A NOTE ON THE PAPER BY ECKSTEIN AND SVAITER ON "GENERAL PROJECTIVE SPLITTING METHODS FOR SUMS OF MAXIMAL MONOTONE OPERATORS"

Heinz H. Bauschke*

May 20, 2009

Abstract

In their recent SIAM J. Control Optim. paper from 2009, J. Eckstein and B.F. Svaiter proposed a very general and flexible splitting framework for finding a zero of the sum of finitely many maximal monotone operators. In this short note, we provide a technical result that allows for the removal of Eckstein and Svaiter's assumption that the sum of the operators be maximal monotone or that the underlying Hilbert space be finite-dimensional.

2000 Mathematics Subject Classification:

Primary 47H05, 47H09; Secondary 47J25, 49M27, 52A41, 65J15, 90C25.
Keywords: Firmly nonexpansive mapping, maximal monotone operator, nonexpansive mapping, proximal algorithm, splitting algorithm.

Throughout, we assume that \mathcal{H} is a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. We shall assume basic notation and results from Fixed Point Theory and from Monotone Operator Theory; see, e.g., [1, 4, 5, 6, 7, $, 8,9]$. The graph of a maximal monotone operator $A: \mathcal{H} \rightrightarrows \mathcal{H}$ is denoted by gra A, and its resolvent $(A+\mathrm{Id})^{-1}$ by J_{A}. Weak convergence is indicated by \rightharpoonup.

Lemma 1 Let C be a closed linear subspace of \mathcal{H} and let $F: \mathcal{H} \rightarrow \mathcal{H}$ be firmly nonexpansive. Then $P_{C} F+\left(\operatorname{Id}-P_{C}\right)(\mathrm{Id}-F)$ is firmly nonexpansive.

Proof. Since P_{C} and F are firmly nonexpansive, we have that $2 P_{C}$ - Id and $2 F$ - Id are both nonexpansive. Set $T=P_{C} F+\left(\operatorname{Id}-P_{C}\right)(\mathrm{Id}-F)$. Then $2 T-\mathrm{Id}=\left(2 P_{C}-\mathrm{Id}\right)(2 F-\mathrm{Id})$ is nonexpansive, and hence T is firmly nonexpansive.

[^0]Theorem 2 Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximal monotone, and let C be a closed linear subspace of \mathcal{H}. Let $\left(x_{n}, u_{n}\right)_{n \in \mathbb{N}}$ be a sequence in gra A such that $\left(x_{n}, u_{n}\right) \rightharpoonup(x, u) \in \mathcal{H} \times \mathcal{H}$. Suppose that $x_{n}-P_{C} x_{n} \rightarrow 0$ and that $P_{C} u_{n} \rightarrow 0$, where P_{C} denotes the projector onto C. Then $(x, u) \in($ gra $A) \cap\left(C \times C^{\perp}\right)$ and $\left\langle x_{n}, u_{n}\right\rangle \rightarrow\langle x, u\rangle=0$.

Proof. Since P_{C} is a bounded linear operator, it is weakly continuous ([2, Theorem VI.1.1]). Thus $x \leftharpoonup x_{n}=\left(x_{n}-P_{C} x_{n}\right)+P_{C} x_{n} \rightharpoonup 0+P_{C} x$ and hence $x=P_{C} x \in C$. Similarly, $0 \leftarrow P_{C} u_{n} \rightharpoonup P_{C} u$; hence $P_{C} u=0$ and so $u \in C^{\perp}$. Altogether,

$$
\begin{equation*}
(x, u) \in C \times C^{\perp} . \tag{1}
\end{equation*}
$$

Since Id $-J_{A}$ is firmly nonexpansive, we see from Lemma 1 that

$$
\begin{equation*}
T=P_{C}\left(\operatorname{Id}-J_{A}\right)+\left(\operatorname{Id}-P_{C}\right) J_{A}=P_{C}+\left(\operatorname{Id}-2 P_{C}\right) J_{A} \tag{2}
\end{equation*}
$$

is also firmly nonexpansive. Now $(\forall n \in \mathbb{N}) u_{n} \in A x_{n}$, i.e.,

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad x_{n}=J_{A}\left(x_{n}+u_{n}\right) . \tag{3}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
x_{n}+u_{n} \rightharpoonup x+u, \tag{4}
\end{equation*}
$$

and (2) and (3) imply that $T\left(x_{n}+u_{n}\right)=P_{C}\left(x_{n}+u_{n}\right)+\left(\operatorname{Id}-2 P_{C}\right) J_{A}\left(x_{n}+u_{n}\right)=P_{C} x_{n}+P_{C} u_{n}+$ $\left(\operatorname{Id}-2 P_{C}\right) x_{n}=x_{n}-P_{C} x_{n}+P_{C} u_{n} \rightarrow 0$, i.e., that

$$
\begin{equation*}
T\left(x_{n}+u_{n}\right) \rightarrow 0 . \tag{5}
\end{equation*}
$$

Since Id $-T$ is (firmly) nonexpansive, the demiclosedness principle (see [4, 5]), applied to the sequence $\left(x_{n}+u_{n}\right)_{n \in \mathbb{N}}$ and the operator Id $-T$, and (4) and (5) imply that $(\operatorname{Id}-(\operatorname{Id}-T))(x+u)=$ 0 , i.e., that $T(x+u)=0$. Using (2), this means that

$$
\begin{equation*}
J_{A}(x+u)=2 P_{C} J_{A}(x+u)-P_{C}(x+u) \in C . \tag{6}
\end{equation*}
$$

