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Abstract. We present a weakly nonlinear analysis of our recently developed model for the
formation of crime patterns. Using a perturbative approach, we find amplitude equations that govern
the development of crime “hotspot” patterns in our system in both the 1D and radially symmetric 2D
cases. In addition to the supercritical spots already shown to exist in our previous work, we prove
here the existence of subcritical hotspots that arise via a subcritical pitchfork bifurcation in 1D
and a transcritical bifurcation in 2D. We present numerical results that both validate our analytical
findings and confirm the existence of these subcritical hotspots in the non-radially symmetric 2D case.
Finally, we examine the differences between these two types of hotspots with regard to attempted
hotspot suppression, referencing the varying levels of success such attempts have had in real world
scenarios.
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1. Introduction. The study of pattern formation in physical and mathematical
systems has a long and interesting history. This general subject area is also quite
diverse, examining biological (see, as a small sample, [32, 24, 23]), geological ([29, 10,
2]), and even sociological systems ([26, 13]), to name but a few. Though these various
subjects and systems may seem completely unrelated, the mathematics describing
the patterns in each are surprisingly similar. Consequently, a robust, powerful, and
universal set of mathematical tools has been developed to study such systems, and
the employment of these tools can lead to better understanding of pattern forming
systems, regardless of their specific nature.

Recently, we set forth to develop a mathematical model to describe the spatio-
temporal patterns of urban crime, specifically burglary [30]. Using well-known crimi-
nological ideas regarding the way in which criminal events effect future crime risk in a
location, and the way in which risk can spread from one area to another [16, 17, 18, 1],
we constructed a model consisting of two coupled, nonlinear partial differential equa-
tions that may describe the formation and dynamics of crime “hotspots” - spatio-
temporal clusters of high crime. Using a simple linear stability analysis of our model,
we found that the homogeneous system can be unstable to disturbances of specific
wavenumbers under certain parameter regimes, leading to hotspot formation. How-
ever, our previous work stopped there, with no investigation of the possibility of
hotspots outside of this linearly unstable regime. This paper addresses this possibil-
ity by performing a weakly-nonlinear analysis on our system and developing amplitude
equations for the model. By investigating the possible bifurcations in the steady state
solutions of our system both analytically and numerically, we indeed find that stable,
“large” amplitude hotspots may exist even in the linearly stable regime.

The fact that these subcritical hotspots exist within our system is especially inter-
esting when attempting to understand the outcome of hotspot suppression, typically
by police executing a strategy known as hotspot policing, which has become dominant
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Fig. 2.1. Example output from the discrete system. These colormaps display high A in red,
A in green, and low A in blue to purple. In (a) is an example of stationary hotspots, in (b) is an
example of transitory hotspots, and in (c) is an example of no hotspots.

over the past two decades [6, 4, 5, 36, 35]. Recognizing that crime tends to form dense
clusters in space and time, leaving some areas with little or no crime problem, police
routinely target their limited resources at those locations experiencing high crime.
That hotspot policing would be an improvement over random patrol is uncontrover-
sial; it has been well-known since the 1970s that random patrol has little measurable
effect on crime [20]. However, questions have been raised about whether hotspot
policing leads to lasting hotspot reductions, or simply the displacement of hotspots
from one area to another [25, 3, 7]. The present research provides a formal theoretical
foundation for understanding different potential outcomes from hotspot policing, in
relation to the classification of hotspots as either supercritical or subcritical.

The remainder of the paper is organized as follows. In Section 2, we give a brief
introduction to our crime model and the major results found in [30]. In Section 3, we
perform a weakly nonlinear analysis of our system in both the 1D and the radially
symmetric 2D case, deriving some analytical results for the amplitude equations and
bifurcations governing the hotspots exhibited by the system. In Section 4, we compare
these analytical results to numerical solutions in the 1D and radially symmetric 2D
case, as well as the fully 2D system. Finally, in Section 5, we explore the possible
results of hotspot suppression qualitatively and numerically using both the continuum
and discrete models.

