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Abstract

In their recent SIAM J. Control Optim. paper from 2009, J. Eckstein and B.F. Svaiter proposed
a very general and flexible splitting framework for finding a zero of the sum of finitely many
maximal monotone operators. In this short note, we provide a technical result that allows for
the removal of Eckstein and Svaiter’s assumption that the sum of the operators be maximal
monotone or that the underlying Hilbert space be finite-dimensional.
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Throughout, we assume thatH is a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. We shall assume basic notation and results from Fixed Point Theory and from Monotone
Operator Theory; see, e.g., [1, 4, 5, 6, 7, 8, 9]. The graph of a maximal monotone operator A : H⇒ H
is denoted by gra A, and its resolvent (A + Id)−1 by JA. Weak convergence is indicated by ⇀ .

Lemma 1 Let C be a closed linear subspace of H and let F : H → H be firmly nonexpansive. Then
PCF + (Id−PC)(Id−F) is firmly nonexpansive.

Proof. Since PC and F are firmly nonexpansive, we have that 2PC − Id and 2F− Id are both nonex-
pansive. Set T = PCF + (Id−PC)(Id−F). Then 2T − Id = (2PC − Id)(2F − Id) is nonexpansive,
and hence T is firmly nonexpansive. �
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Theorem 2 Let A : H ⇒ H be maximal monotone, and let C be a closed linear subspace of H. Let
(xn, un)n∈N be a sequence in gra A such that (xn, un) ⇀ (x, u) ∈ H×H. Suppose that xn − PCxn → 0
and that PCun → 0, where PC denotes the projector onto C. Then (x, u) ∈ (gra A) ∩ (C × C⊥) and
〈xn, un〉 → 〈x, u〉 = 0.

Proof. Since PC is a bounded linear operator, it is weakly continuous ([2, Theorem VI.1.1]). Thus
x ↼ xn = (xn − PCxn) + PCxn ⇀ 0 + PCx and hence x = PCx ∈ C. Similarly, 0 ← PCun ⇀ PCu;
hence PCu = 0 and so u ∈ C⊥. Altogether,

(1) (x, u) ∈ C× C⊥.

Since Id−JA is firmly nonexpansive, we see from Lemma 1 that

(2) T = PC(Id−JA) + (Id−PC)JA = PC + (Id−2PC)JA

is also firmly nonexpansive. Now (∀n ∈ N) un ∈ Axn, i.e.,

(3) (∀n ∈ N) xn = JA(xn + un).

Furthermore,

(4) xn + un ⇀ x + u,

and (2) and (3) imply that T(xn + un) = PC(xn + un) + (Id−2PC)JA(xn + un) = PCxn + PCun +
(Id−2PC)xn = xn − PCxn + PCun → 0, i.e., that

(5) T(xn + un)→ 0.

Since Id−T is (firmly) nonexpansive, the demiclosedness principle (see [4, 5]), applied to the
sequence (xn + un)n∈N and the operator Id−T, and (4) and (5) imply that (Id−(Id−T))(x + u) =
0, i.e., that T(x + u) = 0. Using (2), this means that

(6) JA(x + u) = 2PC JA(x + u)− PC(x + u) ∈ C.

Applying PC to both sides of (6), we deduce that JA(x + u) = PC JA(x + u); consequently, (6)
simplifies to

(7) JA(x + u) = PCx + PCu.

However, (1) yields PCx = x and PCu = 0, hence (7) becomes JA(x + u) = x; equivalently, u ∈ Ax
or

(8) (x, u) ∈ gra A.

Combining (1) and (8), we see that (x, u) ∈ (gra A) ∩ (C × C⊥), as claimed. Finally, 〈xn, un〉 =
〈PCxn, PCun〉+ 〈PC⊥xn, PC⊥un〉 → 〈PCx, 0〉+ 〈0, PC⊥u〉 = 0 = 〈PCx, PC⊥u〉 = 〈x, u〉. �
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Corollary 3 Let A1, . . . , Am be maximal monotone operators H, and let z1, . . . , zm and w1, . . . , wm be
vectors in H. Suppose that for each i, (xi,n, yi,n)n∈N is a sequence in gra Ai such that for all i and j,

(xi,n, yi,n) ⇀ (zi, wi)(9)
m
∑

i=1

yi,n → 0(10)

xi,n − xj,n → 0.(11)

Then z1 = · · · = zn, w1 + · · ·+ wn = 0, and each wi ∈ Aizi.

Proof. We work in product Hilbert space H = Hm, and we set

(12) A = A1× · · · × Am, and C =
{

(x1, . . . , xm) ∈H | x1 = · · · = xm

}

.

Note that A is maximal monotone on H, and that C is a closed linear subspace of H. Next, set
x = (z1, . . . , zm), u = (w1, . . . , wm), and (∀n ∈ N) xn = (x1,n, . . . , xm,n) and un = (y1,n, . . . , ym,n).
By (9), (xn, un)n∈N is a sequence in gra A such that (xn, un) ⇀ (x, u). Furthermore, (10) and (11)
imply that PCun → 0 and that xn − PCxn → 0, respectively. Therefore, by Theorem 2, (x, u) ∈
(gra A) ∩ (C×C⊥), which is precisely the announced conclusion. �

Remark 4 Corollary 3 is a considerable strengthening of [3, Proposition A.1], where it was ad-
ditionally assumed that A1 + · · · + Am is maximal monotone, and where part of the conclusion of
Corollary 3, namely z1 = · · · = zm, was an additional assumption.

Remark 5 Because of the removal of the assumption that A1 + · · · + Am be maximal monotone
(see the previous remark), a second look at the proofs in Eckstein and Svaiter’s paper [3] reveals
that — in our present notation — the assumption that

“eitherH is finite-dimensional or A1 + · · ·+ Am is maximal monotone”

is superfluous in both [3, Proposition 3.2 and Proposition 4.2]. This is important in the infinite-
dimensional case, where the maximality of the sum can typically be only guaranteed when a con-
straint qualification is satisfied; consequently, Corollary 3 helps to widen the scope of the powerful
algorithmic framework of Eckstein and Svaiter.
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