
Fault-Tolerant Spanners for General Graphs

S. Chechik ∗ M. Langberg † D. Peleg ∗ L. Roditty ‡

ABSTRACT
The paper concerns graph spanners that are resistant to ver-
tex or edge failures. Given a weighted undirected n-vertex
graph G = (V,E) and an integer k ≥ 1, the subgraph
H = (V,E′), E′ ⊆ E, is a spanner of stretch k (or, a k-
spanner) of G if δH(u, v) ≤ k · δG(u, v) for every u, v ∈ V ,
where δG′(u, v) denotes the distance between u and v in G′.
Graph spanners were extensively studied since their intro-
duction over two decades ago. It is known how to efficiently
construct a (2k−1)-spanner of size O(n1+1/k), and this size-
stretch tradeoff is conjectured to be tight.

The notion of fault tolerant spanners was introduced a
decade ago in the geometric setting [Levcopoulos et al.,
STOC’98]. A subgraph H is an f -vertex fault tolerant k-
spanner of the graph G if for any set F ⊆ V of size at
most f and any pair of vertices u, v ∈ V \ F , the distances
in H satisfy δH\F (u, v) ≤ k · δG\F (u, v). Levcopoulos et
al. presented an efficient algorithm that given a set S of n
points in Rd, constructs an f -vertex fault tolerant geometric
(1+ε)-spanner for S, that is, a sparse graph H such that for
every set F ⊆ S of size f and any pair of points u, v ∈ S \F ,
δH\F (u, v) ≤ (1+ε)|uv|, where |uv| is the Euclidean distance
between u and v. A fault tolerant geometric spanner with
optimal maximum degree and total weight was presented in
[Czumaj & Zhao, SoCG’03]. This paper also raised as an
open problem the question whether it is possible to obtain a
fault tolerant spanner for an arbitrary undirected weighted
graph.

The current paper answers this question in the affirmative,
presenting an f -vertex fault tolerant (2k−1)-spanner of size

∗Dept. of Computer Science and Applied Math., The Weiz-
mann Institute of Science, Rehovot 76100, Israel, email:
{shiri.chechik, david.peleg}@weizmann.ac.il
†Computer Science Division, Open University of Is-
rael, 108 Ravutski St., Raanana 43107, Israel, email:
mikel@openu.ac.il. Work supported in part by The Open
University of Israel’s Research Fund (grant no. 46109).
‡Department of Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel, email: liamr@macs.biu.ac.il

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

O(f2kf+1 · n1+1/k log1−1/k n). Interestingly, the stretch of
the spanner remains unchanged while the size of the spanner
only increases by a factor that depends on the stretch k, on
the number of potential faults f , and on logarithmic terms
in n. In addition, we consider the simpler setting of f -edge
fault tolerant spanners (defined analogously). We present
an f -edge fault tolerant 2k− 1 spanner with edge set of size
O(f · n1+1/k) (only f times larger than standard spanners).
For both edge and vertex faults, our results are shown to
hold when the given graph G is weighted.

1. INTRODUCTION

Graph Spanners.
Graph spanners are fundamental graph structures, gen-

eralizing the concept of spanning trees. A graph spanner
can be thought of intuitively as a skeleton structure that
allows us to faithfully represent the underlying network us-
ing few edges, in the sense that for any two nodes of the
network, the distance in the spanner is stretched by only a
small factor. More formally, consider a weighted undirected
graph G = (V,E) with |V | = n and |E| = m and let k ≥ 1
be an integer. Let δG(u, v) denote the distance between u
and v in G. A graph H = (V,E′), where E′ ⊆ E, is a
spanner of stretch k (or, a k-spanner) of G if and only if
δH(u, v) ≤ k · δG(u, v) for every u, v ∈ V .

The notion of graph spanners was introduced in [23, 24]
in the late 80’s. It is known how to efficiently construct a
(2k − 1)-spanner of size O(n1+1/k) [1], and this size-stretch
tradeoff is conjectured to be tight. The interest in graph
spanners stems from the fact that spanners are used explic-
itly or implicitly as key ingredients of various distributed
applications, e.g., synchronizers [24], compact routing [25,
31], covers [2], dominating sets [11], distance oracles [3, 32],
emulators and distance preservers [7], broadcasting [16], or
near-shortest path algorithms [12, 13, 15]. Hence, under-
standing the properties of graph spanners and providing ef-
ficient algorithms for constructing them appears as a funda-
mental problem in distributed computing. Recent reviews
of the literature on spanners can be found in [26, 35].

This paper studies the notion of fault tolerant spanners. A
graph H is an f -vertex (resp. edge) fault tolerant k-spanner
of G if for any set F ⊆ V (resp. F ⊆ E) of size at most f and
any pair of vertices u, v ∈ V \ F (resp. u, v ∈ V ) it satisfies
that δH\F (u, v) ≤ k · δG\F (u, v). (Here, and throughout
the paper, G \ F denotes the subgraph of G obtained by
removal of the faulty vertices/edges of F .) For vertex faults,
we present an f -vertex fault tolerant (2k − 1)-spanner of



size O(f2kf+1 · n1+1/k log1−1/k n) (only slightly larger than
the best known standard spanners). For edge faults, we
present an f -edge fault tolerant 2k − 1 spanner with edge
set of size O(f · n1+1/k) (only f times larger than standard
spanners). Our results open many research directions on
fault tolerant constructions and applications. Specifically,
any of the above applications in which spanners were used
in the past can now be considered in failure-prone settings,
in which fault-tolerant solutions could be sought.

Background and Previous work.
Recently, the question of maintaining spanners in dynamic

settings attracted much attention. Baswana and Sarkar [4]
presented an algorithm for maintaining a graph spanner
that supports both insertions and deletions of edges in poly-
logarithmic amortized update time. Elkin [13, 14] presented
a fully dynamic spanner for the distributed and the stream-
ing models. In the geometric setting, where the vertices of
the graph G are assumed to lie in Euclidean space, a (1+ε)-
spanner of size O(n/εd) can be constructed in O(n logn)
time [34, 30, 17, 27]. For dynamic spanners in the geometric
setting, Gao, Guibas and Nguyen [17] presented an algo-
rithm that supports both insertions and deletions of points
in O(log ∆) time, where ∆ is the aspect ratio of the point
set (i.e., the ratio between the distance of the farthest pair
of points and that of the closest pair of points). Roditty [27]
showed how to obtain an update time that does not depend
on the aspect ratio using a variation of the algorithm of [17].
Most recently, Roditty and Gottlieb [18, 19] presented two
algorithms with O(polylog n) update time.

The traditional fully dynamic model in which graph span-
ners were studied so far may be too pessimistic with respect
to real world networks, where changes are fairly limited and
the core of the network does not change frequently. For
example, in a road network the possible changes to the net-
work are rather limited. Some roads may be closed for short
periods or a major junction may be temporarily blocked,
but the basic structure of the network remains the same. In
a standard computer network, some links may occasionally
fail and even some routers may be temporarily out of ser-
vice, but again the basic structure of the network remains
unchanged.

The focus of this paper is on the study of fault tolerant
spanners. The “fault tolerance” model lends itself naturally
to the scenarios described above. In this model, the input
is preprocessed so that after any f failures, a fast recovery
of the network information will be possible. For example,
if f roads or f junctions are temporarily closed, we would
still like to have a valid spanner of the current network. The
idea, as in dynamic algorithms, is to preprocess the original
data (namely, the input graph G) so that a fast recovery
of information is possible. The three important parameters
when considering the fault tolerant model are the running
time of the preprocessing algorithm, the size of the created
data structure, and the time that is needed to update the
data structure once failures occur.

Fault tolerance aspects of various problems have attracted
considerable attention lately. Pǎtraşcu and Thorup [22] con-
sidered the connectivity problem. They showed that it is
possible to preprocess a graph in polynomial time and to
obtain a linear size data structure that allows responding to
connectivity queries in O(f ·polylog(n)) time after the failure
of f arbitrary edges. In the context of the all-pairs shortest

paths problem, Demetrescu, Thorup, Chowdhury and Ra-
machandran [9] showed that it is possible to preprocess a
graph into a data structure that is capable of answering dis-
tance queries after a single vertex or edge failure. Bernstein
and Karger [6] improved the running time of [9]. Very re-
cently, Duan and Pettie [10] presented a data structure that
is capable of answering distance queries after two vertex or
edge failures.