2. Background. We being by reviewing the results of [30]. First, we developed
an agent-based model of criminal activity that aims to reproduce the known phenom-
ena of repeat and near-repeat victimization [16, 17, 18, 1], whereby crime risk becomes
elevated in an area and its surroundings following an initial event there. The model
couples the dynamics of moving, offending criminals on a 2D lattice with an underly-
ing scalar field A(x, t) that we refer to as the attractiveness. As the name implies, the
attractiveness field is a measure of how desirable any given location x is as a target
for criminal activity, with the numerical value of the field giving the stochastic rate
of offending for criminals at that location. When moving, criminals actively seek out
areas of high A, and are more likely to commit crimes in those areas once they reach
them. Upon commission of a crime, agents are removed from the system; agents are
also added into the system at a set rate at each lattice point. Repeat and near-repeat
victimization are incorporated by increasing the attractiveness at any location that
is subject to a criminal event, and allowing that increased attractiveness to spread to
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neighboring locations as time goes by. This increased attractiveness eventually de-
cays back to a baseline value A0 if no other events occur at that location. The model
thus described contains a number of parameters, and depending upon the choice of
these parameters, the system may exhibit three general types of behavior: stationary
(fixed in space) crime hotspots, transitory (moving about in space or appearing and
disappearing in time) hotspots, or no hotspots at all; these three cases are illustrated
in Fig. 2.1.

We then developed a partial differential equation (PDE) model as a hydrodynamic
limit of our continuum system, which is presented here in the dimensionless form

∂A

∂t
= η∇2A−A+A0 + ρA , (2.1)

∂ρ

∂t
= ~∇

[
~∇ρ− 2ρ

A
~∇A
]
− ρA+A−A0 , (2.2)

where ρ is the number density of criminal agents. In essence, crimes occur locally
at rate ρA, and each such crime causes A to increase. In addition, A diffuses with
dimensionless diffussion coefficient η (assumed less than 1), and decays exponentially
to the baseline value A0. Criminals exhibit diffusive motion with an advective bias
up gradients of lnA. Finally, criminals are subtracted from the system when they
commit a crime, and are added back at a constant rate A − A0 1. These equations
exhibit a general reaction-diffusion form, and are similar to models of chemotaxis such
as the Keller-Segel model, which are well studied in the literature (see for example
[19, 15, 34, 9, 12, 21, 31, 14, 8, 27]).

The continuum system described by Eqns. 2.1 and 2.2 may display two of the three
behaviors from the discrete system - stationary hotspots or no hotspots. Transitory
hotspots are not seen in the continuum approximation, as they are the result of
statistical noise that is removed in the hydrodynamic limit. We showed that the
formation of hotspots in this system may arise as a result of a linear instability toward
perturbations of certain wavenumbers k, and that the dispersion relation could be
written as

σ(k) = −
[
1 +A− ρ+ |k|2(1 + η)

]
/2+√[

1 +A− ρ+ |k|2(1 + η)
]2
/4−

(
η|k|4 − (3ρ− ηA− 1)|k|2 +A

)
, (2.3)

where

ρ = 1− A0

A
. (2.4)

The instability criterion, therefore, could be written as

A0 < A0
∗ =

2
3
A− 1

3
ηA

2 − 2
3
A

√
ηA . (2.5)

In other words, if the baseline attractiveness is less than some critical value A0
∗, the

system will be linearly unstable (exhibit some modes with a positive σ). Finally, we

1The choice of the notation A here is due to the fact that, at steady state, this quantity is indeed
the spatially averaged value of A(x), regardless of the other parameters or whether hotspots are
displayed or not.
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showed that the maximally unstable mode kmax is given by

|kmax|2 = (1−A)/(1− η)− ρ(5− η)/(1− η)2+√
η(1 + η)2ρ

[(
A(3− η)− 2

)
(1− η) + 2ρ(3− η)

]
/η(1− η)2 . (2.6)

Note for future reference that, when A0 = A0
∗, the maximally growing mode can be

greatly simplified to

|kmax|2 ≡ |k∗|2 =

√
A

η
. (2.7)

3. Weakly nonlinear analysis. Our goal now is to more deeply examine the
continuum system of Eqns. 2.1 and 2.2 and to move beyond a simple linear stability
analysis, the results of which are shown above. We will accomplish this by means
of a weakly nonlinear analysis, using a standard perturbative expansion approach to
derive amplitude equations for our system [11, 33].

We begin by considering a parameter regime such that our system is only slightly
linearly unstable (or stable). Mathematically, we define a small parameter ε via the
equation

A0 = A0
∗ − εA , (3.1)

where our system will therefore be unstable for positive ε, and stable for negative ε.
The choice of scaling in the above equation gives firm upper and lower limits for the
possible values of ε. At the high end, we have an εmax where A0 = 0; at the low end,
we have a negative εmin where A0 = A. These two values are given by:

εmax =
2
3
− 1

3
ηA− 2

3

√
ηA , (3.2)

εmin = −1
3
− 1

3
ηA− 2

3

√
ηA . (3.3)

Note that the difference between these is always 1.
Returning again to the results of the linear stability analysis, when we substitute

Eq. 3.1 into Eq. 2.3 and expand for small ε, we find that the growth rate for the k∗
mode is given by