Applying P_{C} to both sides of (6), we deduce that $J_{A}(x+u)=P_{C} J_{A}(x+u)$; consequently, (6) simplifies to

$$
\begin{equation*}
J_{A}(x+u)=P_{C} x+P_{C} u \tag{7}
\end{equation*}
$$

However, (1) yields $P_{C} x=x$ and $P_{C} u=0$, hence (7) becomes $J_{A}(x+u)=x$; equivalently, $u \in A x$ or

$$
\begin{equation*}
(x, u) \in \operatorname{gra} A . \tag{8}
\end{equation*}
$$

Combining (1) and (8), we see that $(x, u) \in(\operatorname{gra} A) \cap\left(C \times C^{\perp}\right)$, as claimed. Finally, $\left\langle x_{n}, u_{n}\right\rangle=$ $\left\langle P_{C} x_{n}, P_{C} u_{n}\right\rangle+\left\langle P_{C^{\perp}} x_{n}, P_{C^{\perp}} u_{n}\right\rangle \rightarrow\left\langle P_{C} x, 0\right\rangle+\left\langle 0, P_{C^{\perp}} u\right\rangle=0=\left\langle P_{C} x, P_{C^{\perp}} u\right\rangle=\langle x, u\rangle$.

Corollary 3 Let A_{1}, \ldots, A_{m} be maximal monotone operators \mathcal{H}, and let z_{1}, \ldots, z_{m} and w_{1}, \ldots, w_{m} be vectors in \mathcal{H}. Suppose that for each $i,\left(x_{i, n}, y_{i, n}\right)_{n \in \mathbb{N}}$ is a sequence in gra A_{i} such that for all i and j,

$$
\begin{align*}
\left(x_{i, n}, y_{i, n}\right) & \rightharpoonup\left(z_{i}, w_{i}\right) \tag{9}\\
\sum_{i=1}^{m} y_{i, n} & \rightarrow 0 \tag{10}\\
x_{i, n}-x_{j, n} & \rightarrow 0 . \tag{11}
\end{align*}
$$

Then $z_{1}=\cdots=z_{n}, w_{1}+\cdots+w_{n}=0$, and each $w_{i} \in A_{i} z_{i}$.

Proof. We work in product Hilbert space $\mathcal{H}=\mathcal{H}^{m}$, and we set

$$
\begin{equation*}
\mathbf{A}=A_{1} \times \cdots \times A_{m}, \text { and } \mathbf{C}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{H} \mid x_{1}=\cdots=x_{m}\right\} \tag{12}
\end{equation*}
$$

Note that \mathbf{A} is maximal monotone on \mathcal{H}, and that \mathbf{C} is a closed linear subspace of \mathcal{H}. Next, set $\mathbf{x}=\left(z_{1}, \ldots, z_{m}\right), \mathbf{u}=\left(w_{1}, \ldots, w_{m}\right)$, and $(\forall n \in \mathbb{N}) \mathbf{x}_{n}=\left(x_{1, n}, \ldots, x_{m, n}\right)$ and $\mathbf{u}_{n}=\left(y_{1, n}, \ldots, y_{m, n}\right)$. By (9), $\left(\mathbf{x}_{n}, \mathbf{u}_{\mathbf{n}}\right)_{n \in \mathbb{N}}$ is a sequence in gra A such that $\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right) \longrightarrow(\mathbf{x}, \mathbf{u})$. Furthermore, (10) and (11) imply that $P_{\mathbf{C}} \mathbf{u}_{n} \rightarrow 0$ and that $\mathbf{x}_{n}-P_{\mathrm{C}} \mathbf{x}_{n} \rightarrow 0$, respectively. Therefore, by Theorem $2,(\mathbf{x}, \mathbf{u}) \in$ (gra $\mathbf{A}) \cap\left(\mathbf{C} \times \mathbf{C}^{\perp}\right)$, which is precisely the announced conclusion.

Remark 4 Corollary 3 is a considerable strengthening of [3, Proposition A.1], where it was additionally assumed that $A_{1}+\cdots+A_{m}$ is maximal monotone, and where part of the conclusion of Corollary 3, namely $z_{1}=\cdots=z_{m}$, was an additional assumption.

Remark 5 Because of the removal of the assumption that $A_{1}+\cdots+A_{m}$ be maximal monotone (see the previous remark), a second look at the proofs in Eckstein and Svaiter's paper [3] reveals that - in our present notation - the assumption that
"either \mathcal{H} is finite-dimensional or $A_{1}+\cdots+A_{m}$ is maximal monotone"
is superfluous in both [3, Proposition 3.2 and Proposition 4.2]. This is important in the infinitedimensional case, where the maximality of the sum can typically be only guaranteed when a constraint qualification is satisfied; consequently, Corollary 3 helps to widen the scope of the powerful algorithmic framework of Eckstein and Svaiter.

Acknowledgment

The author was partially supported by the Natural Sciences and Engineering Research Council of Canada and by the Canada Research Chair Program.

References

[1] R.S. Burachik and A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Springer-Verlag, 2008.
[2] J.B. Conway, A Course in Functional Analysis, 2nd edition, Springer-Verlag, 1990.
[3] J. Eckstein and B.F. Svaiter, "General projective splitting methods for sums of maximal monotone operators", SIAM Journal on Control and Optimization, vol. 48, pp. 787-811, 2009.
[4] K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
[5] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, 1984.
[6] R.T. Rockafellar and R.J-B Wets, Variational Analysis, 2nd printing, Springer-Verlag, 2004.
[7] S. Simons, Minimax and Monotonicity, Springer-Verlag, 1998.
[8] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
[9] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, 2002.

[^0]: *Mathematics, Irving K. Barber School, University of British Columbia Okanagan, Kelowna, B.C. V1V 1V7, Canada. E-mail: heinz.bauschke@ubc.ca.