Fault tolerant spanners were only studied in the context of
geometric spanners. A decade ago, Levcopoulos, Narasimhan
and Smid [20] introduced the notion of fault tolerant span-
ners. They presented an efficient algorithm for constructing
an f -vertex fault tolerant geometric (1 + ε)-spanner. That
is, given a set S of n points in Rd, their algorithm finds a
sparse graph H such that for every set F ⊆ S of size f and
any pair of points u, v ∈ S \ F , the distances in H satisfy
δH\F (u, v) ≤ (1 + ε)|uv|, where |uv| is the Euclidean dis-
tance between u and v. A fault tolerant geometric spanner
of improved size was presented by Lukovszki [21]. Finally,
Czumaj and Zhao [8] presented a fault tolerant geometric
spanner with optimal maximum degree and total weight.
In [8] they raised as an open problem the question whether
it is possible to obtain a fault tolerant spanner for an arbi-
trary weighted undirected graph.

In this paper we provide a positive answer to this question.
Not only does such a fault tolerant spanner exist for general
graphs, but as we show, its properties are almost identical to
those of a standard spanner (i.e., one that does not tolerate
any faults at all).

Our results.
This paper addresses the design of both vertex and edge

fault tolerant spanners. The main result of this paper is an
efficient algorithm that constructs an f -vertex fault tolerant
(2k − 1)-spanner for a weighted undirected graph. The size

of our spanner is O(f2kf+2n1+1/k log1−1/k n). Our result is
especially appealing in comparison to standard spanners as
the stretch of our fault tolerant spanner is the same while
its size is increased only by a factor of f2kf+1 (ignoring
logarithmic factors).

A natural approach to constructing an f -vertex fault tol-
erant spanner would be to construct, for every F ⊂ V of
size at most f , a spanner of G \ F (e.g., via some known
algorithm for spanner construction), and to define the final
spanner as their union. This approach may appear to be
overly naive, as it would seem to cause an explosion in the
size of the resulting spanner. Surprisingly, an algorithm that
follows this spirit is exactly what we present. Our construc-
tion is based on the distance oracle construction of Thorup
and Zwick [32]. An approximate distance oracle is a data

structure of size O(kn1+1/k) that answers approximate dis-
tance queries in O(k) time. It approximates the distances
up to a 2k − 1 multiplicative error. Our approach is to
weaken the construction of Thorup and Zwick, in the sense
that it no longer yields a distance oracle; rather, it provides
only the properties of a standard spanner. The restricted
construction, combined with some other new ideas and a
careful analysis, yield our result.

The simple but clever algorithm presented by Thorup
and Zwick [32] lies at the foundation of many important
results. First, Thorup and Zwick [31] presented optimal
routing schemes based on it. Roditty and Zwick [29] used
it to obtain a dynamic algorithm to approximate all-pairs



shortest paths. Later on Roditty, Thorup and Zwick [28]
presented an efficient deterministic construction. Baswana
and Sen [5] and Baswana and Kavitha [3] improved the run-
ning time of the construction algorithm in a variety of set-
tings. In [33] Thorup and Zwick analyzed their construction
in the context of additive spanners, concluding that their
distance oracles provide also good additive spanners. Our
result can be viewed as another unexpected application of
the core ideas in [32].

We also present an f -edge fault tolerant (2k−1)-spanner

with edge set of size is O(f ·n1+1/k), i.e., only f times larger
than the standard lower bounds. As in the case of vertex
faults, our result holds when the given graph is weighted.

The rest of this paper is organized as follows. In Section 2
we present our main result, namely, the construction of ver-
tex fault tolerant spanners. To simplify our presentation, in
Section 2 we consider only unweighted graphs. In Sections 3
and 4 we extend our results to the more involved case of
weighted graphs and analyze the running time of our algo-
rithm. In Section 5 we present our algorithm for edge fault
tolerant spanners (for weighted graphs). Finally in Section 6
we present a few concluding remarks.

2. VERTEX FAULT TOLERANT SPANNER
In this section we present the main result of this pa-

per, an algorithm for constructing an f -vertex fault toler-
ant spanner. One of the ingredients of our algorithm is a
non-standard usage of the distance oracle construction of
Thorup and Zwick [32]. That paper presents an algorithm
that creates an approximate distance oracle, which is a data
structure of size O(kn1+1/k) that answers approximate dis-
tance queries in O(k) time. It approximates the distances
up to a 2k − 1 multiplicative error. The main ingredient
of this data structure is a clever tree cover (which is also a
spanner) for the graph. Hence the distance oracle is in par-
ticular a spanner. In the first part of this section we review
the construction of [32]. Our presentation is biased towards
our specific usage later on. We then present our algorithm
and its analysis.

Let G(V,E) be an unweighted undirected graph. (In Sec-
tion 3, we show how to extend our result for weighted graphs.)
For each vertex w ∈ V , let T (w) be a certain shortest path
spanning tree of G rooted at w. Roughly speaking, the span-
ner of [32] consists of n clusters, each indexed by a vertex
w ∈ V and denoted by C(w). Each such cluster C(w) con-
sists of a tree rooted at w that spans the set of vertices that
are in C(w). In [32] it is shown that the tree C(w) is always
a subtree of T (w), and thus to simplify notation, we denote
both the tree rooted at w and the subset of vertices it spans
by C(w). Finally, the edge set C = ∪w∈V C(w) is defined
to be the desired spanner. The algorithm of [32] is given in
Figure 1.

Theorem 2.1. [32] Algorithm spanner(G(V,E), k) given
in Figure 1, with the clusters defined by (*) as in [32], re-
turns, with high probability, a (2k − 1)-spanner of G(V,E)

with O(n1+1/k log1−1/k n) edges.

The analysis of [32] in fact proved a stronger result, namely,
that with high probability, the number of clusters in which
every vertex participates is at most O(n1/k log1−1/k n). This
property is very important to our construction as we will see
later on.

The first change we make in algorithm spanner of [32],
which is crucial for our purpose, concerns the definition of
C(w). Our clusters C(w), defined by (**) in the algorithm,
differ from those in [32] in that they are trimmed at depth
k. Formally, our clusters are defined as
C(w) = {v | δ(v, w) < δ(v, pi+1(v)) ∧ δ(v, w) ≤ k}.

In contrast, the original definition of [32] is
C(w) = {v | δ(v, w) < δ(v, pi+1(v))}.

The vertex pi+1(v) is defined to be the closest vertex to v
among the vertices of Ai+1, where ties are broken by the
order of the sampling, that is, the vertex that survived more
steps in the sampling process is chosen. This definition is the
same as that of [32]. Notice that the new cluster definition
can only affect the stretch of the spanner, as its size can only
decrease as a result of the change.

Theorem 2.2. Algorithm spanner(G(V,E), k) given in
Figure 1, with the new cluster definition (**), returns, with
high probability, a (2k − 1)-spanner of G(V,E) with

O(n1+1/k log1−1/k n) edges.

Proof. For every vertex w ∈ V , let CTRIM(w) be the
trimmed cluster obtained from C(w) by removing any vertex
of it whose distance from w is more than k. It is shown in
[32] (Lemma 3.3) that for every pair of vertices u and v there
exists a vertex w such that (i) u, v ∈ C(w) and (ii) the paths
from u to w and from v to w satisfy that one is of length at
most k times the distance between u and v and the other is
of length at most k− 1 times the distance between u and v.
In particular, it must be that for every edge (u, v) ∈ E there
exists a vertex w whose cluster C(w) contains both u and v
such that the paths from u to w and from v to w satisfy that
one is of length at most k and the other one is of length at
most k− 1. This implies not only that u, v ∈ C(w) but also
that u, v ∈ CTRIM(w). Since any edge is approximated with
a path of length at most 2k − 1, the graph ∪w∈V CTRIM(w)
is a (2k − 1)-spanner.