σ(k∗) = σ∗ε+O(ε2) , (3.4)

where

σ∗ =
9η|k∗|2

(1 + η|k∗|2) [2η + η|k∗|2(3− η)]
. (3.5)

Using this result, we see that we can define a new slow time variable T = |ε|t that
describes the dynamics of the system when near the stability transition; this means
that the ∂t in Eqns. 2.1 and 2.2 becomes |ε|∂T . We use |ε| here to make our future
results valid regardless of the sign of ε, though this means that we must rewrite Eq. 3.1
as

A0 = A0
∗ − sign(ε)|ε|A . (3.6)
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At this point, Eqns. 2.1 and 2.2 can be rewritten as

|ε|∂A
∂T

= η|k∗|2∇2A−A+A0
∗ − sign(ε)η|k∗|4|ε|+ ρA , (3.7)

|ε| ∂ρ
∂T

= |k∗|2~∇
[
~∇ρ− 2ρ

A
~∇A
]
− ρA+ η|k∗|4 −A0

∗ + sign(ε)η|k∗|4|ε| . (3.8)

Note that we have defined a new spatial variable x̃ ≡ |k∗|x here, but that we will
continue to refer to x̃ as x in the future.

Next, we express A and ρ as expansions in our small parameter of the form:

A(x, T ) = A+
∞∑
i=1

|ε|αDiA(i)(x, T ) , (3.9)

ρ(x, T ) = 1− A0
∗

A
+
∞∑
i=1

|ε|αDiρ(i)(x, T ) , (3.10)

where αD is a rational number that will depend on the number of spatial dimensions
we are interested in. We substitute these expansions into our differential equations
and then separate the resulting equations by powers of |ε|. We note that upon doing
this, Eq. 3.7 can be used to simply solve for a given ρ(i)(x, T ) algebraically in terms
of lower order ρ(j)(x, T ) and A(j)(x, T ) and their derivatives, and that this result
can then be substituted into Eq. 3.8. This leaves a series of fourth order differential
equations to be solved that involve only the various A(i)(x, T ), each of which is of the
form

(∇2 + 1)2A(i)(x, T ) = fi

[
A(1)(x, T )

]
, (3.11)

where fi is a possibly nonlinear function.

3.1. 1D. For one dimension αD = 1/2, so the first interesting equation occurs
at order |ε|1/2. This equation is simply

(∇2 + 1)2A(1)(x, T ) = 0 . (3.12)

Let us now restrict our solution to a domain x ∈ [0, L] where L = 2nπ for some integer
n > 0, and impose periodic boundary conditions for both A(x, T ) and ρ(x, T ). The
solution to Eq. 3.12 for these boundary conditions is simply

A(1)(x, T ) = P (T )eix + c.c. , (3.13)

where P (T ) is the amplitude that at this point is simply an integration constant and
“c.c.” denotes the complex conjugate.

At order |ε|, we find the equation

(
∇2 + 1

)2
A(2)(x, T ) =

4
(
1− η2k4

∗
)

η2k6
∗

[
P (T )2e2ix + c.c.

]
. (3.14)

The particular solution to this equation, which is all we are after, is

A(2)(x, T ) =
4
(
1− η2k4

∗
)

9η2k6
∗

[
P (T )2e2ix + c.c.

]
. (3.15)
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At order |ε|3/2, we find the equation(
∇2 + 1

)2
A(3)(x, T ) = f3,1 [P (T ); η, k∗] eix + f3,3 [P (T ); η, k∗] e3ix + c.c. ; (3.16)

we do not reproduce the full expressions for f3,i here for sake of simplicity. The
particular solution to this equation is

A(3)(x, T ) = −f3,1 [P (T ); η, k∗]
8

x2eix +
f3,3 [P (T ); η, k∗]

64
e3ix + c.c. . (3.17)

Note that this solution contains a term of the form x2eix due to the secular eix term
in Eq. 3.16. This secular solution term, and those found at higher orders in ε, will give
our amplitude equation in the end, as all of these terms must vanish in order for the
solution to fit the boundary conditions. If we simply desire the amplitude equation
to the current order in ε, then, we must enforce that f3,1 [P (T ); η, k∗] = 0. Upon
doing this, rescaling T back to t and letting |ε|1/2P (t) ≡ Q(t), we find the amplitude
equation

Qt = σ∗εQ− C1(η, k∗)|Q|2Q , (3.18)

where

C1(η, k∗) =
−8 + 56ηk2

∗ − 31η2k4
∗ − 8η3k6

∗
3η2k8

∗ [2η + ηk2
∗(3− η)]

