8)and
wn(z) = C2

(

(cosλn(z + h) − coshλn(z + h))

+
sinλn(H + h) − sinhλn(H + h)

cosλn(H + h) + coshλn(H + h)
(sinλn(z + h) − sinhλn(z + h))

) (B.9)for the free-plate-top case. Again, we choose C2 such that wk has unit norm (this canbe done analytically).Appendix C. Properties related to A.C.1. Symmetry of A. We want to show that the operator A de�ned in (4.3)is symmetric in the domain of A equipped with the inner product (4.4). We have
〈(

Z
W

)

,A
(

Z ′

W ′

)〉

A

= 〈Z,A11Z
′ + A12W

′〉Γf + β〈∂2
zW,∂

2
z (A21Z

′ +A22W
′)〉Γp .(C.1)Consider each of the four summands separately. Using Green's second identity, weobtain

〈Z,A11Z
′〉Γf = 〈−Ψ,−Ψ′

n〉Γf = 〈Ψn,Ψ
′〉Γf − 〈Ψ,Ψ′

n〉Γwp + 〈Ψn,Ψ
′〉Γwp

= 〈−Ψn,−Ψ′〉Γf − 〈−γΨn,Ψ
′
n〉Γwp + 〈Ψn,−γΨ′

n〉Γwp

= 〈A11Z,Z
′〉Γf . (C.2)For the second summand, we can calculate

〈Z,A12W
′〉Γf = 〈−Ψ,−Ψ′

n〉Γf = −〈Ψ,Ψ′
n〉Γpw + 〈Ψn,Ψ

′〉Γpw

= −〈Ψ,Ψ′
n〉Γpw − 〈Ψn, γΨ′

n〉Γpw − 〈Ψn, β∂
4
zW

′〉Γpw

= −〈Ψ,Ψ′
n〉Γpw − 〈Ψn, γΨ′

n〉Γpw − β〈χΨn, ∂
4
zW

′〉Γp

= −〈Ψ,Ψ′
n〉Γpw − 〈Ψn, γΨ′

n〉Γpw − β〈∂2
z∂

2
tW,∂

2
zW

′〉Γp

= −〈Ψ,Ψ′
n〉Γpw − 〈Ψn, γΨ′

n〉Γpw + β〈∂2
zA21Z, ∂

2
zZ

′〉Γp . (C.3)
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β〈∂2

zW,∂
2
zA21Z

′〉Γp = −β〈∂2
zW,∂

2
z∂

2
tW

′〉Γp = −β〈∂4
zW,∂

2
tW

′〉Γp

= β〈∂4
zW, 1/γχΨ′〉Γp = −β〈∂4

zW,Ψ
′
n〉Γpw

= 〈−γΨn − β∂4
zW,Ψ

′
n〉Γpw + 〈γΨn,Ψ

′
n〉Γpw

= 〈Ψ,Ψ′
n〉Γpw + 〈γΨn,Ψ

′
n〉Γpw

= 〈−Ψn,−Ψ′〉Γf + 〈Ψn,Ψ
′〉Γpw + 〈γΨn,Ψ

′
n〉Γpw

= 〈A12W,Z
′〉Γf + 〈Ψn,Ψ

′〉Γpw + 〈γΨn,Ψ
′
n〉Γpw . (C.4)The calculation for the last term is

β〈∂2
zw, ∂

2
zA22w

′〉Γp = −β〈∂2
zW,∂

2
z∂

2
tW

′〉Γp = −β〈∂4
zW,∂

2
tW

′〉Γp

= 〈γ∂2
tW + χΨ,−β/γ∂4

zW
′ − 1/γχΨ′〉Γp

= −β〈∂2
tW,∂

4
zW

′〉Γp − 〈χΨ, β/γ∂4
zW

′〉Γp − 〈χΨ, 1/γχΨ′〉Γp − 〈∂2
tW,χΨ′〉Γp

= −β〈∂2
z∂

2
tW,∂

2
zW

′〉Γp + 〈Ψ, 1/γ(Ψ′ + γΨ′
n)〉Γpw − 〈Ψ, 1/γΨ′〉Γpw − 〈Ψn,Ψ

′〉Γpw

= β〈∂2
zA22W,∂

2
zW

′〉Γp + 〈Ψ,Ψ′
n〉Γpw − 〈Ψn,Ψ

′〉Γpw

= β〈∂2
zA22W,∂

2
zW

′〉Γp , (C.5)where the last two terms add up to zero by Green's second identity (since Ψ = 0 on
Γf) and we have used the edge conditions for the plate twice.Adding the last four equations leaves

〈(

Z
W

)

,A
(

Z ′

W ′

)〉

A

=

〈

A
(

Z
W

)

,

(

Z ′

W ′

)〉

A

, (C.6)where −〈Ψ,Ψ′
n〉Γpw +〈Ψn,Ψ

′〉Γpw = 0 follows from Green's second identity since Ψ = 0on Γf .C.2. Normalization. The normalization of the eigenfunctions is achieved byusing the result that the eigenfunctions satisfy the same normalizing condition withand without the scattering terms. This result, the proof of which is quite technical,is well-known and has been shown for many di�erent situations. The original proofwas for Schrödinger's equation and was due to [22, 10]. A proof for the case of theHelmholtz equation was given by [27]. Recently the proof was given for water wavesby [6, 7]. In none of these papers were there any calculations made, nor was thedomain semi-in�nite.We assume that the eigenfunctions satisfy the same normalizing condition withand without the scattering terms. Note that no scattering means that the plate doesnot move and hence, the incident wave is fully re�ected, i.e. α̂m = 0 and ĉm = δ0mfor all m ∈ N. Thus, noting that k0 = −ik and κ0 = −iκ, we obtain
〈(

ζ̂( · , k)
ŵ( · , k)

)

,

(

ζ̂( · , κ)
ŵ( · , κ)

)〉

A

=

∫

Γf

(

e−k0x + ek0x
)

(e−κ0x + eκ0x) dx

= 4

∫ 0

−∞

cos kx cosκxdx = 2πδ(k − κ).
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