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Abstract
Ordinary differential equations (ODE) are a powerful tool for modeling dynamic processes with
wide applications in a variety of scientific fields. Over the last 2 decades, ODEs have also
emerged as a prevailing tool in various biomedical research fields, especially in infectious disease
modeling. In practice, it is important and necessary to determine unknown parameters in ODE
models based on experimental data. Identifiability analysis is the first step in determing unknown
parameters in ODE models and such analysis techniques for nonlinear ODE models are still under
development. In this article, we review identifiability analysis methodologies for nonlinear ODE
models developed in the past one to two decades, including structural identifiability analysis,
practical identifiability analysis and sensitivity-based identifiability analysis. Some advanced
topics and ongoing research are also briefly reviewed. Finally, some examples from modeling
viral dynamics of HIV, influenza and hepatitis viruses are given to illustrate how to apply these
identifiability analysis methods in practice.
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1. Introduction
Ordinary differential equation (ODE) models have been widely used to model physical
phenomena, engineering systems, economic behavior, and biomedical processes. In
particular, ODE models have recently played a prominent role in describing both the within
host dynamics and epidemics of infectious diseases and other complex biomedical processes
(e.g., [2, 15, 59, 74, 75, 77]). Great attention has been paid to the so-called forward problem
or simulation problem, i.e., predicting and simulating the results of measurements or output
variables for a given system with given parameters. However, less effort has been devoted to
the inverse problem, i.e., using the measurements of some state or output variables to
estimate the parameters that characterize the system, especially for nonlinear ODE models
without closed-form solutions.
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In reality, before rigorous parameter estimation methods can be applied to an ODE model to
formally estimate the model parameters based on experimental data, a serious barrier to
overcome is how to verify whether the model parameters are identifiable based on the
measurements of output variables or their functions when the ODE model does not have a
closed-form solution. Further questions include, if not all model parameters are identifiable,
are a subset of parameters identifiable? How many measurements, at which time points, are
necessary to identify the identifiable parameters? To answer these questions, identifiability
analysis should be done before tackling the inverse problem.

The literature on ODE identifiability analysis is found in journals from a variety of scientific
fields such as mathematics, biomedical modeling, engineering, and statistics; in addition,
various techniques and methodologies from these disciplines are employed in ODE
identifiability studies. Therefore, it is useful to have a comprehensive review on these
methods and approaches, and their further applications, e.g., in experimental design [32, 70,
71, 96]. In this paper, we review identifiability methods with a focus on nonlinear ODE
models for which close-form solutions are not available. In Section 2, we review various
definitions related to identifiability analysis. We review various techniques for structural
identifiability analysis in Section 3. In addition to theoretical (structural) identifiability, it is
also important to evaluate practical identifiability when experimental data are contaminated
with measurement noise. This will be reviewed in Section 4. Sensitivity analysis is widely
used in mathematical modeling to evaluate how sensitive output variables are to parameter
values and input variables. Some sensitivity analysis techniques can also be used to evaluate
parameter identifiability in ODE models, as will be reviewed in Section 5. We illustrate
identifiability techniques using examples from infectious disease modeling in Section 6. We
conclude this paper with some discussions and summary in Section 7.

2. Definitions
A general dynamic system can be expressed as follows:

(2.1)

(2.2)

where x(t) ∈ Rm is a vector of state variables (or dependent variables), y(t) ∈ Rd the
measurement or output vector, u(t) ∈ Rp the known system input vector, and θ ∈ Rq the
parameter vector. The system given by Eq. (2.1) is an ordinary differential equation model
(ODE model). For the inverse problems, θ is unknown and has to be estimated based on
experimental data. There are three common scenarios for θ:

i. constant parameters only;

ii. time-varying parameters only;

iii. a mixture of both constant and time-varying parameters.

Let θ = (θc, θt), where θc denotes the constant unknown parameters and θt denotes the time-
varying unknown parameters. Now Eq. (2.1) and (2.2) can be re-written in the form:

(2.3)
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(2.4)

Before we introduce definitions of identifiability, we review three important and useful
concepts developed in control theory: reachable, controllable and observable [60, 111].

Definition 2.1
Reachable: For a certain initial state x0 of interest, a state x1 is said to be reachable if there
exists a trajectory x(t) starting from x0 which can achieve x1 in a finite time given an
admissible system input u(t).

Note that in the definition above, u(t) is called an admissible input (or admissible control) if
it satisfies all system constraints at any time of interest and a solution of the dynamic system
exists. The existence of such an admissible u(t) leads to the definition of controllability.

Definition 2.2
Controllable: If there exists an admissible u(t) which can transfer an initial state of interest
to a target state in a finite time, the dynamic system is said to be controllable.

Controllability is an important property of a dynamic system since it indicates whether a
system will respond to a certain input and behave as expected. One important application of
this concept is stabilization of dynamic systems. In biomedical research, the dynamic system
could be a virus, such as HIV, infecting a human and the system input could be antiretroviral
therapy; how to control or stabilize the virus via intentionally-designed intervention
strategies is still an interesting and challenging research topic [1, 22, 55, 58, 80, 81, 126].

To better understand dynamic system structure and behavior, it is also necessary to obtain
measurements of the system output variables. However, we may not be able to directly
measure the state variables; instead, we may be able to measure output variables which are
functions of system input and state variables, as specified in Eq. (2.2) or (2.4). If it is
possible to determine the system state from system output measurements, the system is
observable according to the following definition:

Definition 2.3
Observable: Given an initial state x0 and an admissible control u(t), if the current system
state x(t) can be determined only through the system output y(t) in a finite time, the system
is said to be observable.

In the definition above, it is usually assumed that the system output y(t) can be measured
without error. The three definitions introduced so far describe the relationships among four
basic factors of a dynamic system: initial state, input, current state and output. There are also
other interesting concepts and definitions originating in control theory for connecting these
four basic factors of dynamic systems (e.g., [23, 38, 50, 111]).

The concepts discussed above have been introduced for systems with known parameters.
However, these concepts, especially controllability and observability, are also directly
related to system (parameter) identifiability. A system which is controllable and observable
has strong connections among input, state and output variables, and such strong connections
may indicate that the system is identifiable. The reader is referred to [4, 19, 20, 98, 99, 101,
110, 123] for further discussions.
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Definition 2.4
Identifiable: The dynamic system given by Eqs. (2.1) and (2.2) is identifiable if θ can be
uniquely determined from the given system input u(t) and the measurable system output
y(t); otherwise, it is said to be unidentifiable.

Limited system inputs may not result in system outputs with sufficient information for
uniquely determining system parameters. Thus, it is also necessary to have informative input
signals in order to identify system parameters. This idea was formalized by introducing the
concept of a persistently exciting input [63, 64, 65]. Simply speaking, an input is said to be
persistently exciting if enough information on the output variables can be generated from the
input to identify system parameters in the sense that all estimates of system parameters
converge to their true values in a finite time [47]. The assumption of persistently exciting
inputs is a prerequisite for structural identifiability analysis [10] as will be discussed in the
next section.

Ljung and Glad [64] introduced two important concepts, globally identifiable and locally
identifiable.

Definition 2.5
Globally identifiable: A system structure is said to be globally identifiable if for any
admissible input u(t) and any two parameter vectors θ1 and θ2 in the parameter space Θ,
y(u, θ1) = y(u, θ2) holds if and only if θ1 = θ2.

Definition 2.6
Locally identifiable: A system structure is said to be locally identifiable if for any θ within
an open neighborhood of some point θ* in the parameter space, y(u, θ1) = y(u, θ2) holds if
and only if θ1 = θ2.

Both definitions use the concept of one-to-one mapping between parameters and system
input/output. With the development of various identifiability analysis techniques, more
specific definitions of identifiability have been introduced by a number of authors [7, 10, 21,
56, 64, 114, 119]. For instance, Tunali and Tarn [104] introduced a definition of
identifiability when an initial state is given, which was termed locally strongly identifiable.
A similar concept was introduced in [56], called x0-identifiable.

Definition 2.7
Locally strongly identifiable (x0-identifiable): For an admissible input u(t) in the time range
of interest [t0, t1] and a given initial state x0 = x(t0) which is independent of θ and not an
equilibrium point, if there exists an open set Θ0 within the parameter space Θ such that for
any two different parameter vectors θ1, θ2 ∈ Θ0, the solutions x(t, θ, u) exists on [t0, t0 + ε]
(t0 < ε ≤ t1 − t0) for both θ1 and θ2, and y(t, θ1, x0, u(t)) ≠ y(t, θ2, x0, u(t)) on [t0, t0 + ε], the
system structure is said to be locally strongly identifiable (or x0-identifiable).

We notice that this definition is specific for differential equation systems. But it is stringent
with respect to the initial state. More generally, Xia and Moog [119] introduced structurally
identifiability as follows:

Definition 2.8

Structurally identifiable: Let  denote the function space expanded by all input
functions on [t0, t1] which are differentiable up to the order N, and let M denote an open set
of initial system states. The system structure is said to be structurally identifiable if there
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exist open and dense subsets M0 ⊂ M, Θ0 ⊂ Θ, and  such that the system is
locally strongly identifiable at θ given u for any x0 ∈ M0, θ ∈ Θ0, and u ∈ U0.