, (3.19)

and σ∗ is given by Eq. 3.5 above. This is the standard form for a dynamical system
exhibiting a pitchfork bifurcation, with the distinction between a supercritical and
subcritical bifurcation determined by the sign of C1. Upon inspection, it is found that
C1 will be negative for any ηk2

∗ < 0.157 (indicating a subcritical pitchfork bifurcation
here) and positive otherwise (indicating a supercritical pitchfork bifurcation). The
steady state value Qs is either zero (the homogeneous case) or given by

Qs = ±
√

σ∗ε

c1(η, k∗)
. (3.20)

Finally, our solution for Q is only valid to order |ε|, so our solution for A(x, T ) is also
only valid to this order, and is given by

A(x, t) = A+Q(t)eix +
4
(
1− η2k4

∗
)

9η2k6
∗

Q(t)2e2ix + c.c . (3.21)

One can in general continue the expansion up to higher orders in ε by defining
subsequent slow timescales Ti for i ≥ 2, each of which will modify ∂t by adding a term
|ε|i∂Ti

. One then continues with the above results and eliminates the secular solutions
at higher orders in the expansion, with the net result being amplitude equations that
govern the various PTi . In practice, though, the algebra up to that point is quite
expansive and little is gained by giving the exact expressions found. However, using
a symbolic computing platform such as Mathematica, one can compute higher order
solutions relatively quickly and easily; we will show the results of this when we discuss
numerical results later.
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3.2. 2D, radially symmetric. In this regime, αD = 1, so the first interesting
equation in our system is proportional to |ε| and is(

∇2 + 1
)2
A(1)(r, T ) = 0 . (3.22)

Of course, the Laplacian operator in this case is different than that in 1D, as is the
domain of the solutions. We now consider solutions on a disk r ∈ [0, R] with R = α1,n,
where α1,n is the nth root of the Bessel function J1(r); we enforce Neumann conditions
on the boundary edge. For these boundary conditions, the solution at this order is

A(1)(r, T ) = P (T )J0(r) . (3.23)

At the next order, we find an equation for A(2)(r, T ) that is

(
∇2 + 1

)2
A(2)(r, T ) =

9ηk2
∗P (T )sign(ε)−

(
1 + ηk2

∗
) [

2η + ηk2
∗(3− η)

]
PT (T )

3η2k4
∗

J0(r)+

2
(
1− η2k4

∗
)

η2k6
∗

P (T )2
[
J2

0 (r)− J2
1 (r)

]
. (3.24)

Now, as before, we will need to eliminate any secular term proportional to J0(r) on
the right hand side of this equation so that our solution will respect the boundary
conditions imposed. In order to do so, we take advantage of the fact that the Bessel
functions can be used as an orthogonal basis for expanding other functions, so we are
free to write the J2

0 (r) − J2
1 (r) portion on the right as a sum of Bessel functions to

the first power, one of which will be J0(r). With the definition that

q =
2
∫ R

0

rJ0(r)
[
J2

0 (r)− J2
1 (r)

]
dr

R2J2
0 (R)

, (3.25)

we see that setting the secular term to zero (and rescaling T to t and letting |ε|P (t) ≡
Q(t)) is equivalent to the equation

Qt = σ∗εQ+ C2(η, k∗)Q2 , (3.26)

where

C2(η, k∗) =
6q(1− η2k4

∗)
k2
∗ (1 + ηk2

∗) [2η + ηk2
∗(3− η)]

. (3.27)

Hence, we find that in the 2D, radially symmetric case our system will undergo a
transcritical bifurcation. Interestingly, the constant C2 will always be positive for any
value of ηk2

∗ for which the above analysis is valid. That is, C2 would only be negative
if ηk2

∗ > 1, but the maximum value of ηk2
∗ for which linear instability is at all possible

(which must be the case for our analysis to work) is ηk2
∗ =
√

3− 1 < 1. Hence, there
is really only one qualitatively distinct bifurcation diagram in this case. The steady
state value Qs in this case is either zero (the homogenous case) or

Qs = − σ∗ε

c2(η, k∗)
. (3.28)
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Fig. 4.1. 1D system with ηk2
∗ = 0.4. In (a) is a bifurcation diagram for the system where

dashed lines represent unstable branches and solid lines are stable branches; numerical results are in
black and analytic results in red. We find good agreement for smaller ε values. In (b) are plots of the
numeric (black line) and analytic (red circles) solutions for Aamp(t) with ε = 0.01 and Q(0) = 0.01;
there is very good agreement here as well.