Hereafter, for every w ∈ V , denote its trimmed cluster
by C(w). We now present our algorithm for f -vertex fault
tolerant spanners. By our definitions, an f -fault tolerant
(2k − 1)-spanner C for a graph G(V,E) must contain, for
every subset F ⊂ V of size at most f , a (2k−1)-spanner for
the graph G \ F .

A naive approach to solve this problem is to construct, for
every F ⊂ V of size at most f , a spanner of G \ F and to
define the final spanner as their union. However, in such a
solution, even for a single vertex fault, the spanner may con-
tain all the edges of the graph and of course will be useless.
Surprisingly, following the spirit of this naive approach while
using the variation to the spanner of [32] discussed above
(combined with some other new ideas presented later), we
obtain an f -fault tolerant (2k − 1)-spanner with only

O(f2kf+1n1+1/k log1−1/k n) edges. The crux of this ap-
proach lies in its analysis which is possible due to our trimmed
cluster definition.

A high-level description of our algorithm is given in Fig-
ure 2. It receives as input three parameters; a graph, an
integer k for the desired stretch-space tradeoff and an inte-
ger f for the desired number of faults. Let F ⊂ V be a set of
size at most f . The algorithm constructs a (2k−1)-spanner
CF of G \F , for any such F . We denote by CF (w) the clus-
ter corresponding to w in CF . In order to ensure that the
final f -vertex fault tolerant spanner C (which our algorithm



algorithm clusters(G(V,E), {A0, . . . , Ak}, k)

for every v ∈ V
for i← 0 to k − 1

let δ(Ai, v)← min{ δ(w, v) | w ∈ Ai}
let pi(v) ∈ Ai be such that δ(pi(v), v) = δ(Ai, v)

δ(Ak, v)←∞
for i← 0 to k − 1

for each w ∈ Ai \Ai+1

[ C(w)← {v|δ(v, w) < δ(v, pi+1(v))} ] (*)
C(w)← {v|δ(v, w) < δ(v, pi+1(v)) ∧ δ(v, w) ≤ k} (**)

let C ←
S
w C(w)

return C

algorithm initialize(V, k)

A0 ← V ; Ak ← φ ; p←
“

n
logn

”−1/k

for i← 1 to k − 1
Ai ← sample(Ai−1, p)

let A ← {A0, . . . , Ak}
return A

algorithm spanner(G(V,E), k)

A ← initialize(V, k)
C ← clusters(G(V,E),A, k)
return C

Figure 1: The algorithm of [32]. The first cluster definition, (*) in the square brackets, is that of [32] and the
second, (**), is our modified trimmed cluster definition.

algorithm ft-spanner(G(V,E), k, f)

A ← initialize(V, k)
Cφ ← clusters(G(V,E),A, k)
C ← Cφ
for t = 1 to f

for every F ⊆ V of size t
CF ← clusters(G \ F,A, k)
C ← C

S
CF

return C

Figure 2: Our algorithm for constructing an f-
vertex fault tolerant (2k − 1)-spanner

outputs) is sparse, we design CF (w) to satisfy the following
closure property.

Property 2.3. [closure] For any F ′ ⊂ F and any ver-

tex v ∈ V , if the path P connecting v to w in CF
′
(w) does

not include any vertices from the set F \F ′, then P appears
in CF (w) as well.

To ensure this property, when constructing CF (w) for some
vertex w ∈ V and set F , we employ the following rule.
Least parent rule: Let V = {v1, .., vn}. Assume the clus-
ter is already constructed up to depth r− 1, that is, there is
a path to every vertex at distance of at most r − 1 from w
that belongs to the cluster. We now construct level r of the
cluster. Let x be a vertex of level r. Let i be the smallest
index such that vi belongs to level r−1 and there is an edge
between vi and x in G \ F . We set vi to be the parent of x.

We now show that if this rule is applied then Property 2.3
is satisfied. We stress that, as before, CF (w) denotes both
the set of vertices in the cluster and its corresponding span-
ning tree obtained by this procedure.

Lemma 2.4. If the clusters of ft-spanner(G(V,E), k, f)
are constructed using the “least parent” rule then they satisfy
the closure property 2.3.

Proof. Let F ′ ⊂ F , let v ∈ CF
′
(w) and let

P = (x0 = w, x1, . . . , xr, v) be the shortest path that con-

nects v to w in CF
′
(w). Assume that P does not include

vertices from the set F \F ′. Thus, the path P still exists in
G \ F and is a shortest path between v and w. Let
Q = (y0 = w, y1, . . . , yr, v) be some other shortest path from
v to w in G \ F . Since P is a shortest path in G \ F ′, Q is
also a shortest path in G \ F ′.

It follows directly from the definition of our clusters that
if a vertex v is in a cluster C(w) then every vertex on any
shortest path from w to v is also in C(w). Applying this in
our context yields that all the vertices on the paths P and

Q appear in both CF
′
(w) and CF (w).

Let i be the largest index such that xi 6= yi. Let xi = vj
and yi = v`. For the sake of contradiction, assume that Q is
the path that was chosen by the algorithm to connect v to
w in CF (w). This means that when the algorithm chose a
parent for yi+1, it chose v`, and since yi+1 = xi+1, it follows
that v` was chosen over vj and hence ` < j by our “least
parent” rule. However, this leads to contradiction since P is

the path in CF
′
(w) that was constructed by following the

same rule and it must be that ` > j.

Before we turn to the analysis of our algorithm, we discuss
the second change that needs to be applied to the algorithm
of [32]. In our construction we would like that, with high
probability, for every v and every subset F ⊂ V of size
at most f , the number of vertices w ∈ V such that v ∈
CF (w) be bounded by O(fn1/k log1−1/k n). This can be
guaranteed using the exact same analysis of [32] when one
slightly increases the sample probability in initialize to be

p = (f + 3)1/(k−1)
“ n

lnn

”−1/k

.

Namely, we prove the following proposition. A detailed proof
is omitted from this extended abstract.

Proposition 2.5. Increasing the sample probability in
initialize to p = (f + 3)1/(k−1)( n

lnn
)−1/k ensures that with

probability at least 1−1/n, for every v ∈ V , and every F ⊂ V
of size at most f , the number of clusters CF (w) that contain

v is bounded by O(f · n1/k ln1−1/k n).

Proposition 2.5 implies that, w.h.p, the spanners CF con-
structed by ft-spanner(G(V,E), k, f) are each of size

O(fn1+1/k log1−1/k n). We can now turn to show that the
union of all these Ω(nf ) spanners is not much larger than
the size of a single one. We do that in two steps. First, as



a warm-up that demonstrates our ideas in the simplest pos-
sible setting, we analyze the case of a single fault, and then
we turn to the general case. We stress that in both cases,
our modified definition for C(w), which involves “trimming
at depth k,” plays a major role in our analysis.

2.1 Warmup: 1-vertex fault tolerant spanners
As a warm-up we analyze the algorithm for one fault,

that is, ft-spanner(G(V,E), k, 1). The ideas and proof tech-
niques used in this section will be extended to deal with f -
faults when we analyze Algorithm ft-spanner(G(V,E), k, f)
in Section 2.2.

Theorem 2.6. Algorithm ft-spanner(G(V,E), k, 1) given
in Figure 2 returns, with high probability, a 1-fault tolerant
spanner of G(V,E) with stretch 2k − 1 and

O(k2n1+1/k log1−1/k n) edges.

Proof. Let Cφ be the spanner returned by the execution
of clusters(G,A, k). Here the superscript ‘φ’ refers to the
set of vertex faults considered (which is currently empty).
Let δφ(u, v) denote the length of the shortest path between
u and v in G. Let δφ(Ai, v) = min{ δφ(w, v) | w ∈ Ai}.
Let pφi (v) ∈ Ai be such that δφ(pφi (v), v) = δφ(Ai, v). Let

Cφ(w) = {v | δφ(v, w) < δφ(v, pφi+1(v))∧δφ(v, w) ≤ k}. For,
x ∈ V , consider the execution of clusters(G\{x},A, k) per-
formed while running ft-spanner(G(V,E), k, 1). Let δx(u, v)
denote the length of the shortest path between u and v in
G \ {x}. Let δx(Ai, v) = min{ δx(w, v) | w ∈ Ai}. Let
pxi (v) ∈ Ai be such that δx(pxi (v), v) = δx(Ai, v). Let
Cx(w) = {v | δx(v, w) < δx(v, pxi+1(v)) ∧ δx(v, w) ≤ k}.
Finally, let Cx =

S
w C

x(w).
We first bound the number of edges in the spanner C re-

turned by algorithm ft-spanner(G(V,E), k, 1). Notice that
the spanner C includes the union of the spanner Cφ and
the additional spanners Cx (for x ∈ V ). By our prelim-
inary discussion, each such spanner in itself has at most
O(n1+1/k log1−1/k n) edges (recall that in this section f =
1). In what follows we show that the size of the union of
these spanners is not much larger than that.