This definition is also interchangeably called geometrical identifiable [104, 56]. Besides
these identifiability definitions based on one-to-one mappings between system parameters
and system input-output, Glad [37] and Ljung and Glad [64] introduced a definition of
identifiability based on the algebraic equations consisting of the system input and output,
which was called algebraically identifiable. This definition is directly related to
identifiability analysis techniques [29, 64, 118, 119]:

Definition 2.9
Algebraically identifiable: Based on algebraic equations of system state, input and output, if
a meromorphic function

can be constructed after a finite number of steps of algebraic calculation or differentiation
such that Φ = 0 and  hold in the time range of interest [t0, t1] for any (θ, x0, u) in an
open and dense subset of , where k is a positive integer, u ̇, …, u(k) the
derivatives of u, and ẏ, …, y(k) the derivatives of y, the system structure is said to be
algebraically identifiable.

Similarly algebraically identifiability with known initial conditions can be defined as
follows [119]:

Definition 2.10
Algebraically identifiable with known initial conditions: If a meromorphic function

, Φ ∈ Rq, can be constructed
from algebraic equations of system state, input and output after a finite number of steps of
algebraic calculation or differentiation such that Φ = 0 and  hold for all
( ), where k is a positive integer,
( ) in an open and dense subset of Θ × M × U,
( ) and ( ) are the derivatives of u and y at
time , respectively, the system structure is said to be algebraically identifiable with known
initial conditions.

A number of studies have considered system identifiability given initial conditions [26, 37,
64, 83, 104, 119] and reported that known initial conditions can help to identify more
parameters. Particularly, the work of Wu et al. [117] clarified that, giving initial conditions
is equivalent to have more observations on system output such that parameter estimation
reliability can be improved, especially for dynamic systems sensitive to initial conditions.

3. Structural Identifiability Analysis
In this section, we will review structural identifiability methods in details. We will also
discuss the advantages and disadvantages of these methods in practical applications in order
to help the practitioners choose the appropriate approach for specific problems. Furthermore,
we will discuss the minimum number of observations obtained via structural identifiability
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analysis to uniquely determine all identifiable parameters, keeping in mind that this number
could be much higher for real problems due to the presence of measurement error or model
uncertainty.

The concept of structural identifiability was first introduced by Bellman and Åström [10].
As suggested by its name, the corresponding techniques verify system identifiability by
exploring the system structure (that is, the model itself). Early structural identifiability
analysis techniques were developed from control theories in 1970s for linear models,
especially compartmental models. For instance, Bellman and Åström [10] proposed an
analysis technique for linear ODE models based on Laplace transforms. Later, the method
of power series expansion was proposed by Pohjanpalo [84] and the similarity
transformation method was proposed by Walter and Lecourtier [113] for linear ODE
models. These methods have been well summarized in [3] and [51]. In this paper, we focus
on identifiability methods for nonlinear ODE models instead of linear models.

Some of the approaches for linear ODE models such as the similarity transformation method
have been extended by Vajda and Rabitz [107], Vajda et al. [106] and Chappel and Godfrey
[16] to nonlinear ODE models. However, the extension only works for a limited number of
simple nonlinear problems [7]. For general nonlinear models, new techniques are needed. A
simple approach for this purpose, called direct test, was proposed by Denis-Vidal and Joly-
Blanchard [25] and Walter et al. [112]. The basic idea of this approach is to directly use the
identifiability definition to verify parameter identifiability, either analytically [25] or
numerically [112]. However, the analytical direct test is not suitable for high-dimensional
problems and the numerical direct test also has some limitations due to the use of a cut-off
value.

Under the framework of differential algebra [91], new methods and algorithms have also
been developed to target identifiability of general nonlinear models [14, 64, 78]. The
differential algebra approach can utilize the power of symbolic computations, which
requires much less human intervention. Since the differential algebra method was introduced
to investigate the structural identifiability problem [64, 78] in the early 1990s, it has been
successfully applied to nonlinear differential equation models, including models with time-
varying parameters [7]. Ljung and Glad [64] summarized three conditions under which the
system structure is globally identifiable, locally identifiable or not identifiable, respectively;
however, to verify the three conditions, rigorous mathematical theories need to be further
developed.

Xia and Moog [119] proposed another method based on the Implicit Function Theorem. By
taking derivatives of observable system outputs with respect to independent variables (e.g.,
time), all latent variables (unobservable system state variables) can be eliminated after
algebraic calculations and a finite number of equations consisting of known system inputs,
observable system outputs and unknown parameters can be formed. Then a matrix (called
the identification matrix) consisting of the partial derivatives of these equations with respect
to unknown parameters (and usually their derivatives with respect to independent variables)
can be formed. If the identification matrix is non-singular, this system is identifiable. This
method has the advantages of theoretical and practical simplicity and has been successfully
applied to HIV dynamic models of up to 6-dimensions [70, 119]. However, this method
requires high order derivatives, thus the matrix can easily become very complicated and the
singularity of the matrix becomes difficult to verify. Wu et al. [117] further extended this
method by considering multiple time points instead of high order derivatives to overcome
the disadvantages of Xia’s method. The methods based on the Implicit Function Theorem
can be applied alone to verify system identifiability and they can also be employed to verify
the three conditions in the differential algebra approach. However, for dynamic models with
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time-varying parameters, the singularity of the identification matrix is difficult to evaluate
and no reliable conclusion can be easily drawn. Therefore, in practice, the differential
algebra approach and the Implicit Function Theorem approach may have to be combined to
solve a problem. In addition, if initial conditions are unknown, the correlation between
unknown initial conditions and other model parameters can not be verified by structural
identifiability analysis unless such unknown initial conditions explicitly appear on the right-
hand side of Eq. (2.1).

Before moving onto the technical details, it is also helpful to mention it here that structural
identifiability analysis methods are not widely used in practice, yet, due to either the
computational complexity or the lack of mature computer implementations.

3.1. Power Series Expansion and Similarity Transformation
Grewal and Glover [39] studied the identifiability problem for nonlinear ODE models by
considering local linearization of nonlinear systems. However, “the linearized system being
identifiable” is only a necessary condition for “the nonlinear system being identifiable”
instead of a sufficient condition. Therefore, the local linear approximation cannot answer the
question completely. Pohjanpalo [84] proposed another approach called power series
expansion to better handle nonlinear problems.

For the power series expansion method, the function f in Eq. (2.3) is assumed to be infinitely
differentiable with respect to time t, u and x in the time range of interest [t0, t1]; and the
same assumption is needed for x, y and u with respect to time, and for h with respect to x.
Such assumptions are necessary because the power series expansion may require derivatives
of arbitrary orders. The nonlinear system considered by Pohjanpalo [84] is of the following
form:

(3.1)

(3.2)

which is very restrictive. Consider the derivatives of system output y at time t0

where k denotes the kth derivative of y. Therefore, the system input and output can be
connected by their derivatives with respect to time at t0:

(3.3)

(3.4)

where k = 1, …, ∞. Since the derivatives of y are theoretically observable, they are
considered as known. Therefore, an infinite number of equations can be obtained from Eq.
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(3.3) and (3.4) to solve for θc simultaneously. If the solution is unique, then the system
structure is (locally) identifiable.

In nature, the power series expansion method is an approach to verify the x0 identifiability
(or local strong identifiability). However, this method has a serious drawback: high order
derivatives are needed for a high dimensional problem and the resulting equations can easily
become too complicated to solve. This disadvantage has prevented this method from
becoming popular in practice.

Walter and Lecourtier [113] initially proposed the similarity transformation method for
linear ODE models. The system concerned here is in the form:

(3.5)

(3.6)

where A, B and C are matrices of constant coefficients. The basic idea of this method is to
find the similar matrix S = P−1 AP of A such that

(3.7)

(3.8)

where P is a non-singular matrix. It is straight forward to show that if the only possible
similar transformation of A is P = I, the system is uniquely and globally identifiable; if a
finite number of P ≠ I can be found, the system is locally identifiable (or nonuniquely
identifiable); otherwise, the system is unidentifiable.

Vajda et al. [106] and Vajda and Rabitz [107] extended the work of Walter and Lecourtier
[113] and proposed the similarity transformation method to tackle the nonlinear ODE
systems by making use of the local state isomorphism theorem [44, 50]. The nonlinear
system considered in Vajda et al. [106] is of the following form:

(3.9)

(3.10)

Note that although this system is a single-input system, the conclusion based on this system
can be generalized to multiple-input systems. It is necessary to introduce the definition of
structural equivalence before we further introduce the similarity transformation method.

Definition 3.1—Structural equivalence: Given two systems of the family in Eq. (3.9) and
(3.10), if there exist two parameters θ1, θ2 ∈ Θ such that for the same admissible input u(t),
the solution of the two system exists for θ1 and θ2, respectively, and the corresponding
system outputs are the same, the system with parameter θ1 is said to be equivalent to the
system with parameter θ2, denoted by θ1 ~ θ2.
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Under the similarity transformation framework, the identifiability problem becomes a
system equivalence problem: a system structure is identifiable if no equivalent systems exist
for θ1, θ2 ∈ Θ and θ1 ≠ θ2 [106].

Knowledge about Lie algebra is needed to better understand the similarity transformation
method; however, Lie algebra itself is a very rich topic, which will not be introduced in
detail here. The interested reader is referred to [36]. Based on the work of Hermann and
Krener [44], Vajda et al. [106] eventually proposed the similarity transformation approach to
verify the global identifiability, for which a set of partial differential equations need to be
formed and solved.

In summary, before the similarity transformation method can be applied, it is required that
the system is both controllable and observable. Further more, a set of partial differential
equations need to be generated and solved [106] to verify the system identifiability. These
two disadvantages make the similarity transformation method not feasible for general
nonlinear systems in practice.