As in the 1-D case, our amplitude equation is only valid to order |ε|, so our equation
for A(r, t) in this case is simply

A(r, t) = A+Q(t)J0(r) . (3.29)

Note that, since this is a transcritical bifurcation, there is a broken symmetry
between positive Q and negative Q solutions, with the former corresponding to a
solution that exhibits a bump in A at the origin (hereafter referred to as the “bump
solution”) and the latter corresponding to a solution that has a ring of high A at
the outer edge of the domain (hereafter referred to as the “ring solution”). Our
theoretical results from Eq. 3.28 state that the steady state bump solution will exist
only for negative ε and that it will be unstable, and that the steady state ring solution
will exist only for positive ε and be stable.

4. Numerical Results. As a verification of our analytical results above, we
numerically solve our model system in various geometries. For the dynamical system,
we use a fully-implicit Newton-Raphson based solver; for the steady state solutions,
we use a Newton-Raphson based relaxation method. For each case, we look at a
quantity we will refer to as simply the “amplitude” of A, which will be defined slightly
differently in the various geometries.

4.1. 1D. In this geometry, we define the amplitude to be

Aamp(t) =
1
2

[A(0, t)−A(π, t)] . (4.1)

Since our solution should be 2π periodic, we use the above measure to test the solutions
obtained at two points along the phase space. In our experience, the value of the
analytical solution at x = 0 is often very close to the actual numerical result there,
but the analytic and numerical results will start to diverge at x = π for higher ε
values, which is why we choose the measure above. Furthermore, all numerical results
in this geometry will use L = π/k∗ and Neumann boundary conditions.

The first case we explore is a supercritical system, in which ηk2
∗ = 0.4 (η = 0.01

and k∗ = 2). The two plots in Fig. 4.1 summarize the results here. Figure 4.1(a)
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Fig. 4.2. 1D system with ηk2
∗ = 0.1. In (a) is a bifurcation diagram for the system where

dashed lines represent unstable branches and solid lines are stable branches; numerical results are in
black, analytic results from Eq. 3.20 in red, and a higher order analytic solution in blue. There is
good agreement between the numerics and both analytic solutions for smaller ε values, but only the
higher order analytic solution reproduces the large amplitude branch seen in the numerics. In (b)
are plots of the numeric (black lines) and analytic (circles and squares) solutions for Aamp(t) with
ε = −0.001 and varying Q(0); the dashed line represents the analytic steady state value for this ε.
The lower line corresponds to Q(0) = 0.0028, with the analytic solution from Eq. 3.20 in red circles;
there is good agreement here between the two. The upper line corresponds to Q(0) = 0.0032, with
the higher order analytic solution in blue squares. The agreement between these two is reasonable,
though the analytic solution predicts a higher steady state value than the numerics.

shows a bifurcation diagram for our system as derived by computing the steady state
value Aamp(∞) as a function of ε, plotting both the analytical and numerical results.
We find there is good agreement in this case for smaller ε values, as predicted. Figure
4.1(b) plots the analytic and numerical solutions for Aamp(t) using ε = 0.01 and
Q(0) = 0.01; there is very good agreement here, as this ε value is rather small.

The next case we explore is a subcritical system, in which ηk2
∗ = 0.1 (η = 0.01

and k∗ = 1), with the results shown in Fig. 4.2. Referring to Fig. 4.2(a), the numerical
solutions (black) display the small amplitude, unstable branch predicted by the theory
above, and the numerics match the theory (red) well at small ε. However, there is also
a stable, large amplitude branch in the bifurcation diagram that is not predicted by
the theory above. As alluded to before, though, we can continue our analytic solution
to the next higher order in ε and obtain a much more accurate analytic result that
does predict this large amplitude stable branch (blue). We omit the extreme details
here, but the general form of this higher order amplitude equation for this example is

Qt = σ∗ε [1 + εa1(η, k∗)]Q+|C1(η, k∗)| [1 + εa2(η, k∗)] |Q|2Q−C2(η, k∗)|Q|4Q , (4.2)

where a1, a2, and C2 are the new corrections that arise as we move to the higher order.
Fig. 4.2(b) shows the evolution of Aamp(t) using ε = −0.001 and two different values
for Q(0). The first value is Q(0) = 0.0028, which is just slightly below the unstable
branch, so we expect our analytic results above (red) to be close to the numerical
results (black), and they are. However, the second Q(0) is 0.0032, which is slightly
above the unstable branch, so our results above cannot be used. Instead, we compare
with the next higher order analytic result (blue), and find relatively good agreement.