To this end, we analyze the number of edges in the edge
set of C \ Cφ, namely, the number of edges added to the ini-
tial spanner Cφ during the execution of the algorithm. We
use the following definition. For a vertex x, let CxNEW(w) ⊆
Cx(w) be the set of vertices v for which the path connecting
v to w in Cx(w) does not appear in Cφ(w). To bound the
number of edges in C, it suffices to bound the number of
vertices v in

S
w∈V

S
x∈V C

x
NEW(w). This follows from Prop-

erty 2.3, namely, from the fact that only such vertices v add
an edge to C \ Cφ, i.e., the edge connecting v to its parent in
the corresponding cluster Cx(w).

Call a tuple (v, w, x) costly iff v ∈ CxNEW(w). The number
of edges in C may be bounded by the size of Cφ plus the
number of costly tuples. We show that the latter is bounded
by O(k2n1+1/k log1−1/k n).

Let v be any vertex in V . Let i be an integer between
1 and k. In what follows we consider only costly tuples
(v, w, x) for which w ∈ Ai \ Ai+1. Later, our bound can be
multiplied by kn to obtain our assertion (a multiplicative
factor of k for each of the sets A0 \ A1, . . . , Ak−1 \ Ak, and
a factor of n for each v ∈ V ).

We consider two cases. In the first case, consider tuples
(v, w, x) for which v ∈ Cφ(w). We claim that in this case
the vertex x must lie on the path Pin connecting v and w in

Cφ(w), as otherwise, by the closure Property 2.3, the path
Pin will appear identically in Cx(w), which in turn will imply
that v 6∈ CxNEW(w).

By Proposition 2.5, the number of vertices w for which
v ∈ Cφ(w) is bounded by O(n1/k log1−1/k n). In addition,
for every such w there are at most k vertices x on the path
between v and w in Cφ(w). The latter follows by our defi-
nition of C(w), which guarantees that δ(v, w) ≤ k for every

v ∈ C(w). Hence a total of at most O(kn1/k log1−1/k n)
costly tuples are accounted for in this case.

Turning to the case in which v 6∈ Cφ(w), we show that in
any costly tuple (v, w, x), the vertex x must be on the path

Pout that connects v to pφi+1(v) in G. Recall that Cφ(w) =

{v | δφ(v, w) < δφ(v, pφi+1(v)) ∧ δφ(v, w) ≤ k}. Thus, either

δφ(v, w) ≥ δφ(v, pφi+1(v)) or δφ(v, w) > k. We are assuming
that (v, w, x) is a costly tuple, i.e., v ∈ CxNEW(w) ⊆ Cx(w) =
{v | δx(v, w) < δx(v, pxi+1(v))∧ δx(v, w) ≤ k}, which implies
δx(v, w) ≤ k and in turn δφ(v, w) ≤ δx(v, w) ≤ k. Here we
use δφ(v, w) ≤ δx(v, w), which follows from the fact that dis-
tances inG\{x} are at least as large as those inG. It remains

to consider the case δφ(v, pφi+1(v)) ≤ δφ(v, w) ≤ δx(v, w) <

δx(v, pxi+1(v)). This, in turn, implies that δφ(v, pφi+1(v)) is
strictly less than δx(v, pxi+1(v)), which can only happen if x
is on the path Pout specified above. Namely, x must be one
of at most k vertices in the path Pout (note that the discus-
sion above implies that the length of Pout is indeed bounded
by k).

To complete our proof, recall that for each such x, by
Prop. 2.5, there are at most O(n1/k log1−1/k n) vertices w
for which v ∈ Cx(w), and hence at most

O(n1/k log1−1/k n) vertices w for which v ∈ CxNEW(w). Thus,
all in all, the number of costly tuples accounted for in this
case is bounded again by O(kn1/k log1−1/k n).

This completes our analysis of the number of edges in C.
The bound on the stretch of C follows directly from the prop-
erties of the spanners Cφ and Cx outlined in Theorem 2.2.

2.2 The general case

Theorem 2.7. Algorithm ft-spanner(G(V,E), k, f) given
in Figure 2 returns, with high probability, an f-fault tolerant
spanner of G(V,E) with stretch 2k − 1 and

O(f2kf+1n1+1/k log1−1/k n) edges.

Proof. Let Cφ be the spanner returned by the execution
of clusters(G,A, k). Let F ⊆ V . Consider the execution of
clusters(G \ F,A, k) performed inside the main loop of ft-
spanner(G(V,E), k, f). Let δF (u, v) denote the length of
the shortest path between u and v in G\F . Let δF (Ai, v) =
min{ δF (w, v) | w ∈ Ai}. Let pFi (v) ∈ Ai be such that
δF (pFi (v), v) = δF (Ai, v). Let CF (w) = {v | δF (v, w) <
δF (v, pFi+1(v))∧δF (v, w) ≤ k}. Finally, let CF =

S
w C

F (w).
Recall that the algorithm clusters(G \ F,A, k) satisfies

the closure Property 2.3, that is, for a vertex v ∈ CF
′
(w) if

the path P that connects v to w in CF
′
(w) does not include

any vertex from the set F \ F ′ then P also connects v to w
in CF (w).

Thus, in order to analyze the exact upper bound on the
size of our spanner, we only need to count the new con-
nections that are formed at each stage. To this end, we
present the following central definition, that extends the
definition of C1

NEW(w) from the previous section and will
be used throughout the rest of the proof.



Definition 2.8. For a subset F of faults, let CFNEW(w) ⊆
CF (w) be the set of vertices v for which the path connecting

v to w in CF (w) does not appear in CF\{x} for any x ∈ F .

Let C be the subgraph returned by algorithm ft-spanner.
To bound the number of edges in C, it suffices to bound
the number of vertices in

S
w∈V

S
(F⊆V , |F |≤f) C

F
NEW(w).

Hence, it suffices to bound the number of costly tuples (v, w, F )
that satisfy |F | ≤ f and v ∈ CFNEW(w). This is exactly what
we do next. Specifically, for any vertex v ∈ V and any ver-
tex w ∈ Ai \ Ai+1 for which v ∈ CFNEW(w) and |F | = f , we
show that F has a very restricted structure and must be one
of few different subsets of V . We then proceed to show how
this claim will conclude our proof.

Throughout the discussion below we only consider tuples
(v, w, F ) for a specific vertex v, a specific value of i (which
will imply that w ∈ Ai\Ai+1) and a set F of size f . Thus, to
obtain the final bound we will have to multiply the obtained
bound by n (so as to count the cost of all the vertices) and
by k (for all the sets A0 \A1, . . . , Ak−1 \Ak). Notice that we
do not have to multiply by f (for all the possible set sizes) as

for a given set size f ′, we get O(f ′2kf
′+1n1+1/k log1−1/k n)

costly tuples. Hence for all possible set sizes, the number of

costly tuples is O(
Pf
f ′=1 f

′2kf
′+1n1+1/k log1−1/k n) ≤

O(f2n1+1/k log1−1/k n
Pf
f ′=1 k

f ′+1), which is

O(f2kf+1n1+1/k log1−1/k n).

Claim 2.9. Let Ft ⊆ V such that |Ft| = t. If v ∈ CFt(w)
for w ∈ Ai \ Ai+1, then the number of tuples (v, w, F ) for
which v ∈ CFNEW(w) and Ft ⊆ F is bounded by kf−t.

Proof. Let w be as defined in the claim. Let F = Ft ∪
{u1, . . . , uf−t}. Assume that v ∈ CFNEW(w). We now show
that there is a small number of extensions {u1, . . . , uf−t}
that may be added to Ft to obtain F .