3.2. Direct Test
Recall the definition of global (or local) identifiability, the key is to verify whether the same
system output will result in a unique set of parameter values. That is,

should be satisfied either globally or locally if the model is identifiable. Based on this
sufficient condition, Denis-Vidal and Joly-Blanchard [25] proposed to verify the
identifiability of uncontrolled and autonomous systems by directly comparing the right hand
side function f in Eq. (2.1). Note that here f = f(x(t), θ) does not explicitly depend on t and
u(t) for uncontrolled and autonomous systems. Therefore, the problem becomes whether

can hold globally or locally. Denis-Vidal and Joly-Blanchard [25] used the following model
for quantifying microbial growth [46] to illustrate the basic idea

(3.11)

(3.12)

(3.13)

Therefore, the right hand side function vector is
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and from f(x, l, θ1) = f (x, l, θ2) we have

(3.14)

(3.15)

Solving the two equations above, we have

which indicates that only parameters (Kd, μm) are identifiable but the rest are not.

Although the analytical direct test approach described above is conceptually simple, it
usually requires advanced mathematical skills to obtain analytic solutions and hence is
difficult to be applied in practice. If a certain number of state variables are not measured,
such latent variables have to be eliminated first (e.g., by taking higher order derivatives) in
order to use the analytical direct test approach. It may be necessary to employ computer
algebra tools, instead of algebraic manipulations by hand, for complicated models as
suggested by Raksanyi et al. [87]. However, computer algebraic computation can easily
become unfeasible for complicated nonlinear ODE models and Walter et al. [112] illustrated
that the conclusions drawn from the analytical direct test approach can be misleading for
certain types of models. Instead, Walter et al. [112] proposed the numerical direct test
approach. For a model to be identifiable, Walter et al. [112] considered the following
conditions which should be satisfied in practice,

where δ is a positive cut-off value chosen by the user. Techniques such as the algorithm
SIVIA and forward-backward contractor for constraint satisfaction problems (CSP) were
employed to find the inner and outer approximations of the solution set , that is,

For details of the algorithms for solving CSP (called interval arithmetic), see [53].

Walter et al. [112] thought that if  is empty, the model is identifiable; if  is not empty, then
the model is not identifiable. However, the choice of the cut-off value δ is arbitrary, which

MIAO et al. Page 10

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2011 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



seriously restricts the application of the numerical direct test method. In the parameter space
of some models, there may exist a continuous and flat hypersurface on which the objective
function (a function to be minimized for an optimization problem which evaluates how good
a solution is, e.g., the residual sum of squares) has the same minimum value, which suggests
the unidentifiability of the model. Under such circumstances, the numerical direct test
approach, however, may still misleadingly conclude that the model is identifiable. In
addition, it is difficult to verify which parameters are identifiable and which are not by using
the numerical direct test method. Therefore, no useful information can be derived from  to
help to improve mathematical models by reparameterizing unidentifiable parameters. Thus,
the application of the direct test approach is very limited in practice.

3.3. Differential Algebra
The methods discussed in the previous subsections are difficult to apply to general nonlinear
systems due to the difficulties in developing sufficient or necessary conditions for system
identifiability and solving the resulting equations corresponding to such conditions. Also,
rigorous training and advanced mathematical skills are required to use these methods. Is it
possible to leave such tedious algebraic calculations to a computer instead of a human? The
idea has motivated the development of methods under the framework of differential algebra
[91] and have yielded some promising results [7, 14, 64].

Compared to other methods, the differential algebra approach has the following advantages:
well-established theories, feasibility to general nonlinear dynamic systems, and availability
of several computational algorithms (e.g., [14, 49, 57, 91]) and software packages (e.g.,
diffalg in Maple© by Hubert [49], DAISY by Bellu et al. [12]). Theories and algorithms
developed in abstract algebra and computer algebra are very helpful to understand
differential algebra. For details of abstract algebra and computer algebra, the interested
reader is referred to [28] and [72]. For details of differential algebra, the interested reader is
referred to [14, 57, 64, 78, 91]. Here we only review some important concepts, theories and
algorithms of differential algebra.

The first important concept is that of a differential polynomial. Here we give the definition
for general dynamic systems:

Definition 3.2—Differential polynomial: If an expression is constructed from variables t,
x, u and y, parameter θ = (θc, θt) and constants using only the operations of addition,
subtraction, multiplication, constant positive whole number exponents, and constant positive
whole number derivatives, it is called a differential polynomial.

For example,

(3.16)

is a valid differential polynomial. Note that for the problems considered in this paper, the
derivatives in the definition above are with respect to time t only.

Now the dynamic system in Eqs. (2.1) and (2.2) can be rewritten as

(3.17)
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(3.18)

If the left-hand side of Eqs. (3.17) and (3.18) is in the form of a differential polynomial after
necessary algebraic computation or transformation, the structural identifiability of this
system can be investigated in the differential algebra framework.

Clearly, an infinite number of differential polynomial equations can be formed by adding,
scaling, multiplying, and differentiating both sides of Eqs. (3.17) and (3.18). It can be easily
proved that the solution to Eqs. (3.17) and (3.18) is also the solution to all those generated
equations. Therefore, the structure identifiability of Eqs. (3.17) and (3.18) can be
investigated from those infinite number of generated equations. Let ℜ{v1, v2, …, vr} denote
the differential polynomial ring with the differential indeterminates v1, v2, …, vr [91]. For
the dynamic systems under consideration, vi ∈ V, i = 1, 2, …, r can be any component of x,
y, u and θ, and ℜ{v1, v2, …, vr} is the set of the infinite number of generated differential
polynomials. As mentioned above, the derivative on the ring ℜ{v1, v2, …, vr} is with
respect to time t only, such a ring is called an ordinary differential ring.

Before we introduce more properties of ℜ{v1, v2, …, vr}, some definitions and concepts on
differential indeterminates and polynomials need to be described. First, the order of a
differential indeterminate is defined as the order of the derivative of that indeterminate and
the degree of a differential indeterminate is defined as the exponent of that indeterminate.

For example, in the first term  in Eq. (3.16), the order of y2 is one and the degree of ẏ2 is
two. To compare multiple differential polynomials, ranking needs to be defined [64, 91]:

Definition 3.3—Ranking: A total ordering of all the indeterminates and their derivatives is
called a ranking if

where ≺ means ‘ranks lower than’.

Note that for the same indeterminate v ∈ V, the item with a higher degree ranks higher, e.g.,
v ≺ v2. The following are two examples of ranking:

(3.19)

(3.20)

For a given ranking over a differential polynomial ring ℜ{v1, v2, …, vr}, the highest ranking
derivative in a differential polynomial P ∈ ℜ{v1, v2, …, vr} is called the leader of P.
Therefore, to rank two differential polynomials P1 and P2, the leaders of P1 and P2 are
compared first, then the second highest ranked derivatives are compared if the leaders of P1
and P2 rank the same, and so on. To generalize this ranking concept to differential
polynomials, the concepts of partially reduced and reduced were also introduced [64, 91]:

MIAO et al. Page 12

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2011 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Definition 3.4—Partially reduced: For two differential polynomials P1, P2 ∈ ℜ, let vP1
denote the leader of P1, P2 is said to be partially reduced with respect to P1 if there exists no
proper derivative of vP1 in P2.

Definition 3.5—Reduced: For two differential polynomials P1, P2 ∈ ℜ, let vP1 denote the
leader of P1, P2 is said to be reduced with respect to P1 if P2 is partially reduced with respect
to P1 and the degree of vP1 in P2 is less than the degree of vP1 in P1.

With the definitions above, an autoreduced set can be introduced as follows:

Definition 3.6—Autoreduced set: A differential polynomial set is said to be an
autoreduced set if any two differential polynomials in this set are reduced with respect to
each other.

Autoreduced sets can also be ranked [64]. For two autoreduced sets A = {A1, A2, …, Ar} and
B = {B1, B2, …, Bs}, A ranks lower than B if there exists an integer k, 1 ≤ k ≤ min(r, s) such
that rank Ai = rank Bi (i = 1, 2, …, k − 1) and Ak ≺ Bk. Consider Eqs. (3.17) and (3.18)
again, since an infinite number of differential polynomials can be generated with admissible
operations, an infinite number of autoreduced sets can also be generated. Among these
autoreduced sets, the set ranking the lowest is the most important and is called the
characteristic set:

Definition 3.7—Characteristic set: Among all the autoreduced sets formed from a finite
number of differential polynomials, the set ranking the lowest is called a characteristic set.

We now explain the relationship between the characteristic set and structure identifiability.
The identifiability problem is to verify whether θ can be uniquely determined from
differential polynomials with indeterminates u, y and θ only. Obviously, there exist an
infinite number of sets of differential polynomials that can be employed to perform the
identifiability analysis. However, the characteristic set has been proved to be the ‘best’ set
among all such sets [91], where the word ‘best’ means the lowest rank. In summary, the
characteristic set has the following properties:

i. Differential polynomials in the characteristic set satisfy Eqs. (3.17) and (3.18);

ii. Differential polynomials in the characteristic set are in the simplest form possible;

iii. Differential polynomials in the characteristic set have the exact information as in
Eqs. (3.17) and (3.18) to verify system identifiability.