4.2. 2D, radially symmetric. In this geometry, we define the amplitude to be

Aamp(t) =
1
2

[A(0, t)−A(α1,1, t)] , (4.3)
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Fig. 4.3. Radially symmetric 2D system with ηk2
∗ = 0.2. In (a) is a bifurcation diagram for the

system where dashed lines represent unstable branches and solid lines are stable branches; numerical
results are in black and analytic results in red. We find good agreement between the two for smaller
ε values, though the numerics display a large amplitude stable branch that the analytic solution does
not. In (b) are plots of the numeric (black lines) and analytic (red circles) solutions for Aamp(t)
with |ε| = 0.01 and varying Q(0). The horizontal dashed line indicates the analytical unstable steady
state for ε < 0. The lower line corresponds to Q(0) = −0.01, ε > 0 and the middle line corresponds
to Q(0) = 0.3, ε < 0; the agreement is good in these two cases. The upper line corresponds to
Q(0) = 0.36, ε < 0. This is above the unstable branch, so it grows to the large amplitude stable
branch, which is not available from our analytical results.

for reasons similar to the 1-D definition above. Here, we use R = α1,1/k∗ with
Neumann boundary conditions, and we choose ηk2

∗ = 0.2 (η = 0.01 and k∗ = 2
√

5).
The results are shown in Fig. 4.3. In Fig. 4.3(a), we see our bifurcation diagram for
this geometry, which exhibits a transcritical bifurcation near the origin (black) that
matches the theory (red) well. However, the numerics also display a large amplitude
stable bump solution that our above theory cannot predict. Unlike the subcritical
1-D case above, we do not extend to higher order approximations here. This large
amplitude branch indicates that both the bump and ring steady state solutions are
stable and available at positive ε values, with the bump also being available in both
a stable and unstable form over some range of negative ε values. Fig. 4.3(b) shows
the evolution of both the numeric (black) and analytic (red) Aamp(t) using |ε| = 0.01
and three different values for Q(0). The first and lowest value is a ring with Q(0) =
−0.01 (and positive ε), which compares well with the analytic results. The second,
intermediate value is a bump with Q(0) = 0.3 (and negative ε), which is just slightly
below the unstable branch, so we expect our analytic result above to work reasonably
well in this case, and it does. However, the final value is a bump with Q(0) = 0.036
(and negative ε), which is slightly above the unstable branch, so our analytic results
above cannot be used. Numerically, though, we see that the solution grows until it
reaches the stable, large amplitude branch.

4.3. 2-D, non-radially symmetric. In this case, we model the fully 2-D ver-
sions of Eqns. 3.7 and 3.8, using the method described previously in [30]. We are
mostly concerned in comparing this case to the radially symmetric one above, in
terms of the existence of subcritical hotspots with large amplitudes. Another point
of comparison will be the existence of the ring solution, which we can predict will not
be stable in the non-radially-symmetric case, but will instead break up into separate
bump-type solutions.

For the numerics, we use a 128x128 square grid with sides of length L = 4α1,1/k∗
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Fig. 4.4. Full 2D system with ηk2
∗ = 0.2. The colormaps display high A in red, A in green, and

low A in blue to purple. Shown in (a) is a partial bifurcation diagram for the system, illustrating
the possibility of multiple subcritical steady states with varying numbers of hotspots. For ε < 0, our
initial conditions always lead to a single-spot solution, but it is possible to maintain this single spot
even for some positive ε values, as shown in (b). At high enough ε, the single spot solution gives
way to a five-spot solution, which can persist for some range of negative ε values, as shown in (c).

and periodic boundary conditions, with ηk2
∗ = 0.2 (η = 0.01 and k∗ = 2

√
5) as

used in the radially symmetric case above. For initial conditions, we start all of the
gridpoints at the homogeneous steady state values A and ρ except for the very center
point, which starts with a large excitation of A = 1000A; this is to ensure that a
hotspot develops directly in the center of the domain even if the system is somewhat
subcritical. Because of the domain size used and the boundary conditions employed,
there are potentially many steady states possible for this system at a given ε, and
the number of hotspots displayed in each can vary significantly. However, as we are
mainly interested in the subcritical case, we will focus on steady states found in this
regime. Figure 4.4 displays some of these states. We find that, for these parameters,
the minimum ε for which a single subcritical spot can develop is around ε ' −0.105,
and that systems with negative ε greater than this always develop just one central
spot for these initial conditions. If we take one of these single-spot states and slowly
increase ε above zero, we find that a single spot will remain (Fig. 4.4(b)) until a critical
value of ε (0.05) is reached, at which point the areas of somewhat elevated A near
the edges of the domain break up into separate spots, creating a five-spot solution.
Starting with this five-spot solution and slowly decreasing ε, on the other hand, shows
that this solution persists for negative ε that are greater than -0.1 (Fig. 4.4(c)), at
which point the outer spots die away, leaving only the center spot remaining.