We first claim that as v ∈ CFt(w) it must be the case that
F includes a vertex on the path Pin between v and w in
CFt(w). If this is not the case then it follows from Property
2.3 that for every F ′ that satisfies Ft ⊆ F ′ ⊂ F the path

Pin is in CF
′
(w) and in particular there exists x ∈ F such

that both v ∈ CF\{x}(w) and x is not in Pin. This implies
that v 6∈ CFNEW(w), which yields a contradiction. Thus, we
conclude that there exists a vertex of F in Pin. Assume,
w.l.o.g, that u1 ∈ F is this vertex and let Ft+1 = Ft ∪ {u1}.
Note that u1 is one of (at most) k vertices.

We now consider the cluster CFt+1(w). There are two
possible scenarios, the first is that as before v ∈ CFt+1(w)
and the second is that v /∈ CFt+1(w). If v is in CFt+1(w)
then from the same arguments as before it must be that
F includes a vertex from the path connecting v to w in
CFt+1(w). As in the proof of Theorem 2.6 , in the sce-

nario that v /∈ CFt+1(w) it holds that δFt+1(v, p
Ft+1
i+1 (v)) ≤

δFt+1(v, w) ≤ δF (v, w) < δF (v, pFi+1(v)) and δF (v, w) ≤ k.
Namely, it must be that there is a vertex from F on the

path that connects v to p
Ft+1
i+1 (v) in G \ Ft+1. Otherwise,

the path that connects v to p
Ft+1
i+1 (v) is not affected by the

deletion of the vertices of the set F \ Ft+1 and is still valid
in the graph G \F . The distance between v and w in G \F
can only get larger with respect to the distance between v
and w in G \ Ft+1 (recall that Ft+1 ⊆ F ). On the other

hand, the distance between v and p
Ft+1
i+1 (v) would remain

the same. Since v /∈ CFt+1(w), by definition, this would

imply that v 6∈ CF (w) and obviously v 6∈ CFNEW(w), which
yields a contradiction.

We thus conclude that there must be a vertex of F that
is either on the path that connects v to w if v ∈ CFt+1(w)

or on the path that connects v to p
Ft+1
i+1 (v) if v /∈ CFt+1(w).

In each of these two possible scenarios there are at most k
vertices that can be chosen. Assume, w.l.o.g, that u2 ∈ F is
this vertex and let Ft+2 = Ft+1 ∪ {u2}.

We continue in a similar manner and define Ft+3 which
is an extension of Ft+2 by one of k vertices defined by v,
w and Ft+2; and in general we define Ft+j which is an ex-
tension of Ft+j−1 by one of k vertices defined by v, w and
Ft+j−1. In each iteration, the number of possible subsets
Ft+j increases by a multiplicative factor of k. All in all, we
conclude that the number of possible subsets F is bounded
by the expression given in the claim.

Let v ∈ V . Consider a tuple (v, w, F ) for which v ∈
CFNEW(w). We now bound the number of such tuples when
w is assumed to be in Ai \ Ai+1 and F is assumed to have
size f .

We start with the cluster set Cφ. We consider the case that
v ∈ Cφ(w) and the case that v /∈ Cφ(w). Consider the ver-
tices w such that v ∈ Cφ(w). It follows from Proposition 2.5

that there are only O(fn1/k log1−1/k n) such vertices w from
Ai \Ai+1 for which v is in their cluster. Here, and through-
out the proof we assume that Proposition 2.5 indeed holds
(which happens with high probability over the sets Ai). For
each one of these vertices it follows from Claim 2.9 that there
are at most kf possible sets F that satisfy v ∈ CFNEW(w).

We now consider the vertices w for which v 6∈ Cφ(w). As
in the proof of Claim 2.9, since v ∈ CFNEW(w) it must be
that the set F includes one of the k vertices on the path
between v and pφi+1(v) in G, as otherwise, the path that

connects v to pφi+1(v) is not affected by the deletion of the
set F and is valid in G \ F . The distance between v and
w in G \ F can only get larger with respect to the distance
between v and w in G. Since v /∈ Cφ(w), by definition in
this case, it cannot be that v ∈ CF (w) and obviously it
cannot be that v ∈ CFNEW(w), which yields a contradiction.
We conclude that F must include one of the k vertices on
the path that connects v to pφi+1(v). Let u1 be one such
vertex, and consider the set F1 = {u1}.

As before, we consider two cases. First consider the ver-
tices w such that v ∈ CF1(w). Again, it follows from Propo-

sition 2.5 that there are only O(fn1/k log1−1/k n) such ver-
tices w from Ai\Ai+1 for which v is in their cluster. For each
one of these vertices, by Claim 2.9, there are at most kf−1

tuples (v, w, F ), where F1 ⊆ F , for which v ∈ CFNEW(w).
There are k possible values for F1. Summing over all pos-
sible values for F1 results in at most kf tuples (v, w, F ) for
which v ∈ CFNEW(w).

Consider any other vertex w for which v 6∈ CF1(w). As be-
fore, we now claim that in any tuple (v, w, F ), where F1 ⊆ F ,
for which v ∈ CFNEW(w) it must be the case that F includes
one of the k vertices on the path that connects between v
and pF1

i+1(v) in G \ F1, as otherwise, the path that connects

v to pF1
i+1(v) is not affected by the deletion of the set F and

is valid in G\F . The distance between v and w in G\F can
only get larger with respect to the distance between v and w
in G\F1 and since v /∈ CF1(w) it cannot be that v ∈ CF (w)
and obviously it cannot be that v ∈ CFNEW(w), which yields
a contradiction. We conclude that F must include one of



the k vertices on the path that connects v to pF1
i+1(v). Let

u2 be one such vertex, we can now set F2 = F1 ∪ {u2}.
For a general iteration j we have the case that v ∈ CFj−1(w)

and the case that v /∈ CFj−1(w).
For the case that v ∈ CFj−1(w) it follows from Proposi-

tion 2.5 that there are only O(fn1/k log1−1/k n) such ver-
tices w from Ai \ Ai+1 that v is in their clusters. Using
Claim 2.9, it follows that there are kf−j+1 tuples (v, w, F ),
where Fj−1 ⊆ F , for which v ∈ CFNEW(w). There are kj−1

possible values for Fj−1. Summing over all possible values
for Fj−1 results in at most kf tuples (v, w, F ) for which
v ∈ CFNEW(w). For the second case we define the set Fj to
be an extension of Fj−1 by one of at most k vertices on the

path that connects between v and p
Fj−1
i+1 (v) in G \ Fj−1.

In our last step, once Ff−1 has been defined, our first
case yields an addition of kf tuples. For our second case,
we notice that Ff may have kf different values. For each
possible value F , it follows from Proposition 2.5 that there
are at most O(fn1/k log1−1/k) corresponding vertices w such
that w ∈ Ai \ Ai+1 and v ∈ CF (w) (and in particular
v ∈ CFNEW(w)). Thus any tuple (v, w, F ) for which v ∈
CFNEW(w) that has not been counter for so far must be one

of O(fkfn1/k log1−1/k) corresponding tuples.
All in all, the number of tuples (v, w, F ) for which

v ∈ CFNEW(w) is
“Pf

i=1 k
ikf−i + kf

”
O(fn1/k log1−1/k n) =

O(f2kfn1/k log1−1/k n). Multiplying this by nk as discussed
in the beginning of the proof yields our assertion.

3. VERTEX FAULT TOLERANT SPANNERS
FOR WEIGHTED GRAPHS

In this section we consider the construction of vertex fault
tolerant spanners for graphs G(V,E) with edge weights ω :
E → R+. We show that a slightly modified version of the al-
gorithm for unweighted graphs presented in Section 2 yields
a similar result for weighted graphs. Recall that in the case
of unweighted graphs our crucial observation is that we only
need to consider the clusters C(w) defined in the algorithm
of [32] up to depth k in order to get a (2k−1)-spanner (The-
orem 2.2). In the case of weighted graphs this observation
no longer holds. Indeed, for an input edge (u, v), the algo-
rithm of [32] might return an estimated path of length at
most 2k − 1 times ω(u, v) but with more than 2k edges.