A number of algorithms have been developed to find the characteristic set, e.g., the Ritt
algorithm [91], the Ritt-Kolchin algorithm [57], and the improved Ritt-Kolchin algorithm
[14]. The implementation of such algorithms can be found in the diffgrob2 package [67] or
the diffalg package [49]. The basic idea of these algorithms is to eliminate the higher
ranking variables such as x so that differential polynomials with indeterminates u, y and θ
can be obtained via symbolic computations. The key operation in the elimination process is
called pseudo-division. Before we discuss the details of the pseudo-division, more
definitions and notations need to be introduced. First, we call the coefficient of the highest
power of the leader the initial. In addition, for a differential polynomial P and its leader vP,
we call the initial of Ṗ the separant of P, denoted by SP. For example, using the ranking
(3.19) combined with x1 ≺ ẋ1 ≺ ··· ≺ x2 ≺ ẋ2 ≺ ···, the initial of (3.16) is (−5ẋ1ÿ2) and the
separant is (−10ẋ1x2ÿ2).
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Considering two differential polynomials P1 and P2, assume the leader of P2 is vP2 and there

exists a proper derivative of vP2, e.g.,  for k ≥ 1 in P1, then P1 can be partially reduced by
P2 as follows [49]. First, take derivatives of P2 up to the kth order

where SP2 is the separant of P2, and Ri(i = 1, …, k) the rest terms. Second, from the last

equation above,  can be expressed in terms of , SP2 and Rk, none of which contains

. Finally, substitute the expression of  into P1 and then P1 can be re-written as

where r is an integer, and Q and P̃ are differential polynomials. Furthermore, Q can be

called a pseudo-quotient; and P̃ contains no proper derivatives of  and can be called a
pseudo-remainder. The procedure described above is called pseudo-division. In this way, a
set of differential polynomials can be reduced to generate an autoreduced set, and
eventually, the characteristic set. More details of these computational algorithms can be
found in [14, 49, 57]. However, we notice that the algorithms to find the characteristic set
are still under development and the existing software packages do not always work well.

Ljung and Glad [64] concluded that each differential polynomial in the characteristic set can
be in one of the following three forms if the ranking (3.19) is employed

where A, B and C are differential polynomials and the subindex m, n and l denote the
number of differential polynomials. Ljung and Glad [64] proved a theorem about {B1, B2,
…, Bn} to verify the structural identifiability:

Theorem 3.8—Assume that no separant or initial of {B1, B2, …, Bn} is zero,

i. If for some Bi, 1 ≤ i ≤ n, in the characteristic set one has Bi = θ̇i, then the model
structure is not identifiable;

ii. If all Bi, 1 ≤ i ≤ n, in the characteristic set are of order zero and degree one in θi,
and there exists non-degenerate solution (y, u, θ*, x) for some θ*, the model
structure is globally identifiable at θ*;

iii. If all Bi, 1 ≤ i ≤ n, in the characteristic set are of order zero in θi, and some Bj is of
degree greater than one in θj, and there exists non-degenerate solution (y, u, θ*, x)
for some θ*, the model structure is locally identifiable at θ*.
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Although the results in Ljung and Glad [64] are for time-invariant parameters, they can be
easily extended to time-varying parameter cases by treating θt as state variables or system
inputs [7].

3.4. Implicit Function Theorem
Another approach based on the implicit function theorem was proposed by Xia and Moog
[119]. For a general introduction of the implicit function theorem, the reader is referred to
[73]. The theorem for identifiability analysis based on the implicit function theorem is given
as follows [119]:

Theorem 3.9—Let Φ : Rd+p+q → Rq denote a function of model parameter θ ∈ Rq, system
input u ∈ Rn, system output y ∈ Rd and their derivatives, that is,

where k is a non-negative integer. Assume that Φ has continuous partial derivatives with
respect to θ. The system structure is said to be locally identifiable at θ* if there exists a point

 such that

We can easily prove this theorem by considering the Taylor expansion of Φ at θ*

since Φ(θ*) = 0 and  exists (i.e., ), a unique solution of θ exists and the system
is locally identifiable at θ*.

Carefully examining this theorem, we find that it is the same as the algebraical identifiability
definition 2.9. The implicit function theorem method can be employed alone to verify
system identifiability, and it can also be used as a supplement to the differential algebra
method. Theorem 3.8 suggests verifying system identifiability by examining specific forms
of differential polynomials B = {B1, B2, …, Bn} in the characteristic set. However, a more

rigorous approach is to verify whether  as suggested by the implicit function theorem
method, where Φ is generated from B = {B1, B2, …, Bn}.

Xia and Moog [119] and Jeffrey and Xia [56] proposed a method to generate the function Φ
by taking higher order derivatives of system output y to eliminate all latent (unobservable)
state variables. For example, consider the following HIV model [81]

(3.21)
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(3.22)

(3.23)

where T is the number of uninfected T cells susceptible to infection (target cells), T* the
number of infected T cells, and V the viral load. Using the method of Xia and Moog [119],
we can take the 3rd-order derivative of V to obtain

(3.24)

Therefore, we can define

(3.25)

(3.26)

such that Φ = 0 is automatically satisfied. If , then θ = (β, ρ, ν, μ, η) can be identified
according to the implicit function theorem, where ν = δc, μ = δ + c, and η = Nλβδ. That is, if

(3.27)

we can identify the five parameters (β, ρ, ν, μ, η) in the model; furthermore, in the original
model, N and λ cannot be identified separately. The identification function Φ involves the
7th order derivative of V which requires at least 8 measurements of V to evaluate. Such
information, a by-product of identifiability analysis, is useful to design new experiments.

Note that with a high dimensional parameter space, like in the example that we are
considering here, the matrix  can become very complicated to derive and its rank is
difficult to evaluate. For example, one element in the matrix (3.27) is
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Thus, it is not easy to evaluate the rank of the above matrix. To avoid such complexity and
evaluation of the high order derivatives, an alternative method for formulating the
identification functions Φ(·) was proposed by Wu et al. [117]. Suppose we have the
quantities (V, V̇, V̈, V(3)) at five distinct time points t1, ···, t5. Denote the values of (V, V̇, V̈,

V(3)) at t = ti as ( ) for i = 1, ···, 5. Let

, where f is specified in Eq.
(3.25). Then we have

(3.28)

If

(3.29)

by the implicit function theorem, there exists a unique solution of θ. Assuming that β ≠ 0,
some algebra shows that the rank of ( ) is equal to the rank of

(3.30)

As long as det(Σ) ≠ 0, we have . Note that in Eq. (3.30), the matrix Σ also involves
unknown parameters (μ, ρ, β); thus, to numerically determine Σ’s rank, nominal values of
these parameters (i.e., obtained from literature) are needed.

Note that although V (3) is not involved in the matrix Σ, V (3) should exist at any time point.
For evaluating V (3) at one time point, at least four measurements of V are needed. In order
to form the five identification equations, at least eight measurements of V are necessary.
This conclusion is consistent with that of the method proposed by Xia and Moog [119]. Note
that this model is more likely to be locally identifiable than globally identifiable since Σ also
contains unknown parameters. Compared to the method of Xia and Moog [119], the method
of Wu et al. [117] is less computationally intensive and easier to implement since only the
lower-order derivatives (the 3rd or lower order derivatives in our case) of V need to be
evaluated.

In this section, as a by-product of structural identifiability analysis, we illustrate how to
calculate the minimum number of observation points for parameter identifiability, which is
an important issue in experimental design. Thorough and in depth discussions of
experimental design for dynamic systems are beyond the scope of this document, so we only
briefly discuss the influence of the observation timing on identifiability here. Sontag [100]
reported a very general and simple conclusion: for any ODE model with q unknown
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constant parameters, 2q + 1 experimental observations are enough for identification of the q
parameters if measurements are absolutely accurate. Sontag [100] explained that the number
2q+1 is frequently met in geometry and dynamical system theory and it is the embedding
dimension in the Whitney’s theorem [115, 116] for abstract manifolds or the embedding
dimension of q-dimensional attractors [102]. However, an intuitive explanation for the
number 2q is that each parameter in the righthand side of an ODE model is used to quantify
the change of the state variables (like a slope) and at least two data points are needed to
determine a slope. As to the influence of the observation times on identifiability, the work of
Sontag [100] indicated that increasing the number of data points will not help to identify
more parameters of a dynamic model once the model enters its steady state and produces
only flat responses all the time. In principle, data points collected to capture violent
nonlinear behavior of the dynamic system will be more informative for determining
parameter values, as suggested in [103].

4. Practical Identifiability Analysis
Before we introduce various techniques of practical identifiability analysis, note that
structural identifiability analysis provides a theoretical ground for practical identifiability
analysis. If the structural analysis suggests that a model is not theoretically identifiable, the
practical analysis is not necessary since theoretical unidentifiability must imply practical
unidentifiability. Thus, only theoretically identifiable models need further practical
identifiability analysis.

Structural identifiability analysis can be done without any actual experimental observation,
so it is also called prior identifiability analysis. There are two basic assumptions upon which
structural identifiability analysis heavily rely: model structures are absolutely accurate and
measurements are exact (no measurement errors). However, these two assumptions are
clearly not valid in practice. For instance, in biomedical research, both model uncertainty
and measurement error are usually large. Therefore, even when structural identifiability
analysis suggests that model parameters can be uniquely identified, the estimates of model
parameters may still be unreliable. Thus, it is necessary to evaluate whether structurally
identifiable parameters can be reliably estimated with acceptable accuracy from noisy data.
This is so-called practical identifiability analysis or posterior identifiability analysis. It is
strongly recommended to perform both structural and practical identifiability analyses in
practice to insure the reliability of parameter estimation. For the rest of this section, we
assume our measurement or output model to have measurement errors as follows:

(4.1)

where ε(t) is measurement error with mean 0 and variance σ2(t).

4.1. Monte Carlo Simulation
The history of Monte Carlo simulations can be traced back to the work of Metropolis and
Ulam [69]. As implied by its name, this method is a sampling technique using random
numbers and probability distributions. More specifically, the Monte Carlo simulation
method define possible inputs first (e.g., measurement noise level), then randomly generate
inputs according to certain probability distributions (e.g., normal distribution with zero
mean), and then use the inputs to do certain calculations (e.g., add random errors to data and
fit model to the simulated noisy data), and finally aggregate individual computation results
(e.g., the average error in parameter estimates). It is not only useful for practical
identifiability analysis but also helpful for experimental design. Monte Carlo simulation is
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very popular and widely used to assess the performance of statistical estimation methods in
the statistical literature.