5. Hotspot suppression. Now that we know our system may exhibit two quali-
tatively different types of crime hotspots (supercritical and subcritical) it is natural to
question what differences may exist, if any, between the behavior of these two classes
of pattern with regards to hotspot suppression. As mentioned in the introduction,
“hotspot policing” is a law-enforcement strategy whereby more police resources are
focused on areas currently believed to be within a hotspot in an effort to disrupt and
destroy said hotspot. Studies conducted to test the effectiveness of this strategy reveal
that in some instances the hotspots seem to be destroyed, while in others they seem
to simply be displaced. The 2D analyses we have performed above seem to offer an
explanation as to why these two very different responses to suppression occur (refer
to Fig. 4.3). First, imagine a crime hotspot that exists within a linearly stable pa-
rameter regime (ε < 0); the hotspot is therefore subcritical. If the police presence is
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Fig. 5.1. Suppression in the radially symmetric 2D system with ηk2
∗ = 0.316, κ = 3. The

curves show A(r, t) as it evolves following the suppression that occurs at t = 0, and the horizontal
dashed line represents Acutoff = 1. Shown in (a) is the case ε = 0.4 and the suppression of the bump
drives the system to the ring solution, which persists after suppression is removed. Shown in (b) is
the case ε = −0.02 and the suppression of the bump drives the system to a temporary ring structure
that decays to homogeneity once suppression is removed.

enough to drive the attractiveness of the hotspot below the critical unstable branch of
the bump solution in the bifurcation diagram, the system will tend to naturally drop
down to the homogeneous state once suppression is relaxed, destroying the hotspot in
question utterly. However, imagine now that the hotspot in question exists within the
linearly unstable regime (ε > 0), and is therefore supercritical. Any effort to suppress
the bump solution will simply lead to the attractiveness being displaced to the sur-
rounding area, i.e., the stable ring solution, which will persist after the relaxation of
suppression. Of course, in a non-radially symmetric 2D system, the ring solution will
not be stable, and will be susceptible to break-up into separate spots. In this case,
then, the hotspot policing will have simply lead to a displacement of the hotspot to
nearby areas, rather than its destruction.

The above hypothetical scenarios have been verified in computer simulations of
the radially symmetric 2D continuous system and the full 2D system in both the
continuous and the discrete crime models. To do so, we choose a combination of
parameters that are known to be either unstable or stable, whichever is desired. Then,
we run simulations as described above in Sec.4 with initial conditions set to initially
give a bump solution at the origin (considered to be the center of the field in the
full 2D case). We allow the simulation to run until a time ts when it seems to have
reached a steady state, at which point we begin the suppression. This is accomplished
by first defining an instantaneous damping field d(x) in the following way

d(x) =
1
2

[1− tanh [κ (A(x, ts)−Acutoff)]] , (5.1)

where κ sets the width of the transition region between total suppression and no sup-
pression and Acutoff sets the attractiveness value above which suppression is desired.
This damping field is meant to represent police presence, which is concentrated al-
most exclusively in the areas of high attractiveness (hotspots). We assume that this
presence has two effects. First, the damping field will reduce the crime rate in areas
where there is a large police presence (d ' 1). Second, the police presence will prevent
burglars from beginning their search in these same areas. Mathematically, then, our
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Fig. 5.2. Suppression results for the full 2D system with ηk2
∗ = 0.2, ε = −0.05, κ = 5, and

Acutoff = 5.72. The top row are results from the PDE system, while the bottow row are results from

the discrete system with equivalent parameters. These colormaps display high A in red, A in green,
and low A in blue to purple. Shown in (a) is the system configuration right before suppresssion is
first implemented. Soon after implementation, the central hotspot has disappeared entirely, but no
further spots have emerged (b). Eventually the suppression is lifted and the system begins to adopt
the homogenous steady state (c).

PDE system is modified to

∂A

∂t
= η∇2A−A+A0 + dρA , (5.2)

∂ρ

∂t
= ~∇

[
~∇ρ− 2ρ

A
~∇A
]
− dρA+ d

(
A−A0

)
. (5.3)

Note that this damping field remains unchanged between any two successive ts values.
In other words, the police may remain within an area for some time even after the
crime there has been reduced. This is reasonable in the sense that in the real world,
police do not have instantaneous information about what areas are most attractive,
and must instead rely on where events have occurred in the recent past when de-
ciding where to allocate resources. Therefore, there is an inherent lag between the
information possessed by the criminals and that possessed by the police. The typical
timescale for this lag in the real world may be on the order of weeks to months [22],
which is enough time for new hotspots to emerge [28, 5].