As in the unweighted case, we would like to guarantee for
each edge (u, v) in E a corresponding node w such that (i)
u, v ∈ C(w) and (ii) the paths from u to w and from v to w
in the spanner both contain at most k edges and are both of
weight at most k times ω(u, v). In what follows we show how
to modify the algorithm of [32] in order to get this property.

Let δi(w, v) be the length of the shortest path from v
to w with at most i edges (if such a path does not ex-
ist, then δi(w, v) = ∞). Formally, δi no longer satisfies
the triangle inequality, nevertheless it will suffice for our
needs. The definition of δi(Aj , v) is changed accordingly,
i.e., δi(Aj , v)← min{δi(w, v) | w ∈ Aj}. The vertex pi(v) is
now set to be the vertex w in Ai with the smallest δi(w, v),
i.e., δi(pi(v), v) = δi(Ai, v). Namely, in the definition of
pi(v), for small values of i we are considering paths with
only few edges. Accordingly, we change the definition of
C(w) for w ∈ Ai \ Ai+1 to be C(w) = {v | δi+1(v, w) <
δi+1(v, pi+1(v))}. So, for w ∈ Ai \ Ai+1 the clusters C(w)
will include only paths with at most i + 1 edges. For a

fault set F , we also use the analogous definitions for CF (w),
δFi (u, v) and pFi (v) when considering the graph G \ F (as
done in Section 2). The corresponding modified algorithm
clusters(G(V,E), {A0, . . . , Ak}, k) is given in Figure 3.

We now show that the analysis given for the unweighted
case in Section 2 can be modified slightly to hold in the
weighted case as well. We first note that Proposition 2.5
holds for the definitions above. Namely, with high proba-
bility for every v ∈ V and F ⊆ V of size at most f the
number of clusters that contain v is O(fn1/k log1−1/k n) in
the graph G\F . Only slight modifications are needed in the
proof of Lemma 3.2 in [32] for our analysis to hold. Namely,
instead of considering the nodes in Ai in nondecreasing or-
der of distance from v, we now consider the nodes in Ai in
nondecreasing order of the distance δi+1(w, v).

There are two major differences in procedure clusters
(w.r.t. the unweighted case). Primarily, when we add a node
v to a cluster C(w) such that w ∈ Ai\Ai+1, we add the entire
shortest path from v to w with at most i + 1 edges to the
edge set ESP . This is essential in order to get a spanner.
In the unweighted case in Theorem 2.7, when considering
the shortest path from a node v to w, all nodes in that
path belong to C(w) . In the new definitions presented in
the section, this assumption no longer holds. For example,
consider a shortest path from v to w and assume this shortest
path is of length exactly i + 1. Let z be the parent of v in
that path. Assume G contains a path from z to u ∈ Ai+1

with exactly i+ 1 edges. Assume this path is very light and
therefore z does not belong to C(w). As v is of distance i+2
from u, v may still belong to C(w).

The second difference is that for each v and each i we add
the path from v to pi(v) to the spanner edge set ESP . As we
will see, this is also essential in order to get a spanner. It is
not hard to verify that in the unweighted case v ∈ C(pi(v))
and thus the path at hand indeed appears in the spanner.
In the case of edge weights, with our new definitions, this no
longer holds. Consider for example the following scenario.
Assume p1(v) ∈ A1 \ A2. The vertex v will be in C(p1(v))
only if δ2(v, p2(v)) > δ2(v, p1(v)). However, by our defini-
tions, it may indeed be the case that A2 contains a node
p2(v) closer to v than p1(v) but obtainable only by a path
of length 2. In this case v will not be in C(p1(v)). Notice
that in the weighted case we distinguish between the clus-
ters C(w) and the edge set ESP . Namely, the edge set ESP
contains more edges. For each node v ∈ C(w) we might add
a path of length k to ESP .

3.1 Analysis of algorithm clusters
We now show that the modified algorithm clusters of

Figure 3 in the framework discussed in Section 2 indeed
yields a 2k − 1 spanner. In our analysis we use the query
algorithm dist(u, v) from [32] (presented in Figure 4). Let C
be the spanner returned by our algorithm. Given the clusters
C(w) ∈ C for w ∈ V , dist(u, v) iteratively finds a vertex w
such that both u and v are connected by “short” paths to w.
During its iterations, algorithm dist “tries” several values of
w which always equal either pi(v) or pi(u) (for some value
of i). This ensures that at least one of the corresponding
paths (u,w) or (v, w) is trivially (by our construction and
discussion above) in the spanner C.

Lemma 3.1. For a given edge (u, v), there exists a vertex
w ∈ Ai \ Ai+1 for some 0 ≤ i ≤ k − 1 such that one of
the following occurs: (i) w = pi(u), v ∈ C(w), δi(w, u) ≤



algorithm clusters(G(V,E), {A0, . . . , Ak}, k)

ESP ← ∅
for every v ∈ V

for i← 0 to k − 1
let δi(Ai, v)← min{ δi(w, v) | w ∈ Ai}
let pi(v) ∈ Ai be s.t. δi(pi(v), v) = δi(Ai, v)
let P be the shortest path from v to pi(v)

with at most i edges.
add to ESP the edges of P .

δk(Ak, v)←∞
for i← 0 to k − 1

for each w ∈ Ai \Ai+1

C(w)← {v | δi+1(v, w) < δi+1(v, pi+1(v))}
for each v ∈ C(w)

let P be the shortest path from v to w
with at most i+ 1 edges.

add to ESP the edges of P .
return C ← (V,ESP)

Figure 3: The algorithm for weighted graphs

algorithm dist(u, v)

w0 ← u; u0 ← u; v0 ← v; i← 0
while vi /∈ C(wi)

i← i+ 1
(ui, vi)← (vi−1, ui−1)
wi ← pi(ui)

return δi(wi, ui) + δi(wi, vi)

Figure 4: Answering a distance query for edge (u, v)

(k − 1) · ω(u, v) and δi+1(w, v) ≤ k · ω(u, v). (ii) w = pi(v),
u ∈ C(w), δi(w, v) ≤ (k − 1) · ω(u, v) and δi+1(w, u) ≤
k · ω(u, v).

Proof. We use procedure dist and follow the proof of
Lemma 3.3 in [32]. Denote the weight of the edge (u, v)
by ∆ = ω(u, v). Using the notation in algorithm dist, we
first show that δi(wi, ui) ≤ δi−1(wi−1, ui−1) + ∆, if the ith
iteration passes the test of the while-loop of Procedure dist.
Assume the ith iteration passes the test of the while-loop of
Procedure dist. Then vi−1 /∈ C(wi−1), so δi(wi−1, vi−1) ≥
δi(Ai, vi−1) = δi(pi(vi−1), vi−1). Moreover, vi−1 = ui and
wi = pi(ui), so we get

δi(wi, ui) = δi(pi(ui), ui) = δi(pi(vi−1), vi−1)

≤ δi(wi−1, vi−1) ≤ δi−1(wi−1, ui−1) + ∆,

where the last inequality follows from the fact that if there
exists a path from wi−1 to vi−1 of length ` and with at most
i − 1 edges then there exists a path from wi−1 to ui−1 of
length ` + ∆ and with at most i edges (recall that there is
an edge between u and v of weight ∆).

Assume the algorithm leaves the while-loop at iteration
i. We first note that v ∈ C(w) for any w ∈ Ak−1 and
any v, by the fact that Ak = φ. We conclude that the
maximum number of iterations is bounded by k−1 and thus
i ≤ k−1. Now, the algorithm ensures that wi = pi(ui). The
analysis above yields that δi(wi, ui) < i∆. As the algorithm

algorithm ft-spanner(G(V,E), k, f)

A ← initialize(V, k)
Cφ ← clusters(G(V,E),A, k)
C ← Cφ
for t = 1 to f

for every F ⊆ V of size at most t
EFSP ← clusters(G \ F,A, k)
ESP ← ESP

S
EFSP

return ESP

Figure 5: Our algorithm for constructing an f-
vertex fault tolerant (2k − 1)-spanner for weighted
graph

does not pass iteration i of the while-loop, vi ∈ C(wi). As
δi(wi, ui) < i∆, it must be that δi+1(wi, vi) < (i + 1)∆.
This follows by the fact that ui and vi alternate between the
values of u and v respectively (namely for all i, {ui, vi} =
{u, v}). This completes our proof.