Once parameters or a subset of parameters of a model are determined to be theoretically
(structurally) identifiable, one can use Monte Carlo simulations to evaluate whether the
theoretically identifiable parameters can be reliably estimated with acceptable accuracy from
noisy data. Obviously, in order to evaluate the practical (statistical) identifiability, statistical
estimation methods, such as the least squares approach, need to be readily available.
However, statistical parameter estimation for nonlinear ODE models is beyond the scope of
this review paper and will not be reviewed here.

Monte Carlo simulations allow us to simulate various scenarios with different numbers of
observations at different levels of noise or measurement error for different experimental
designs although such designs may not be feasible for practical experiments. The simulated
data can be used to evaluate whether model parameters or a subset of parameters can be
reliably estimated under different conditions. In general, a Monte Carlo simulation
procedure can be outlined as follows:

i. Determine the nominal parameter values θ0 for simulation studies, which can be
obtained by fitting the model to experimental data if available. Otherwise it can be
obtained from the literature or other resources.

ii. Use the nominal parameter values to numerically solve the ODE model to get the
solution of the output or measurement variables at the experimental design time
points.

iii. Generate N sets (e.g., 1000) of simulated data from the output or measurement
model (4.1) with a given measurement error level.

iv. Fit the ODE model to each of the N simulated data sets to obtain parameter
estimate θ̃i, i = 1, 2, …, N.

v. Calculate the average relative estimation error (ARE) for each element of θ as

(4.2)

where  is the k-th element of θ0 and  is the k-th element of θ̃i.

The ARE can be used to assess whether each of the parameter estimates is acceptable or not.
For a very small measurement error, the parameter estimates should be close to the true
values and the ARE should be close to 0. When the measurement error increases, the ARE
of the parameter estimates will also increase. However, the ARE for some of the parameter
estimates may increase significantly and some others may just increase a little. However, for
a reasonable or practical level of measurement error, if the ARE of a parameter estimate is
unacceptably high, we claim that this parameter is not practically or statistically identifiable.
In practical applications, some parameters may not be sensitive to measurement errors and
can always be well estimated, some other parameters may be quite sensitive to measurement
errors and their AREs are large even for a small measurement error, and at the same time,
some parameters may be in the middle ground [70]. In addition, there is no clear cut rule on
how high the ARE need to be before they are claimed “unacceptable” for a particular
problem. Thus, the practical identifiability relies on the underlying problem and judgement
of the investigators. Also notice that various statistical estimation approaches can be
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employed to obtain the parameter estimates, and the ARE may depend on the estimation
methods.

Monte Carlo simulations can also be used to design better practical experiments. Different
designs for different sample sizes under different conditions can be evaluated using the
AREs. The best design and the necessary sample size can be determined based on the Monte
Carlo simulation results. We will illustrate the application of this method in § 6.1.

4.2. Correlation Matrix
Although the Monte Carlo simulation approach is easy to understand and simple to
implement, the associated computational cost is high since a large number of model fits to
data need to be performed. Rodriguez-Fernandez et al. [92, 93] proposed an alternative
approach for practical identifiability analysis of ODE models by examining the correlations
between model parameters. This requires much less computation and is relatively simple if
measurement errors follow an identical and independent distribution (i.i.d.).

The idea behind this approach is straightforward. Assume that the parameter estimate θ ̂ =
[θ ̂1, θ ̂2, ···, θ ̂q]T has been obtained after fitting a model to experimental data. The correlation
matrix of the parameter estimates can then be calculated based on the Fisher information
matrix (FIM) [33, 109] in the following form:

(4.3)

where rij (i, j = 1, 2, …, q and −1 ≤ rij ≤ 1) is the correlation coefficient between parameter
estimates θ ̂i and θ ̂j. If there exists a strong positive correlation between parameter estimates
θ ̂i and θ ̂j, that is, the correlation coefficient rij is close to 1, parameters θi and θj are said to
be practically undistinguishable. A strong correlation between two parameters indicates that
one parameter strongly depends on another parameter and these two parameters cannot be
separately estimated.

A derivation of the expression for the correlation matrix was provided by Rodriguez-
Fernandez et al. [92]. For simplicity, the measurement errors were assumed to be
uncorrelated and follow an identical normal distribution with mean zero, that is, N(0, σ2). In
this case, for a general dynamic system (2.1) and (2.2), the Fisher information matrix can be
given as

(4.4)

where the subscript i denotes the ith time point of experimental observation, N the total
number of observations, ŷi the model approximation of observation, θ ̂ the model parameter
estimate, and V a known positive definite matrix of weights on variances. It can be proved
that the covariance matrix C is equal to the inverse of FIM according to the Cramèr-Rao
theorem [89], that is
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(4.5)

Finally, the element rij of the correlation matrix can be defined as

(4.6)

(4.7)

Guedj et al. [40] tackled the practical identifiability problem of HIV dynamic models. They
developed their approach under the framework of maximum likelihood estimation instead of
least squares estimation, but their results are still based on the Fisher information matrix and
the idea is similar to that in [92].

A limitation of the correlation matrix approach is that it requires not only the parameters but
also their correlation matrix to be reliably estimated. This may be a problem for an model
with most parameters unidentifiable since the correlation matrix estimate may strongly
depend on the parameter estimates. If any two parameters are not distinguishable, the
parameter estimates and their correlation matrix estimate may be poor. In addition, the
correlation matrix approach only allows you to check whether any pair of parameters are
distinguishable or not; to evaluate correlations between more than two parameters, the
sensitivity-based identifiability analysis techniques (e.g., eigen-decomposition of the
sensitivity matrix) should be considered, as described in the next section.

5. Sensitivity-Based Identifiability Analysis
Sensitivity analysis itself is a rich topic. The interested reader is referred to the
comprehensive survey by Saltelli et al. [94] and Cacuci [13]. Sensitivity analysis (SA) is
often used to assess the variation of system output induced by different input factors
including model parameters. The sensitivity analysis idea can also be used to evaluate the
identifiability of unknown parameters.

Sensitivity-based identifiability analysis is similar to the structural analysis approach in the
sense that both approaches do not require actual experimental data (although the sensitivity-
based method could require the number and locations of measurement time points, see
details below), and both approaches assume that measurements are precise without error.
However, the sensitivity-based method does not directly use the model structure
information, which is a critical difference between the structural and the sensitivity-based
approaches. The sensitivity-based method is similar to the practical analysis approach in the
sense that both methods require pre-specified parameter values (either nominal or actual
estimates), and both need to know the number and locations of measurement time points.
However, the sensitivity-based method is different from the practical analysis approach in
the sense that the sensitivity-based method does not take measurement error into account.
Thus, the sensitivity-based method is a technique between the structural (theoretical)
identifiability and practical identifiability analysis. We review such methods in this section.

A nominal parameter value is required for the sensitivity-based approach. Thus, parameter
identifiability is evaluated with respect to a specific point in the parameter space by
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sensitivity-based methods. For this reason, the concept of at-a-point identifiability was
introduced by Ljung and Glad [64] and Quaiser and Mönnigmann [86] as follows,

Definition 5.1
Globally at-a-point identifiable: Let θ* denote a fixed point in the parameter space Θ. A
system is said to be globally at-a-point identifiable if for any admissible input u(t) and any
parameter vector θ ∈ Θ, y(u, θ) = y(u, θ*) implies θ = θ*.

Definition 5.2
Locally at-a-point identifiable: Let θ* denote a fixed point in the parameter space Θ. A
system is said to be locally at-a-point identifiable if for any admissible input u(t) and any
parameter vector θ within an open neighborhood of θ*, y(u, θ) = y(u, θ*) implies θ = θ*.

The sensitivity-based identifiability analysis techniques reviewed in this section only
examine at-a-point identifiability. The sensitivity of measurable system responses with
respect to parameter values is used to assess the identifiability of unknown parameters by
these methods. More specifically, assume that the locations and the number of time points at
which the system responses or state variables will be measured have been given, denoted by
t1 ≤ t2 ≤ ··· ≤ tN, then the sensitivity coefficient at each time point tk (k = 1, 2, …, N) for a
given nominal parameter vector θ* is defined as

(5.1)

where yi(i = 1, 2, …, d) denotes the ith component of y (y ∈ Rd) and θj the jth(j = 1, 2, …, q)
component of θ (θ ∈ Rq). Thus, the sensitivity matrix for all time points is defined as

(5.2)

A number of identifiability analysis techniques have been developed based on this
sensitivity matrix. Simply speaking, the larger the sensitivity coefficients are, the more
notable the system responses or measurable state variables are with respect to the changes of
parameters. In that sense, a parameter is likely to be identifiable if the system output is
highly sensitive to a small perturbation of this parameter; otherwise, the parameter is likely
to be unidentifiable. In addition, if there exists a strong correlation between any two
parameters, these two parameters are very likely to be indistinguishable from each other.
Such parameter dependence can also be evaluated by examining the dependence of the
sensitivity matrix columns. We review four typical methods along this line in detail: the
correlation method [51, 93, 122], the principle component analysis (PCA) method [24, 34,
54], the orthogonal method [35, 120, 121], and the eigenvalue method [85, 86, 96, 108].
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5.1. Correlation Method
The correlation method was first proposed by Jacquez and Greif [51]. The method was
originally developed to study identifiability for linear compartment models and the
derivation was given for a single output system only (that is, y ∈ R). However, this method
is not limited to linear models and single output systems.