Results for the radially symmetric case are shown in Fig. 5.1, and the hypothet-
ical scenarios play out as anticipated. In the supercritical case, suppression of the
bump drives the system to the ring solution, which, due to its stability, remains af-
ter suppression is relaxed (Fig. 5.1(a)). Suppression of the subcritical bump initially
sends the system to a ring-like state as well, since the suppression by definition will
cause the origin to have very low A values, leaving the outer edge as the only place
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(a) (b) (c)

Fig. 5.3. Suppression results for the full 2D system with ηk2
∗ = 0.2, ε = 0.05, κ = 5, and

Acutoff = 6.12. The top row are results from the PDE system, while the bottow row are results from

the discrete system with equivalent parameters. These colormaps display high A in red, A in green,
and low A in blue to purple. Before suppression is first implemented, the system displays a number
of hotspots (a). Soon after the implementation of suppression the original hotspots vanish, but the
attractiveness of the neighboring regions correspondingly increases, leading to a transient structure
resembling the ring solution that surrounds the location of the original central hotspot (b). By the
time the next suppression time Ts has arrived, a new steady state featuring hotspots near the original
ones has been achieved (c).

for criminal activity to occur. However, once the suppression is removed, the ring’s
instability causes it to decay to the homogeneous state, and the original hotspot is
now destroyed (Fig. 5.1(b)).

Figure 5.2 illustrates the effects of hotspot suppression in a fully 2D, subcritical
system. Before suppression (Fig. 5.2(a)), we see that our initial condition has lead
to a stable hotspot in the center of the field in both the continuum and discrete
cases, though the discrete case also displays some quasi-hotspots near the edges of
the domain due to random fluctuations that push the system at least temporarily
above the unstable branch . Once suppression is introduced (Fig. 5.2(b)), the hotspot
dies away rather quickly, leaving an area of very low A in the center where the police
presence remains and a faint ring near the domain edges. Critically, though, we do not
see the emergence of new hotspots. Finally, when the next Ts is reached (Fig. 5.2(c)),
there is actually no suppression needed since no hotspots remain, and the “coldspot”
in the center returns to the homogeneous value soon after the police leave the area. As
predicted, the suppression was effective in eradicating the hotspot in the subcritical
case.

Figure 5.3 illustrates the effects of hotspot suppression in a fully 2D, supercritical
system. Before suppression (Fig. 5.3(a)), we see that our initial condition has lead
not only to a hotspot in the center of the field, but a number of other hotspots have
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developed near the edge due to the linear instability of the system. Once suppression
is introduced (Fig. 5.3(b)), the original hotspots disappear quickly. However, we
see in the continuum case especially that the eradication of these spots has simply
pushed the system into a different non-homogeneous configuration, with a temporary
structure resembling the ring solution surrounding the area where the central hotspot
was located. Finally, by the time the next Ts has arrived (Fig. 5.3(c)), the system has
reached a new steady state that exhibits hotspots in areas near where the original spots
were. So, the suppression was ineffective in eradicating the supercritical hotspots, and
merely lead to their displacement.

6. Conclusions. Through a weakly nonlinear analysis of our coupled PDE sys-
tem (Eqns. 2.1 and 2.2), we have shown that in both the 1D and 2D cases, our
system may exhibit stable hotspots in both the supercritical and subcritical regime.
The existence of the subcritical hotspots offers another mechanism for crime pattern
formation, in addition to the linear instability discussed in our previous work.

Importantly, these distinct hotspot mechanisms may help explain the varying
measures of success that police agencies have when attempting to suppress hotspots.
In the supercritical case, suppression of a hotspot seems to simply displace the spot
to neighboring regions, as the bump solution gives way to the ring solution, which will
either be a new stable state (in the radially symmetric case) or will then break up into
separate bumps (in the non-radially symmetric case); this is illustrated in Figs. 5.1(a)
and 5.3. In the subcritical case, on the other hand, the suppression of the hotspot
below the unstable bump solution branch of the bifurcation diagram (Fig. 4.3) should
destroy it completely, as the ring solution is unstable in this regime and will decay to
the homogeneous state once supression is removed; this is illustrated in Figs. 5.1(b)
and 5.2.

As a corollary to this argument, we point out that the existence of these large
amplitude branches introduces the possibility of hysteresis into the system. That is,
if the parameters of the system are slowly varying with time (as social or economic
conditions vary, perhaps), what was once a peaceful city may experience a sudden
burst of crime once the stability threshold is passed, rather than the crime slowly
increasing as the parameters move further into the unstable regime. In this situation,
police attempts at suppression may only have the effect of displacing crime hotspots.
Furthermore, if the parameters then begin to decrease, this high level of crime may
persist until things are even better than when the initial outbreak occurred, though
once the stability threshold is passed police suppression should help in destroying
hotspots.
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