W.l.o.g assume the first part of Lemma 3.1 holds, i.e., w =
pi(u), v ∈ C(w), δi(w, u) ≤ (k−1) ·ω(u, v) and δi+1(w, v) ≤
k ·ω(u, v). As we add the shortest path from u to w = pi(u)
with at most i edges to the spanner edge set ESP and the
shortest path from v to w with at most i + 1 edges, we get
that using the modified algorithm clusters of Figure 3 in
the framework discussed in Section 2 yields a 2k−1 spanner.

Notice that with the new distance definition δi the depth
of the produced clusters C(w) is already bounded by k (as
we consider only paths with at most k edges). Therefore,
we do not need to trim the clusters up to depth k as in the
unweighted case.

The algorithm for constructing an f -vertex fault tolerant
(2k − 1)-spanner for weighted graph is given in Figure 5.
Before we prove the properties of the algorithm we present
a property analogous to the closure Property 2.3 used in the
unweighted case. The proof of Property 3.2 is identical to
that of Property 2.3.

Property 3.2. For any F ′ ⊂ F and any vertex v ∈ V :

if v ∈ CF
′
(w) and the path P connecting v to w added

to the spanner edge set ESP in the invocation of procedure
clusters on G \ F ′ does not include any vertices from the
set F \F ′, then P is also added to the spanner edge set ESP
in the invocation of procedure clusters on G \ F .

As before, for a subset F of faults, let CFNEW(w) ⊆ CF (w)
be the set of vertices v for which the path connecting v to w
in CF (w) does not appear in CF\{x} for any x ∈ F . Exactly
as in the unweighted case, Property 3.2 is essential here, in
order to claim that tuples (v, w, F ) such that v /∈ CFNEW(w)
do not contribute additional edges to the spanner edge set.

3.2 Analysis of algorithm ft-spanner
We now turn to analyze the size of the spanner returned

by ft-spanner(G(V,E), k, f). Only slight modifications are
needed in the proof of Theorem 2.7 for the weighted case.

Theorem 3.3. The Algorithm given in Figure 5 returns,
with high probability, an f-fault tolerant spanner of G(V,E)

with stretch 2k − 1 and O(f2kf+2n1+1/k log1−1/k n) edges.



Proof. As discussed above, in what follows we may as-
sume that Proposition 2.5 holds for our definitions. In the
proof of Theorem 2.7 we bound the number of costly tu-
ples (v, w, F ) for which v ∈ CFNEW(w) , w ∈ Ai \ Ai+1

and |F | = f . We bound the number of costly tuples in
the weighted case in exactly the same manner to obtain the
bound of O(f2kf+1n1+1/k log1−1/k n).

To bound the number of edges in the resulting spanner,
we specify two differences between the weighted and the un-
weighted cases. First, in Theorem 2.7 when considering the
shortest path from a node v to w in CF (w), all nodes in that
path belong to CF (w). This allowed us to associate a single
added edge with the costly tuple (v, w, F ). In the weighted
case this assumption no longer holds. Instead, we must con-
sider the path from v to w that was added to the spanner,
implying that each costly tuple (v, w, F ) may increase the
size of the final spanner by at most k edges.

In addition, in our spanner, we also add edges for the paths
from v to pi(v) for all v ∈ V and 1 ≤ i ≤ k − 1. To bound
the number of edges added in this manner one must apply
the proof structure of Theorem 2.7 to the setting at hand.
We state the needed claims that will enable us to bound the
edges contributed in this case by nkf+2. The proofs of the
claims are very similar to those appearing in Section 2. First,
one must prove an analog to Property 3.2 which states that

for any F ′ ⊂ F , any i and any vertex v ∈ V , if w = pF
′

i (v)
and the path P connecting v to w added to the spanner
edge set ESP in the invocation of procedure clusters on
G \ F ′ does not include any vertices from the set F \ F ′,
then w = pFi (v) and P is also added to the spanner edge
set ESP in the invocation of procedure clusters on G \ F .
We then define a tuple (v, i, F ) to be costly if pFi (v) differs

from p
F\{x}
i (v) for any x ∈ F . Notice that the number of

edges added to the spanner in the setting at hand is at most
k times the number of costly tuples. Finally, fixing v and
i, it is not hard to verify that the number of costly tuples
(v, i, F ) is bounded by kf . This follows from the fact that
a tuple (v, i, F ) is costly only if there is a vertex x ∈ F on

the path P connecting v and p
F\{x}
i (v) in G \ (F \ {x}).

Summing up, we can bound the number of costly tuples by
nkf+1 and the number of edges added to the spanner in this
case by nkf+2.

All in all, with high probability, the number of edges in
our final spanner is bounded as claimed.

4. ANALYZING THE RUNNING TIME
The running time of our algorithms for vertex fault tol-

erant spanners, presented in Sections 2 and 3, depends on
nf . This follows from the fact that Algorithm ft-spanner
enumerates all subsets F ⊆ V of size at most f . We now
show how to modify the algorithm in order to get a running
time of O(n2) times the number of edges m in the spanner
at hand. For the unweighted case the running time becomes
O(f2kf+1n3+1/k log1−1/k n) and for the weighted case we

get a running time of O(f2kf+2n3+1/k log1−1/k n). In what
follows we roughly sketch the main ideas of our proof for
the case of unweighted graphs. A detailed analysis and the
extension to graphs with edge weights is omitted from this
extended abstract.

Let m be the number of edges in our spanners, m =
O(f2kf+1n1+1/k log1−1/k n). As m << nf , for the vast ma-
jority of subsets F such that |F | < f , the spanner CF com-

algorithm edge-ft-spanner(G(V,E), k, f)

ESP ← ∅
for i = 1 to f + 1 do:

(V,EiSP) = spanner(G\ESP, k)
ESP = ESP ∪ EiSP

return H ← (V,ESP)

Figure 6: Our algorithm for constructing an f-edge
fault tolerant (2k − 1)-spanner

puted in algorithm ft-spanner(G(V,E), k, f) does not add
any new edges to C. Roughly speaking, we utilize this fact,
and instead of invoking the clusters procedure for every
subset F such that |F | < f , we only invoke it for subsets
F that might contribute new edges to C. Namely, we only
consider fault sets F for which there exist v and w such that
(v, w, F ) is a costly tuple, or equivalently v ∈ CFNEW(w).
This is done by following the analysis of Claim 2.9 and The-
orem 2.7, and explicitly constructing the tree-like structure
implied in their proof.

Our analysis uses the following algorithmic primitives which
all take time at most T = O(n2). (a) Given v, w and F ,
construct the path between v and w in CF (w). (b) Given
CF (w), check if v ∈ CF (w). (c) Given v, i, and F , construct
the path between v and pFi+1(v). (d) Given v and F , find all
vertices w such that v ∈ CF (w). Overall, we show that the
construction of all CFNEW(w) for which (v, w, F ) is a costly
tuple takes time O(Tm).

Loosely speaking, we start by presenting an implementa-
tion of Claim 2.9 showing that for Ft ⊆ V such that |Ft| = t,
if v ∈ CFt(w) and the cluster CFt(w) is given explicitly, then
one can construct in time O(Tkf−t) all the clusters CF (w)
corresponding to costly tuples (v, w, F ) for Ft ⊆ F . We then
proceed to implement Theorem 2.7.

5. EDGE FAULT-TOLERANT SPANNERS
In this section we describe our algorithm for creating an

f -edge fault tolerant spanner. Our algorithm presented here
is for weighted undirected graphs G. As mentioned before,
it is possible to efficiently construct a (2k − 1)-spanner of

size O(n1+1/k). In our construction of f -edge fault tolerant
spanners we may use any such spanner construction. Other
than the size and stretch of the resulting spanner, we do
not rely on any other of its properties. Therefore, we can
use any construction of spanners that guarantees a resulting
spanner with stretch (2k − 1) and size O(n1+1/k).