Consider the first order Taylor expansion of the system output near the pre-specified
nominal parameter vector θ*

(5.3)

where k = 1, 2, …, N denotes the index of the measurement time points. Let rk denote the
measurement at tk without errors and Δθ = θ − θ*, then the residual sum of squares between
the exact measurements and the linear approximation is

(5.4)

where rk − yk(θ*) = 0 based on our assumptions. Finally, we can rewrite Eq. (5.4) in terms of
the sensitivity matrix,

(5.5)

where S is the sensitivity matrix defined in (5.2). Obviously, the minimum of RSS(Δθ) is
reached at ST S · Δθ = 0. If ST S is of full rank, the unique solution of ST S · Δθ = 0 is θ ̂ =
θ*, which indicates that the model parameters θ are locally identifiable at θ*. If ST S is
singular, then there exists at least one non-trivial solution θ ̂ ≠ θ* such that the model
parameters are not identifiable at θ*. Two important issues should be noticed: first, a similar
expression can be derived under the framework of maximum likelihood estimation [40], so
the derivation is not limited to ordinary least squares; secondly, only local identifiability can
be inferred based on the rank of ST S since the linear approximation Eq. (5.3) is used [86].

It is also desirable to determine which parameters are not identifiable if ST S is not of full
rank. For this purpose, the correlations between parameters can be calculated based on the
sensitivity matrix. More specifically, if we examine the columns of the sensitivity matrix
defined in Eq. (5.2), it is clear that each column is the sensitivity of the system responses at
all time points with respect to one particular parameter. Thus, the sample correlation of two
columns is an estimate of the correlation between two parameters that can be calculated as

(5.6)

where S · i (or S · j) denotes the ith (or jth) column of the sensitivity matrix S, cov(S · i, S · j)
the sample covariance between S · i and S · j, and σ (S · i) and σ (S · j) the sample standard
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deviations of S · i and S · j, respectively. If the calculated correlation coefficient between any
two parameters is close to one, these two parameters are not distinguishable. However, such
a decision always involves a pair of parameters. Is it possible to determine which one in this
pair is more problematic and should be fixed or removed from the model? Quaiser and
Mönnigmann [86] proposed the concept of total correlation for this question,

(5.7)

where I denotes the indicator function, and δ ∈ (0, 1) the cut-off value specified by the user.
The parameter with the highest total correlation is the first candidate to be fixed or removed
from the model.

If we compare the correlation method with the correlation matrix method for practical
identifiability analysis described in the previous section [92], we can find that the Fisher
information matrix and the sensitivity matrix are somehow similar; however, the ways of
calculating correlations are different.

5.2. Tuning Importance Method and Principle Component Analysis
This category of methods have been developed to reduce model complexity by discarding
nonsignificant parameters, such as the tuning importance method [24, 95, 105] and principle
component analysis(PCA) [24, 34, 54]. More specifically, both methods rank all parameters
first, and then these parameters are determined as identifiable or unidentifiable according to
their ranks.

One important and interesting feature of the tuning importance and PCA methods is that
they are based on the normalized sensitivity matrix, which is different from the sensitivity
matrix defined in Eq. (5.2). To construct the normalized sensitivity matrix, the
dimensionless sensitivity coefficient was defined as follows [24, 30],

(5.8)

where i ∈ {1, 2, …, d} denotes the index of system outputs, j ∈ {1, 2, …, q} the index of
parameters and k ∈ {1, 2, …, N} the index of measurement time points. Then the normalized
sensitivity matrix for each yi is defined as

(5.9)

For the tuning importance method, the following objective function was introduced by
Seigneur et al. [95] and Turányi [105],

MIAO et al. Page 24

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2011 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5.10)

where θ −j denotes the parameter vector with the jth component removed. By following the
same procedure as the correlation method in the last subsection, the overall sensitivity can be
obtained and expressed in terms of the dimensionless sensitivity coefficients

(5.11)

Thus, the larger the overall sensitivity of one parameter, the more sensitive the system
response is with respect to small perturbations of this parameter. Since all the parameters
can be ranked according to their overall sensitivities, the parameters ranking the lowest are
candidates to be unidentifiable and to be discarded.

For the PCA method, the eigenvalues and eigenvectors of the matrix SiT Si are calculated to

provide the information for model reduction. Let  denote the eigenvalues which are
ordered non-decreasingly

(5.12)

Also, let the corresponding eigenvectors be denoted by

Three strategies examining the eigenvalues and eigenvectors were proposed to rank all the
parameters by Jolliffe [54]:

i. Starting with the eigenvector corresponding to the smallest absolute eigenvalue,
loop over each eigenvector to locate the component with the maximum absolute
value and the corresponding parameter at the maximum component location is
marked as unidentifiable and to be removed if it has not be marked before. This
procedure is summarized as follows:

(5.13)

ii. Starting with the eigenvector corresponding to the smallest absolute eigenvalue
again, loop over each row of matrix Γi and calculate the sum of squares of all
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components in each row. The parameter corresponding to the location of the row
with the largest sum of squares is determined as unidentifiable for removal. This
procedure is summarized as follows:

(5.14)

iii. Starting with the eigenvector corresponding to the largest absolute eigenvalue, loop
over each eigenvector component to locate the largest one and mark the parameter
if it is not marked before. The marked parameter is not selected as an unidentifiable
parameter immediately; instead, a rank is assigned to this parameter. Eventually, all
parameters are ranked and the parameters ranking the lowest are thought
unidentifiable. This procedure is summarized as follows:

(5.15)

Froemel [34] proposed a simple strategy to integrate the rankings from all the three
strategies described above. Further details are given in [34] and [86].

5.3. Orthogonal Method
The orthogonal method was proposed by Yao et al. [120]. The basic idea of this approach is
to examine the (nearly) linear dependencies of columns of the sensitivity matrix S defined in
Eq. (5.2). Thus, both the sensitivity of system response with respect to parameter values and
the dependency between parameters regarding their effects on the system responses can be
simultaneously evaluated to determine a set of identifiable parameters.

Unlike the correlation method, the orthogonal method does not calculate the correlation
between different columns of S. Instead, the perpendicular distance of one column to the
vector space spanned by other columns is calculated as a measurement of the linear
dependency. It is an iterative procedure. More specifically, at the first iteration, the column
of S with the largest sum of squares is removed from S and selected as the first element of
an empty set SI. At the (j + 1)th (j ∈ {1, ··· q − 1}) iteration, j columns have been removed
from S and selected into SI, and a vector space spanned by all the columns in SI is denoted

by VSI. For column Sh still in S, the orthogonal projection  of this column on the vector
space VSI is calculated and the perpendicular is then obtained as

(5.16)

In the work of Yao et al. [120], the norm  was proposed to be the measurement of
nearly linear dependency between the vector Sh and the vector space V since the shorter the
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distance is, the larger the dependence. For a norm  which is nearly zero, the
corresponding column Sh is thought to be nearly linearly dependent and thus is not
identifiable. At the first iteration, the column of S with the largest norm is selected into SI.
However, another reasonable alternative criterion is to consider the angle between Sh and

 (that is, ) since this criterion can select the best candidate even if the
norms of different columns are orders of magnitude different. Finally, at each iteration, a
pre-specified cut-off value δ will be used for the perpendicular distance or the angle of all
columns in S. Once the distance or angle of one column is smaller than δ, this column is

thought to be linearly dependent on VSI; therefore, the column with the largest  is
removed from S and selected into the set SI. This procedure is repeated until S becomes
empty. The vectors in SI determine which parameters are identifiable, which is the primary
goal of the orthogonal method (i.e., find the identifiable rather than unidentifiable
parameters).

Since the cut-off value δ in this method is an arbitrary value specified by users, the number
of unidentifiable parameters strongly depends on the selection of δ. Due to this problem,
Quaiser and Mönnigmann [86] proposed to rank all the parameters based on the values of
norms or angles instead of simply dividing them into identifiable or unidentifiable groups.

5.4. Eigenvalue Method
The eigenvalue method was first proposed by Vajda et al. [108] and then further developed
by Quaiser et al. [85], Schittkowski [96], and Quaiser and Mönnigmann [86]. This approach
is based on the properties of eigenvalues and eigenvectors of ST S, where S is the sensitivity
matrix defined in Eq. (5.2). To illustrate this method, consider the residual sum of squares
between system outputs and experimental measurements

(5.17)

and let λ1 ≤ λ2 ≤ ··· ≤ λq denote the eigenvalues of ST S in a non-decreasing order and (γ1, γ2,
···, γq) the corresponding normalized eigenvectors. Note that since ST S is symmetric and
positive semi-definite, all its eigenvalues are real and non-negative. Given a nominal
parameter vector θ*, the Taylor expansion of RSS at θ* along an eigenvector is
approximately

(5.18)

where α is an arbitrary small constant and ∇RSS(θ*) is the gradient of RSS at θ*. Although
∇RSS(θ*) is not necessarily zero if rk is not an exact measurement, since θ* is a nominal

parameter vector that may not minimize RSS, the second order term  can
become zero if the eigenvalue λj corresponding to θj is equal to zero since ST S · γj = λjγj and

. That is, along the direction of θj with λj = 0, the change of RSS is expected to be
nearly zero. The selection criterion for unidentifiable parameters is given by
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(5.19)

In practice, λj is usually not exactly zero, therefore, a cut-off value δ needs to be specified.
For a detailed implementation algorithm, the interested reader is referred to [86].