The algorithm is given in Figure 6. The algorithm con-
sists of f + 1 iterations. Let ESP be the set of edges added
to the spanner so far. At the beginning of the algorithm ini-
tialize it to be empty. In each iteration, we build a (2k− 1)-
spanner for the graph G\ESP via the procedure spanner.
At the end of each iteration we add the edges of the cur-
rent (2k − 1)-spanner to ESP. After the last iteration, we
return H(V,ESP) which is the required f -edge fault tolerant
spanner.

As mentioned above, the resulting subgraph in each in-
vocation of procedure spanner returns a (2k − 1)-spanner

of size O(n1+1/k). As we invoke procedure spanner f + 1
times, the total number of edges in the resulting spanner is
O(fn1+1/k). We now show that H is indeed an f -edge fault



tolerant 2k − 1 spanner.

Lemma 5.1. For every subset E′ ⊆ E, where |E′| ≤ f ,
the subgraph H ′ = (V,ESP \E′) is a (2k− 1)-spanner of the
graph G′ = (V,E \ E′).

Proof. Consider a subset E′ ⊆ E, where |E′| ≤ f . Let
H = (V,ESP) be the spanner returned by the algorithm.
Consider an edge e ∈ E \ E′ that is not included in the
spanner H. It suffices to show that H ′ contains an alterna-
tive path whose length is at most (2k − 1) times e’s weight.
Here, the length of a path is the sum of its edge weights.
Let Hi be the (2k − 1) spanner added during the i’th itera-
tion. Notice that the edges of the (2k − 1) spanner Hi are
disjoint for 1 ≤ i ≤ f + 1. The edge e was not included
in each iteration i for 1 ≤ i ≤ f + 1. Therefore, each Hi
contains an alternate path whose length is at most (2k− 1)
times e’s weight. Hence, there are f + 1 disjoint alternative
paths of length at most (2k − 1) times e’s weight in H. As
|E′| ≤ f , there must be at least one alternative path left in
H ′ of length at most (2k − 1) times e’s weight.

We thus conclude:

Theorem 5.2. For every f , k, and weighted graph G(V,E)
where |V | = n, one can efficiently construct an f-edge fault

tolerant (2k − 1) spanner with O(fn1+1/k) edges.

6. CONCLUDING REMARKS
In this paper we study the construction of both vertex

and edge fault tolerant spanners. We present fault tolerant
(2k − 1) spanners of size only slightly larger than that of
the best known standard (2k − 1) spanners. The many ap-
plications of spanners as a key ingredient in the design of
distributed algorithms, naturally raise the question if such
applications still hold in the failure-prone setting. Being
such fundamental graph structures, our study of spanners
in the context of fault tolerance opens the door to several
intriguing questions that now seem to be within reach.

7. REFERENCES
[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares.

On sparse spanners of weighted graphs. Discrete &
Comput. Geometry, 9:81–100, 1993.

[2] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg.
Near-linear cost sequential and distributed constructions of
sparse neighborhood covers. In Proc. 34th IEEE FOCS,
pages 638–647, 1993.

[3] S. Baswana and T. Kavitha. Faster algorithms for
approximate distance oracles and all-pairs small stretch
paths. In Proc. IEEE FOCS, pages 591–602, 2006.

[4] S. Baswana and S. Sarkar. Fully dynamic algorithms for
graph spanners with poly-logarithmic update time. In
Proc. 19th ACM-SIAM SODA, pages 672–681, 2008.

[5] S. Baswana and S. Sen. Approximate distance oracles for
unweighted graphs in expected O(n2) time. ACM Trans.
Algo., 2(4):557–577, 2006.

[6] A. Bernstein and D. Karger. Improved distance sensitivity
oracles via random sampling. In Proc. 19th ACM-SIAM
SODA, pages 34–43, 2008.

[7] B. Bollobás, D. Coppersmith, and M. Elkin. Sparse
distance preservers and additive spanners. In Proc. 14th
ACM-SIAM SODA, pages 414–423, 2003.

[8] A. Czumaj and H. Zhao. Fault-tolerant geometric
spanners. Discrete & Comput. Geom., 32:2004, 2003.

[9] C. Demetrescu, M. Thorup, R. Alam Chowdhury, and
V. Ramachandran. Oracles for distances avoiding a failed
node or link. SIAM J. Comput., 37(5):1299–1318, 2008.

[10] R. Duan and S. Pettie. Dual-failure distance and
connectivity oracles. In Proc. 20th ACM-SIAM SODA,
2009.

[11] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and
A. Srinivasan. Fast distributed algorithms for (weakly)
connected dominating sets and linear-size skeletons. J.
Comput. & Sys. Sci., 71:467–479, 2005.

[12] M. Elkin. Computing almost shortest paths. ACM Trans.
Algo., 1(2):283–323, 2005.

[13] M. Elkin. A near-optimal distributed fully dynamic
algorithm for maintaining sparse spanners. In Proc. 26th
ACM PODC, pages 185–194, 2007.

[14] M. Elkin. Streaming and fully dynamic centralized
algorithms for constructing and maintaining sparse
spanners. In Proc. 34th ICALP, pages 716–727, 2007.

[15] M. Elkin and J. Zhang. Efficient algorithms for
constructing (1 + ε, β)-spanners in the distributed and
streaming models. In Proc. 23rd ACM PODC, pages
160–168, 2004.

[16] A. M. Farley, A. Proskurowski, D. Zappala, and
K. Windisch. Spanners and message distribution in
networks. Discr. Appl. Math., 137(2):159–171, 2004.

[17] J. Gao, L. Guibas, and A. Nguyen. Deformable spanners
and applications. In Proc. ACM SoCG, 2004.

[18] L. Gottlieb and L. Roditty. Improved algorithms for fully
dynamic geometric spanners and geometric routing. In
Proc. 19th ACM-SIAM SODA, pages 591–600, 2008.

[19] L. Gottlieb and L. Roditty. An optimal dynamic spanner
for doubling metric spaces. In Proc. 16th ESA, pages
478–489, 2008.

[20] C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient
algorithms for constructing fault-tolerant geometric
spanners. In Proc. 30th ACM STOC, pages 186–195, 1998.

[21] T. Lukovszki. New results of fault tolerant geometric
spanners. In Proc. 6th WADS, pages 193–204, 1999.

[22] M. Pǎtraşcu and M. Thorup. Planning for fast connectivity
updates. In Proc. 48th IEEE FOCS, pages 263–271, 2007.

[23] D. Peleg and A. A. Scháffer. Graph spanners. J. Graph
Theory, pages 99–116, 1989.

[24] D. Peleg and J. D. Ullman. An optimal synchronizer for
the hypercube. SIAM J. Comput., 18(4):740–747, 1989.

[25] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. J. ACM, 36(3):510—530, 1989.

[26] S. Pettie. Low distortion spanners. In Proc. 34th ICALP,
pages 78–89, 2007.

[27] L. Roditty. Fully dynamic geometric spanners. In Proc.
ACM SoCG, 2007.

[28] L. Roditty, M. Thorup, and U. Zwick. Deterministic
constructions of approximate distance oracles and
spanners. In Proc. 32th ICALP, pages 261–272, 2005.

[29] L. Roditty and U. Zwick. On dynamic shortest paths
problems. In Proc. 12th ESA, 2004.

[30] J. S. Salowe. Constructing multidimensional spanner
graphs. Int. J. Comput. Geom. Appl., 1(2):99–107, 1991.

[31] M. Thorup and U. Zwick. Compact routing schemes. In
Proc. 13th ACM SPAA, pages 1–10, 2001.

[32] M. Thorup and U. Zwick. Approximate distance oracles. J.
ACM, 52(1):1–24, 2005.

[33] M. Thorup and U. Zwick. Spanners and emulators with
sublinear distance errors. In Proc. 17th ACM-SIAM
SODA, pages 802–809, 2006.

[34] P. M. Vaidya. A sparse graph almost as good as the
complete graph on points in K dimensions. Discrete &
Comput. Geom., 6:369–381, 1991.

[35] D. P. Woodruff. Lower bounds for additive spanners,
emulators, and more. In Proc. 47th IEEE FOCS, pages
389–398, 2006.