The four sensitivity-based identifiability analysis methods described above were also
reviewed and compared in Quaiser and Mönnigmann [86]. In general, all four approaches
are applicable to general ODE models; however, the eigenvalue method and the orthogonal
method are better designed to globally evaluate and compare the influences of parameter
values on system outputs such that these two methods outperform the correlation method
and the principle component analysis method. In addition, both the eigenvalue method and
the orthogonal method are easy to implement. Note that, the method proposed in [88] made
the assumption that the nominal parameter vector θ* minimizes the objective function,
which should be interpreted as rk = yk(θ*) as in (5.4) for the correlation method. In addition,
it should be mentioned that in practice, if the sensitivity matrix is of full rank but with
eigenvalues of different orders of magnitude, the parameters corresponding to the smallest
eigenvalues are theoretically identifiable but likely to be practically unidentifiable. Under
such a circumstance, the sensitivity-based approaches are still useful in the sense of
determining practically unidentifiable parameters.

Finally, it is also interesting to combine the sensitivity-based approaches with the practical
identifiability methods introduced in Section 4 to study the identifiability of a dynamic
system. Notice that the sensitivity-based approaches do not require statistical estimation of
unknown parameters, which can be done before the practical identifiability analysis.

6. Application Examples
In this section, we illustrate the applications of both structural and practical identifiability
analysis techniques through examples in modeling viral dynamics. We summarize the
identifiability analysis results for popular models of HIV infection, influenza infection, and
hepatitis B and C virus dynamics.

6.1. HIV Model with Constant Parameters
Miao et al. [70] proposed the following model to describe a growth competition assay to
quantify HIV replication fitness:

(6.1)

(6.2)

(6.3)
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(6.4)

where T, Tm, Tw and Tmw are the numbers of uninfected cells, cells infected by mutant
viruses, cells infected by wild-type viruses, and cells infected by both mutant and wild-type
viruses (dual-infection). Let (λ, λm, λw, λmw) represent the proliferation rates of T, Tm, Tw and
Tmw and (δ, δm, δw, δmw) the death rates of T, Tm, Tw and Tmw, respectively. Then ρ = λ − δ,
ρm = λm − δm, ρw = λw − δw and ρmw = λmw − δmw are the net growth rates of T, Tm, Tw and
Tmw, which are the differences between the corresponding proliferation rates and death rates.
Parameters (km, kw, kR) are infection rates of mutant virus, wild-type virus and recombinant
virus respectively, and qm and qw are dual infection rates.

For this example, the implicit function method of Xia and Moog [119] is employed to
investigate the structural identifiability. Since all state variables (T, Tm, Tw, Tmw) are
experimentally measurable, the outputs of the system are

(6.5)

By taking derivatives of one of the four equations in this HIV viral fitness model, the
structural identifiability of the model can be evaluated. To demonstrate this, here we start
with the first equation,

(6.6)

By taking higher orders (up to the 4th order) of derivatives on both sides of Eq. (6.6), we get

(6.7)

(6.8)

(6.9)

When Eqs. (6.7)–(6.9) are written in matrix form, we find that the parameters are
identifiable if

(6.10)
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Note that the rank of this matrix can be evaluated numerically if the analytical form is not
available, and nominal parameter values are not needed for this case since the matrix above
involves no parameters. Since the left hand side of Eq. (6.9) has a derivative of order 4, at

least five measurements of y1 = T are needed to evaluate , and at least four measurements
of y2 = Tm, y3 = Tw, and y4 = Tmw are needed to evaluate their derivatives of order 3. Since
km and kR can be identified from Eqs. (6.7)–(6.9) if Eq. (6.10) holds, Eq. (6.2) can be
rewritten as

(6.11)

Similarly, by taking the higher derivatives of Eq. (6.11), the parameters (ρm, qm) are
identifiable if

(6.12)

By the same token, the parameters (ρw, qw) are identifiable if

(6.13)

Finally, ρmw is identifiable if

(6.14)

In summary, all parameters (ρ, ρm, ρw, ρmw, km, kw, kR, qm, qw) are structurally identifiable if
at least five measurements of y1 = T and four measurements of y2 = Tm, y3 = Tw, and y4 =
Tmw are available and if all coefficient matrices (6.10), (6.12), (6.13) and (6.14) are of full
rank at least for some local time points.

Monte Carlo simulations were also performed to evaluate the practical identifiability of this
HIV viral fitness model by Miao et al. [70]. The AREs of all 9 parameters for three
measurement error levels (0%, 5%, and 30%) are duplicated in Table 6.1. Note that in this
simulation study, we assumed that there were 1000 replicates of data at each time point
although this may not be feasible in practical experiments. But this will help us to evaluate
whether the unknown parameters are practically identifiable when the sample size of the
data (with noise) is large enough. We can see that when there is no measurement error (σ =
0%), all the 9 parameters can be well identified (the maximum ARE is 0.4%), which
confirms our theoretical identifiability analysis results. This also indicates that the parameter
estimation method is good and the parameter estimates converges to the true parameter
values when the sample size is large enough and the measurement error is small enough.
However, when the measurement error increases to 5% and 30%, the ARE of parameter ρmw
rapidly increases to 556% and 2062%, respectively. The ARE of ρw also increases to 39%
and 201%, while the ARE of kR increases to 28% and 106%, respectively. The AREs of
parameters (qw, ρm) are reasonable for the case of small measurement error (σ = 5%), but
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increase to 49% and 59% for the large measurement error case (σ= 30%), respectively. The
AREs for other four parameters (ρ, km, kw, qm) are reasonable for all cases.

To further investigate the practical identifiability of unknown parameters under practical
experimental conditions, we performed more simulations for different numbers of time
points and different numbers of replicates at each time point. The simulation results are
given in Table 6.2. One can see that the ARE of parameter ρmw ranges from 410% to
2130%. This, combined with the results in Table 6.1, indicates that the ρmw is practically
unidentifiable. Considering the practical case of 9 time points and 9 replicates for each time
point, the ARE of parameter ρw is 86%, which indicate that it may be difficult to accurately
identify the parameter ρw unless the sample size is unrealistically large (say, 100 replicates
for each time point). For parameter kR, the AREs are also large (ranging from 62% to 108%)
for practical cases (the number of replicates is 3, 6, or 9). For parameters (ρm, qw), the AREs
are reasonable (ranging from 22% to 38%) for most reasonable sample sizes, thus (ρm, qw)
can be considered as reasonably identifiable. The parameters (ρ, km, kw, qm) are very well
identified (the AREs ranging from 3% to 22%) in all cases.

6.2. HIV Model with Constant and Time Varying Parameters
In this section, we consider another dynamic system that is widely used to describe HIV
dynamics in HIV-infected patients with antiretroviral treatment [17, 48, 82]:

(6.15)

(6.16)

(6.17)

where TU is the concentration of uninfected target cells, TI the concentration of infected
cells, V (t) the viral load, λ the source rate of uninfected T cells, ρ the death rate of
uninfected T cells, η(t) the time-varying infection rate which is a function antiviral treatment
efficacy, δ the death rate of infected cells, c the clearance rate of free virions, and N the
average number of virions produced by a single infected cell over its lifetime. TU (t), TI(t)
and V (t) are state variables, and (λ, ρ, N, δ, c, η(t))T are unknown dynamic parameters.

The differential algebra approach for structural identifiability analysis (Section 3.3) requires
one to eliminate the latent (unobservable) state variables from the dynamic equation in order
to evaluate the identifiability. The concept of ranking is introduced such that computer
algorithms can be designed to eliminate variables or their derivatives with higher rank. For
notation simplicity, let x1, x2 and x3 denote TU, TI and V, respectively. In the dynamic model
(6.15)–(6.17), we can measure viral load (x3 = V) and total CD4+ T cell counts (x1 + x2 = TU
+ TI). Let y1 and y2 denote the measurable variables x1 + x2 and x3, respectively. We adopt
the ranking

(6.18)
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where θ = [λ, ρ, N, δ, c]T is the vector of constant unknown parameters. We can eliminate x1,
x2 and x3 using the ranking (6.18) to obtain

(6.19)

(6.20)

Note η (t) can be expressed in terms of measurable state variables and other unknown
constant parameters either from Eq. (6.19) as

(6.21)

or from Eq. (6.20) as

(6.22)

Thus, the time-varying parameter η (t) is identifiable if all the constant parameters are
identifiable.

To verify the identifiability of constant parameters θ, Eq. (6.21) and Eq. (6.22) can be
combined to obtain

(6.23)

The above equation just involves measurable state variables and constant parameters. Eq.
(6.23) is of order 0 and of degree > 1 in θ, so Eq. (6.23) satisfies the third situation in
Theorem 3.8 [64] in Section 3.3), thus θ = (λ, ρ, N, δ, c)T is locally identifiable.
Consequently, η (t) is also locally identifiable. In addition, the identifiability of θ can also be
easily verified using the implicit function method based on Eq. (6.23). The identifiability of
other similar HIV dynamic models have been studied in [56, 117, 119].

6.3. Influenza A Virus Infection
The purpose of this section is to illustrate possible problems if identifiability analysis is
ignored by considering influenza infection in humans, an important infectious disease.
Baccam et al. [8] proposed a target cell-limited model for influenza A virus infection:

(6.24)
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(6.25)

(6.26)

where T is the number of uninfected target cells (epithelial cells), I is the number of
productively infected cells, and V is the infectious viral titer expressed in TCID50/ml which
is the only state variable to be measured. Since this is a low-dimension nonlinear dynamic
system, the implicit function method can be employed.

Considering the case that only V can be measured (and thus, for example, the initial number
of target cells T(0) is not known), we can derive the follow equation from Eq. (6.24)–(6.26)
by eliminating the unmeasurable state variables:

(6.27)

Obviously, only the parameters (β, δ, c) can be identified and the minimum number of
required measurements of V is 6, and the parameter p is not identifiable in this case.
Similarly, we consider the cases in which both I and V are measured, both T and V are
measured, or all three state variables are measured. For the cases that any two or more state
variables are measured, all four parameters (β, δ, c, p) are structurally (theoretically)
identifiable. We summarize the structural identifiability analysis results for all cases in Table
6.3.

Baccam et al. [8] further proposed another target cell-limited influenza model with delayed
virus production as follows:

(6.28)

(6.29)

(6.30)

(6.31)

where I1 is the number of latent infected epithelial cells that are not yet producing virus and
I2 the number of productively infected epithelial cells. Again, we can use the implicit
function theorem method to investigate the structural (theoretical) identifiability of this
model. We summarize the identifiability analysis results in Table 6.4. For this model, if only
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V is measured, four parameters (β, δ, c, k) are identifiable and parameter p is not identifiable.
However, if any two or more of the four state variables (T, I1, I2, V) are measured, all five
parameters (β, δ, c, k, p) are theoretically identifiable. We also summarize the minimum
number of required measurements for each of the state variables in Table 6.4.

In the paper by Baccam et al. [8], only the virus titers were measured at 8 time points during
days 1–8 of infection from six patients, but some of these measurements were below
detection. According to the identifiability analysis in Table 6.3 and Table 6.4p is not
identifiable. To fit the four dimensional model (6.28)–(6.31), all 8 data points need to be
used, otherwise more parameters may be unidentifiable. However, since the identification
equation (6.27) does not involve the unidentifiable parameter p, one may fix p, which does
not affect the estimates of other parameters. Since the identifiability analysis was not
considered, the estimates of kinetic parameters in Baccam et al. [8] should be interpreted
with caution since Baccam et al. [8] fixed T(0) to avoid the identifiability problem and
T(0)’s value was not directly from data.

Influenza infection in human is a very complex problem, therefore, much more complicated
models were proposed; however, the problem is that such work usually over-parameterizes
the model and ignores parameter identifiability, which makes it difficult to directly such
models to data. For example, Hancioglu et al. [43] proposed a 10-equation model for
influenza A virus infection (details not shown). We can show that, to verify the
identifiability of all the 27 parameters in that model, almost all the 10 state variables need to
be measured, which is nearly impossible to do in practice due to technical and ethical
limitation. In summary, when fitting model to data, models with parameter identifiability
verified should be considered.

7. Discussion and Conclusion
Ordinary differential equations are an important tool for quantifying a dynamic process in
many scientific fields, and recently it has been widely used in modeling biomedical
processes, in particular for modeling infectious diseases and viral dynamics. It is critical to
estimate the unknown kinetic parameters in ODE models from experimental data in
biomedical applications. However, it is not trivial and not apparent to know whether the
unknown parameters in general nonlinear ODE models are identifiable based on the
experimental data. Thus, an identifiability analysis is a prerequisite before any statistical
method is applied to estimate the unknown parameters from the experimental data.

Three main categories of identifiability techniques have been developed for general ODE
models. The first is structural (theoretical) identifiability analysis, which can be used to
evaluate whether all parameters can be theoretically identified by manipulating the model
structure. Two assumptions are needed for such analysis: 1) the model structure is absolutely
accurate; and 2) measurement is exact (no measurement error). Although these two
assumptions are not realistic in practice, it is still necessary to study theoretical
identifiability. The second type of identifiability analysis is practical identifiability analysis
in which both model uncertainty and practical measurement errors are considered. Structural
identifiability analysis can be done before experiments for data collection are designed. In
fact, the structural identifiability analysis can provide useful information, such as the
minimum number of measurements at distinct time points, for experimental design. If an
ODE model turns out to be unidentifiable or only a subset of model parameters are
identifiable via structural identifiability analysis, the model may need to be modified or
some of the parameters may need to be fixed before statistical methods are applied to
estimate the unknown parameters. Otherwise, statistical estimates may not be reliable. Even
though some parameter estimates can be obtained from an unidentifiable model, the
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estimates may be a local estimates or an arbitrary set of estimates that can overfit the
observation data. If the structural identifiability analysis confirms that an ODE model is
globally or locally identifiable, practical identifiability analysis should be done to check the
reliability and sensitivity of estimates to measurement errors and model uncertainty. Based
on the results of practical identifiability analysis, a model can be further re-fined by model
selection techniques [71]. Practical identifiability analysis can also be used to better design
future experiments. The third type of identifiability analysis technique is based on the
sensitivity matrix. Similar to structural identifiability analysis, sensitivity-based methods do
not require experimental observations and cannot account for model uncertainty and
measurement errors. Like practical identifiability analysis, sensitivity-based methods also
require at least one nominal value of parameters. Note that so far it is still difficult to do
structural identifiability analysis for high-dimensional ODEs or complicated ODEs. In this
case, the practical identifiability analysis may not be reliable since the structural (theoretical)
identifiability of the model is unknown. The class of sensitivity-based methods, which is a
technique between the structural (theoretical) identifiability and practical identifiability
analysis, can be used in such case.

Besides the identifiability analysis techniques for ODEs, the identifiability analysis of delay
differential equation (DDE) models should also be discussed. A general form of a DDE
system is given as follows

(7.1)

(7.2)

(7.3)

where t0 is the starting value of the independent variable, x(t) ∈ Rm is a vector of state
variables, y(t) ∈ Rd the measurable system output vector, u(t) ∈ Rp the known system input
vector, θ ∈ Rq the parameter vector, M a constant coefficient matrix (or mass matrix), and
τ(t, x) a vector of delay functions. It is required that

(7.4)

that is, the value of delay functions should always be smaller than or equal to the current
time which is reasonable since the future value is unknown yet. Another important
assumption is that

(7.5)

which implies that none of the d system outputs is trivial (e.g., linear combination of other
outputs). Since τ(t, x) ≤ t, it is necessary to know the value of x(t) when t ≤ t0, i.e., the
history function:
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(7.6)

where x(t), t ≤ t0 is only a function of time and parameters. It is obvious that the DDE
system described here is much more complicated than an ODE system, and currently it is
still impossible to numerically solve a very general DDE model. However, for some
relatively simple DDE models, a number of numerical methods have been proposed and
implemented. For details of such algorithms, the reader is referred to the work by Ascher
and Petzold [6], Bellen and Zennaro [11], Guglielmi and Hairer [41, 42], and Shampine and
Thompson [97]. Particularly, Guglielmi and Hairer [41, 42] proposed and implemented a
comparatively general solver (called Radau IIA) for DDE models, which is recommended
for practical applications due to its efficiency and stability. For examples of DDE modeling
of HIV infection, the reader is referred to [90] and [76]. A number of independent studies
have tackled the identifiability problem for DDE models [4, 5, 27, 31, 66, 68, 79, 124, 125].
However, most of these previous works deal with very simple and specific DDE models
(e.g., [68]) and the generalizability of these results are limited due to a lack of understanding
of the important feature of DDE models: the propagation of discontinuity at t0 or in the
history functions from lower to higher order derivatives of state variables if there is any.
Such a feature makes DDE models easily become bifurcated or just unsolvable [11, 41, 42].
The identifiability conclusions based on model structure manipulation are not reliable unless
analytical solutions of DDE models can be obtained and analyzed. However, it is surprising
that almost all the existing work tried to tackle the identifiability problem by manipulating
model structures (e.g., [5]). Generally, for complicated systems as described in Eqs. (7.1) to
(7.3), it is extremely difficult to manipulate the model structures to study identifiability
problems. Thus, the methodologies for DDE model identifiability are still in its infancy and
promising approaches are likely to be numerical methods such as the practical or sensitivity-
based methods (e.g., [9]), although it may require development and reliable realization of
DDE numerical algorithms.

In addition, it should be mentioned that some of the identifiability techniques such as the
differential algebra method can be extended to study the identifiability of partial differential
equation (PDE) models (e.g., [49]), but the identifiability analysis for more complicated
models such as PDEs or stochastic differential equations is beyond the scope of this paper.

Finally, after the identifiability analysis is done, statistical estimation methods should be
used to estimate the unknown parameters in the model. The practical identifiability analysis
also requires reliable parameter estimation methods be available. Recently statistical
estimation methods for ODE models have attracted a great deal of attention from
statisticians. Some novel and efficient estimation methods particular for nonlinear ODE
models have been published in the statistical literature [17, 18, 40, 48, 61, 62, 88]. Besides
the standard least squares approach [70, 71], more reliable and computationally efficient
estimation methods and their theoretical foundations have been developed [17, 18, 62, 88].
However, the topic of statistical estimation methods for ODE, DDE and PDE models is
beyond the scope of this paper.
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Table 6.3

Structural identifiability of the target cell-limited influenza model in Baccam et al. [8].

Measured Variables Identifiable Parameters Minimum number of measurements

V (β, δ, c) 6 of V

V and I (β, δ, c, p) 3 of V, 4 of I

V and T (β, δ, c, p) 5 of V, 2 of T

V, I and T (β, δ, c, p) 3 of V, 2 of I, 2 of T
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Table 6.4

Structural identifiability of the target cell-limited influenza model with delayed virus production in Baccam et
al. [8].

Measured Variables Identifiable Parameters Minimum number of measurements

V (β, δ, c, k) 8 of V

V and T (β, δ, c, k, p) 7 of V, 2 of T

V and I1 (β, δ, c, k, p) 5 of V, 4 of I1

V and I2 (β, δ, c, k, p) 2 of V, 6 of I2

V, I 1 and I2 (β, δ, c, k, p) 3 of V, I1 and I2

V, T, I1 and I2 (β, δ, c, k, p) 3 of V, 2 of T, I1 and I2
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